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Abstract

The following hypothesis is proposed: “In mathematics, the contradiction involved in the de-
velopment of human knowledge is included in the form of the infinite.” To prove this hypothesis,
the author tries to find what sorts of the infinite in mathematics were used to represent the con-
tradictions involved in some revolutions in mathematical physics, and concludes “the contradiction
involved in mathematical description of motion was represented with the infinite within recursive
(computable) set level by early Newtonian mechanics; and then the contradiction to describe discon-
tinuous phenomena with continuous functions and contradictions about “ether” were represented
with the infinite higher than the recursive set level, namely of arithmetical set level in second or-
der arithmetic (ordinary mathematics), by mechanics of continuous bodies and field theory; and
subsequently the contradiction appeared in macroscopic physics applied to microscopic phenomena
were represented with the further higher infinite in third or higher order arithmetic (set-theoretic
mathematics), by quantum mechanics”.

1 Introduction

Contradictions found in set theory from the end of the 19th century to the beginning of the 20th, gave
a shock called “a crisis of mathematics” to the world of mathematicians. One of the contradictions was
reported by B. Russel: “Let w be the class [set]1 of all classes which are not members of themselves.
Then whatever class x may be, ’x is a w’ is equivalent to ’x is not an x’. Hence, giving to x the value
w, ’w is a w’ is equivalent to ’w is not a w’.”[52]

Russel described the crisis in 1959:

I was led to this contradiction by Cantor’s proof that there is no greatest cardinal
number. I thought, in my innocence, that the number of all things there are in the world
must be the greatest possible number, and I applied his proof to this number to see what
would happen. This process led me to the consideration of a very peculiar class. ... At first
I thought there must be some trivial error in my reasoning. I inspected each step under
a logical microscope, but I could not discover anything wrong. I wrote to Frege about it,
who replied that arithmetic was tottering and that he saw that his Law V was false. Frege
was so disturbed by this contradiction that he gave up the attempt to deduce arithmetic
from logic, to which, until then, his life had been mainly devoted.... : Philosophers and
mathematicians reacted in various different ways to this situation. Poincaré, who disliked
mathematical logic and accused it of being sterile, exclaimed with glee, “it is no longer
sterile, it begets contradiction.” ... Some other mathematicians, who disapproved of Georg
Cantor, adopted the March Hare’s solution: “I’m tired of this. Let’s change the subject.”
... The contradiction about the greatest ordinal was discovered by Burali-Forti before I
discovered my contradiction.... [53]

J. Diudonné, born in 1906, recollected the crisis in 1982:

1Words within the square parentheses are supplements by the present author. The same shall apply hereafter.
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There was a period – the famous crisis of foundations, which began in about 1895 and
continued to 1930 – when many mathematicians were greatly troubled by the paradoxes
and the difficulties of reasoning that seemed to emerge from everywhere. I believe that the
mathematicians of that generation and of mine – which is later – experienced a personal
crisis. During all an year, I spent my time to fabricate an logical system which satisfies me
– I did not publish it, of course – , for I was so troubled that I feel the need to prove for
myself that one can do mathematics by a totally coherent way.[15]

Speaking against the crisis, D. Hilbert said, “Mathematics in a certain sense develops into a tribunal
of arbitration, a supreme court that will decide questions of principle – and on such a concrete basis
that universal agreement must be attainable and all assertions can be verified.” Concerning the use of
the infinite which caused the crisis, he stated: “The right to operate with the infinite can be secured
only by means of the finite.” And to achieve the purpose, he proposed to express all the propositions
and the inferences in mathematics with “an inventory of formulas that are formed from mathematical
and logical signs and follow each other according to definite rules” and to prove consistency of the
formal system by finite method. [33]

In 1931, however, K. Gödel showed that the formal system which contained mathematical induction
process [with the lowest level of the infinite], could not prove its own consistency.[27] H. Weyl said in
1947: “Hilbert’s hope to establish consistency of formally equivalent system to classic mathematics
was crushed by discovery by K. Gödel in 1931. This discovery caused doubt about the whole project.
Since then the general attitude was that of resignation. Ultimate foundation and ultimate meaning of
mathematics are yet unsolved question.” [60]

The above history of studies on foundations of mathematics shows that the thought since Plato,
which seeks “a model of reliability and truth”[33] in mathematics, should be corrected. Then what
is the role of mathematics in science or in the understanding of Nature by human beings? What is
the objective meaning of the process of “proof”, which has been assumed to guarantee the reliability
of inference? These problems seem to be very important to those who are engaged in mathematical
studies.

But these problems are now left to logicians or philosophers. Moreover, according to J. Diudonné,
“95% of mathematicians have no interest in works of all the logicians and all the philosophers.”[15]

Hilbert contrasted the crisis of mathematics with the confusion about infinitesimals in the 18th
century. It seems that contemporary mathematicians, like those of the 18th century, are going forward
putting aside problems about principles, also following the advice by d’Alembert, “Go forward! Then
belief will come to you. (Allez en avant, et la foi vous viendra.)” [14]

As for the philosophy of mathematics which deals with problems of principles, A. Robinson reported
in 1973:

[In spite of technical progress in foundations of mathematics] the evolution of our un-
derstanding of the essential nature of mathematics has been hesitant and ambiguous, and
in any case the conclusions that have been reached by one school of thought have been
rejected by another.... There is no evidence that a more trenchant kind of progress in this
area is at all likely.”

And as one of possibilities of development in future, he said:

For example, I can well imagine that a serious mathematical philosophy based on the
dialectical approach will make its appearance. It seems to be this approach has already
shown its great value in connection with our understanding of the evolution of scientific
theories and their heuristic aspect. As far as detailed analysis of mathematics or of math-
ematical theory (e.g. the calculus) is concerned, my reading, beginning with Hegel’s work
in this area, had not led me to find anything that can stand up to serious criticism. It is
quite possible that this situation will be remedied in the future.”[54]

As described above, the classical viewpoint of mathematics was discredited by the problem of
contradictions in set theory. On the other hand, dialectical philosophy positively accepts contradictions

2



as the principle of the development of things. Hence, in particular, such problem should be resolvable
by dialectical approach.

If mathematics is a system developed strictly with only formal logic, it should become a sterile
system which only concludes what is already included in premises. But in fact, mathematics is creative,
because it includes breaches of formal logic, that is, contradictions. In mathematics, the contradiction
is included in the form of the infinite. And, definitions and proofs in mathematics, at least those
which include infinite processes, are procedures which give the form of the infinite to the contradiction
or inconsistency between established systems of concepts and new observations or concepts obtained
through the progress of recognition.

H. Poincare also attributed creativity of mathematics to the infinite:

The very possibility of mathematical science seems insoluble contradiction. ... If ... all
the propositions which it enunciates may be derived in order by the rule of formal logic,
how is it that mathematics is not reduced to a gigantic tautology? ...

The process [to solve the contradiction] is proof by recurrence. We first show that a
theorem is true for n=1; we then show that if it is true for n-1 it is true for n, and we
conclude that it is true for all integers. [mathematical induction] ...

When we take in hand the general theorem, it [mathematical induction] becomes indis-
pensable. In this domain of Arithmetic we may think ourselves very far from the infinites-
imal analysis, but the idea of mathematical infinity is already playing a preponderating
part, and without it there would be no science at all, because there would be nothing
general.

And concluded:

We can only ascend by mathematical induction, for from it alone can we learn something
new. ... Let me observe, this induction is only possible if the same operation can be
repeated indefinitely [infinitely]. [50]

Human beings want to understand phenomena in the infinitely varying objective world using finite
and fixed concepts and its quantitative extension, which correspond to measures of recognition already
available to human beings. But when once they come across new observations which cannot be under-
stood by means of the already existing system of concepts, the phenomena appear as contradictions in
the system of concepts. Then we need to find new concepts to describe the new phenomena and the
laws which rule the new concepts, and need to incorporate them into the existing knowledge system.
To achieve these purposes, we need inference forms which extend existing concepts quantitatively as
far as possible and, furthermore, allow qualitative change jumping over limits of application of the
existing concepts. The inference forms using the infinite are the solutions to these problems.

For example, in the 5th century B. C., Pythagorean school found that if a side of a squire and its
diagonal had any common scale, contradiction arose inevitably.[31] To represent the assumed ratio of
the side to the diagonal (incommensurable quantity), a new concept “irrational number” should be
introduced. And to prove that the same operations as rational numbers can be applied to irrational
numbers, and to integrate them to real number system, the irrational number as a whole needed to be
defined using infinite set of rational numbers.[16],[9] That is, the contradiction appeared in rational
number system, or the qualitative jump from rational numbers to irrational numbers (or from discrete
numbers to continuous quantity) was represented with the mathematical infinite through the definition
of irrational numbers with infinite set of rational numbers.

Mathematics, as a science of quantity, has developed various forms of inference using the infinite
and has offered them to other sciences as measures to connect and systematize qualitatively different
concepts. On the other hand, as a result of pursuing universal validity of its inference forms, adopted
only finite formal logic to be replaced by mechanical devices, with exception of the infinite which cannot
be reduced to the formal logic. In mathematics, therefore, contradictions involved in the development
of human knowledge or so called “mysteries of Nature” are required to be expressed as the infinite.
Procedures that satisfy the requirement are proofs and definitions in mathematics.
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Why the mathematical infinite can represent contradictions in systems of concepts? It is because
the concept of the mathematical infinite itself contains a contradiction. The mathematical infinite is
defined as something unreachable through iteration of some process. But when it is used in inference, it
is treated as an object in the extension of the same process, that is, something already reached. It is a
contradiction. The mathematical infinite is used at first unreachable “potential infinite” corresponding
to a particular process in mathematics. But G. Cantor cut off the mathematical infinite from the
particular process by creating set theory, and using the concept of set, presented abstract infinite
itself, so called “actual infinite,” as an object of mathematics. In other words, set theory can be said
a field of mathematics to study “mysteries of Nature” abstracted and generalized in the form of the
mathematical infinite.

As to the fact that by extending finite process to the infinite, qualitative change exceeding mere
generalization can arise, G. Galilei already pointed out in 1638:

These are some of the marvels...which should warn us against the serious error of those
who attempt to discuss the infinite by assigning to it the same properties which we employ
for the finite, the nature of the two having nothing in common,...

I must tell you of a remarkable property ... which will explain the vast alteration and
change of character which a finite quantity would undergo in passing to infinity. [28]

Galilei presented here the following example: the sequence of squired numbers: 1, 4, 9, 16, ...is a part
of the sequence of natural numbers: 1, 2, 3, 4, .... . In a finite range of the latter, the existing ratio
of the former is less than 1, and as the range is prolonged it approaches to 0. But when the range is
prolonged to the infinite, the ratio turns to 1. Because by corresponding every natural number to its
squire, all the natural numbers correspond to all the squired numbers and the reverse is also true.

In the present paper, starting with Newton’s case, the present author tried to work out what sort
of the infinite were used to represent the contradictions involved in some revolutions in mathematical
physics, in order to demonstrate historically the above hypothesis.

2 Newtonian mechanics

I. Newton summarized his early research in mathematics in his paper dated October 1666. [46]

His paper begins with the statement: “To resolve Problems by Motion these following Propositions
are sufficient.” Then Newton listed the propositions numbered from 1 to 8 like axioms. Among them,
propositions No. 7 and No. 8 describe differential and integral calculus respectively as follows (Newton
did not use the term “differential calculus” or “integral calculus”):

7. Having an Equation expressing ye relation twixt two or more lines x, y, z, &c: de-
scribed in ye same time by two or more moveing bodyes A,B,C, &c: the relation of their
velocitys p, q, r, &c may bee thus found, viz:

Set all ye termes on one side of ye Equation that they become equall to nothing. And
first multiply each terme by so many times

p
x as x hath dimensions in yt terme. Secondly

multiply each terme by so many times
q
y as y hath dimensions in it. Thirdly (if there

be 3 unknowne quantitys) multiply each terme by so many times
r
z as z hath dimensions

in yt terme, (& if there bee still more unknowne quantitys doe like to every unknowne
quantity). The summe of all these products shall bee equall to nothing. wch Equation
gives ye relation of ye velocitys p, q, r, &c.

...

8. If two Bodys A&B, by their velocitys p& q describe ye lines x& y. & an Equation
bee given expressing ye relation twixt one of ye linens x, & ye ratio

q
p of their motions

q& p ; To find ye other line y...
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First get the valor of
q
p . Which if it bee rationall & its Denominator consist of but one

term: Multiply yt valor by x & divide each terme of it by ye logaritheme of x in yt terme

ye quote shall bee ye valor of y. As if ax
m
n =

q
p . Then is

na
m+nx

m+n
n = y ...

But this eighth Proposition may bee ever thus resolved mechanically. viz:

Seeke ye Valor of
q
p as if you were resolving ye equation in Decimall numbers either by

Division or extraction of rootes or Vieta’s Analyticall resolution of powers; This operation
bee continued at pleasure, ye farther the better. & from each terme ariseing from this
operation may bee deduced a parte of ye valor of y, (by pte ye 1st of this prop).

Example 1. If
a

b+cx=
q
p . Then by division is

q

p
=
a

b
− acx

bb

+accxx

b3
− ac3x3

b4
+
ac4x4

b5
− ac5x5

b6
+
ac6x6

b7
&c.

And consequentry

y =
ax

b
− acxx

2bb
+
accx3

3b3
− ac3x4

4b4
+
ac4x5

5b5
&c.

Newton expanded functions in question into power series, and applied termwise differential or integral
calculus.[47] Therefore it is sufficient only to apply such simple methods of calculus as the above
propositions 7 and 8.

V. I. Arnol’d wrote: “Newton understood by analysis the investigation of equations by means of
infinite series. In other words, Newton’s basic discovery was that everything had to be expanded in
infinite series.” [1]

The velocities p, q, r... occurring in those equations are quantities varying with time, and in the
case of accelerated motion, distances moved actually with these velocities at each moment are zero.
Consequently, these values cannot be calculated by the conventional definition of velocity: the ratio of
distance and time of motion. Newton calculated the velocities p, q, r, ... from the coordinates x, y, z, ...
using the above methods of calculus.

The referred paper shows that Newton’s differential and integral calculus are parts of dynamics, and
entirely developed to represent motions. Therefore, in his paper, independent variables are always time

“t,” and the quantity
dy
dx in modern style is written as

q
p . Afterwards Newton named the coordinates

x, y, z,... of moving bodies “fluence,” and the velocities p, q, r, ... varying with time (velocities at each
moment) “fluxion,” and represented them with symbols ẋ, ẏ, ż, ....

Fluxion or velocity in a moment was essential to represent accelerated motion mathematically,
and to represent the relation between force and motion: “force = mass × acceleration,” and hence
to develop mathematical dynamics. As Zeno of Elea stated: “The moving body moves neither in the
place where it exists, nor where it does not exit”[17], motion cannot be described by directly observable
concepts such as existence, non-existence, position or time.

In the same paper dated October 1666, Newton justified the fluxion method (differential and
integral calculus) using the infinitesimal o, the sign of the infinitely small quantity, as follows.

To demonstrate the proposition 7, he presented an equation relating the fluences x and y (coordi-
nates of moving bodies A and B respectively): x3 − abx+ a3 − dyy = 0 and define p and q as fluxions
of x and y respectively. Then he obtained the relation between p and q:

I may substitute x+ po, & y+ qo into ye place of x& y; because (by ye lemma) they as
well as x& y, doe signify ye lines described by ye bodys A&B. By doeing so there results

x3 + 3poxx+ 3ppoox+ p3o3 − dyy − 2dqoy − dqqoo = 0

−abx − abpo

+a3
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But x3 − abx+ a3 − dyy = 0 (by supp). Therefore there remains onely

3poxx+ 3ppoox+ p3o3 − 2dqoy − dqqoo = 0

−abpo

Or dividing it by o tis

3px2 + 3ppox+ p3oo− 2dqy − dqqo = 0.

−abp

Also those termes are infinitely little in wch o is. Therefore omitting them there rests

3pxx− abp− 2dqy = 0

The like may bee done in all other equations.

Hence I observe. First yt those termes ever vanish wch are not multiplyed by o, they
being ye propounded equation. Secondly those termes also vanish in wch o is of more yn

one dimension, because they are infinitely lesse yn those in wch o is but of one dimension.
Thirdly ye still remaining termes, being divided by o will have yt form wch, by ye1st rule
in Prop 7th, ....

....

Prop 8th is ye Converse of this 7th Prop. & may be therefore Analytically demonstrated
by it. [46]

To represent motion mathematically, Newton introduced the concept of fluxion, and thus established
the foundation of the fluxion method using infinitesimals. That is, he represented the contradiction of
motion with the infinite in the form of the infinitesimal “o”.

In 1734, G. Berkeley criticized the fluxion method :

Hitherto I have supposed that x flows, that x hath a real increment, that o is something.
And I have proceeded all along on that supposition, without which I should not have been
able to have made so much as one single step. From that supposition it is that I get at the
increment of xn, that I am able to compare it with the increment of x, and that I find the
proportion between the two increments. I now beg leave to make a new supposition contrary
to the first, i.e. I will suppose that there is no increment of x, or that o is nothing; which
second supposition destroys my first, and is inconsistent with it, and therefore with every
thing that supposeth it. I do nevertheless beg leave to retain nxn−1, which is an expression
obtained in virtue of my first supposition, which necessarily presupposeth such supposition,
and which could not be obtained without it: All which seems a most inconsistent way of
arguing,....

..., as it is impossible to conceive velocity without time or space, without finite length
or duration, it must seem above the powers of men to comprehend even the first fluxions.
[2]

The criticism by Berkeley shows that fluxion (velocity in a moment) or fluxion method (differential
calculus) which was created by Newton to describe motion mathematically, resolving the contradiction
of motion pointed out by Zeno of Elea, contains contradictions for conventional systems of concepts
which apply formal logic to measurable quantities such as position, time, or distance.

The confusion around the infinitesimals was ended by the studies of A. L. Cauchy published in
1820s.

Cauchy wrote in the preface of his text book of infinitesimal calculus : “Those who read my book
will be convinced, I hope, that the principles of differential calculus and its most important applications
can be easily explained without the help of series.”[11]
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To avoid the use of infinitesimals which were the target of controversy in those days, J. L. Lagrange
and S. F. Lacroix algebraically defined differentiation or the derivative as the coefficient of power series
expansion of functions. Cauchy’s phrase “the help of series” indicate this situation.

In his textbook of analysis published in 1821, Cauchy introduced the following intermediate-value
theorem.

If the function f(x) is continuous with respect to the variable x between the limits
x = x0 and x = X, and b denotes a quantity between f(x0) and f(X), we may always
satisfy the equation

f(x) = b

by one or more real values of x contained between x0 and X. [12]

Then in the textbook of infinitesimal calculus published in 1823, whose preface was quoted above,
Cauchy defined derivative function f ′(x) as the limit of the ratio of infinitely small increases

f(x+ i)− f(x)

i

and proved the following mean-value theorem using the intermediate-value theorem.

If the function f ′(x) is continuous between the limits x = xo and x = X, we designate
by A the minimum, and by B the maximum of values which the derivative function f ′(x)
takes in that interval, then the ratio of finite differences:

f(X)− f(x0)

X − x0

should be comprised between A and B. [11]

From this theorem he derived the following equation:

f(x+ h)− f(x)

h
= f ′(x+ θh)

where h means small increase of x, and θ designates a positive number smaller than 1.
Also by writing ∆x instead of h in this equation he gave the equation:

f(x+∆x)− f(x) = f ′(x+ θ∆x)∆x

Cauchy defined the definite integral also using the intermediate-value theorem. [11]
Later F. Klein commented, “To be sure, the differential quotient was defined as a limit [by other

mathematicians], but there was lacking a method for estimating, from it, the increment of the function
in a finite interval. This was supplied by the mean-value theorem; and it was Cauchy’s great service
to have recognized its fundamental importance and to have made it starting point accordingly of
differential calculus. And it is not saying too much if, because of this, we adjudge Cauchy as the
founder of exact infinitesimal calculus in the modern sense.” [35]

Note that, classical analysis created by Newton and founded by Cauchy, dealt with only continuous
and differentiable functions.

Hence, it can be concluded that Cauchy established the foundation of classical analysis created by
Newton, by means of the intermediate-value theorem.

Then with what sort of the infinite did Newtonian mechanics represent the contradiction of motion
mathematically?

Since the 1970s H. Friedman[26], S. G. Simpson and others have been developing “Reverse math-
ematics,” whose main question is “Which set existence axioms are needed to prove the theorems of
ordinary mathematics?”[56]
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Reverse mathematics shows that the intermediate-value theorem is proved by RCA0: the system
of Recursive Comprehension Axioms in second order arithmetic (ordinary mathematics). [56]

RCA0 consists of basic axioms of logic and arithmetic, plus the following two axioms:

1. ∆0
1 comprehension scheme:

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ ϕ(n))

where set variable X is not free in ϕ(n).

2. Σ0
1 induction:

ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n+ 1)) → ∀nϕ(n)

In the above two axioms,

ϕ(n) is the formula which does not contain the universal quantifier ∀, and contains an existential
quantifier ∃ for number variables, that is to say, ϕ(n) is Σ0

1 formula.

ψ(n) is the formula which does not contain ∃, and contains an ∀, that is to say, ψ(n) is Π0
1 formula.

ϕ(n) and ψ(n) do not contain ∀ and ∃ for set variables. [56]

Informally;

The axiom 1 means “for all n, if a Σ0
1 formula ϕ(n) is equivalent to a Π0

1 formula ψ(n), then there
exists a set X of n which satisfies ϕ(n).

The axiom 2 means “if ϕ(0) is true, and for all n if ϕ(n + 1) is derived from ϕ(n), then for all n
ϕ(n) is true.”

The set existence axioms of RCA0 are strong enough to prove the existence of a recursive (com-
putable) set of natural numbers.

RCA0 is viewed as a formal version of computable or constructive mathematics.[56] To prove
a theorem in RCA0, the algorithm (computing procedure) to computing it should be composed.
For example, in the case of the intermediate-value theorem, because the intermediate-value can be
computed by the algorithm to divide ranges into 2 parts successively, this theorem is valid in RCA0.[57]
Though the theory of continuous function can be developed within RCA0, further general analysis
cannot be developed within it.

In conclusion, Newtonian mechanics in the 17th century, which described motion mathematically
for the first time, with functions to be expanded into power series, represented the contradiction of
motion with the infinite of not exceeding recursive set level.

3 Mechanics of continuous bodies; theory of fields

Mathematicians and physicists in the 18th century who succeeded Newton and Leibniz, faced new
contradictions along with the further evolution of mathematical physics in the fields of mechanics of
continuous bodies, for example in the theory of vibrating strings.

B. Riemann described the situation:

The shape of a string under tension that is vibrating in a plane is determined by the
partial differential equation

∂2y

∂t2
= α2 ∂

2y

∂x2

where x is the distance of an arbitrary one of its points from the origin and y is the distance
from the rest position at time t. Furthermore α is independent of t, and also of x for a
uniform thickness.

D’Alembert was the first to give a general solution to this differential equation.
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He showed that ....

y = f(αt+ x)− f(αt− x)

[to be the general solution of the problem.]
Euler made a basic advance, giving a new presentation of d’Alembert’s work ....
Daniel Bernoulli presented a third treatment of this topic, which was quite different

from the previous two....
The observation that a string could simultaneously sound different notes now led

Bernoulli to remark that the string (by the theory) could also vibrate in accordance with
the equation

y =
∞∑
n=1

an sin
nπx

l
cos

nπα

l
(t− βn)

Further, since all observed modifications of the phenomenon could be explained by this
equation, he considered it the most general solution....

It seemed impossible to represent an algebraic curve, or in general an nonperiodic
analytically given curve, by the above expression. Hence Euler thought that the question
must be decided against Bernoulli.... 2

This induced the young, and then little known, mathematician Lagrange to seek the
solution of the problem in a completely new way, by which he reached Euler’s result....
Concerning Bernoulli’s result, all three agreed not to consider it as general. ...

Almost fifty years had passed without a basic advance having been made in the question
of analytic representation of arbitrary function. Then a remark by Fourier threw a new
light on the topic. A new epoch in the development of this part of mathematics began,
which soon made itself known in a wonderful expansion of mathematical physics. ...

Fourier, in one of his first papers on heat, which was submitted to the French academy
(December 21, 1807) first announced the theorem, that an arbitrary (graphically given)
function can be expressed as a trigonometric series. This claim was so unexpected to the
aged Lagrange that he opposed it vigorously. [51]

Fourier stated in his “Analytical Theory of Heat” (1822):

The series formed of sines or cosines of multiple arcs are therefore adapted to represent,
between definite limits, all possible functions, and ordinates of lines or surfaces whose form
is discontinuous. Not only has the possibility of these developments been demonstrated,
but it is easy to calculate the terms of the series; the value of any coefficient whatever in
the equation:

ϕ(x) = a1 sinx+ a2 sin 2x+ a3 sin 3x+ ...+ ai sin ix+ etc.

is that of a definite integral:

2

π

∫
ϕ(x) sin ixdx

Whatever be the function ϕ(x), or the form of the curve which it represent, the integral
has a definite value which may be introduced into the formula. The values of these definite
integrals are analogous to that of the whole area

∫
ϕ(x)dx included between the curves and

the axis in a given interval, or to the values of mechanical quantities, such as the ordinates

2“The question then at once arose whether d’Alembert’s arbitrary function was capable of expansion into such a sine
series. To Euler this seemed unthinkable. It was, so to speak, against the laws of the game, it was contrary, to the rules
of analysis that arbitrary, non-periodic functions could be represented in terms of periodic functions.” E. B. Van Vleck
[58]
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of the centre of gravity of this area or of any solid whatever. It is evident that all these
quantities have assignable values, whether the figure of the bodies be regular, or whether
we give to them an entirely arbitrary form.

If we apply these principles to the problem of the motion of vibrating strings, we can
solve difficulties which first appeared in the researches of Daniel Bernoulli. The solution
given by this geometrician assumes that any function whatever may always be developed
in a series of sines or cosines of multiple arcs. Now which consists in actually resolving a
given function into such a series with determined coefficients. [25]

Y. Kondou remarked:

The reason why such a great mathematician as Euler could not discern the remarkably
excellent ability of the representation of trigonometric series presented by Bernoulli, may
be that the series were such common and familiar ones as trigonometric series. Now when
these common beings make such a composition of infinitely many terms as infinite series,
they show the great power with a further leap in quality. This situation could not be
discerned from the view point of mathematicians of the 17 and 18th centuries who could
see the infinite only as a simple extension of the finite. [36]

Thus in the 18th century, along with the progress in knowledge of Nature, newly appeared contra-
dictions in conventional continuous expression applied to discontinuous phenomena or in conventional
periodic expression applied to non-periodic phenomena. And these contradictions were again repre-
sented with the infinite through the introduction of infinite trigonometric series (Fourier series).

Then with what sort of the infinite did Fourier series represent the above contradictions?
This sort of the infinite can not be of recursive set level, which contains at most continuous

functions. Reverse mathematics shows that general analysis requires the infinite higher than that of
recursive set level. That is to say, general analysis requires the following arithmetical comprehension
axiom:

∃X∀n(n ∈ X ↔ ϕ(n))

Where ϕ(n) represents an arbitrary arithmetical formula, which does not contain ∀ nor ∃ for set
variables, and the set variable X does not occur as a free variable in ϕ(n). [56]

Informally, the above formula means “there exists the set X of n which satisfies an arbitrary arith-
metical formula ϕ(n).” Reverse mathematics show that ACA0, the system of Arithmetical Comprehen-
sion Axioms, which consists of the system of axioms RCA0 plus the above arithmetical comprehension
axiom, is equivalent to the Bolzano/Weierstrass theorem: “Every bounded sequence of real numbers
contains a convergent subsequence,” and also to fundamental theorems of analysis such as “Every
Cauchy sequence of real numbers is convergent,” and “ Every bounded sequence of real numbers
has a least upper bound.” [56] (The infinite sequence x1, ...xn... of numbers is named Cauchy when
|xm−xn| < ϵ is valid for arbitrary positive ϵ for sufficiently largem,n). These theorems are essential to
develop the theory of Fourier series. For example, U. Bottazzini pointed out that G. Cantor’s work on
the uniqueness of the convergence of Fourier series contains as its “indispensable premise” his theories
of real numbers and of derived set [5], which are based on Cauchy sequence (”Fundamentalreihen”)
and the Bolzano/Weierstrass theorem (”Häufungspunkt”) respectively.[7] Therefore Fourier series is
considered to represent contradictions between discontinuous phenomena and continuous expression,
or between non-periodic phenomena and periodic expression, at least with the infinite of arithmetical
set level in second order arithmetic (ordinary mathematics).

The system of axioms ACA0 including the arithmetical set can prove the consistency of the system
of axioms RCA0 including the recursive set.[56] As an consequence of Gödel’s incompleteness theorem
[27], consistency of a system of axioms including the infinite can be proved only by another system of
axioms with larger consistency strength. And the consistency strength increases with the height of the
infinite (cardinals or ordinals) contained in the axiom system. G. Gentzen proved the consistency of
elementary number theory using transfinite induction process, with transfinite ordinals (the infinite)
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up to the ordinal ϵ0 [29], and predicted that the consistency of analysis and of set theory can be proved
using corresponding higher ordinals respectively. [30]

In Gentzen-style proof theory, consistency strength of the system of axioms RCA0 including the
recursive set corresponds to the transfinite ordinal (provable ordinal) ωω and that of ACA0 including
the arithmetical set corresponds to the transfinite ordinal ϵ0. Since ϵ0 = sup(ω, ωω, ωωω

, ...) namely
ω < ωω < ωωω

... < ϵ0, the consistency strength of ACA0 is higher than that of RCA0. And in
Gentzen-style proof theory also, ACA0 can prove the consistency of RCA0.[56] Thus the infinite of
arithmetical set level is higher than that of recursive set level. Both of ωω and ϵ0 are ordinals of second
number-class with the cardinal ℵo. [8]

Hence it is concluded that to represent contradictions between discontinuous phenomena and con-
tinuous expression required the infinite higher than that used to represent the contradiction of motion
by Newton. K. Tanaka said that reverse mathematics is the study which draws contour lines in the
world of mathematical propositions by means of set existence axioms.[57] It can be considered also
as the reflection of the hierarchy of the knowledge of physics or of Nature.

In 1847, H. Helmholtz expressed the mechanical views of Nature (based on Newtonian mechanics),
which prevailed in those days: “The subject of physical natural science is to reduce natural phenom-
ena to invariable attraction and repulsion with strength depending only on distance.”[32] But these
views led to a contradiction in explanation of electromagnetic phenomena which attracted the atten-
tion of physicists in 18-19th centuries. In particular, “ether,” needed to explain the propagation of
electromagnetic wave, could not be the material ruled by Newtonian mechanics. [20]

While, J. C. Maxwell constructed the theory of electromagnetic field with the action through
medium, on the base of experimental studies by M. Faraday, [23] instead of the action at a distance
of Newtonian mechanics. In 1873, Maxwell wrote “Faraday, in his mind’s eye, saw lines of force
traversing all space where the mathematicians saw centres of force attracting at a distance: Faraday
saw a medium where they saw nothing but distance.” in the preface of his “A treatise on electricity
and magnetism.” Maxwell also wrote, “ Faraday’s method of conceiving the phenomena was also a
mathematical one, ... I also found that these methods were capable of being expressed in the ordinary
mathematical forms.”[41]

In special relativity theory introduced in 1905, A. Einstein extended the 3 dimensional Euclidean
space for Newtonian mechanics to Minkowski space including time dimension, and resolved contra-
dictions appeared in Newtonian mechanics applied to electromagnetic phenomena. Then instead of
“ether,” he considered the field with the action through medium to be Physical Reality. Attributing
this development of the conception of Physical Reality to Maxwell’s work, Einstein commented:

Before Maxwell, Physical Reality was thought of as consisting in material particles,
whose variation consist only in movements governed by ordinary differential equations.
Since Maxwell’s time, Physical Reality has been thought of as represented by continuous
fields, governed by partial differential equations, and not capable of any mechanical inter-
pretation. This change in the conception of Physical Reality is the most profound and the
most fruitful that physics has experienced since the time of Newton. [21]

Mechanics of continuous bodies is the forerunner of theory of fields, in the sense of physical quantities
distributed in space. While, the existence axiom of the arithmetical set is equivalent to the definition
of real number through fundamental sequence (”Fundamentalreihen”) by Cantor, as mentioned above.
Therefore, as the mechanics of continuous bodies requires functions of real variables based on the
infinite of arithmetical set level, theory of fields constructed with the action through medium, requires
also functions of real variables or the real number system based on the infinite of arithmetical set level,
since both theories requires Fourier series to describe propagation of wave.

Einstein pointed out: “It is well known that Maxwell’s electrodynamics, when applied to moving
bodies, leads to asymmetries that do not seem to attach to the phenomena.” at the beginning of his
paper, which introduced special relativity.[22] In this theory, he revived mechanics and described both
mechanics and electromagnetic phenomena consistently, using the coordinate transformation (Lorentz
transformation) which kept the velocity of light in vacuum “c” (a constant in Maxwell’s equation)
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invariable. Lorentz transformation was originally introduced to keep Maxwell’s equations invariable
for coordinate systems moving each other with constant velocities. [59]

Special relativity theory is, therefore, natural extension of Maxwell’s electromagnetic theory, a
theory of fields. Thus contradictions appeared in Newtonian mechanics applied to electromagnetic
phenomena were resolved by special relativity theory, a theory of fields which is based on the infinite
of arithmetical set level or higher level. While they could not be resolved by Newtonian mechanics,
based on the infinite within recursive set level, as mentioned previously. These facts show that the con-
tradictions appeared in Newtonian mechanics applied to electromagnetic phenomena, were represented
with the infinite of arithmetical set level or higher level in second order arithmetic (ordinary mathe-
matics). General theory of relativity, which claims that the laws of physics are invariable between the
systems moving each other with acceleration, is the theory of field of gravity.

4 Quantum mechanics

At the beginning of the 20th century, physicists faced many contradictions appeared with the
progress in science and technology. They were, for example, the contradiction of black-body radiation[49],
the contradiction of the stability of electron orbits in atoms[4], and contradictions between the parti-
cle picture and the wave picture for light and for the electron.[6] These contradictions showed that
classical macroscopic physics could not be applied to newly observed microscopic phenomena.

N. Bohr pointed out: “a uniform formulation of quantum theory in classical terms is impossible.
.... nevertheless, all experience must ultimately be expressed in terms of classical concepts neglecting
the quantum of action.”[3] Thus although based on concepts of classical physics which are essential
for observation, physicists developed quantum mechanics consisting of new concepts and laws, using
mathematics with the infinite. Then with what sort of the infinite did quantum mechanics represent
the contradictions which appeared in classical physics?

Simpson limited the object of his reverse mathematics to “ordinary” or “non-set-theoretic” math-
ematics such as geometry, number theory, calculus, differential equations, real and complex analysis,
and countable algebra. He excluded “set-theoretic” mathematics including abstract set theory and
abstract functional analysis, from his reverse mathematics.[56] P. A. M. Dirac, one of the pioneers
of quantum mechanics, introduced “δ function” as an essential tool for quantum mechanics which he
systematized. His δ function cannot be included in “ordinary mathematics” as Dirac himself said,
because its value is always 0 except at one particular point, while the value of its integration over all
of the real number region is 1. [18]

Instead of δ function, which could not be dealt with in ordinary mathematics, J. v. Neumann
sought the mathematical foundation of quantum mechanics in the abstract Hilbert space (functional
space) with infinite dimensions.[44] That is, he represents states of physical systems, which are object
of quantum mechanics, with vectors in Hilbert space (square integrable functions) and corresponds
physical quantities to operators of functions and observable values of physical quantities to eigenvalues
of the operators.

H. Yukawa remarked: “Even to draw an intuitive picture for the quantum mechanical system,
Hilbert space has become essential background. It can be compared to three-dimensional Euclid space
as the background of Newtonian mechanics and four-dimensional space as that of Einstein’s relativity
theory.” [63]

The “ordinary mathematics” included in Simpson’s reverse mathematics belongs to second order
arithmetic, whose objects are real numbers namely sets of natural numbers. (First order arithmetic
is elementary number theory, whose objects are natural numbers). But abstract functional analysis,
which deals with abstract Hilbert space, belongs to third or higher order arithmetic, whose objects
are functions namely sets of sets of natural numbers. That is to say, quantum mechanics, founded on
the abstract Hilbert space, represented the contradictions appeared in classical macroscopic physics
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faced newly observed microscopic phenomena, with the infinite exceeding the level of second order
arithmetic.

As Dirac said “The bra and ket vectors that we now use form a more general space than a Hilbert
space.” [18], quantum mechanics by his method is thought to be based on the infinite of the same
or higher level than that of Hilbert space. Dirac’s δ function was mathematically justified as one of
the “generalized function,” and represented by an infinite set of functions (for example the sequence
of functions: {(n/π)1/2exp(−nx2)}.[39] Therefore δ function also belongs to third or higher order
arithmetic, whose objects are functions.

In quantum mechanics, path integral method developed by R. P. Feynman is an popular alternative
of the operator method in Hilbert space. For path integrals, the probability P (b, a) for a particle which
starts from a point xa at time ta to arrives xb at tb is represented by the square of the absolute value of
the amplitude K(b, a). The amplitude K(b, a) is calculated by the integral summing the contribution
from all (infinite) paths from a to b:

K(b, a) =

∫ b

a
Dx(t)e(i/h̄)S[b,a]

The definition of this integral is based on the infinite set of functions, and it means that path integral
method is also belongs to third or higher order arithmetic. Furthermore, because of the “uncertainty
principle,” when the position of the particle is fixed, its momentum cannot be fixed and the curve of
the path becomes unable to differentiate everywhere.[24] While in classical physics, the path from a
to b is limited to the smooth curve with the least action S.

Y. Nambu commented “My first question concerns the two formulations of quantum mechanics:
the canonical (Heisenberg- Schrödinger) formulation [operator method] and functional integration
(Feynman) formulation [path integral method] .... they are generally regarded as equivalent, at least
in a naive sense. However, one may assert that the functional formalism [path integral method] is, in
many ways, more general than canonical one [operator method].”[43] This comment indicates that
path integral method requires the same or higher level of infinite as the operator method.

In 1998, E. Witten summarized the history of quantum theory:

The quantum theory of particles – which is more commonly called non relativistic
quantum mechanics – was put in its modern form by 1925 and has greatly influenced the
development of functional analysis, and other areas.

But the deeper part of quantum theory is the quantum theory of fields, which arises
when one tries to combine quantum mechanics with special relativity ... This much more
difficult theory, developed from the late 1920s to present, encompasses most of what we
know of the laws of physics, except gravity. In its seventy years there have been many
milestones, ranging from the theory of “antimatter,” which emerged around 1930, to more
precise description of atoms, which quantum field theory provided by 1950, to the “standard
model of particle physics” (governing the strong, weak, and electromagnetic interactions),
which emerged by the early 1970s, to new predictions in our own time that one hopes to
test in present and future accelerators. [62]

As mechanics of continuous bodies and classical theory of fields required higher infinite than New-
tonian mechanics within second order arithmetic, quantum theory of fields with continuously infinite
degrees of freedom requires higher infinite than quantum theory of particles which does not deal with
emerging and diminishing of particles. This more higher infinite in third or higher order arithmetic
represents the contradictions resolved by quantum theory of fields for the first time, for example,
contradictions between the particle picture and the wave picture for light. [55]

Concerning the role of the infinite in quantum theory of field, Y. Ohnuki wrote:

Another remarkable characteristic of quantum theory of fields is that it is the quantum
theory of a system with infinite degrees of freedom. Conventional quantum mechanics is,
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so to speak, quantum mechanics of mass point systems, and its degrees of freedom are
finite from the beginning. But since the field can be regard as a kind of continuous body,
degrees of freedom in such a system, of course, should be infinite, that is to say, its quantum
theoretical description also should be the quantum theory with infinite degrees of freedom.
This infinite degrees of freedom ... are not only the limit of finite degrees of freedom fully
increased in number. This character, in fact, relates to representation of operators for
fields, and it brings new quality that has never been seen, into the dynamics of operators
for fields. It can be said that this situation remarkably enriches the contents of quantum
theory of fields, and gives the theory great power and various possibility. Whole aspects
of the theory yet can not be said to be exhausted, and new developments in many phases
are expected in the future. [48]

The infinite degrees of freedom is critical for “spontaneous symmetry breaking” in elementary particle
physics [42], [40], which resolved the contradiction that the fundamental theory (the Hamiltonian of
a system) was symmetry whereas its realization (its ground state) should be asymmetry, and opened
the way to the “standard model of particle physics.” It is another case supporting the hypothesis that
the the mathematical infinite represents the contradiction involved in the development in physics.

The study of relation between the mathematical infinite and quantum mechanics or quantum
theory of fields, requires reverse mathematics in third or higher order arithmetic. But higher order
reverse mathematics is not studied in detail as that of the second order arithmetic. The present author
knows only the paper titled “higher order reverse mathematics,” which relates mathematical theorems
not with set existence axioms but with a kind of functional [37], and it is difficult to study the relation
between the infinite and quantum theories through reverse mathematics for the present author.

In this paper, it is possible only to point out that quantum mechanics represented contradictions
involved in the development of knowledge with higher infinite than classical physics, namely with the
infinite in third or higher order arithmetic, and to suggest that quantum theory of fields represented
the contradictions with further higher infinite than quantum mechanics of particles in third or higher
order arithmetic, just as classical theory of fields requires higher infinite than mechanics of mass points
in the second order arithmetic.

5 Summary

To sum up, the contradictions involved in the development of the knowledge of Nature were rep-
resented with the infinite of recursive set level, by early Newtonian mechanics, then with the infinite
higher than recursive set level, namely that of arithmetical set level or the higher infinite in second
order arithmetic, by mechanics of continuous bodies and classical theory of fields. Then the contradic-
tions were represented with the further higher infinite in third or higher order arithmetic, by quantum
mechanics. The above summary shows that the contradictions between the newly observed phenomena
and the existing system of concepts become more serious along with the evolution of physics, and we
require the higher infinite in mathematics to represent the contradictions or mysteries of Nature.

P. Cohen warned, “as one postulates the existence of larger sets one also comes closer to paradoxes
arising from the set of all sets, etc.” [13] In fact, in 1971 K. Kunen proved that a contradiction arose
when the elementary embedding, “One of the standard ways of postulating large cardinal axioms”
beyond the standard axiomatic set theory (Zermelo-Fraenkel set theory with axiom of choice), were
applied maximally.[38] A. Kanamori and F. R. Drake illustrated in their charts that ascending stages
of the higher infinite ultimately reached this contradiction. [34], [19]

As an consequence of Gödel’s incompleteness theorems, consistency of a system of axioms including
the infinite can be proved only by another system of axioms with the higher infinite. To complete the
prove of consistency of any axiom system, therefore, we need to ascend stages of the infinites, and
ultimately come to the contradiction. This situation suggests that as the level of the required infinite
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becomes higher, contradictions inherent in the infinite become more explicit, and in this context, it
is no wonder that contradictions can appear in the lower level of the infinite than that postulated in
Kunen’s proof. T. Nishimura and K. Namba referred to this possibility:

Whether “borderline” of the contradiction of the axiom of infinity reaches huge cardinal,
compact cardinal or measurable cardinal [large cardinals listed in descending order] should
be decided in the future development. But if the borderline reaches lower cardinals, set
theory will come across to the period of a new crisis or to the starting point of a new
language. [45]

According to J. A. Wheeller’s recollection of Bohr and his institute, “One of Bohr’s favorites was
his definition of a ’great truth’: a truth whose opposite is also a great truth. ... The central idea of the
institute was clear: ’No progress without a paradox’.”[61] This philosophy of a pioneer of quantum
physics suggests that the essential progress in physics can be achieved only through dialectical thinking
including contradictions, and naturally it should be reflected by mathematical theories of physics.

Cantor said that he undertook his studies on point-set not only from speculative interest but also
considering application in mathematical physics and other sciences. But he was misled to infer that
the “body material” had “the first cardinal [Mächtigkeit]” of his set theory and “ether material” had
“the second cardinal,” through his study in physics in those days.[10] Hilbert tried to find in the
physical world the things that realized the infinite, but he could not find it. [33]

The present author also tried to relate the mathematical infinite to the real physical world, or
to find the physical foundation of set theory, and proposed the hypothesis that the mathematical in-
finites represent contradictions involved in development of mathematical physics. It was demonstrated
historically in this paper.

The present author would like to acknowledge Mr. T. Irie for his discussion and his suggestion
about path integral method and the quantum theory of fields, and Prof. K. Ogawa, former president
of Yokohama City University, for his encouragement to submit this paper to JHM.
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[7] Georg Cantor, “Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Rei-
hen,” Mathematischen Annalen, Band 5 (1872), pages 123-132, in Georg Cantor, Abhandlungen
Mathematischen und Philosophischen Inhalts, edited by Ernst Zermelo, 1932, reprinted by Georg
Olms, Hildesheim, 1966, pages 92-101.

15



[8] Georg Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre,” Mathematischen An-
nalen, Band 46 (1895), pages 481-512, Band 49 (1897), pages 207-246 in Georg Cantor, Abhand-
lungen Mathematischen und Philosophischen Inhalts, edited by Ernst Zermelo, 1932, reprinted by
Georg Olms, Hildesheim, 1966, pages 282-351.
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[51] Bernhart Riemann, “Über die Darstellbarbkeit einer Function durch einer trigonometrische
Reihe,” Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Band 13
(1854). English translation by R. Baker and others, “On the representation of a function by a
trigonometric series” in Collected Papers Bernhart Riemann, Kendrick Press, Herber City, 2004,
pages 219-256.

[52] B. Russel, “Mathematical logic as based on the theory of types”, American Journal of Mathe-
matics, Volume 30 (1908), pages 222-262, in From Frege to Gödel, edited by J. v. Heijenoort,
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