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Abstract

Abstraction turns equivalence into identity, but there are two ways to do it. Given the equivalence
relation of parallelness on lines, the #1 way to turn equivalence into identity by abstraction is to
consider equivalence classes of parallel lines. The #2 way is to consider the abstract notion of the
direction of parallel lines. This paper developments simple mathematical models of both types
of abstraction and shows, for instance, how �nite probability theory can be interpreted using
#2 abstracts as "superposition events" in addition to the ordinary events. The goal is to use
the second notion of abstraction to shed some light on the notion of an inde�nite superposition
in quantum mechanics.

Contents

1 Introduction: Two Ways from Equivalence to Identity 2

2 Two Versions of Abstraction 2

3 Relations Between #1 and #2 Universals 4

4 Examples of Abstract Paradigms in Mathematics 4

5 The Connection to Interpreting Symmetry Operations 6

6 Modelling #1 and #2 Abstracts 7

7 The Projection Operation: Making an inde�nite entity more de�nite 10

8 From Incidence to Density Matrices 12

9 Logical Entropy 13

10 Density matrices in Quantum Mechanics 14

11 Intuitive Example: Distinguishing States 15

12 Simplest Quantum Example 18

13 Conclusions 18

1



1 Introduction: Two Ways from Equivalence to Identity

Classical physics, if not our own intuitive concepts, consider reality to be objectively de�nite �all the
way down.�But quantum mechanics suggests that reality at the quantum level may be objectively
or ontologically inde�nite (not just subjectively or epistemologically inde�nite). Since we seem to
lack �clear and distinct ideas�about objective inde�niteness, we need any help we can get, from any
source, to build up those intuitions.

The purpose of this paper is seek some help by drawing out some intriguing and possibly illu-
minating analogies between abstraction in the philosophy of mathematics and the notion of super-
position and objective inde�niteness in quantum mechanics (QM). Moreover, a mathematical model
for abstractions (or paradigms) is proposed, and used to give a new type of "superposition event"
in �nite probability theory.

A well-known example of an abstraction principle is Frege�s �direction principle�which Stewart
Shapiro described as: for any lines l1 and l2 in some domain, the �direction of l1 is identical to the
direction of l2 if and only if l1 is parallel to l2.�[12, p. 107]

Abstraction turns equivalence into identity. But there are two di¤erent ways to turn this equiva-
lence (i.e., parallelness) into identity. The version often used by the proverbial �working mathemati-
cian�will be called the #1 abstraction, namely, just the equivalence class. If [l] is the parallelism
equivalence class of the line l, then the equivalence-to-identity principle is clearly satis�ed: [l1] = [l2]
i¤ l1 ' l2 (where ' is the equivalence relation of being parallel). But there is also what we may refer
to as the #2 type of abstraction where the �direction of l�is an abstraction that captures what is
common to parallel lines and abstracts away from where they di¤er.

The purpose of this paper is:

� to give a way to mathematically di¤erentiate the #1 and #2 abstracts in a simple setting,

� to show that �nite probability theory can be reformulated with the #2 abstracts as "super-
position events" in addition to the #1 abstracts (i.e., the subsets as ordinary events), and
then

� to show that the mathematical treatment of the #2 abstracts is essentially the same as is found
in a rather di¤erent setting to describe superposition states in quantum mechanics�where the
#2 abstracts-version of probability becomes quantum probability.

The goal is to use the new interpretation of probability theory using the mathematically modelled
superposition events as #2 abstracts (rather than just subset-events) to build the bridge to QM and
thus to better understand �by analogy�the key superposition principle in QM.

2 Two Versions of Abstraction

One general form of an abstraction principle is given by Shapiro [12, p. 107] (taking @() as an
abstraction operator):

(8a) (8b) (@ (a) = @ (b) � E (a; b)).

1. the #1 version of the abstraction operator takes equivalent entities E (a; b) to the equivalence
class @(a) = [a] = [b] = @ (b), and;

2. the #2 version of the abstraction operator takes all the equivalent entities a; b such that E (a; b)
to the abstract entity @(a) = @ (b) that is de�nite on what is common in the equivalence class
but is inde�nite on how they di¤er (e.g., inde�nite on all the other properties that distinguish
them).
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In Frege�s well-known example from the Grundlagen [9, pp. 110-111], an equivalence class of
parallel lines is a #1 type of abstraction out of some delimited class of lines, while the act of
abstracting away from the di¤erences between parallel lines (i.e., going from equivalence to identity)
yields the #2 abstraction of direction.

W. T. Tutte provides a good example of the attitude of a working mathematician.

Pure graph theory is concerned with those properties of graphs that are invariant under
isomorphism, for example the number of vertices, the number of loops, the number of
links, and the number of vertices of a given valency. It is therefore natural for a graph
theorist to identify two graphs that are isomorphic. For example, all link-graphs are
isomorphic, and therefore he speaks of the �link-graph�as though there were only one.
Similarly one hears of �the null graph�, �the vertex graph�, and �the graph of the cube�.
When this language is used, it is really an isomorphism class (also called an abstract
graph) that is under discussion. ([15, p. 6 (original emphasis)]; quoted in: [10, p. 390])

For instance, a proof about a property of �the graph of the cube�is not a property of an isomorphism
class of graphs but a property of the graphs in that class or of the �abstract graph�that abstracts
away from the di¤erent instances in the isomorphism class. Often proofs that could be seen as,
in e¤ect, using the #2 abstract graph are formulated using systematic ambiguity, i.e., assuming
an arbitrary graph in the isomorphism class and then using only the properties common to all
members of the class (by showing that the proof was independent of the choice from the equivalence
class)�which are precisely the properties in the #2 abstract graph.

Our purpose is to give clear and distinct models for these two types of abstracts, but �rst we
might consider the two abstracts in a broader setting (without assuming an equivalence relation).
This broader setting allows us to give a #2 abstract or superposition interpretation to �events� in
�nite probability theory�which, in turn, will facilitate the bridge over to QM.

Given any property S (u) de�ned on the elements of U , two abstract objects can be de�ned as
in Figure 1:

Figure 1: A property determines two types of abstract objects
(the �blob-sum�or superposition-sum � is de�ned below).

The #1 abstract is just the set of elements S with that property while the #2 abstract object
�S is �the S-entity�which is de�nite on the S (u) property and inde�nite on the di¤erences between
all the u 2 U such that S (u).

We have a naming problem for these #2 abstracts like the problem of describing a glass as being
half-full or half-empty. We could describe the #2 abstract �S according to the properties that are
common to the entities in S and thus de�nite so it is a type of paradigmatic S-entity (the �half-full�
description). Or we could describe the #2 abstract �S as the inde�nite S-entity that remains after
all the properties that di¤erentiate distinct S-entities are removed (the �half-empty�description).
For instance, in a logical context, the paradigm description might seem most appropriate while in
the eventual application to quantum mechanics, it is the inde�niteness aspect of superposition states
that is paramount.
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3 Relations Between #1 and #2 Universals

In the version of �nite probability theory developed below, the #2 abstracts or superposition events
�S will supplement the #1 universals or ordinary events S � U .

For properties S() de�ned on U , there is a 1-1 correspondence between the#1 and#2 universals:

[ffujg juj 2 U&S (uj)g = S  ! �S = � fuj juj 2 U&S (uj)g.

If T () another property de�ned on U implies S() in the sense that (8u 2 U) [T (u)) S (u)],
then in terms of #1 abstracts, this is the familiar T � S.

But what is the equivalent of T � S for #2 universals? Intuitively �S is �the S-thing�that is
de�nite on the S-property but is otherwise inde�nite on the di¤erences between the members of S.
Those di¤erences have been abstracted away from, blurred or �blobbed�out, or rendered inde�nite.
If we make more properties de�nite, then in terms of subsets, that will in general cut down to a
subset T � S, so �T would be a more de�nite version of �S. This �process�of changing from �S
to a more de�nite �T , i.e., �S  �T for T � S, might be called projection or sharpening (as in
making a camera focus sharper or more de�nite) and symbolized:

�S B �T (or �T C �S)
�S can be �sharpened�to �T by adding some de�niteness.

These relations between #1 and #2 abstracts are summarized in Table 1.

S() de�ned on U #1 abstraction #2 abstraction

Abstractions for S() S = [ffujg juj 2 U&S (uj)g �S = � fuj juj 2 U&S (uj)g
T () implies S() T � S �S B �T

Table 1: Equivalents between #1 and #2 universals

In the language of Plato, the projection relation C is the relation of �participation� (�"�"��&
or methexis) or entailment between universals. As Plato would say, �the T -thing�participates in or
�brings-on�(�������� or epipherei as in Vlastos [17, p. 102]) �the S-thing,�as in �the rocking chair�
brings on �the chair,� i.e., �T C �S, since �the chair�can be sharpened to �the rocking chair�, i.e.,
the set T of rocking chairs is a subset of the set S of chairs.1

Like the #1 abstracts S, the #2 abstract entities �S, the paradigm-universals, are routinely
used in mathematics.

4 Examples of Abstract Paradigms in Mathematics

There is an equivalence relation A ' B between topological spaces which is realized by a continuous
map f : A ! B such that there is an inverse g : B ! A so the fg : B ! B is homotopic to 1B
(i.e., can be continuously deformed in 1B) and gf is homotopic to 1A. According to the �classical�
homotopy theorist, Hans-Joachim Baues, �Homotopy types are the equivalence classes of spaces�[2]
under this equivalence relation. That is the #1 type of abstraction.

But the interpretation o¤ered in homotopy type theory (HoTT) is expanding identity to �coin-
cide with the (unchanged) notion of equivalence�in the words of the Univalent Foundations Program
[16, p. 5] so it would refer to the #2 homotopy type, i.e., �the homotopy type�that captures the
mathematical properties shared by all spaces in an equivalence class of homotopic spaces (abstract-
ing away from the di¤erences). Expanding identity to coincide with equivalence is another way to
describe the #2 abstracting from the class S of equivalent entities to the abstract paradigm-universal
entity �S which is not the same as the particular entities u in the equivalence class S.

1These non-mathematical everyday examples are used for the purpose of illustration and, perhaps, amusement.
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For instance, �the homotopy type�is not one of the classical topological spaces (with points etc.)
in the #1 equivalence class of homotopic spaces�just as Frege�s #2 abstraction of direction is not
among the lines in the equivalence class of parallel lines with the same direction.

While classical homotopy theory is analytic (spaces and paths are made of points), ho-
motopy type theory is synthetic: points, paths, and paths between paths are basic, indi-
visible, primitive notions. [16, p. 59]

Homotopy type theory systematically develops a theory of the #2 type of abstractions that grows
out of homotopy theory and type theory into a new foundational theory.

From the logical point of view, however, it is a radically new idea: it says that isomorphic
things can be identi�ed! Mathematicians are of course used to identifying isomorphic
structures in practice, but they generally do so by �abuse of notation�, or some other
informal device, knowing that the objects involved are not �really�identical. But in this
new foundational scheme, such structures can be formally identi�ed, in the logical sense
that every property or construction involving one also applies to the other. [16, p. 5]

In our terminology, �isomorphic things can be identi�ed�means the �blobbing together�of all the
elements in an isomorphism class to create a single #2 abstract that is de�nite on what is common
to all the isomorphs but is inde�nite on where they di¤er.

Consider the homotopy example of �the path going once (clockwise) around the hole� in an
annulus A (disk with one hole as in Figure 2), i.e., the abstract entity 1 in the fundamental group
�0 (A) of the annulus: 1 2 �0 (A) �= Z:

Figure 2: �the path going once (clockwise) around the hole�

Note that �the path going once (clockwise) around the hole�has the paradigmatic property of �go-
ing once (clockwise) around the hole� but is not one of the particular (coordinatized) paths that
constitute the equivalence class of coordinatized once-around paths deformable into one another. It
abstracts away from the coordinatizations that di¤erentiate the paths in the homotopic equivalence
class.

In a similar manner, we can view other common #2 abstractions such as: �the cardinal number 5�
that captures what is common to the isomorphism class of all �ve-element sets; �the integer 1 mod (n)�
that captures what is common within the equivalence class f:::;�2n+ 1;�n+ 1; 1; n+ 1; 2n+ 1; :::g
of integers; �the circle�or �the equilateral triangle��and so forth.

Category theory helped to motivate homotopy type theory for good reason. Category theory has
no notion of identity between objects, only isomorphism as �equivalence�between objects. Therefore
category theory can be seen as a theory of abstract #2 objects, e.g., abstract sets, groups, spaces,
etc., instead of the theory of the #1 abstracts, the isomorphism classes.

Our purpose is to model the theory of paradigm-universals �S and their projections or sharp-
enings �T�that is analogous to working with sets and subsets, e.g., in a Boolean algebra of subsets.
That is all we will need to show that probability theory can be developed using paradigm entities
or superposition events �S in addition to subset-events S, and then �nally to cross the bridge to
quantum mechanics.
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5 The Connection to Interpreting Symmetry Operations

In the usual case of abstraction where S is an equivalence or isomorphism class, the #2 universal �S
by de�nition abstracts away for the di¤erences between the elements in the equivalence class. Hence
if we consider any operation that takes one element u of an equivalence class [u] to another element
u0 in the same class, then the induced operation on the #1 abstracts, [u] [u0], is the identity, and
the same holds for the #2 abstract �S since the two abstracts represent two di¤erent ways to get
abstracts that in di¤erent ways disregard the di¤erences between the elements in the equivalence
class.

This can be visually illustrated in a simple example of the symmetry operation (de�ning an
equivalence relation) of re�ection on the aA-axis for an isosceles triangles as in Figure 3 that is
taken as fully de�nite (all sides and angles labelled).

Figure 3: Re�ection on vertical axis symmetry operation.

Thus the equivalence class of re�ective-symmetric �gures in the #1 or classical interpretation is the
set in Figure 4.

Figure 4: The #1 abstraction of equivalence class.

The set remains invariant under re�ection applied to its elements, which is another way to say that
the induced operation on the equivalence classes (or orbits) is the identity.

Under the #2 inde�niteness-abstraction interpretation, the equivalence abstracts to the �gure
that is de�nite on what is the same, and inde�nite on what is di¤erent between the de�nite �gures
in the equivalence class:

Figure 5: The #2 abstraction of an inde�nite entity.
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And the symmetry operation induced on the inde�nite �gure is also the identity as illustrated in
Figure 5. As noted in the discussion of homotopy type theory, the movement from one space to
a homotopic space leaves the �homotopy type� the same regardless of whether we think of the
homotopy type as an equivalence class or as the #2 type of abstract considered in homotopy type
theory.

A concrete example of the #1 and #2 ways to go from equivalence to identity is the derivation
of the Maxwell-Boltzmann distribution and the Bose-Einstein distribution as in Feller [8, pp. 20-1]
or Ellerman [5]. This treatment is illuminated by the classical and quantum version of a symmetry
operation. Suppose we have two particles of the same type which are classically indistinguishable
so, following Weyl, we arti�cially distinguish them using Mike and Ike labels. If each of the two
particles could be in states A, B, or C, then the set of possible states is the set of nine ordered pairs
fA;B;Cg � fA;B;Cg. Applying the symmetry operation of permuting Mike and Ike, we have six
equivalence classes (orbits) as in Table 2.

Equivalence classes under permutation M-B

f(A;B) ; (B;A)g 2=9
f(A;C) ; (C;A)g 2=9
f(B;C) ; (C;B)g 2=9
f(A;A)g 1=9
f(B;B)g 1=9
f(C;C)g 1=9

Table 2: Maxwell-Boltzmann distribution.

The symmetry operation on the equivalence classes is the identity, but in (classical) Nature the
primitive data are, as it were, the ordered pairs (the possible states), not the equivalence classes.
When we assign the equal probabilities of 19 to each ordered pair (i.e., to each distinct state), that
results in the Maxwell-Boltzmann distribution on the equivalence classes. Nature counts states; we
classically measure equivalence classes and �nd the M-B distribution.

But in the quantum case, the operation of going to the #2 abstract � f(A;B) ; (B;A)g seems
to be physically realized in an inde�nite superposition state, i.e., the analogy: � f(A;B) ; (B;A)g �
jAi 
 jBi + jBi 
 jAi, where the symmetry operation is the identity. Since there are then only six
states, we assign the equal probabilities of 16 to each state and obtain the Bose-Einstein distribution
in Table 3. Nature again counts states, but the superposition states (seen as physically realizing a
type of #2 abstract from the equivalence classes) reduces the number of states to six.

Six inde�nite states B-E

� f(A;B) ; (B;A)g � jAi 
 jBi+ jBi 
 jAi 1=6
� f(A;C) ; (C;A)g � jAi 
 jCi+ jCi 
 jAi 1=6
� f(C;B) ; (B;C)g � jCi 
 jBi+ jBi 
 jCi 1=6

� f(A;A)g � jAi 
 jAi 1=6
� f(B;B)g � jBi 
 jBi 1=6
� f(C;C)g � jCi 
 jCi 1=6

Table 3: Bose-Einstein distribution.

6 Modelling #1 and #2 Abstracts

But it will surely be asked:

What is this crazy talk and loose analogy between forming an inde�nite abstract in
mathematics and a superposition state in QM?
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It is a �ne question, and surely one way to approach the question is to give �clear and distinct�
mathematical models of the two abstracts in a simple illustrative setting. We distinguish the #1 and
#2 interpretations for a �nite U as in Figure 6.

Figure 6: Universe U of �gures

The polygons in Figure 6 can be characterized using two attributes, the number n of equal sides
and being solid s or hollow h. Hence the universe U has the elements U = fu1; u2; u3; u4g =
f3h; 4s; 5s; 6sg. The subset of solid �gures S = f4s; 5s; 6sg � f3h; 4s; 5s; 6sg = U might be repre-

sented by a one-dimensional column vector jSi =

2664
0
1
1
1

3775
3h
4s
5s
6s

(with the given ordering). But by moving

up one dimension to a two-dimensional matrix, we can represent or mathematically model both the
#1 and #2 versions of S as two types of incidence matrices. For U = fu1; :::; ung, the incidence
matrix In (R) of a binary relation R � U �U is the n�n matrix with (In (R))jk = 1 if (uj ; uk) 2 R
and 0 otherwise.

1. The #1 (classical) version of S (i.e., set of S-things or set of solid �gures) is represented by
the diagonal matrix In (�S) that lays the column vector jSi along the diagonal: In (�S) =2664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 = representation of set S of distinct S-entities. In (�S) is the incidence matrix
of the diagonal relation �S � U �U whose entries are the values of the characteristic function
��S on U � U .

2. The representation of the #2 (quantum-like) version of S (i.e., the S-thing �S) is the matrix
In (S � S) whose entries are the values of the characteristic function �S�S on U�U . Where ()t
signi�es the transpose operation, this n�n incidence matrix can also be obtained as the product
of the n � 1 column vector jSi times the 1 � n row vector (jSi)t: In (S � S) = jSi (jSi)t =2664
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

3775 = representation of one indistinct S-thing, �the solid �gure��S = � f4s; 5s; 6sg.
For (and only for) singletons S = fujg, the #2 �abstract�is just � fujg = fujg, and thus they have
the same representation In (�S) = In (S � S) as expected, but for jSj > 1, In (�S) 6= In (S � S).

The two representations di¤er only in the o¤-diagonal entries. Think of the o¤-diagonal In (S � S)j;k =
1�s as equating, cohering, blurring out, �blobbing�out, or ignoring the di¤erences (e.g., the number
of sides) between uj and uk which have the common S() = �being a solid �gure�property:

In (S � S) =

2664
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

3775 says
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26664
0 0 0 0

0 4s
Ss 4s 4s

Ss 5s 4s
Ss 6s

0 5s
Ss 4s 5s

Ss 5s 5s
Ss 6s

0 6s
Ss 4s 6s

Ss 5s 6s
Ss 6s

37775.
Intuitively, the di¤erences in the number of sides of the solid �gures have been blurred out or rendered
inde�nite, so the only de�nite attribute of the paradigm entity is the solid-�gure.

Since the #2 abstract paradigm entities are represented by a certain type of incidence matrix, we
can mathematically represent the blob-sum or superposition sum #2 entity �S = � fui 2 U jS (ui)g
by the corresponding incidence matrix:

In (S � S).

For S = fu2; u4g, the blob-sum �S = � fu2; u4g is represented by In (S � S) where the blob-sum
operation � means �blobbing-out�the distinctions between entities in S (represented by the cross-
terms in fu2; u4g � fu2; u4g which give the non-zero o¤-diagonal entries in the incidence matrix):

In (S � S) = In (fu2; u4g � fu2; u4g)
= In (fu2g � fu2g) _ In (fu4g � fu4g) _ In (fu2g � fu4g) _ In (fu4g � fu2g)2

=

2664
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

3775.
To better understand abstraction in mathematics, the superposition events in probability theory

(de�ned below), and superposition states in QM, we should become as comfortable with paradigms
�S as with subsets S. The paradigms �S for S 2 } (U) form a Boolean algebra isomorphic to
} (U) under the mapping: for any Boolean binary operation S#T for S; T 2 } (U), �S#�T is the
paradigm represented by In ((S#T )� (S#T )).

� The union or join of superposition events is the blob-sum �S _ �T = �(S [ T ) which is the
#2 abstract represented by:

In ((S [ T )� (S [ T ))
= In ((S � S) [ (T � T ) [ (S � T ) [ (T � S))

= In (S � S)_ In (T � T )_ In (S � T )_ In (T � S). (note as expected, for T � S, � fS [ Tg = �S);

� The intersection or meet of superposition events �S ^ �T = �(S \ T ) is represented by
In ((S \ T )� (S \ T )) where, as expected, for T � S, �S ^ �T = �T ;

� The negation of a superposition event :�S = �(Sc) is represented by In (Sc � Sc) (note as
expected, :� (S) _ �S = �(S [ Sc) = �U).

The top �U and bottom �; of the BA of superposition events are represented by the incidence
matrices of all ones or all zeros respectively, and the partial order on the blobbed-out incidence
matrices In (S � S) is that induced by set inclusion [i.e., the entry-wise partial order 0 � 1 on
incidence matrices of the form In (S � S)]. If T � S, then �T C �S, so moving down in the
BA of superposition events represents �sharpening�or rendering-more-de�nite just as a conditional
probability Pr (T jS) is always for some event T (or T \ S) below the conditioning event S in the
partial order of ordinary events. The atomic elements � fujg (corresponding to the singletons fuig)
are the sharpest or most de�nite or determinate elements. When the events as subsets S of the

2The disjunction of incidence matrices is the usual entry-wise disjunction: 1_ 1 = 1_ 0 = 0_ 1 = 1 and 0_ 0 = 0,
and similarly for conjunction.
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sample space U , are replaced by the #2 abstracts �S, then this Boolean algebra structure on the set
of superposition events �S in their In (S � S) representation for S � U is isomorphic to the usual
BA of events S. Figure 7 illustrates the two BAs for U = fa; b; cg.

Figure 7: The Boolean algebras of ordinary events and superposition events for U = fa; b; cg.

7 The Projection Operation: Making an inde�nite entity more
de�nite

In the four �gures example, suppose we classify or partition all the elements of U according to an
attribute such as the parity of the number of sides, where a partition is a set of nonempty disjoint
subsets (blocks) of U whose union is all of U . Let � be the partition of U with two blocks odd
O = f3h; 5sg and even E = f4s; 6sg according to the parity of the number of sides.

The equivalence relation de�ned by � is referred to by Ellerman [4] as the set of indistinc-
tions, indit (�) = (O �O) [ (E � E), and the incidence matrix In (indit (�)) is formed by the usual
disjunction of corresponding matrix entries:

In (O �O) _ In (E � E) = In (indit (�))

=

2664
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

3775 _
2664
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

3775 =
2664
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

3775.
The #1 (classical) operation of intersecting the set of odd-sided �gures with the set of solid

�gures to give the set of odd-sided solid �gures is represented as the conjunction:

In (�O) ^ In (�S) =

2664
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3775 ^
2664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 =
2664
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3775.
The #2 (quantum-like) operation of �sharpening�or �rendering more de�nite��the solid �gure�

�S = � fu2; u3; u4g to �the odd-sided solid �gure�� fu3g = � f5sg = f5sg, so � f5sgC�S (suggested
reading: � f5sg is a projection or sharpening of �S) is represented as:

In (O �O) ^ In (S � S) =

2664
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

3775 ^
2664
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

3775 =
2664
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3775 = � f5sg.
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But there is a better way to represent �sharpening�using matrix multiplication instead of just the
logical operation ^ on matrices, and it foreshadows and illuminates the measurement operation in
QM. For E = even-sidedness, the matrix In (�E) = PE is a projection matrix, i.e., the diagonal ma-
trix with diagonal entries �E (ui) so PE jSi = jE \ Si. Then the result of the projection-sharpening
can be represented as:

jE \ Si (jE \ Si)t = PE jSi (PE jSi)t = PE jSi (jSi)t PE
= PE In (S � S)PE = In (E � E) ^ In (S � S) = In ((E \ S)� (E \ S)).

Thus sharpening the solid-�gure � f4s; 5s; 6sg by the even number-of-sides attribute to obtain
� f4s; 6sg is represented by pre- and post-multiplying the incidence matrix In (S � S) by the projec-
tion PE for evenness parity. Under the #2 interpretation, the parity-sharpening, parity-classifying,
parity-di¤erentiation, or parity-measurement of �the solid �gure�by both the odd and even parities
is represented as:

In (indit (�))^ In (S � S)

=

2664
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

3775 ^
2664
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

3775
= PO In (S � S)PO + PE In (S � S)PE

=

2664
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3775+
2664
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

3775 =
2664
0 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

3775.3
The result is the mixture or sum of incidence matrices for �the even-sided solid �gure�� f4s; 6sg and
�the odd-sided solid �gure�� f5sg. The important thing to notice is the action on the o¤-diagonal
elements where the action 1  0 in the j; k-entry means that a distinction between uj and uk has
been created; uj and uk have been deblobbed, decohered, distinguished, or di¤erentiated�in this case
by parity in the number of sides:

In (S � S) In (indit (�))^ In (S � S)
= PO In (S � S)PO + PE In (S � S)PE

=

26664
0 0 0 0

0 1 1
decohered 0 1

0 1
decohered 0 1 1

decohered 0

0 1 1
decohered 0 1

37775
Di¤erentiating solid �gures by parity.

We could also classify the �gures as to having 4 or fewer sides (few sides) or more (many sides)
so that partition is � = ffu1; u2g ; fu3; u4gg = ff3h; 4sg ; f5s; 6sgg which is represented by:

In (indit (�)) =

2664
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

3775 and
In (indit (�)) ^ (In (indit (�)) ^ In (S � S))

= Pfew (In (indit (�)) ^ In (S � S))Pfew + Pmany (In (indit (�)) ^ In (S � S))Pmany
3This classifying or measuring operation using the pre- and post-multiplication by projection matrices foreshadows

the Lüders mixture representation of projective measurement in QM (see below).
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=

2664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 = In (�S).
Thus the parity and the few-or-many-sides partitions su¢ ce to classify the solid �gures uniquely

and thus to yield the representation In (�S) of the distinct elements of S = fu2; u3; u4g = f4s; 5s; 6sg.
Thus making all the distinctions (i.e., decohering the entities that cohered together in �S) takes
In (S � S) In (�S).

In QM jargon, the parity and few-or-many-sides attributes constitute a �complete set of com-
muting operators� (CSCO) so that measurement of the �pure,�blobbed-out, superposition �gure,
�the solid �gure,�by those observables will sharpen �the solid �gure,�to the �mixture�of the three
separate solid �eigen-�gures�:

� �the few- and even-sided solid �gure�(the square u2 = 4s),

� �the many- and odd-sided solid �gure�(the pentagon u3 = 5s), and

� �the many- and even-sided solid �gure�(the hexagon u4 = 6s).

8 From Incidence to Density Matrices

To move from Boolean logic to probability theory for ordinary and superposition events, we move
from incidence matrices to density matrices. The incidence matrices In (�S) representing the subset
S and In (S � S) representing the paradigm or superposition state �S can be turned into density
matrices by dividing through by their trace (sum of diagonal elements):

� (�S) = 1
tr[In(�S)] In (�S) and � (S) =

1
tr[In(S�S)] In (S � S).

In terms of probabilities, this means treating the outcomes in S as being equiprobable with prob-
ability 1

jSj . But now we have the #1 and #2 interpretations of the sample space for �nite discrete
probability theory.

1. The #1 interpretation, represented by � (�U), is the classical version with U as the sample
space of six equiprobable outcomes. For instance, the 6 � 6 diagonal matrix with diagonal
entries 1

6 is �the statistical mixture describing the state of a classical dice [die] before the
outcome of the throw�[1, p. 176];

2. The#2 interpretation replaces the �sample space�with the one inde�nite �the sample outcome�
�U represented by � (U) (a 6 � 6 matrix with the 1

6 diagonal entries �blobbed out�to �ll the
whole matrix with 1

6 entries) and, in a trial that distinguishes the six outcomes, the inde�nite
outcome �U �sharpens to�or becomes a de�nite outcomefuig � U with probability 1

jU j .

Let f : U ! R be a real-valued random variable with distinct values �i for i = 1; :::;m and let
� = fBigi=1;:::;m where Bi = f�1 (�i), be the partition of U according to the f -values as in [5]. As
before with incidence matrices, we want the classi�cation or di¤erentiation of � (S) according to the
di¤erent f -values. It could be obtained as In (indit (�)) ^ � ( ) where the meet takes the minimum
of the corresponding entries of the matrices. But if PBi

is the diagonal (projection) matrix with
diagonal elements (PBi

)jj = �Bi
(uj), then the classi�ed, di¤erentiated, or measured density matrix

is also obtained by the Lüders mixture operation of pre- and post-multiplying � (S) by the projection
matrices PBi [1, p. 279] to get the mixed-state density matrix:

�̂ (S) =
Pm

i=1 PBi
� (S)PBi

,

12



and the probability of a trial returning �i is:

Pr (�ijS) = tr [PBi� (S)].

There are two interpretations of that probability corresponding to the #1 or #2 abstracts:

1. It is the probability that given the #1 abstract, i.e., the event S, a trial leads to the #1
abstract, the event Bi \ S, occurring, or

2. It is the probability that given the #2 abstract, i.e., the entity �S, a trial or �-measurement
leads to (or sharpens to) the #2 superposition event, the entity � (Bi \ S) that is de�nite on
the �eigen�f -value of �i.

For instance, in the previous example, where f : U ! R gives the parity partition � with the
two values �odd and �even, then:

Peven� (S) =

2664
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

3775
2664
0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

3775 =
2664
0 0 0 0
0 1

3
1
3

1
3

0 0 0 0
0 1

3
1
3

1
3

3775
so tr [Peven� (S)] = 2

3 which, under the #2 (quantum-like) interpretation, is the conditional prob-
ability that a trial or �parity-of-sides-measurement� sharpens �the solid �gure� to �the even-sided
solid �gure�. And under the #1 (standard) interpretation, Pr (�evenjS) = tr [Peven� (�S)] =

2
3 is

the probability of a trial yielding an even-sided solid �gure starting with the subset of equiprobable
solid �gures represented by � (�S). Thus we have two di¤erent interpretations of events in �nite
probability theory, the conventional one using the #1 events S and the new superposition events
interpretation using #2 abstracts �S.

The mixed state density matrix �̂ (S) resulting from �measuring�or classifying the solid �gures
according to the parity of their sides is:

�̂ (S) = Peven� (S)Peven + Podd� (S)Podd

=

2664
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

3775
2664
0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

3775
2664
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

3775
+

2664
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3775
2664
0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

3775
2664
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3775
=

2664
0 0 0 0
0 1

3 0 1
3

0 0 0 0
0 1

3 0 1
3

3775+
2664
0 0 0 0
0 0 0 0
0 0 1

3 0
0 0 0 0

3775 =
2664
0 0 0 0
0 1

3 0 1
3

0 0 1
3 0

0 1
3 0 1

3

3775.

9 Logical Entropy

In the density matrix formulation of classical or quantum logical information theory ([6]; [7]), the
logical entropy of a density matrix � is: h (�) = 1 � tr

�
�2
�
. Intuitively, logical information is

information-as-distinctions. Since the non-zero o¤-diagonal amplitudes in a density matrix repre-
sent indistinctions�whose squares are indistinction probabilities�the gain in logical entropy due to
the measurement or classi�cation process is the sum of the squares of the non-zero o¤-diagonal terms
that are zeroed, i.e., turned into distinctions, in the change � (S) �̂ (S).

13



In the example, there were four o¤-diagonal terms that were zeroed in the parity classi�cation
each with an amplitude of 13 , so the change in logical entropy is 4�

�
1
3

�2
= 4

9 . This can be checked
by directly computing the two logical entropies. All density matrices have trace 1 and a pure state
density matrix is one where �2 = �; otherwise it is a mixed state density matrix. The initial state

� (S) is a pure state since � (S)2 = � (S) so tr
h
� (S)

2
i
= 1 and h (� (S)) = 1 � 1 = 0. For the

post-classi�cation density matrix �̂ (S), we have:

�̂ (S)
2
=

2664
0 0 0 0
0 2

9 0 2
9

0 0 1
9 0

0 2
9 0 2

9

3775
so tr

h
�̂ (S)

2
i
= 5

9 and h (�̂ (S)) = 1 � 5
9 =

4
9 . Logical entropies always have the interpretation of

getting a distinction in two independent trials, so in this case, the probability of the solid �gure
sharpening to solid �gures of distinct parities in two independent trials is 49 . This can be intuitively
checked since the probability of getting two odd-parity solid �gures is 23 �

2
3 =

4
9 and of getting two

even-parity solid �gures is 13�
1
3 =

1
9 so the probability of getting di¤erent parities is: 1�

�
4
9 +

1
9

�
= 4

9 .
These two interpretations of �nite discrete probability theory extend easily to the case of point

probabilities4 pj for uj 2 U (instead of equiprobable points), where Pr (S) =
P

uj2S pj :

1. (� (�S))jj = �S (uj) pj=Pr (S), so tr [Peven� (�S)] = probability of getting an even-sided solid
�gure starting with the set of solid �gures, and

2. (� (S))j;k = �S (uj)�S (uk)
p
pjpk=Pr (S), so tr [Peven� (S)] = probability of getting �the even-

sided solid �gure�starting with �the solid �gure.�

The whole of �nite discrete probability theory can be developed in this manner, mutatis mutandis,
for the #2 abstract superposition events in addition to the usual #1 events.

10 Density matrices in Quantum Mechanics

This inde�niteness interpretation of �nite probability with superposition events leads directly to the
use of probability in �nite-dimensional quantum mechanics. The jump to quantum mechanics (QM)
is to replace the reals

p
pjpk in the density matrices by complex amplitudes. Instead of the set S

represented by a column jSi of real �amplitudes�ppj , we have a normalized column j i of complex
numbers �j whose absolute squares are probabilities: j�j j2 = pj , e.g.,

jSi =

2664
0p
p2p
p3p
p4

3775 j i =
2664
�1
�2
�3
�4

3775
where �1 = 0 and j�j j2 = pj for j = 2; 3; 4.

1. The density matrix � (� ) has the absolute squares j�j j2 = pj laid out along the diagonal.

2. The density matrix � ( ) = j i h j (where h j is the conjugate-tranpose of j i) has the j; k-
entry as the product of �j and ��k (complex conjugate of �k), so the diagonal entries are
pj = ��j�j = j�j j

2.

Thus:
4Point probabilities are given by a probability density function p : U ! [0; 1] where p (uj) = pj and

P
pj = 1.

14



� (� ) =

2664
0 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

3775 and � ( ) = j i h j =
2664
0 0 0 0
0 p2 �2�

�
3 �2�

�
4

0 �3�
�
2 p3 �3�

�
4

0 �4�
�
2 �4�

�
3 p4

3775.
Some modern quantum mechanics texts, such as [3, Vol. 1, p. 302] or [1], call attention to the

special signi�cance of the �coherences�represented by the non-zero o¤-diagonal terms.

[The] o¤-diagonal terms of a density matrix...are often called quantum coherences because
they are responsible for the interference e¤ects typical of quantum mechanics that are
absent in classical dynamics. [1, p. 177]

In the analogy between paradigm-universals in mathematics and superposition states in QM,
the point is that an inde�nite superposition QM state is a single entity that �blobs out,� �blurs
out,�renders inde�nite, or coheres together the di¤erences between the de�nite eigenstates in the
superposition. We previously noted that there is both the �half-full�/paradigm description or the
�half-empty�/inde�nite description of the same entity �S. It is the inde�niteness description that
best applies to the quantum case, not the classical-Platonic notion of a �paradigm.�The notion of
#2 abstraction could be applied to any collections of distinct entities. In the quantum case, it is
also not a zero-one a¤air whether two elements are equated as in the incidence matrices In (S � S)
of the �blobbed-out�sets; the o¤-diagonal elements in the density matrix give the �amplitude�of the
equating or cohering together of the eigenstates in the superposition state.

The classifying or measuring operation In (indit (�)) ^ � ( ) could still be de�ned taking the
minimum of corresponding entries in absolute value, but in QM it is obtained by what Auletta et
al. [1, p. 279] call the Lüders mixture operation. If � = fB1; :::; Bmg is a partition according to the
eigenvalues �1; :::; �m on U = fu1; :::; ung (where U is an orthonormal basis set for the observable be-
ing measured), let PBi

be the diagonal (projection) matrix with diagonal entries (PBi
)jj = �Bi

(uj).
Then In (indit (�)) ^ � ( ) is obtained as:

�̂ ( ) =
P

Bi2� PBi
� ( )PBi

The Lüders mixture.

The probability of getting the result �i is:

Pr (�ij ) = tr [PBi
� ( )].

These results are summarized in Table 4 (where Pjuii is the projection to the subspace generated
by juii, and Pfuig is the corresponding projection to the subset fuig).

Table 4: Parallel operations in probability theory with superposition events and in quantum
mechanics

11 Intuitive Example: Distinguishing States

The two versions of S = U give us two versions of the starting point in this expanded �nite discrete
probability theory. The #1 version of U is the classical sample space of possible outcomes, and the
#2 version of U is �U which represents the inde�nite sample outcome.

1. The #1 classical version of �ipping a fair coin where U = fH;Tgand getting head or tails with
equal probability (Figure 8)�like the mixed state:

1
2 [jHi hHj+ jT i hT j] = � (�U) =

�
1
2 0
0 1

2

�
.
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Figure 8: Outcome set for classical coin-�ipping trial.

2. The #2 superposition version starts with the inde�nite entity �U , �the inde�nite outcome�,
and a trial renders it into one of the de�nite outcomes fuig with some probability pi so that
�U could be represented by the density matrix � (U) where (� (U))jk =

p
pjpk. In the case

at hand, this is like a coin �U with the di¤erence between heads or tails rendered inde�nite,
blurred out, or superposed (which in QM is the pure state with the blobbed-out cross-terms
jHi hT j and jT i hHj in the density matrix), and the trial results in it sharpening or �decohering�
to de�nitely heads or de�nitely tails with equal probability (Figure 9):

1p
2
[jHi+ jT i] [hHj+ hT j] 1p

2
= � (U � U) =

�
1
2

1
2

1
2

1
2

�
.
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Figure 9: �the outcome state�for the coin-�ipping trial.

By a heads-or-tail trial or measurement, one cannot distinguish � (�U) from � (U � U). The
probability of getting heads in each case is:

Pr (Hj� (�U)) = tr
�
PfHg� (�U)

�
= tr

��
1 0
0 0

� �
1
2 0
0 1

2

��
= tr

�
1
2 0
0 0

�
= 1

2

Pr (Hj� (�U)) = tr
�
PfHg� (�U)

�
= tr

��
1 0
0 0

� �
1
2

1
2

1
2

1
2

��
= tr

�
1
2

1
2

0 0

�
= 1

2

and similarly for tails. They both give heads and tails with probability 1=2. This is not a bug but a
feature since the same thing happens in QM. To distinguish such states in QM, we need to measure
in a di¤erent basis. But for �nite probability theory with both ordinary and superposition events,
there is no �di¤erent basis.�

However, that can be changed by moving to the pedagogical model of quantum mechanics over
sets or QM/Sets [5] using vector spaces Zn2 over the base �eld of Z2 = f0; 1g. In the two dimensional
version, Z22, we can take the computational U -basis as fHg and fTg. But there is a di¤erent basis
of U 0 = fH 0; T 0g where fH 0g = fH;Tg and fT 0g = fTg since fH 0g+ fT 0g = fH;Tg+ fTg = fHg
(mod 2) so all the non-zero states can also be expressed in the U 0-basis. The vector fHg is expressed
in the U -basis by the column vector

�
1
0

�
U
(the subscript indicating the basis) and in the U 0-basis by

the column vector
�
1
1

�
U 0 . The basis conversion matrix is

CU!U 0 =

�
1 0
1 1

�
so
�
1 0
1 1

� �
1
0

�
U

=

�
1
1

�
U 0
.

Hence converting the superposition
�
1
1

�
U
or fH;Tg to the U 0-basis gives:

CU!U 0

�
1
1

�
U

=

�
1 0
1 1

� �
1
1

�
U

=

�
1
0

�
U 0
or fH 0g so its density matrix (computing in the reals) is�

1
0

�
U 0

�
1 0

�
U 0 =

�
1 0
0 0

�
U 0
. The classical mixed event U is the half-half mixture of fHg and fTg.

The basis conversion for fHg gives CU!U 0

�
1
0

�
U

=

�
1 0
1 1

� �
1
0

�
U

=

�
1
1

�
U 0
so the associated real

density matrix is: "
1p
2
1p
2

#
U 0

h
1p
2

1p
2

i
U 0
=

�
1
2

1
2

1
2

1
2

�
U 0
.

For fTg, the basis conversion gives CU!U 0

�
0
1

�
U

=

�
1 0
1 1

� �
0
1

�
U

=

�
0
1

�
U 0
so its real density matrix

is: �
0
1

�
U 0

�
0 1

�
U 0 =

�
0 0
0 1

�
U 0
.

Their half-half mixture has the density matrix in the U 0-basis:

1
2

�
1
2

1
2

1
2

1
2

�
U 0
+ 1

2

�
0 0
0 1

�
U 0
=

�
1
4

1
4

1
4

3
4

�
U 0
.

We then measure by the partition � = ffH 0g ; fT 0gg with half-half probabilities so the proba-
bility of H 0 for the superposition event fH;Tg or fH 0g in the U 0-basis is:
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tr

�
PfH0g

�
1 0
0 0

�
U 0

�
= tr

��
1 0
0 0

�
U 0

�
1 0
0 0

�
U 0

�
= tr

�
1 0
0 0

�
U 0
= 1

and for the classical mixture of half fHg and half fTgwhich in the U 0-basis is the mixture of half
fH 0; T 0gand half fT 0g, is:

tr

�
PfH0g

�
1
4

1
4

1
4

3
4

�
U 0

�
= tr

��
1 0
0 0

�
U 0

�
1
4

1
4

1
4

3
4

�
U 0

�
= tr

�
1
4

1
4

0 0

�
U 0
= 1

4 .

The �rst calculation makes intuitive sense since the superposition fH;Tg in the U -basis is the
singleton event fH 0g in the U 0-basis, so measuring in the U 0-basis for the event fH 0g will give
fH 0g with probability 1. The second calculation makes intuitive sense since it is half-half in the
mixture whether we get the fT 0g event or the fH 0; T 0g event and then the probability of getting
H 0 is zero for the fT 0g event and 1

2 for the fH
0; T 0g event so the overall probability of fH 0g is�

1
2 � 0

�
+
�
1
2 �

1
2

�
= 1

4 . Thus the two events, the classical mixture of half fHg and half fTg, and
the superposition fH;Tg, which cannot be distinguished by measurements in the U -basis, can be
distinguished by measurement in the U 0-basis.

12 Simplest Quantum Example

Consider a system with two spin-observable � eigenstates j"i and j#i (like electron spin up or down

along the z-axis) where the given normalized superposition state is j i = 1p
2
j"i+ 1p

2
j#i =

�
�"
�#

�
="

1p
2
1p
2

#
so the density matrix is � ( ) =

�
p" �"�

�
#

�#�
�
" p#

�
=

�
1
2

1
2

1
2

1
2

�
where p" = �"�

�
" and p# = �#�

�
#.

Using the Lüders mixture operation, the measurement of that spin-observable � goes from the pure
state � ( ) to

P"� ( )P" + P#� ( )P#

=

�
1 0
0 0

� �
p" �"�

�
#

�#�
�
" p#

� �
1 0
0 0

�
+

�
0 0
0 1

� �
p" �"�

�
#

�#�
�
" p#

� �
0 0
0 1

�
=

�
p" 0
0 p#

�
=

�
1
2 0
0 1

2

�
= � (� ).

The gain in quantum logical entropy h (� (� ))� h (� ( )) due to the spin measurement is the
sum of the (absolute) squares of the o¤-diagonal terms that were zeroed in the change: � ( )  
� (� ). In this case, that is 2 �

�
1
2

�2
= 1

2 . That is also h (� (� )) since � ( ) is a pure state so
h (� ( )) = 0.

Experimentally, it is not possible to distinguish between the#1 and#2 versions by �-measurements�
since, in either case, the result will be spin up or spin down (heads or tails) with equal probability.
But in QM the two states � (� ) and � ( ) can be distinguished by measuring other observables
like spin along a di¤erent axis as emphasized by Auletta et al. [1, p. 176] and as we illustrated above
using QM/Sets.

13 Conclusions

We have approached the paradigm/inde�nite interpretation of probability theory with superposition
events by starting with the logical situation of a universe U of distinct entities. Given a property
S (x) on U , we can associate with it:

1. the #1 abstract object S = fui 2 U jS (ui)g, the set of S (x)-entities, or

18



2. the #2 abstract object �S = � fui 2 U jS (ui)g which is the abstract paradigm-entity ex-
pressing the properties common to the S (x)-entities but �abstracting away from,��rendering
inde�nite,��cohering together,� or �blobbing or blurring out� the di¤erences between those
entities.

We argued that the mathematical machinery that could distinctly treat both abstractions was
incidence matrices in logic and density matrices in probability theory:

1. #1 representation as In (�S) in logic or � (�S) in probability theory; and

2. #2 representation as In (S � S) in logic or � (S) in probability theory.

Quantum mechanics can be equivalently formulated using wave-function state vectors or using den-
sity matrices [11, p. 102]. Our development above, using the analogy with #2 abstractions, dove-
tailed precisely into density-matrix mathematical treatment in QM where the state vector j i is
rendered as � ( ) which can be interpreted as an objectively inde�nite state (according to the o¤-
diagonal elements). This exempli�es the objectively-inde�nite or literal interpretation of QM pro-
posed by Abner Shimony.

From these two basic ideas alone � inde�niteness and the superposition principle � it
should be clear already that quantum mechanics con�icts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an inde�nite value in that quantum state is objectively inde�nite; its value is
not merely unknown by the scientist who seeks to describe the system. [13, p. 47]
But the mathematical formalism ... suggests a philosophical interpretation of quantum
mechanics which I shall call "the Literal Interpretation." ...This is the interpretation
resulting from taking the formalism of quantum mechanics literally, as giving a represen-
tation of physical properties themselves, rather than of human knowledge of them, and
by taking this representation to be complete.[14, pp. 6-7]

This objective-inde�niteness or literal interpretation of QM could also be described as density-
matrix realism since, as we have tried to show, density matrices can be interpreted as representing
an objectively inde�nite reality (the attempt to interpret the wave function as representing some
sort of physical wave has been abandoned for almost a century now). Unfortunately, this natural
(but hard to intuitively imagine) interpretation of QM is ignored in the literature of the philosophy
of quantum mechanics in favor of fantasies about �many worlds�or last-gasp attempts to retain the
image of reality as de�nite �all the way down�in Bohmian mechanics.

Since the ancient Greeks, we have had the #2 Platonic notion of the abstract paradigm-universal
�the S-entity�, paradigmatically de�nite on what is common to the entities with the property S(),
and inde�nite on where they di¤er, i.e., abstracting away from how they di¤er. By using incidence
and density matrices to di¤erentiate the #1 abstraction (e.g., the equivalence class of distinct but
parallel lines) and the #2 abstraction (e.g., the direction of the lines), we can cross the conceptual
bridge to better understand inde�niteness in quantum mechanics by seeing the analogy:

The paradigm �S, �the S-entity�represented by In (S � S)
� the superposition state  represented by the density matrix � ( ).

This may recall Whitehead�s quip that Western philosophy is �a series of footnotes to Plato.� [18,
p. 39]
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