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Abstract 

If well-designed, the results of a Randomised Clinical Trial (RCT) can justify a causal 
claim between treatment and effect in the study population; however, additional 
information might be needed to carry over this result to another population. RCTs have 
been criticized exactly on grounds of failing to provide this sort of information 
(Cartwright & Stegenga 2011), as well as to black-box important details regarding the 
mechanisms underpinning the causal law instantiated by the RCT result.  On the other 
side, so-called In-Silico Clinical Trials (ISCTs) face the same criticisms addressed 
against standard modelling and simulation techniques, and cannot be equated to 
experiments (see, e.g., Boem & Ratti, 2017, Parker, 2009, Parke, 2014, Diez Roux, 2015 
and related discussions in Frigg & Reiss, 2009, Winsberg, 2009, and Beisbart & Norton, 
2012).  
We undertake a formal analysis of both methods in order to identify their distinct 
contribution to causal inference in the clinical setting. Britton et al.'s study (Britton et al., 
2013) on the impact of ion current variability on cardiac electrophysiology is used for 
illustrative purposes. We deduce that, by predicting variability through interpolation, 
ISCTs aid with problems regarding extrapolation of RCTs results, and therefore in 
assessing their external validity. Furthermore, ISCTs can be said to encode “thick” causal 
knowledge (knowledge about the biological mechanisms underpinning the causal effects 
at the clinical level) – as opposed to “thin” difference-making information inferred from 
RCTs. Hence, ISCTs and RCTs cannot replace one another but rather, they are 
complementary in that the former provide information about the determinants of 
variability of causal effects, while the latter can, under certain conditions, establish 
causality in the first place.  
 

 

1 Introduction 

Systems biology is an approach to the understanding and conceptualization of the 
biological realm that emphasizes systemic and holistic aspects rather than reductionist 
and mereological features (Bertolaso & Ratti, forthcoming). Still, crucial to systems 
biology seems to be the possibility to single out specific causal links in the working of the 
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cell or of the genome and of putting it at work in isolation, within a tractable and 
controlled system that allows manipulability and repeatability, configuring multimodal 
research strategies (Macleod & Nersessian 2013). While ‘wet’ experiments to this aim 
are often possible, the use of computer simulations and of quantitative modelling 
methods borrowed from physics, offer epistemic advantages in terms of controllability, 
reproducibility, and analyticity (Morrison, 2015).1 
However, the status of systems biology within the epistemic community of the biological 
sciences is a long-standing issue. One important aspect is the very possibility of building 
abstract mechanistic models of biological phenomena (Bertolaso & Campaner, 
forthcoming). As Keller (2003) famously articulated, models in the biological sciences – 
such as “animal models” – have traditionally been constructed to be homologous to the 
system they aim to capture, model organisms being a case in point. Mathematical and 
computational models of biological systems, on the other hand, bear a different kind of 
relation to the modelled object, namely one of analogy: such models aim at describing 
the behaviour of the system by capturing the underlying mechanistic principles and the 
abstract mathematical laws of its functioning.2  

It has been proposed that computer simulation and computer-aided modelling techniques 
could be employed in the setting of clinical testing, as it is already happening in several 
other mission-critical domains (surgical intervention, adjustment of prosthetics, etc.), in 
order to support the planning of clinical trials, refine their conduct and reduce the 
possibility of their failure. What is envisaged is “the use of individualized computer 
simulation in the development or regulatory evaluation of a medicinal product, medical 
device, or medical intervention” (Viceconti et al., 2016, p. 8). This definition has been 
coined by the Avicenna alliance, a European focus group born with the purpose of 
fostering the adoption of computational modelling in the context of clinical testing. 
Patient-specific computer models should be used to generate simulated populations, on 
which new biomedical products can be safely tested. The Alliance refers to this 
methodology as In Silico Clinical Trial (ISCT), a pillar of the more general movement of 
in silico medicine (Bertolaso & Macleod 2016). In their recently published Roadmap 
(Viceconti et al., 2016), the Avicenna alliance produced an in-depth examination of the 
scientific, technological and societal challenges that have to be overcome in order to 
establish a role for the ISCT in medical research.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For the sake of clarity, we will distinguish the two terms as follows: by “computer model” we mean the 
algorithm or computer program that is built in order to capture the mechanism of the phenomenon under 
study; by “simulation” instead we mean the actual run of the program. 

2 Keller’s stance has been questioned by Rowbottom (2009) – by pointing out the importance of analogy 
also in extrapolation of results from animal models to humans (or from species to species, more generally). 
However this misses the point of distinguishing the two kinds of inference in that, even if analogy is also 
used in inference from animal models, it aids the extrapolation in a different way. Analogical inferences 2 Keller’s stance has been questioned by Rowbottom (2009) – by pointing out the importance of analogy 
also in extrapolation of results from animal models to humans (or from species to species, more generally). 
However this misses the point of distinguishing the two kinds of inference in that, even if analogy is also 
used in inference from animal models, it aids the extrapolation in a different way. Analogical inferences 
from organ system to organ system rely on ontological assumptions regarding the affinity of various 
biological species. Instead, computational models are intended to reproduce the target system by modelling 
its hypothesised underpinning structure; therefore analogical inference is based here on isomorphism 
(structural similarity).  
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With the present paper we intend to provide an analysis of their epistemological status, in 
particular with respect to the gold standard instrument of clinical investigation: 
Randomized Controlled Trials (henceforth RCT). To illustrate the methodology, we give 
a detailed account of the study done by (Britton et al., 2013) below (see also Carusi, 
2014) for a discussion of this study). 

The paper is structured as follows: In the next section we present the rationales, and the 
epistemic value of randomised controlled trials (RCTs) and the criticisms addressed 
against them: 1) black-boxing heterogeneity and variability; 2) providing a “thin” account 
of causation, which neglects the mechanisms underpinning the causal associations they 
aim to undercover. Next we present Nancy Cartwright’s account of the epistemic 
contribution of RCTs. This provides the basis for a formal analysis of “in silico clinical 
trials” (ISCTs), which we undertake in the next sections. After illustrating a case study in 
cardiac electrophysiology, we identify the specific epistemic contribution of RCTs and 
ISCTs and conclude that they have complementary functions. Whereas RCTs establish 
causality, in that they come with a warrant of “causal sufficiency” (having taken into 
account any possible latent cause, or neutralised it), ISCTs cannot provide such a warrant 
in that they cannot guarantee that all possible relevant causal factors have been taken into 
account in the model, however, they can provide information about of the variability of 
the causal effect established through an RCT in different contexts. In the concluding 
section we elaborate on this distinction and present two main caveats to ISCTs 
methodology: its heterogeneous robustness in different contexts, and relatedly, its scope 
of implementation.  
 

2. Randomised Controlled Trials: rationales, criticisms and epistemic value 

Pharmacology is an intrinsic interdisciplinary science: it does not investigate a specific 
level of reality such as physics, or biology, but rather works across levels. Whereas the 
direct domain of action of drug molecules is limited to protein receptors, the desired end-
effects are clinically observable results. However, because the proteins with which the 
drug molecules interact are embedded in a web of - possibly nonlinearly interacting - 
biological pathways (metabolic, genetic, signal transduction), most end-effects are 
unpredictable.  

Knowledge of these various interactions and the biological laws governing them, as well 
as the contingent initial conditions holding in any specific context is far from being 
exhaustive to allow reliable prediction or causal inference. Hence, until recently, drug 
approval has mainly relied on a black-box methodology, grounded on a hypothetico-
deductive method: null-hypothesis testing (see Landes, Osimani, Poellinger, 2017 for a 
detailed account of causal inference in pharmacology).  

However, philosophers have raised objections against the privileged role accorded to 
RCTs as an instrument for causal inference in medicine, mainly on two grounds: 1) the 
neglect or downplay of context-sensitivity of causation by way of black-boxing the above 
mentioned interacting factors, and related issues with external validity (that is, the extent 
to which conclusions drawn on the basis of the study sample can be extended to the target 
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population/individual); 2) black-boxing of the mechanisms underpinning the cause-effect 
relationship and thereby again failing to take into account relevant information for the 
purpose of extrapolation and interpretation of results.  

In the following we present such criticisms in more detail, illustrate Cartwright's analysis 
of RCTs as a basis for a formal analysis of their epistemic value, and then explain the 
virtues of randomization with respect to the problem of “causal sufficiency”.  

 

2.1 Randomisation and variability 

The rationale underpinning RCT methodology is the maximisation of internal validity 
(i.e. avoidance of systematic error produced by confounding and biases), (see Cartwright 
2011, Osimani 2014), often at the expense of external validity, in that studies conducted 
under stricter conditions are generally less representative of real-life conditions. More 
generally, RCTs are considered to black-box variability (or to abstract from 
heterogeneity); that is, the existence of statistically and clinically relevant differences 
among individuals or groups which interact with the treatment effect tends to be pushed 
to the background.3 Indeed, random allocation4 of the treatment to one of the two 
experimental groups serves the purpose of obtaining two (probabilistically) balanced 
groups as to all possible known and unknown “confounders” or “moderators”, that is, to 
isolate the putative causal chain from drug to end-effect from other possible causes of the 
same effect, and, more generally, from the causal web in which it may be embedded. 5 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Heterogeneity is explicitly taken into account in the evaluation of meta-analyses, where it is used to 
up/downgrade study quality, but it is rarely considered in its own right. However, heterogeneity is one of 
the main issues when predicting the effects of drugs in specific individuals or target groups, given that they 
are the result of causal interaction between the drug and various combinations of triggering factors, which 
may not be equally represented in study and target populations or the individual user. 
4 Random allocation of the treatment to the experimental group should be not confused with random 
sampling. This refers to the sampling procedure and is aimed at guaranteeing a representative sample with 
respect to the population from which the study sample is drawn. Hence, whereas the purpose of random 
sampling is to have a study population as close as possible to the sampled population, the goal of random 
allocation of treatment to the experimental group is to obtain two groups (“treatment” and “control” group) 
as close as possible to each other, except for the treatment itself. This should guarantee that the possibly 
observed difference in the outcome is due to the treatment and only to it.  
5 Random allocation of the treatment to the experimental group has putatively two main roles: 1) in the 
long run, it should allow the investigator to approach the true mean difference between treatment and 
control group; however it is unclear what this true underlying population probability denotes when we are 
dealing not with population of molecules for instance, but with population of patients undergoing medical 
interventions, where heterogeneity among individuals can at most allow for an aggregate average measure. 
Furthermore, it is obviously unethical and unfeasible to re-sample the same subjects of an experiment again 
and again, and even if this were possible, the subjects who were administered the drug in the first round 
would undergo physiological change; consequently, the successive trial population would no longer be the 
"same" (Worrall 2007); 2) random allocation (together with intervention and blinding) should guarantee the 
internal validity of the study by severing any common cause, or common effect, between the investigated 
treatment and its putative effects (i.e., avoidance of confounders and (self-)selection bias). This property is 
supposed to justify the primary role assigned to randomised evidence by so called evidence hierarchies (see 
Osimani, 2014). 
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This provides a (probabilistic)6 warrant of “causal sufficiency” that is, that no latent 
variables are confounding the observed effect, and therefore that the detected difference-
making relationship is a real one.  

However, black-boxing heterogeneity has considerable consequences as to the validity of 
results in relation to predicting the variability of effects in the population of users, in that 
the effect (size) observed in the study may not be the same as the one that will be 
produced in specific individuals, or subgroups of the population. 

Whereas classical experiments in physics allow the scientist to observe the behaviour of 
the investigated phenomenon in an array of different "possible worlds" (in different 
scenarios or under different initial or boundary conditions), and compare systematic 
differences among such situations, randomisation is blind to such specific settings. Its 
outcome is rather to neutralise their effects on the final result, by creating two 
populations, one for the treatment and one for the control group, where the same "worlds" 
should be represented in the same proportion. This should guarantee that the different 
results possibly observed at the end of the trial are due to the treatment and only to it (see 
also Landes et al., 2017, section 3.2). As we will see below, the purpose of ISCTs is 
exactly to reproduce the kind of setting where phenomena are systematically explored 
under different initial conditions and states of perturbation.  

Random allocation of the treatment, as a means to isolate the putative cause from other 
possible confounding factors, loses much information with regard to the specification of 
possibly relevant mediating and interacting causes. As a consequence, the exclusive 
reliance on RCTs for the justification of causal claims is considered to be wrongheaded 
both because of the kind of information which they provide, and because of the kind of 
information which they are not able to incorporate or account for. 

 

2.2 RCTs as instrumental to "thin" accounts of causation  

Another reason why exclusive reliance on RCTs for causal inference has been criticized 
is that they produce only difference-making knowledge about causation (whether and to 
what extent the treatment produces the claimed effect), but no information about the 
underlying physiological mechanisms leading to such outcome. RCTs are thereby 
associated with a "thin" notion of causation, relying on mere formal relationships 
between cause and effect (as, e.g., captured in interventionist Bayes net accounts of 
causation – see Pearl, 2000 and Spirtes Glymour, Scheines, 2000), to be contrasted to a 
"thick" one, focusing on substantive knowledge about the web of entities and processes 
involved in bringing about the effects. 

Indeed, knowledge of the mechanisms underpinning the effects observed in black-box 
studies has been invoked by philosophers has having various roles in assessment and 
prediction of treatment effects. The related debate has ontological, epistemological and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 That is, modulo the absence of random and systematic error. 
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methodological branches.  

The ontological side refers precisely to the opposition between "thin" and "thick" 
concepts of causality. To the former belong definitions of causality based on difference 
making and counterfactual or regularity notions of causation (e.g., Lewis 1973a, b, 2000); 
to the latter belong instead process accounts of causality, i.e. accounts which appeal to 
how causes bring about their effects (e.g., Dowe 1992, Mumford 2009, Anjum & 
Mumford 2012). As Dowe puts it (Dowe 2000), this debate is also related to a distinction 
between causation as the analysis of truth conditions for causal claims vs. an objective 
feature of the world.7 

From an epistemological point of view, Salmon (1997, 1984), following Reichenbach's 
(1956) ontological account of probability and probabilistic dependence, emphasizes that 
"mechanisms" provide the ontological explanation for observed regularities. 

In the methodological debate around evidence standards, knowledge about mechanisms 
has been considered to complement knowledge about regularities: for instance Clarke et 
al. (2014) considers that evidence about difference making helps in de-masking causes 
which might be cancelled out by back-up/compensatory mechanisms in the organ system, 
whereas evidence about mechanisms is needed in order to design and interpret statistical 
studies. Hence, such different kinds of evidence reciprocally support each other and 
jointly (dis-)confirm the causal claim under investigation.  

However, it is Nancy Cartwright who most closely addresses the status of mechanism 
knowledge with respect to RCTs. In her account, knowledge about mechanisms 
constitute the basis for extrapolation and the assessment of external validity, in that they 
guarantee that the same causal laws are working in the study and in the target population.  

 

2.3 Epistemic analysis of RCTs according to the causal principle reading 

According to the standard methodology of RCTs, the "treatment effect" is measured by 
the difference of the average outcome of interest in the treatment group minus the 
average obtained in the control group. There are two interpretations underpinning this 
approach, one is the counterfactual reading (also known as "potential outcome approach"; 
Rubin 2005, Holland 1986) and the other is the "causal principle" reading. According to 
the former, the treatment effect is defined as the effect that it would obtain in the subject 
if and only if she were administered the treatment. Since this is a counterfactual object of 
enquiry, and therefore cannot possibly be measured, a substitute measure for it is the 
difference between the two groups averages, under the assumption that no other 
differences affect the two groups apart from the treatment administration. Hence, the 
mathematical definition of treatment effect reads as follows: 

T =def < Y(u) | X(u)=x > - < Y(u) | X(u)=x' > 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 See also Poellinger (forthcoming) for a discussion of the ramifications of theory choice in causal 
assessment. 
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where T is the treatment effect, x and x' denote the two possible values taken by the 
treatment variable X, Y(u) denotes the value taken by the outcome variable Y for unit u, 
Y(u)/X(u)=x denotes the value taken by the outcome variable Y for unit u given that the 
treatment variable X has value x, and the angled brackets mark that the subtraction is 
between the estimates (expectations) of the sample means in the two groups (treatment 
and control).  

However, if one considers the causal laws underpinning both such counterfactuals and 
the statistical results of RCTs, one could interpret the observed treatment effect as 
following from the interaction of X with other contributing factors. The law underpinning 
the observed effect in relation to treatment X can be formalized as follows: 

L:   Y =c   a + β X + W8 

Then, the average value of Y in the treatment group would be measured by: 

< Y(u) | X(u)=x > = < a(u) | X(u)=x > + < β(u) | X(u)=x > + < W(u) | X(u)=x >, 

and, consequently, the treatment effect would be measured by the following equation:  

T =def   < a(u) | X(u)=x > - < a(u) | X(u)=x' > 

+ < β(u) | X(u)=x>x - < β(u)/X(u)=x' >x’ 

+ < W(u) | X(u)=x > - < W(u) | X(u)=x' >. 

Since random allocation of X is meant to warrant that the expectation of a(u), β(u) and 
W(u) are the same whatever value X assumes (that is, that X is probabilistically 
independent from a, β and W), the first and last two terms in the equation cancel out, and 
the measure of the treatment effect given by an RCT results from the following formula: 

T =def   < β(u) > (x-x'). 

The critical issue raised by Cartwright is that β represents all the combinations of factors 
that determine not only whether X contributes to Y (if β is 0, then this contribution is 
null); but also, how (positively or negatively) and to what extent. By drawing on the 
notion of causes as INUS condition (Mackie 1980), Cartwright also considers the 
possibility that β is a disjunction of sets of interacting factors:  

β = f1 (z11, … , z1n) + … + fk (zk1, … , zkm). 

So β can be any combination of factors (from macro-aspects such as age and health 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 In analogy for instance to similar laws in macroeconomics, such as the expectations-augmented Phillips 
curve used to predict the rate of inflation at time t, given that a particular level of unemployment persisted 
for some time: 

Yt = b0 + b1 X2t + b2 X3t + et 
Where Yt is the actual rate of inflation, X2t the unemployment rate, and X3t the expected inflation rate, at 
time t (see Hoover, 2008). 
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history, down to genetic make-up), and this means that the average measure provided by 
the result of RCTs can be considered as a good measure of the treatment effect in the 
target population (or individual), only to the extent that β takes the same value there, i.e., 
the target population of users is characterized by the same combination of factors. More 
fundamentally, being the effect size an average measure, the fact that this is co-
determined by a proportion of co-factors black-boxed in the coefficient β, there is no way 
to estimate the effect size for any other population, or individual, (where another causal 
law may hold), from the study itself alone. Hence, not only RCTs are blind as to the 
relevant combinations of co-factors, which allow X to produce the intended effect, but 
also as to the causal principles (and related co-factors) involved in producing effects.  

This is also critical for the assessment of unintended harmful effects. In fact, the 
treatment X may produce, in combination with specific subsets of factors other effects as 
a result of other biological laws in which X also plays a role; e.g. effect Q resulting from 
another causal principle:  

L: Qc = c + β' X + U 

where Q may also be an undesired side-effect of the treatment X, X is again the treatment 
variable; β' is the set of combinations of factors that contribute to bring about the side-
effect Q by interacting with X – these obviously need not be necessarily the same as 
those represented by β, whence the denotation of β'. U and c are the error term variable 
and a constant respectively.  

Possible ways to partly remedy this problem and identify moderators of causal effects are 
stratification (subgroup analysis) and adjustment. However, several problems constrain 
the adoption of such measures de dicto and de facto. De dicto, because the possible 
combinations of co-factors are not known in principle, de facto, even if they were known, 
very large samples would be needed to have sufficiently powered subgroups, for the 
analysis of the moderating effects of such combinations of co-factors.   

ISCTs may be considered an answer to this problem. Computational modelling has been 
recently used to develop virtual populations in order to explore interacting effects of drug 
in combination with various mediating factors. That is, to look into the black-box and 
explore the space of possibilities for our β term. ISCTs in particular are considered to 
supplement RCTs with such information. Are such claims warranted? What is the 
epistemic status of ISCTs (in comparison to RCTs)? 

In the following, we use Cartwright's analysis of RCTs as a benchmark to evaluate the 
specific epistemic contribution of ISCTs and to determine both what kind of information 
they provide, and what kind of knowledge input they need in order to deliver their results. 

 

3 In Silico Clinical Trials and their epistemic status 

At the roots of the ISCT enterprise is the Virtual Physiological Human (VPH) project. 
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The VPH is an effort to replicate and model relevant bits of the human physiology in 
silico, by using quantitative data gathered through advanced imaging and sensing 
techniques to build computer models targeting the context of a specific disease (quite in 
line with the aims of systems biology, cf. Wang et al., 2015).9 The model must contain, 
quoting the Roadmap, “mechanistic representation of the pathophysiological processes at 
play” (Viceconti et al., 2016, 81). The roadmap describes how such models are built: the 
process of “Knowledge-based disease model design [...] starts with an extensive review 
of the scientific literature to identify relevant pieces of knowledge describing the various 
mechanisms thought to play a part in the pathophysiology (e.g., inflammation, cell 
adhesion, apoptosis, etc.). Hence, the model is a product of “knowledge integration” with 
the purpose of exploring the behaviour of organ systems and their reactions to 
perturbations. The idea behind in silico clinical trials is that of exploiting a VPH 
knowledge base for the construction of a population of virtual models representing 
individual organisms reacting idiosyncratically to the drug or other interventions. 

However, it is clear that, in order for the concept of the VPH (and the ISCT) to make 
sense at all, one must think that the relevant physiological processes and phenomena can 
be extracted from the organism and that they can be abstracted in terms of a computer 
algorithm. Hence, the question arises as to their epistemic contribution with respect to 
traditional experimental methods and their methodological validity.  

We address in the present paper the former question and undertake a formal analysis of 
the epistemic status of ISCTs, with a special focus on their complementary output with 
respect to RCTs. The main output of this analysis is that ISCTs provide information 
exactly about, at least some components of the vector of co-factors (our β term), which 
jointly moderate the causal effect of the treatment under investigation, and which differs 
from population to population, or better, from individual to individual.  

To this end we draw on Britton et al.'s study (Britton et al. 2013) on the impact of ion 
current variability on cardiac electrophysiology, and in particular on curvature and 
duration of the Action Potential (AP). 

 

3.1 Case study: variability in cardiac cellular electrophysiology 

Britton et al. (2013) set out from a computational model of the cellular ion channels in a 
particular tissue of the heart (the Purkinje fibre) and of their conductivity properties 
(which is a combination of the CGR model (Corrias, Giles, Rodriguez 2011). The model 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Clearly, the simulation of a complete human physiology (the ‘virtual patient’) remains a far-fetched 
objective of the VPH project. What is possible however is the simulation of bits of human physiology, 
aimed at reproducing the possible response of the targeted organ or system to a new intervention. As an 
example, an early effort of this kind of complex computational model of physiology was a model of cardiac 
physiology aimed at simulating the electrical activity of the heart (Winslow et al., 2002). Winslow and 
colleagues used different kinds of data –imaging techniques and measurements of electrical activity– in 
order to construct a full three-dimensional model of the cardiac ventricle. See also the case study illustrated 
below.  
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of rabbit Purkinje electrophysiology was developed by integrating experimental data 
(voltage clamp experiments and AP recordings, see Corrias et al. 2011) in a system of 
equations.10  

Figure 1 shows a schema of the rabbit Purkinje cell model, its mechanistic ingredients, 
and a diagram of their interaction in the calcium handling subsystem. The mechanistic 
knowledge underlying this abstract visualization is encoded in a computational model 
(written in C++ code and based on Chaste - Cancer, Heart and Soft Tissue Environment), 
that is a simulation package aimed at multi-scale, computationally demanding problems 
arising in biology and physiology.11  

 

The investigated hypothesis is that variability in APs is caused by quantitative differences 
in the properties of ionic currents (rather than by qualitative differences in the biophysical 
processes underlying the currents). As a further result of such exploration, the study 
identifies the main co-determinants of variability in the prolongation of AP duration 
(APD) under the action of the potassium channel blocker12 Dofetilide, at four different 
concentrations.  

The research built on previous studies, by the same and other authors, that used 
mathematical methods in order to carry out sensitivity analyses on the ionic determinants 
of inter-subject variability in AP morphology and duration, on the basis of established 
cardiac models (in particular the rabbit Purkinje electrophysiology) (2-4: Romero et al. 
2009, Sarkar et al. 2012, Davies et al. 2012). 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10	
  Hence, the proposed model is based on a deterministic approach with no probabilistic or machine 
learning methods.	
  
11	
  Current functionality includes tissue and cell level electrophysiology, discrete tissue modelling, and soft 
tissue modelling. The package is being developed by a team mainly based in the Computational Biology 
Group at the Department of Computer Science, University of Oxford, and the development draws on 
expertise from software engineering, high performance computing, mathematical modelling and scientific 
computing.	
  
12 To be precise, Dofetilide is a blocker of the apid component of the delayed rectifier potassium current Ikr. 
The authors oft he study explicitly chose this kind of intervention because Ikr block is the main assay 
required in safety pharmacology assessment, due to ist importance in long QT-related arrythmias (Britton et 
al. 2013, E 2099).  
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Fig. 1: Schema of Rabbit Purkinje cell model with twelve ionic currents (labels around 
the cell) and the calcium handling subsystem (depicted inside the cell). [Britton et al., 

2013, Fig. 9] 

The study consisted in computationally generating individual AP models out of the 
general one (fig. 1), by means of varying the values of relevant parameters of ionic 
currents in order to represent natural variation in the virtual population. The “individual 
models” here represent instantiations of the general model on which the simulation is 
based. Other than in the domain of computational modelling, where simulation is used to 
test the empirical adequacy of the source model with respect to the target system, within 
the bound of some natural variability, here the aim of the simulation in ISCTs is rather to 
explore such variability, i.e., to identify the determinants of the different behaviours the 
system instantiates depending on the different combinations of input parameter values 
(whose interaction is encoded in the mechanistic model). 

All 10,000 models in Britton et al. study are generated from the same system of equations 
(i.e., the same ionic physiological processes), derived from a refined version of the rabbit 
Purkinje AP-Corrias-Geles-Rodriguez (CGR) model, each with different parameter 
values for the ionic properties, randomly selected within a wide range.  

Each model returns a specific AP curve, typified on the basis of biomarkers, derived from 
electrophysiologic and fundamental biochemical knowledge, including natural constants 
(such as the Faraday constant and the Gas constant), constants taken from the rabbit 
Purkinje cell model (calcium velocities etc.), stimulus-related constants (such as 
amplitude and duration), and the system of equations describing the mechanistic 
interaction of all these ingredients with the input parameters (the set of ionic 
properties).13 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 See, e.g., Carusi et al. (2012) for a systematic overview over the processes and constituents involved in 
the construction of multiscale models of cardiac electrophysiology. 
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Fig. 2: AP curve with the six chosen biomarkers: dV/dt Max (max upstroke velocity), Vm 
Peak (Peak membrane potential), APD90 (Action Potential Duration), RMP (Resting 

Membrane Potential), Plateau Duration and Dome Peak. [Britton et al., 2013, Fig. 10] 

 

The generated population of 10,000 AP curves (individual models) was then pruned, by 
comparing simulation outputs with experimental data of cellular biomarkers extracted 
from AP recordings at three pacing frequencies (0.2, 1 and 2 Hz), and by keeping only 
those models (213 in number) that were fully consistent with the experimental dataset 
(model calibration). Full consistency means here that among all models of AP 
morphology an duration produced by all possible combinations of ionic currents 
parameters (10,000), only those “models” were retained, whose six AP biomarkers values 
were each within the range determined by traces of AP from experiments on rabbit 
Purkinje fibres. 

The study delivers three results: 

1) A partial correlation analysis reveals which ionic properties determine the shape, 
amplitude, and rate dependence (0.1 Hz, 1 Hz, 2 Hz) of specific action potentials (this 
amounts to the identification of the “causal laws” linking ionic current properties and AP 
properties); 

2) Prediction of APD prolongation caused by the Ikr channel blocker drug dofetilide (in 
four concentrations: 0.001, 0.01, 0.05, 0.1 µM (perturbation of the causal laws and 
prediction of related outcomes);  

3) specific components that influences the outcomes of the perturbation (identification 
co-factors: components of β) 
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We briefly describe them in the following and then use them as a basis for our analysis of 
the distinct epistemic contribution of ISCTs with respect to RCTs.  

1. Partial correlation analysis reveals which ionic properties determine the shape, 
amplitude, and rate dependence of specific action potentials. A partial correlation 
analysis was used as a sort of model fitting procedure, in order to show that different 
combinations of ionic properties determine different profiles action potentials (in terms of 
shape, amplitude and rate dependence). From this it follows that the variability of the AP 
curve can be predicted by the different values of the ionic currents parameters. Although 
the profile of each AP biomarker is influenced by many ionic currents parameters, still 
“individual parameter values are important for determining the exact balance of currents 
and therefore, the specific AP properties of each model (the investigated outcome 
encodes a vector of biomarkers jointly describing AP morphology and duration: figure 2 
illustrates the six biomarkers and how they describe the AP curve).  
The procedure is hypothetico-deductive, in that the cell-model arises from the integration 
of the various pieces of empirical knowledge formalised in mathematical formulas, and 
then statistical associations are searched between the parameters of individual ionic 
curves of the model and the biomarkers determining the different AP curves produced in 
the simulation. However, the partial correlation analysis delivers the net influence of each 
ionic current parameter on each AP curve biomarker, rather than delivering the combined 
influence of the all ionic current parameters on the entire curve profile. Hence this 
procedure is a sort of piecemeal model-fitting, and leaves room for uncertainty regarding 
the joint effect of such parameters on the AP curve. This question is in part and indirectly 
answered through “intervention” in the model, that is by simulating the effect of a 
channel blocking drug on one of the ionic channels, and in observing the resulting AP 
curves in the “treatment” and “control” groups. Treatment consisted in the administration 
of the potassium channel (Ikr) blocker drug dofetilide.14   
 

2. Prediction of APD prolongation caused by the Ikr channel blocker drug dofetilide. The 
drug is virtually “administered” in four different dosages in the population of models 
(0.001, 0.01, 0.05, and 0.1 µM), in order to investigate the interaction of the ionic current 
variability with the drug dosage. If we let the drug administration correspond to our X in 
the causal principle interpretation of RCTs, and the outcome variable Y correspond to the 
shape of the AP curve, the simulation of “control” AP curves and “treatment” AP curves 
(that is AP curves resulting from blocking the potassium channel Ikr) shows that such 
intervention induces both APD prolongation, and increased APD variability. This is in 
agreement with previous experimental studies. This agreement “validates” the model and, 
consequently the empirical adequacy of the system of equation the constitute it.  

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 The choice of Ikr block as an intervention to evaluate the predictive power of the population of models is 
motivated by the fact that Ikr block is the main assay required in safety pharmacology assessment, due to its 
link to QT-related arrhytmias.  
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Fig. 2: Simulated AP traces obtained for three representative models accepted in the 
population in control conditions (blue) and following application of 0.01 µM 

concentration of dofetilide (red) at 2-, 1-, and 0.2-Hz pacing frequencies. This is the 
concentration closest to the experimentally determined IC50 (therapeutic dose) for 

dofetilide (0.0124 µM). Plots extend to 500 ms for 2 and 1 Hz and 1,000 ms for 0.2 Hz. 
Line style indicates which of the control and dofetilide traces correspond to each model. 

[Britton et al., 2013, Fig. 6] 

 

3. Specific components that influences the outcomes of the perturbation. Against the 
background provided by such results, the most interesting finding derives from a further 
partial correlation analysis: the one examining the ΔAPD variable (that is, the difference 
in AP duration between “treatment” and “control” in the simulation: “treatment APD” – 
“control APD”) against each of the 12 parameters that were varied to create the 
population of models (each time controlling for the other 11 parameters). This result is 
clinically interesting, because it identifies the main moderator(s) of heart arrhythmias 
when the drug is administered: at all pacing frequencies (0.2 Hz, 1 Hz, and 2 Hz), the 
scientists registered a strong positive correlation between Gkr (the maximal conductance 
of channel Kr) and the difference between AP duration under “control” vs. after Ikr block: 
“Rabbit Purkinje cells with a larger Gkr are more dependent on the Ikr current for 
repolarization and so will have a greater increase in APD 90 following Ikr block than cells 
with a smaller Gkr” (Britton et al. 2013, E2101).  
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Validation of such results is often implicit and tacitly relies on no miracles arguments 
(see Sprenger, 2016, for a probabilistic defense of such kinds of higher order evidence, 
and related literature) relating the strong systematic analogy of simulation and 
experimental results under different initial conditions and states of perturbation. This 
systematic analogy would be surprising if not explained by the fact that the mathematical 
laws underpinning the simulation at least partially reliably represent the mechanisms 
underpinning the experimental phenomena.  However, we set this issue aside in the 
present paper and focus our analysis on the distinct informative contribution of ISCTs 
with respect to RCTs, drawing on the present case study.  

 

3.2 From Laws to Models: peering into the blackbox 

Since Rubin (1974), the standard conceptualisation of causal claims resulting from RCTs 
(and comparative studies) is counterfactual: the “causal effect” is the difference between 
what would have happened to the subject, had it been exposed to the treatment and what 
would have happened to it, had it been exposed to the control. Since the subject cannot 
undergo the same experimental conditions at the same time, the causal effect is calculated 
as the average difference of the effects observed in the group of exposed and the group of 
unexposed subjects.15 What ISCTs promise to give, is precisely the “counterfactual 
information” about each possible individual either exposed to the treatment or not. A 
simplified representation of an individual model could look like this: 

i = π ( u, x ), 

where an individual i is described by a set of functions π (usually designed and coded in a 
program, encoding the physiological relations underlying the mechanistic model in a 
deterministic or probabilistic way) for a certain combination of relevant parameters u (a 
vector of constitutive parameter values) and a possible intervention x.16  

Since blindly reshuffling the u vector in a combinatorial way (such that the components 
are varied modularly) might produce individuals that do not (or cannot) occur in 
empirical studies, the set of possible combinations of parameters (individuals) is 
narrowed down through calibration: 

Ical = { i | i is empirically attainable} 

The calibrated class Ical allows one to infer the admissible initial conditions p (those units 
that are compatible with empirical data) and to learn about their variability. 

If the treatment X is an exogenous variable in the causal model encoded in π, it is now 
possible – in obvious contrast with RCTs – to compute the effect of this treatment for 
each individual, such that 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 This is also known as the "potential outcome approach" to causal inference. 
16 Plus possibly the addition of some bounded random error to express finer-grained natural variation in the 
sense of a Monte-Carlo simulation. 
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T = Δ ( ix , ix' ) , 

where x indicates the treatment, x' the default or control, and Δ the quantitative or 
qualitative difference between individual under control vs. treatment (e.g., shape 
variations of AP curves).17 In ISCTs, comparing control and treatment is precisely done 
for the same co-factor set. I.e., drawing on Cartwright's notation, 

Δ ( ix , ix' ) = ( x - x' ) 

without potential β interactions, since the instantiation of co-factors < β(u) > is indeed 
kept fixed for ix and ix'.  

Hence the specific contribution of ISCT methods is ultimately to use already established 
knowledge about the physiological mechanism for the formulation of π (i.e., the 
mechanistic interaction of p components), together with experimental findings, in order 
to restrict the parameter space to experimentally attainable value combinations of u 
(through calibration of the outcome space). Built on such a knowledge base, the 
computational model is then used to predict variability of the outcome as a function of 
the interaction of different instantiation of β vectors with the intervention variable X.  

Note however, that to be precise the set of factors considered in the model is by no means 
exhaustive with respect to the phenotypic effect of the drug at the clinical level. Although 
the cell-model is a good predictor of the drug effect at the cell-level, it obviously fails to 
provide information for other kinds of causal contributors. In this sense, it provides only 
one set of components of the β vectors, which possibly comprises also other sets of 
relevant phenomena (genetic make-up, clinical history, possible co-morbidities, age, 
etc.).  

More importantly, ISCTs cannot establish causation by themselves in that they bring no 
guarantee that all possible latent causes have been taken into account, or neutralised, not 
even within the limits of the biological level modelled (here for instance, the cell). The 
model comes with no guarantee that the system of equation representing the cell is 
exhaustive and that the functional forms are all correct. Indeed this is exactly the point of 
running the simulation and comparing the “performance” of the model with empirical 
data.  
Instead, RCTs can, at least in principle, establish whether X causes Y, because they satisfy 
the requirement of causal sufficiency, that is, precisely the fact all possible latent causes 
have been taken into account, or neutralised. 
However, ISCTs provide information as to variability of the outcomes in a heterogeneous 
population.  

Hence the two methods are complementary in that RCTs establish causation, but black-
box the set of co-factors that contribute to variability, whereas ISCTs cannot establish 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 Averaging would now be possible, but an aggregate effect size is not the goal of the investigation here, 
since the value of the functional model lies precisely in the fact, that its mechanistic core is able to treat 
input vectors individually and generate predictions that are sensitive to the input details. 
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causation, since they cannot warrant causal sufficiency, but they can predict variability of 
causal effects on the basis of known interacting factors. 

For this reason, validation of the model with experimental data, provides confirmatory 
support both to the hypothesized mechanism that informs the simulation, and to the 
mathematical equations that constitute it: the systematic analogy of results in simulations 
and experiments provides indirect confirmatory evidence to the hypothesis that the 
mathematical equations representing the mechanisms underpinning the investigated 
phenomenon are empirically adequate (no-miracles argument).  

The information provided by RCTs and ISCTs is therefore complementary both in the 
sense that ISCTs provide the information on variability, which is necessarily neglected in 
RCTs, and in the sense of ensuring that knowledge about mechanisms (thick causation) is 
incorporated in the prediction of variability  

As observed by Carusi, “validation shifts from being about how one model matches up to 
experiment [...] to how the range of variability in an experimentally calibrated population 
of models maps onto the range of variability in an experimental data set. ” (Carusi, 2014). 
Population variability becomes part of the model and of the model validation process. 

 

4 Summary and Conclusion 

Our epistemic analysis shows that ISCTs and RCTs cannot replace each other, but rather, 
that they are complementary: while the former provide information about the 
determinants of variability of causal effects, the latter can, under certain conditions, 
establish causality in the first place. We elaborate on the implications of our analysis in 
the following.  

 

4.1 Extrapolation and interpolation 

The aim of Randomized Clinical Trial is to uncover difference-making relationships that 
can possibly be transferred to a population of future drug users. If well-designed, the 
results of an RCT can justify a causal claim between treatment and effect in the study 
population. Additional information might be needed to carry over this result to another 
population.18 This sort of information corresponds to the β factor in Cartwright's formal 
analysis of RCTs; RCTs have been criticized for failing to provide such information and 
therefore to lack a warrant for external validity  (see also Cartwright & Stegenga 2011), 
as well as to black-box important information as to the mechanisms underpinning the 
causal law instantiated by the RCT result.   

On the other side, as mere models, ISCTs face the same criticisms addressed against 
standard modelling and simulation techniques and cannot be equated to experiments (see, 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18 See also Poellinger (forthcoming) for an analysis of analogy-based inference in pharmacology. 
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e.g., Boem & Ratti, 2017, Parker, 2009, Parke, 2014, Diez Roux, 2015 and related 
discussions in Frigg & Reiss, 2009, Winsberg, 2009, and Beisbart & Norton, 2012). 
However, even if computer models do not go beyond the information, which the model 
was constructed upon (see Bertolaso 2013), once an ISCT model population is validated, 
one can dispose of knowledge about variability in a population. Such knowledge can be 
used to extend the boundaries of measurement beyond what would be possible with real 
populations, via interpolation.  

Hence ISCTs, cannot establish new causal laws per se, but they can use information 
about already established causal laws in order to inform prediction about variability of 
outcomes generated by the interaction of such laws with different initial conditions of the 
relevant interacting factors. By predicting variability through interpolation, ISCTs aid 
with problems regarding extrapolation of RCTs results to other populations than the one 
on which the trial was carried out, and therefore in assessing its external validity. The 
prediction of the determinants of variability through interpolation straightforwardly 
provides information about what kind of outcomes can be expected in specific 
populations or individuals as a function of such determinants. 

 

4.2 Thick causal hypotheses, again 

In our electrophysiology example above, we emphasized the fact, that mechanistic 
knowledge represents an important prerequisite for the generation of a virtual model 
population. The case study used biochemical  knowledge drawn from the rabbit Purkinje 
cell model in order to compute AP curves from a set of mechanistically interacting ionic 
properties. 

In that sense, ISCTs can be said to encode thick causal knowledge – as opposed to thin 
difference-making information inferred from RCTs. If the model is validated in 
comparison with empirical data (to a chosen degree of accuracy), the mechanistic model 
(i.e., the mechanistic causal hypothesis) underlying the computer program can be said to 
be confirmatorily supported. If empirical data raise doubts as to the validity of the 
mechanistic model, the researchers have to decide whether to dismiss the model or refine 
the mechanistic knowledge base in details. Entrenched parts of the mechanistic model 
will remain intact (e.g., natural constants and well-tested functional dependencies), others 
will be corrected or removed (see also Osimani and Poellinger, forthcoming).  

It is important to note that, necessarily, the computational model consists of "thin" 
mathematical equations – it is only that these thin equations jointly refer to the complex 
interacting system they encode. In that sense, ISCTs can be said to encode a thicker 
understanding of the causal associations, when contrasted with RCTs. Focusing on one 
specific portion of Cartwright's β term, they can be understood as supporting a specific 
how-possibly explanation for both the individual outcomes and their variability. 
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4.3 Caveats  

The presented case study  adopted a deductive approach: first construct the cell-model on 
the basis of available empirical knowledge and then fit the data to the model to test its 
validity. However, regarding our epistemic analysis, analogous conclusions could be 
applied if inductive approaches were used, including machine-learning approaches.19 A 
fundamental caveat concerns instead the knowledge base on which the model is 
constructed, and especially the kind of phenomenon that is modelled. Electrophysiology 
lends itself to be modelled mathematically relatively easily, because it regards reasonably 
well-known physical laws. However, other biological pathways may be much more 
challenging because of the complex interaction of chemical reactions, cell signalling and 
homeostatic mechanisms. Therefore, they are not amenable to mathematical modelling in 
the same way. Hence, the epistemic warrants of ISCTs may be much more fragile in 
these cases, and more general, vary substantially from context to context. As we show in 
this paper, a pre-requisite for an ISCT is a mechanistic understanding of the investigated 
system. Hence the predictive warrant of ISCTs is critically dependent on the stability of 
such knowledge. Moreover, since the majority of biological phenomena are of the latter 
kind, it is still to be judged how wide the scope of ISCT technology can be. 
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