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Abstract

According to the diversity-beats-ability theorem, groups of diverse problem solvers can

outperform groups of high-ability problem solvers. We argue that the model introduced by

Lu Hong and Scott Page (2004; see also Grim et al. 2019) is inadequate for exploring the

trade-off between diversity and ability. This is because the model employs an impoverished

implementation of the problem-solving task. We present a new version of the model which

captures the role of ‘ability’ in a meaningful way, and use it to explore the trade-offs between

diversity and ability in scientific problem solving.

Keywords— social epistemology of science; group problem solving; cognitive diversity;

agent-based modeling; distributed cognition

1. Introduction

Modern science is a deeply collaborative enterprise. Most genuinely important intellectual

challenges cannot be tackled by a single scientific discipline, let alone by individual researchers.
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Science needs diversity – solving scientific research problems requires attaining specialized

expertise and resources from a variety of perspectives.

Problem-solving groups in general are taken to benefit from diversity (Reagans and

Zuckerman 2001; Mannix and Neale 2005; Jeppesen and Lakhani 2010; Steel et al. 2019).

Among other important benefits, it is assumed that differences in how members of a group see a

problem, in the cognitive resources they have at their disposal, and in the kind of heuristics they

use, make it more likely that the the group as a whole has the resources to solve the problem. An

important question, therefore, is whether the diversity of a group is in itself epistemically

valuable, over and above the epistemic abilities of the group members.

Besides the empirical evidence cited above, a particularly influential argument in favor of

diversity has been presented in the form of a mathematical theorem and an agent-based

simulation. According to the diversity-beats-ability (DAB) theorem, groups of diverse problem

solvers can outperform groups of high-ability problem solvers. This means that in assembling

problem-solving teams, functional group diversity should sometimes be prioritized over selecting

the most able individual members. Although they originate in computational social science, in

management and organization studies, the DAB results have recently been also discussed in the

philosophy of science (Grim et al. 2019; Singer 2019; Holman et al. 2018).

We argue that the "can" in the DAB theorem is ambiguous between several different

modalities: in some of its uses, it is only a claim about conceptual possibility, whereas in its

much advertised practical applications, it is clearly regarded as a more substantial possibility.

This raises the question of when and under which exact conditions diversity really beats ability.

We examine whether the original model by Hong and Page, and its further developments by Grim

and associates, actually support the existence of the diversity-beats-ability phenomenon.

We show that due to their impoverished task implementation, these models cannot capture
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interesting trade-offs between functional diversity and individual ability: the problem-solving

tasks portrayed in the models are too difficult (i.e., random noise) for ability to make any

difference to the outcomes. We develop a new version of the model with an improved

problem-solving task. The new task representation allows our model to capture the role of

individual ability in problem solving. Only when both diversity and ability really affect the

outcome can the trade-off between them be studied.

We start by briefly presenting the DAB theorem and the associated simulation models,

focusing on the latter. In Section 2, we highlight the "bait-and-switch" argumentative strategy

used by Page to argue for DAB, showing that many of the modeling results supposed to support

the theorem are problematic and do not replicate well. In Sections 3 and 4, we present our main

argument: the model template used by Hong and Page as well as Grim and colleagues is ill-suited

for exploring the trade-off between diversity and ability, because the problem-solving task is

computationally implemented in a way that does not afford any advantage to individual ability or

expertise. We introduce our version of the model, the stairway landscape, and demonstrate how it

captures a substantial trade-off between diversity and ability. We draw two potentially interesting

conclusions concerning the trade-off.

In this article, we are only concerned with the purely instrumental value of cognitive

diversity; we are not arguing against the DAB phenomenon as such. We only ask whether the

particular models we discuss are an informative and reliable way of exploring the possible

trade-off, and provide what we regard as a better alternative way for doing so.
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2. The diversity–ability trade-off in group problem solving

Consider design tasks such as designing an automobile, a space shuttle, or a piece of software, or

scientific tasks such as measuring the mass of an elementary particle or discovering the structure

of a macromolecule. Heterogeneous cognitive and material resources need to be applied to solve

all these problems, and as the set of solution candidates is not known beforehand, a search for

solutions is needed. Simon (1989) suggested viewing the scientific research process through the

lens of heuristic search. For instance, scientists search for formulations of problems,

experimental designs, patterns in data, mechanisms behind data, and implications of their

theories. On some occasions, these multi-dimensional search trajectories result in beneficial

epistemic design; in other cases, they yield research approaches of little cognitive value.

Importantly, most scientific problems worth solving lie beyond the capacities of a single knower,

and scientific progress relies on a successful division of labor and collaboration between

researchers, research groups, and sometimes even between scientific disciplines. Hence,

scientific research should be understood as a socially distributed problem-solving process.

Such a picture of collective search immediately suggests a possible trade-off. On the one

hand, as Newell and Simon (1972) suggested, expert performance often relies on highly specific

search heuristics. On the other hand, more diversity in the group’s cognitive resources is

beneficial, all other things being equal, as more varied resources provide access to larger portions

of the solution space. Diversity may, however, conflict with individual ability. Experts are often

more alike (in the relevant respects) than non-experts. Herein lies the trade-off: individual ability

and group diversity both contribute to group performance, but, at least in some circumstances,

the two factors may be in conflict.

Explicit modeling of the epistemic benefits of diversity in collective problem solving is
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needed, because the phenomenon involves multiple group-level mechanisms as well as possible

interactions between different epistemic, processual, and social factors. Therefore, purely verbal

and conceptual theorizing is not a reliable tool for drawing out the implications of theoretical

assumptions, and empirical (experimental or case-based) evidence does not usually

unambiguously discriminate between alternative mechanistic explanations for why, in any

particular case, diversity may or may not facilitate successful problem solving. Group problem

solving has proved challenging to model, however. The computational implementation of the

problem (task), cognitive resources (and differences therein), problem-solving behavior and

cognition, and interaction between the group members all present difficult methodological and

theoretical choices for the modeler, easily resulting in complex and intractable models with too

many methodological degrees of freedom. Such models yield results which are hard to interpret.

We believe that the heuristic-search paradigm proposed by Newell and Simon (1972) still

provides the most promising approach for addressing these modeling challenges (see also

Kauffman and Levin 1987; March 1991; Darden 1997). The models discussed and developed in

this article join this tradition.

In a series of articles and books, Lu Hong and Scott Page have provided model-based

evidence for the existence of the diversity-ability trade-off (Hong and Page 2001, 2004; Page

2008). They, in fact, use two distinct models to investigate diversity. The first model, introduced

in Hong and Page (2001) and described in length by Page (2008) in the context of the diversity

theorem, represents the problem to be solved as a binary string of finite length, where each bit

could be seen as portraying a yes–no decision regarding a solution to a particular sub-problem

(Kauffman and Levin 1987). A group of problem solvers of limited ability attempts to maximize

a value function defined over the possible states of this string (potential solutions to the problem).

Diversity is represented in the model by each agent having a different set of possible ways of
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Figure 1: High-ability vs. random groups in the bit string model. The vertical axis represents the
score differential between high-ability groups and random groups.

flipping the bits ("flipset heuristics") of the candidate solution string shared between the group

members. Measures of problem difficulty can be assigned to alternative value functions (see Page

1996), and so the model can be used to represent a range of problems of different difficulty and

complexity. This model template therefore corresponds well to pre-theoretic intuitions about how

cognitive diversity can facilitate collective problem solving.

It is therefore rather surprising that the influential diversity-beats-ability results are not

derived from this model. Our replication of the model in Hong and Page (2001) did not provide

evidence to support the diversity-beats-ability phenomenon (see figure 1).1 As the figure

illustrates, no systematic difference emerges between groups of high-ability problem-solvers and

groups of randomly selected problem-solvers. A more careful look at Page’s 2008 argument

reveals that it is based on evidence for the diversity theorem from an altogether different model

introduced in Hong and Page (2004). We refer to this simplified model as the ringworld model.

In sum, the substantial intuitions about diversity and ability in collective problem solving are first

1. For details about the bit string model, see Hong and Page 2001. All program code for the simulations and the gen-
erated data sets are available for download at https://osf.io/a6f5e/?view_only=fcee3f72db8643b9999ad19447f89886
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formalized in one model, but the results are derived from a different model based on assumptions

which do not correspond as neatly to the original intuitions. We find such a "bait-and-switch"

argumentative strategy confusing, and not appropriate for transparent and epistemically

sustainable use of theoretical models.

The argument in Hong and Page (2004) has a two-pronged structure: The basic assumptions

of the ringworld model are used to derive an analytical proof intended to provide support for the

theorem. However, as argued by Thompson (2014), the implications of the proof are unclear:

even after technical corrections, the theorem only provides a highly abstract proof of possibility,

and its implications for a non-technical interpretation of diversity are difficult to judge. Although

we agree with Singer (2019) that the proof does rely on diversity and not merely on randomness

(see Thompson 2014), it still remains the case that as such, the proof tells us little about the

conditions under which the trade-off between diversity and ability can be expected to be

significant. Mere logical possibility is not enough for the far-reaching practical implications

suggested by Hong and Page. Their more persuasive evidence for DAB and its relevance for

real-world group problem solving are derived from their agent-based simulation of the ringworld

model. It is to this simulation that we now turn.

3. Problems in the Ringworld

The “computational experiment” used by Hong and Page to demonstrate DAB portrays a group of

agents collectively searching for optimal solutions in a one-dimensional landscape. The discrete

landscape consists of positions 1 . . . = on the number line, wrapped as a circle.2 Value function +

defined over the set of positions assigns to each position a payoff value drawn from the uniform

2. It turns out that the circular topology of the landscape does not make a difference to the results, as the distance
explored by the individual agents (and groups) typically does not exceed 20 steps along the 2000-step circle.
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distribution [0,100]. The agents’ goal is to find the largest possible values on this landscape. To

do so, each agent employs a heuristic q. A heuristic is defined as consisting of : different jumps

of length 1 . . . ; (e.g., [1,5,11] and [3,4,12] are two examples of heuristics with parameters

: = 3, ; = 12). Starting from its current position, an agent sequentially applies these jumps along

the landscape, and moves to a new position along the circle if the payoff associated with that

position is strictly larger than the current one. When no further improvement is possible, the

agent stops. The performance of an agent is defined as the expected payoff of the stopping points

over the different starting positions of the landscape, and over a set of landscapes.

Hong and Page implement group problem solving behavior as sequential, iterative search.

First, one agent initiates the search. As its local maximum is found, the second agent in the group

takes the baton, and applies the jumps included in its heuristic as long as they lead to

improvements. After all group members have taken their turn, a new round begins. The

collective search stops when no agent can make further progress. Group performance is defined

as the expected value of the position at which the group search stops.

In order to compare groups of high-ability problem solvers to more diverse ones, an

exhaustive set of agents (with respect to possible heuristics) is first ranked according to their

individual performance on a set of landscapes. A high-ability group of size 6 is constructed from

the 6 highest performers in such a tournament, whereas the diverse group consists of 6 agents

sampled randomly from the population.

In their model analysis, Hong and Page (2004) report results for various sets of parameter

values. For example, for ; = 12, : = 3, = = 2000 they find that that the best individual agents

scored 87.3 whereas the worst agent’s score was 84.3. For groups of 10, the high-ability group

scored 92.56 and the random group 94.53. This difference in favor of the random group is the

diversity effect discovered in the simulation. Similar results were found by Grim and associates
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(2019), and we were also able to replicate the findings.

Hong and Page suggest that there are reasons to believe that the random group scored higher

due to its diversity. An alternative way to express this finding is in terms of effective group size.

In our replication, we noticed that the difference in performance (’performance differential’)

between the random and the high-ability group was strongly correlated (.65) with the difference

in effective group size between the two groups, where effective group size was defined as the size

of the group heuristic from which overlapping elements had been removed. In other words, the

similarity between the members of a high-ability group results in the group being functionally

smaller (from the perspective of the problem-solving task). As the performance of a group

generally increases as its effective group size gets larger, it is not surprising that smaller effective

group size leads to worse performance.

Going back to the original DAB theorem, however, the explanation above seems to capture

only one side of the diversity–ability trade-off. Although the correlation between effective group

size and performance is an indication of the functioning of the "diversity mechanism," it is still

unclear why that effect is stronger than the influence of the "ability mechanism," i.e., the fact that

some heuristics should lead to higher performance than others, and that those high-performing

heuristics should be more common in high-ability groups. A closer inspection of the model

provides a solution to this puzzle.

Unlike Hong and Page, we regard the effect sizes from the simulation as remarkably small,

given that they originate from theoretical modeling where the modeler is free to explore a broad

range of hypothetical scenarios. One would expect a purely theoretical model, purpose-built to

examine and demonstrate a specific mechanism using heavy idealizations, to reveal relatively

unambiguous effects of the modeled mechanisms. As a matter of methodological principle, we

believe that conclusions drawn from agent-based modeling would be strengthened by showing
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how the effect size can be manipulated by changing model parameters. In other words, being able

to "turn the dials" and observe how changes in model inputs result in systematic changes in the

modeled effect suggests that we have reached understanding about the dependencies between

model inputs and outputs (see Woodward 2003; Aydinonat, Reĳula, and Ylikoski 2020).

Regarding the ringworld model, we argue there are two reasons to believe that the results reported

by Hong and Page do not provide genuine insight into the diversity-ability trade-off.

First, with the parameter values studied by Hong and Page, in nearly half of the cases, the

random group ends up with a full heuristic, that is, a heuristic consisting of all possible jumps

[1, . . . , 12]. Furthermore, only 13% of the random groups have an effective group size smaller

than 11. Hence, even if the agents in the high-ability group can make the jumps leading to high

performance, it is highly likely that the same jumps will also be included in the heuristic of the

random group – there is simply no way the high-ability group could systematically outperform

the random one.

Secondly, as Grim and his colleagues (2019) also noted, the purely random landscapes

studied by Hong and Page are simply not hospitable to anything that could be meaningfully

interpreted as “ability” or "expertise." For heuristic search to be applicable, the task needs to have

some structure or redundancy that the heuristic can exploit (Kahneman and Klein 2009;

Kauffman and Levin 1987). Hence, aggregated over several random landscapes, no significant

performance differences emerge between the different heuristics. This is seen in the very small

performance differences between the best and worst performing individual agents (see above) in

Hong and Page’s simulations: the "ability mechanism" does not get any traction on the

landscapes they studied. Therefore, we argue that the model does not appropriately capture the

trade-off between diversity and ability.

Grim and his coauthors (2019) propose to remedy this problem by partially smoothing out the
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random landscape (by adding interpolated values between randomly generated values). They

argue that such a task representation can better capture ability, because on smoothed out

landscapes individual performance is more transportable to other landscapes of similar

smoothness. Yet a closer numerical examination of the results of this remedy again reveals only

small differences between diversity and ability. Even on smoothed random landscapes, the

expected performance difference between best performing and random individuals is minute.

This suggests that these landscapes simply do not represent a problem that is suitably complex for

exploring trade-offs between ability and diversity.

4. Modeling the diversity–ability trade-off on stairway land-

scapes

In order to better understand the tension between diversity and ability, we need to portray

scenarios where also ability plays a role. In our own simulations, we introduce a type of problem

where high ability – either at individual or group level – leads to noticeably increased

performance. In science, having the right methodology for the problem at hand often sharply

increases the epistemic payoff. Our stairway model differs from the Hong and Page ringworld

model only in problem structure. The specifications of agent and group behavior remain the same

as in the ringworld model. In generating problem landscapes, we start from the uniform noise

distribution employed by Hong and Page. On top of those landscapes, however, we superimpose

an increasing sequence of values, where the positions of the values are separated by intervals

drawn from a finite set of integers in 1 . . . ; (see figure 2). We call this set the step set.

For an agent to climb the increasing subsequence, the stairway sequence, it must possess the
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Figure 2: A stairway landscape with step set {5, 12}, and, therefore, step set size 2.

heuristic jumps corresponding to the steps used to generate the sequence (e.g., [5, 12] in figure 2).

This strongly favors some heuristics over others: whereas an agent who does not possess the full

step set is bound to remain in the noise region of the landscape, a "high-ability" agent that has the

necessary heuristic can climb through the whole sequence (and even reach the maximum payoff

on the landscape, normalized to 1.0).

Figure 3 illustrates outcomes from our model with parameters values corresponding to those

studied by Hong and Page (2004) and by Grim an his colleagues (2019). The left panel presents

the difference between the performance of high-ability and random groups (positive values

standing for high-ability group advantage, and negative values, for random group advantage). The

results indicate that with these parameter values, stairway landscapes always favor high-ability

groups. Especially when the group size is small, because it is made up of high-performing

individuals (who typically possess valuable elements of the step set) the high-ability group

performs significantly better than the random group. The right panel presents the difference

between the redundancy of heuristics between the high-ability and random group (value 0 means

that the overlap of heuristics in both groups is the same). As suggested by findings by Hong and
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Figure 3: High-ability vs. random groups on a stairway landscape, step size 3. (: = 3, ; = 12, = =

2000; 100 repetitions over 100 landscapes)

Page (2004), random groups tend to have comparatively lower levels of overlap in their heuristics.

As group size increases, the redundancy in the high-ability group increases more than in the

random group. This suggests that when the group size is larger, random groups again begin to

approach the full heuristic, which obviously is sufficient for climbing the stairway sequence. For

this reason, at group sizes larger than 10, random groups catch up, and no significant

performance difference is observed between high-ability and random groups (left panel).

We argue that this tension between the "ability mechanism" and the "diversity mechanism"

captures the trade-off addressed by the DAB theorem. What happens, however, when the level of

ability or expertise required by the task changes? Different levels of task difficulty can be

represented by stairway landscapes with different step set sizes. For example, landscapes with

step set sizes up to three lie within the abilities of the individual agents studied in the simulation

(: = 3). Climbing the stairway for step sizes larger than 3 requires pooling heuristics from several

agents.

Figure 4 summarizes tentative findings from our studies with landscapes of varying difficulty.

In the figure, group size is represented on the horizontal axis, and step set size (complexity of the
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Figure 4: High-ability-vs-random group performance differential on stairway landscapes (50
repetitions, each over 50 landscapes).

problem) on the vertical axis. The color represents the performance differential between the

high-ability group and the random group; lighter shades standing for high-ability group

advantage. A genuine trade-off between diversity and ability can be seen. Observe the contrast

between the upper-left quadrant, where ability dominates, and the lower-right, where random

groups have a slight advantage over the high-ability groups; ability dominates when group size

and step set size are small, whereas diversity leads to better performance when the group size and

step set size are larger.

Finally, our results suggest a conceptual distinction between the complexity and difficulty of a

problem: perhaps not surprisingly, ability dominates when the problem is simple in the specific

sense that multiple cognitive resources do not need to be combined to solve it. Note that if the

problem is simple in this sense, this does not necessarily mean that it is easy to solve. When the

problem becomes complex, requiring efficient division of cognitive labor, the diversity effect

begins to dominate over individual abilities. The results demonstrate how diversity and group

size begin to outdo individual ability only when the problem complexity exceeds the cognitive

resources of any single individual.
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One could object to our stairway model on seemingly similar grounds to the ones on which

we based our criticism of the original ringworld model. We questioned the DAB results on the

basis that the model was built to favor diversity over ability. Why would our model fare any

better, as it was clearly built to favor ability over diversity? This objection misses our point,

however. Our argument is that the original model cannot be used to model the trade-off between

diversity and ability, because it cannot be used to represent the gains from ability. Of course, we

fully admit that the stairway landscape is built to favor ability, but the model nevertheless also

retains the gains from diversity. Stairway landscapes give both ability and diversity their due, and,

therefore, can illuminate the trade-off between them. This, we argue, was the original and

interesting interpretation of the DAB results to begin with.

5. Conclusions

The original results by Hong and Page do not provide reliable evidence for the

diversity-beats-ability theorem because the ringworld model, especially its task implementation,

does not allow for ability to adequately influence individual or group performance. This

one-sidedness implies that their model cannot be used to explore the possible trade-offs between

diversity and ability in problem-solving groups. Our exploration of stairway landscapes illustrates

how the results by Hong and Page (2004) rely on a problematic task structure to get their results.

Stairway landscapes provide a better model for "medium-hard" problems which require

specialized abilities and true division of cognitive labor. Such landscapes can be used to model

the interplay between diversity and ability relevant, and its effects on the division of cognitive

labor in science.

Our tentative modeling results suggest a trade-off between diversity and ability. Ability is
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favored when the problem is moderately difficult, requiring only a few different expert heuristics,

and when groups are small. Diversity is favored when the problem is complex, requiring multiple

component solutions, and when the groups are large. A further qualitative effect can be observed

at the point where problem complexity increases beyond the capacity of a single agent and

necessitates division of cognitive labor: simple problems solvable by individuals favor ability

regardless of group size.
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