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Quine (1951) painted a picture of science as a web of belief:1

The totality of our so-called knowledge or beliefs, from the most casual
matters of geography and history to the profoundest laws of atomic
physics or even of pure mathematics and logic, is a man-made fabric
which impinges on experience only along the edges. Or, to change
the figure, total science is like a field of force, whose boundary con-
ditions are experience. A conflict with experience at the periphery
occasions readjustments in the interior of the field. Truth values have
to be redistributed over some of our statements. Reevaluation of some
statements entails reevaluation of others, because of their logical inter-
connections.... (39)

As Brian Skyrms and Karl Lambert (1995) note, “however attractive this picture
may be, Quine does not offer any methodology for modeling and mapping the
networks of belief...” (139).

Bayesian nets offer precisely such a model, and do so in many of the respects
called for by Skyrms and Lambert: “We believe that the best framework for a pre-
cise realization of these ideas is the theory of personal probability. The question
then arises how to map a network of degrees of belief in a way which reveals the
weak and strong resistances to disconfirmation and more generally how need for
revision tends to be accommodated by the network.... Based on the conditional
probability structure, notions of invariance, independence, and conditional inde-
pendence all play a role in determining the place of a statement on the web of
belief" (139-40).
∗We are grateful to Gordon Belot, Josh Hunt, Jim Joyce, Mark Newman, Brian Skyrms, and two
anonymous referees for help and encouragement. Patrick also owes a note of thanks to the Simu-
lations of Scientific Inquiry research network, funded the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – project number 426833574.

1. See also Quine and Ullian (1970).
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‘Webs of belief’ in general, personal or cultural, scientific or non-, may take
various forms, demanding various patterns of connection and updating. We don’t
intend the models offered here to represent them all. We concentrate on a par-
ticular type of web—that characteristic of much of science, with emphasis on two
characteristic relations: inference and confirmation. Bayesian nets, we propose, of-
fer a particularly promising model of inference and confirmation within scientific
theories.2

Bayesian approaches to confirmation, of which there are important variations,
have been widely applauded as alternatives to their twentieth-century predeces-
sors in the philosophy of science, which were couched largely in classical logic
(Skyrms, 1987; Easwaran, 2011; Pettigrew, 2016; Crupi, 2020). But the success of
Bayesianism, contrasts with its predecessors, and debates over its variations have
largely proceeded using examples of a single piece of evidence, new or old, and
its impact on a single hypothesis. Here we emphasize the networks of propositions
that constitute scientific theories, a theme central, though in relatively vague qual-
itative form, in a very different tradition in philosophy of science (Kuhn, 1969;
Lakatos, 1969; Laudan, 1978) and in an extensive history of conceptual maps scat-
tered across disciplines (Axelrod, 1976; Aguilar, 2013; Kosko, 1986; Papageorgiou
and Stylios, 2008; Hobbs et al., 2002; van Vliet et al., 2010; Soler et al., 2012; Cak-
mak et al., 2013; Jetter and Sperry, 2013; Findlay and Thagard, 2014; Homer-Dixon
et al., 2014; Thagard, 2015).

Other efforts have been made to model networks of agents updating on infor-
mation from other agents, with various degrees of reliability or trust (Bovens and
Hartmann, 2002; Bovens et al., 2003; Olsson, 2013; Olsson and Vallinder, 2013).
This is again a different picture and a different target from the one we pursue
here. Our closest predecessors are Henderson et al. (2010) and Climenhaga (2019,
forthcoming) The first of these is restricted to strictly linear hierarchical models of
levels of abstraction with a focus on Bayesian issues of simplicity. Climenhaga rep-
resents explanatory relations between propositions as Bayesian nets in ways that
complement our work here, informally in Climenhaga (forthcoming) and more
formally, but with a focus on the specific question of which probabilities deter-
mine the values of other probabilities, in Climenhaga (2019). A more complete
quantitative model of scientific theories, tracing the dynamics of evidence, impli-
cation, and confirmation percolating through branching networks of propositions,
has not yet been fully drawn.

In this paper we concentrate on the structure of scientific theory, and how that

2. A very different model of Quinean webs of belief as NK landscapes is offered in passing in Alexan-
der et al. (2015).
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structure determines sensitivity to evidential impact and credence change. Evi-
dence of a given strength can have far greater impact at one node than at another
in the same structure. Webs of belief with different structures can be differentially
vulnerable or resistant to the impact of evidence at a given level, or the impact
of a pattern of evidence over time. A study of network structure can thus reveal
what Skyrms and Lambert hoped for: “the weak and strong resistances to discon-
firmation” and more generally “how need for revision tends to be accommodated
by the network.”

§2 outlines a Bayesian network model of scientific theories, and we give ex-
amples of the differential impact of evidence at different nodes in §3. In §4 those
results are generalized using a graphic measure of differential evidence impact at
different nodes, with an analysis through examples in §5 of how evidence works:
the interplay of network factors in the impact of evidence. To this point, for the
sake of simplicity, the theoretical structures considered have been limited to poly-
trees. In §6 the treatment is expanded to directed acyclic graphs in general. The
search for generalizations regarding influential nodes in networks of various sorts
is extensive across disciplines, incomplete, and ongoing (Kempe et al., 2005; Chen
et al., 2013; Lawyer, 2015; Bao et al., 2017; Li et al., 2018; Wei et al., 2018; Hafiene
et al., 2019; Champion and Elkan, MS). Ours is a particular form of that search,
geared to a particular kind of evidential influence in theoretical credence networks
in particular.

We conclude in §7 with further emphasis on philosophical implications of
model simulations. Basic conclusions, though perhaps qualitatively intuitive, are
captured here in a quantitative model open for analysis. Our attempt in the paper
as a whole is to take some first steps in understanding the contribution to epis-
temic sensitivity and significance made by the network structure of our theories.

1 A Bayesian Model of Scientific Theory

Bayesian networks have been developed, interpreted, and widely applied as mod-
els of causal relations between events (Pearl, 1988, 2009; Spirtes et al., 2000; Spirtes,
2010). But it is clear that they can equally well be taken as models of causal in-
ference between propositions descriptive of those events: as theories. One form
that scientific theories take is precisely this: a propositional representation of a
causal network, between either types or tokens of events. We can therefore study
structural aspects of at least one type of scientific theory by applying structural
lessons from Bayesian nets.

A partial reconstruction of a causal theory for the failure of the 17th Street
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canal levee in New Orleans during Hurricane Katrina is shown in Figure 1. A
major assumption in many applications of Bayesian nets with an eye to causal
inference is that all causal factors, or at least all relevant causal factors, direct
or latent, are included in the representation. This is certainly not true of the
reconstruction here—a partial reconstruction that captures the spirit though not
the detail of a full causal theory.

Figure 1: A causal theory for the failure of the 17th Street canal levee in New
Orleans during Hurricane Katrina. Sources: Anderson et al., 2007; Panel 2007,
Bea, 2008; Rogers et al., 2008; Boyd, 2010.

Lessons from causal models can also be generalized (Schaffer, 2016; Climen-
haga, 2019). The propositions within a scientific theory need not be descriptions
of events, and the relations between them need not be those of causal inference.
From fundamental and more general hypotheses within a theory, which might be
envisaged as root nodes, multiple layers of derivative and more specific hypothe-
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ses may be inferred (Henderson et al., 2010). That inference may be probabilistic,
from general grounding hypotheses to the more specific hypotheses they ground,
modellable by conditional probabilities precisely as in Bayesian nets—though here
our arrows represent not ‘x causes y’ but ‘the credibility of y is grounded in the
credibility of x’ and often ‘x explains y.’ In the other direction, evidence for more
specific or applicational hypotheses can serve to confirm the more general hy-
potheses from which they can be inferred. This direction is often clearest in terms
of disconfirmation: to what extent would x be disconfirmed were its implication
y disconfirmed? Climenhaga (forthcoming) outlines a network approach of this
type informally, intended to include inference to the best explanation, enumera-
tive induction, and analogical inference.

A partial reconstruction of a theoretical structure of this type regarding the
COVID-19 pandemic is shown in Figure 2. As in the causal case, a full Bayesian
net representation would require all relevant grounding nodes. This is certainly
not true of the reconstruction here—a partial reconstruction that captures the spirit
though not the detail of a full theoretical structure.

Figure 2: A reconstruction of foundational theory for the COVID-19 pandemic.
Sources: Kermack et al., 1927; Anderson and May, 1979; Hassan et al., 2020.

Classical twentieth century models of inference and confirmation were couched
largely in terms of classical logic. Bayesian models are seen as an alternative. But
there is a general pattern that the two clearly share. In classical models, evidence
for a hypothesis is evidence for that which it entails. In the current model, we
use inference rather than entailment, cashed out in Bayesian terms of priors and
conditional probabilities. In classical models, evidence for a hypothesis offers con-
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firmation for hypotheses which entail it. Here, we take evidence for a hypothesis
to offer confirmation for hypotheses from which it may be inferred, but confirma-
tion appears in a quantitative Bayesian rather than qualitative Hempelian form.
Although in accord with the spirit of classical philosophy of science, an image
of scientific theories as Bayesian nets offers a far more quantitative and far more
nuanced view of the basic relations of theoretical inference and evidential confir-
mation.3

We model a scientific theory as a directed acyclic network.4 Nodes represent
proposition-like elements which carry credences (degrees of belief). It seems nat-
ural to speak of nodes as carrying ‘beliefs,’ and we will, though it is no part of
our effort to defend that nomenclature literally nor to enter the debate as to what
degree of credence or commitment, absolute or contextual, qualifies an item as a
full ‘belief.’ Spohn (2012) emphasizes the difficulties posed by the Lottery Para-
dox in the latter regard. It is sufficient for the abstract purposes of our model
that the nodes represent elements of a ‘theoretical system’ or ‘web of belief’ that
carry degrees of credence or commitment. Our nodes take values in the open in-
terval (0,1), excluding 0 and 1 themselves, though variations which include these
numbers are also possible.

The links of our model represent the connections between the claims within
a scientific theory. What is crucial is that the elements in the network are linked
in such a way that credence change at one point produces credence change at
the points with which it is linked. Our directed links x → y carry weights as
conditional probabilities, allowing us to update both y conditional on a given
credence at x and x on the basis of evidence at y. Our model networks thus accord
with the Markov condition: conditional on their parents, nodes are independent
of all non-descendants.

Our attempt is to model scientific networks or theoretical webs of belief as
Bayesian nets, percolating credence changes at nodes through a given network
structure. Some major limitations should be noted, both within this model and
beyond.

First, within the model, simplifying assumptions regarding conditional prob-
ability and credence assignments are noted throughout. We work with static net-
work structures in the models explored here: neither nodes nor links are added

3. One thing a Bayesian approach does not do, unfortunately, is solve classical paradoxes of confirma-
tion such as Goodman’s grue puzzle (Goodman, 1955). See Bandyopadhyay et al. (2016) for further
discussion.

4. Contact of our approach with either ‘syntactic’ or ‘semantic’ models of scientific theories is remote.
For the relation to these, and superior features of a Bayesian model, see Skyrms (1984) and Hart-
mann (2008).
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or subtracted. We also work with single snapshots of evidence impact; we leave
to further work the promising study of dynamic network change with iterated
evidence over time, including rolling changes in both node credences and condi-
tional probabilities on links. In all these regards it must be admitted that what we
offer here are merely first steps in modeling scientific theories as Bayesian nets.

Second, beyond this model, it must be admitted that there are probabilistic
network alternatives to straight Bayesian nets, well worthy of exploration. Our
hope is that the exploration of Bayesian nets in particular may motivate further
work on these alternatives as well.

2 Differences in Evidence Impact: Initial Examples

We start with a simple illustration of the relative importance of differently posi-
tioned nodes in a theoretical structure. In some cases evidence may affect just
one belief or several closely related beliefs in a significant way, decaying quickly
in influence across the network. In other cases, evidence of the same strength
regarding another element with a scientific theory can cascade with a far stronger
influence throughout the network.

Figure 3: A simple Bayesian network

Figure 3 shows a simple example of a theoretical structure modeled as a
Bayesian network, with credences and conditional probabilities (marked as con-
ditional credences) in place. We offer a piece of evidence of strength [0.75, 0.25]
at node y with prior credence 0.54, indicating that such a piece of evidence has
a likelihood of 0.25 should y be true, a likelihood of 0.75 should y be false. On
standard Bayesian conditioning, our credence at y given that piece of evidence
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changes from 0.54 to approximately 0.28:

p(y | e) =
p(e | y) · p(y)

(p(e | y)) · (p(y)) + (p(e |∼ y) · p(∼ y))

=
0.25 · 0.54

(0.25 · 0.54) + (0.75 · 0.46)

= 0.28125

But of course, a change in credence at y demands a change in credences down-
stream as well. Given a new credence of 0.28 at y with an indicated conditional
probability of z given y, and assuming the evidence e affects credence at z only
by way of changed credence at y, our revised credence at z given evidence e at y
changes from 0.484 to 0.587:

p(z | e) = (p(z | y) · p(y | e)) + (p(z |∼ y) · p(∼ y | e))

by independence of z and e conditional on y:

p(z | e) = (0.3 · 0.28) + (0.7 · 0.72)

In an extended network, with the same independence assumption at each step,
changes would continue downstream in the same manner.

Credence change percolates upstream as well. Using

p(x | y) =
p(y | x) · p(x)

p(y)

from Bayes, with our initial priors and conditional probabilities,

p(x | y) =
0.7 · 0.6

0.54
= 0.78.

Using

p(x |∼ y) =
p(∼ y | x) · p(x)

p(∼ y)
,

our initial values give us

p(x |∼ y) = 0.3 · 0.60.46

= 0.39.
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Again, making use of an assumption of independence, the updated credence for
x given our new value for y on evidence e at y is

p(x | e) = p(x | y) · p(y | e) + p(x |∼ y) · p(∼ y | e)

(by independence of x and e conditional on y)

p(x | e) = (0.78 · 0.28) + (0.39 · 0.72)

Thus credence at parent node x changes from 0.6 to 0.5.5

On this picture, the direct impact of evidence on a given node ramifies one
step downward to its immediate descendants and one step upward to its parents.
With a screening-off assumption at each step, revised credence values for the de-
scendants of those descendants—and parents of those parents—can be calculated
in the same fashion. What we have in effect is a game of telephone, tracing revised
credences percolating throughout the structure of a scientific theory.6

We can use the absolute difference between prior and posterior credences at
each node as a simple measure of credence impact at each node. Using that
measure in this example, a piece of evidence of strength [0.75, 0.25] at node y has
an impact of 0.26 at node y and of approximately 0.1 at the other nodes, giving a
total network impact of 0.46.

Starting with the same priors, consider now evidence of the same strength at
root node x instead. In that case, credence at x changes from 0.6 to 0.33, credence
at y from 0.54 to 0.43, and credence at z from 0.48 to 0.526. The total network
impact is 0.42. In this network, with these conditional probabilities and priors,
evidence impact at the central node y dominates the impact of the same evidence
at the root node x.7

5. Technically, our updating is by Jeffrey conditioning (Jeffrey, 1965; Shafer, 1981) rather than strictly
Bayesian, since beyond the initial point of evidence updating is in terms of partitions (here binary)
and using credences other than 1. We follow common practice in referring to the Jeffrey generaliza-
tion as Bayesian.

6. As indicated below, backtracking will also occur. In a ‘star’ or ‘hub’ tree with one root and many
leaf nodes, change at one leaf of the tree will affect credence upward at the root node, which will
then in turn affect credence downward at a second leaf.

7. Here we use a difference measure between posterior and prior credences, | p(x | e) − p(x) |, as
our measure of impact. This carries over to our use of Brier divergence below. An alternative
would be to use a ratio measure p(x | e)/p(x). In both this example and in general that alternative
measure would of course change the absolute values of evidence impact, but in neither this case
nor in general would it appear to make any difference in the relative impact of evidence at different
nodes: at which nodes a given strength of evidence has the greatest network impact. The question
of appropriate metrics for evidence impact is closely allied with the question of appropriate metrics
for degree of confirmation. Crupi et al. (2007) offer a very useful overview of the latter.

9



A similar story holds if evidence of the same strength is delivered at node z.
In that case credence change at node z is from 0.48 to 0.23, the value of y becomes
0.637 from 0.54 and the value of x becomes 0.637 from 0.6 with a total network
impact of 0.38.

Given the structure of this simple network, the patterns of belief-to-belief in-
fluence modeled by conditional probabilities, and with these initial credences in
place, it is the central node y that carries the most network-wide impact for a piece
of evidence of the same strength.

Different network structures, with different conditional links and different pri-
ors, will clearly exhibit different evidence sensitivities. A second example is of-
fered in Figure 4.

Figure 4: A second simple Bayesian network

Initial credences and conditional probabilities are shown in the graph. With a
piece of evidence of strength [0.9, 0.1] at node a—indicating a piece of evidence
with a conditional probability of .1 if a is true, 0.9 if a is false—our credences
change to 0.3 at the root node, 0.579 at each central branch, and 0.469 at the
leaves: a change of .5 at the root node, 0.199 at the central branches and 0.079 at
the leaves. The total change for the network is 1.214, or an average change of 0.173

per node. That same strength of evidence at g gives us a total change in credences
of 0.602, or an average change of 0.086 per node, less than half the change at the
root. Evidence of that strength is clearly of greater impact at the top than the
bottom—at the root than at the leaf.
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But the situation is different if our evidence is of strength [0.1, 0.9] rather than
[0.9, 0.1] instead. In that case the total change at the root node a is 0.418, an
average change of merely 0.059 per node. Evidence of that same strength at leaf
node g gives us a total change of 0.623—an average change of 0.089. Evidence
with the conditional probabilities reversed thus has a roughly 50% greater impact
in this network at a leaf node g than at the root node a.

What even these simple examples demonstrate is disparity in the effect of ev-
idence given the structure of a theoretical network, the conditional probabilities
of its links, and initial priors. Given the same structure and conditional probabil-
ities, moreover, which is the most evidentially influential node may well depend
on the character of the evidence itself: in this example, [0.1, 0.9] rather than [0.9,
0.1]. At what point is a scientific theory most vulnerable to change in light of evi-
dence? Using a Bayesian model, we have to conclude that the answer can depend
on all these factors: network structure, conditional probabilities, prior credences,
and the character of the evidence itself. The role that each has to play, and their
interaction, are outlined roughly below.

3 A Graphic Portrait of Evidence Impact

What we have offered above are single-point snapshots of the differential impact
of evidence of the same strength at different nodes within a network. We can en-
visage differential node impact more generally with graphs such as that in Figure
8, illustrating impact in the network shown in Figure 7.

Our graphing conventions differ from those used above. In our examples,
evidence strength was indicated in terms of two conditional likelihoods such [0.8,
0.1] at a node h—indicating a piece of evidence with a probability of 0.1 if h is true,
or 0.8 if h is false. In fact, this is more information than is needed to determine the
impact of evidence on the entire network. The ratio of these likelihoods—in this
case 1/8—fully determines evidential strength. Hence, it does not matter whether
our evidence is [0.8, 0.1], [0.4, 0.05] or [0.08, 0.01]; both the immediate effect on
the node in question and its over-all impact on the network as a whole will be the
same. Therefore, we take the likelihood ratio as a concise description of evidence
strength, used on the horizontal axis of our graph in Figure 5. A log scale is used
to illustrate the symmetry between what we can think of as positive evidence,
with likelihood ratios in (1, ∞), and negative evidence, with likelihood ratios in
(0,1). We choose base 2 somewhat arbitrarily.

We used a simple total of changes across a network and the average change
per node in our calculations above. A more elegant measure of network change
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is Kullback-Leibler divergence, a relative entropy measure given by:

DKL(p, q) =
n

∑
i=1

p(Ai) · log(p(Ai | q(Ai))

where p and q are credence functions (probability measures), and the Ai are
the propositions (events) over which these functions are defined. Kullback-Leibler
divergence gives the difference between probability measures in terms of a sum
of products, namely the product of the probability of the Ai according to p, and
the log of the probability of the Ai according to p conditional on the probability
of Ai according to q. It can thus be interpreted as the expected logarithmic dif-
ference between distributions p and q, with the expectation taken according to p.
Kullback-Leibler divergence averaged over nodes is taken as our measure on the
y axis in Figure 5.

Figure 5: Node-averaged Kullback-Leibler divergence for evidence strength (in
terms of exponent of likelihood ratio) at different nodes of the network in Fig. 4.

The graph is read in terms of the Kullback-Leibler divergence across the entire
network for evidence of a specific strength at marked nodes. On the right side
of the graph, a piece of evidence with strength ratio of 2

3 or 8/1 at node a, for
example, results in a Kullbach-Leibler divergence for the network as a whole of
approximately 0.03. A piece of evidence of that same strength at nodes c, d, f or
g results in a Kullback-Leibler divergence of approximately 0.07 for the network
as a whole. The network impact of evidence of that strength at nodes b or e
is approximately 0.13. On the left side of the graph, a piece of evidence with
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strength 2
-3 or 1/8 has a Kullback-Leibler network impact of 0.07 at nodes b and

e, 0.09 at nodes c, d, f , or g, and approximately 0.14 at root node a.
An alternative measure for network change, less familiar in some formal disci-

plines but more common in the philosophical literature, is Brier divergence, pro-
portional to a squared Euclidean distance measure (Joyce, 2009; Pettigrew, 2016).
The difference between prior and posterior probability distributions is taken to be
the mean of the squared difference between the prior and posterior probability
attached to each proposition in the network. Formally:

DBrier(p, q) =
1
n

n

∑
i=1

(p(Ai)− q(Ai))
2

Results for Brier divergence, read in the same manner, are shown in Figure 6.

Figure 6: Node-averaged Brier divergence for evidence strength (in terms of ex-
ponent of likelihood ratio) at different nodes of the network in Fig. 4.

Kullback-Leibler divergence is a measure of probability distance between the
distributions of individual nodes, averaged in Figure 5 to obtain a divergence
metric for the network as a whole. Brier divergence is defined over a set of nodes,
so it naturally serves as a network divergence metric.8

These more complete graphical analyses underscore the conclusions drawn
above: that epistemic impact across a network of evidence at a node z can depend
on both z’s place in the network and on the character of the evidence, gauged

8. In general, Kullback-Leibler is a multiplicative score, whereas Brier is additive; it should also per-
haps be noted that Brier is symmetric, whereas Kullback-Leibler is not.
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in terms of its likelihood ratio: the probability given that proposition z is true
over its probability given that proposition z is false. In this network, with these
priors, the strongest impact for evidence more likely if a node’s value is false is at
the root node. The strongest impact for evidence more likely if a node’s value is
true is at the central nodes of the network. Evidence at the leaf tips, within these
parameters for evidence of either character, falls in between.

We can draw two clear though simple conclusions on the basis of the work to
this point, pursued further in the details of section 5.

The first conclusion is that in this case, as in network studies in general, the
impact of evidence at a node depends on the position of that node within the
theoretical structure. That is clear ‘vertically’ from the graphs in Figures 5 and 6,
for example: values at any point above or below an exponent of 0 vary with node
position.

A second conclusion, in contrast to other network studies, is that the Bayesian
structure of these networks is crucially important. This is clear ‘horizontally’ from
the graphs in Figures 5 and 6. Any network measure that fails to incorporate the
crucial factor of the character of impact at a node, in terms of likelihood ratio,
will fail to identify the most epistemically influential nodes. That impact changes
quite dramatically from the left to the right of graphs such as those in Figures 5

and 6, though the network structure, all conditional probabilities, and all priors
remain the same.

4 How Evidence Works: Interactive Factors in Scientific
Networks

Results like those found in section 4 offer the prospect of being able to gauge
epistemically sensitive nodes within the structure of a scientific theory: those ele-
ments at which evidence of a particular character would have a particular impact
in terms of credence change across the network as a whole, and those points at
which a scientific theory would be most evidence-sensitive to change. Establishing
precisely how evidence impacts a theoretical network, however, quickly becomes
a challenging task.

There has been a disciplinary widespread search, for various purposes—social,
technological, and epidemiological—for principles governing most influential nodes
within a network (Kempe et al., 2005; Chen et al., 2013; Bao et al., 2017; Li et al.,
2018; Wei et al., 2018; Hafiene et al., 2019; Champion and Elkan, MS). Essentially
all of this work, however, has been on networks far simpler than the Bayesian
models we envisage here: on undirected networks without weighted links, for ex-
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ample. To the extent that consensus has emerged on network measures for most
influential nodes—a consensus is far from complete—those measures will also
prove too simple for Bayesian models.

Vulnerability and robustness of network structures have been studied in terms
of the removal of nodes in undirected networks, with applied examples such as
circumstantial mechanical failures within electrical grids, evolutionary impact on
specific species within an ecosystem, and terrorist attacks on airline or internet
hubs (Albert et al., 2000; Newman, 2018). For removal of nodes at random, it is
scale-free and preferential attachment networks—those with a small proportion
of highly connected ‘hubs’—that prove the most resilient against attack. Random
removal is most likely to hit something other than a hub, doing relatively little
damage. These are also the most vulnerable networks for targeted attacks, how-
ever, such as deliberate acts of informed sabotage: removal of a few carefully cho-
sen hubs can do a great deal of damage. We can certainly expect something like
a hub effect in our Bayesian networks. In a downward direction, credence change
in nodes with more children can to that extent be expected to have an effect on
a wider number of nodes and thus a more pronounced effect on the network as
a whole. But here the character of that effect, and its extent, must also take into
account the conditional probabilities on links to child nodes—not merely the exis-
tence of a link—and the character of evidence at the parent node—not merely its
removal. Upward change to a parental hub node from its children must include
the complication of its priors.

Eigenvector centrality and its variants (Katz centrality and PageRank, for ex-
ample) appear to be the primary candidates for measures of ‘most influential
node’ in networks far simpler than those envisaged here, despite a number of
critical studies (Borgatti and Everett, 2006; Newman, 2018; Da Silva et al., 2012;
Chen et al., 2013; Dablander and Hinne, 2019). But at their best these too are most
appropriate for undirected networks modeling something like infection dynamics
or directed networks modeling something like internet searches. They count tran-
sitive numbers of contacts, but don’t include the complexities of prior credences,
conditional probabilities, and the likelihood ratios of evidence that are an inherent
part of change within epistemic networks.

We can analyze some of the complexities involved, working towards general
rules of thumb for epistemic impact, by considering three simple networks. Figure
4, considered above, has the structure of a binary tree. We represent its structure
alone in the second image of Figure 7. The binary tree can be thought of as a
structure intermediate between two others: a purely linear network, shown in the
first image, and hub or ‘star’ shown in the third image in Figure. 7
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Figure 7: Three basic networks: linear, binary tree, and hub or star

The binary tree may represent a theoretical structure in which a fundamental
theory a supports two derivative theories b and e independently, each of which
supports two further hypotheses. The purely linear hypothesis exaggerates the
vertical descent of such a structure—a unary ‘tree’—in which a fundamental the-
ory supports a derivative theory at b, supporting a hypothesis at c which in turn
supports a hypothesis at d. One can think of the hub or star figure as exaggerating
the horizontal spread within a theory. Here, a single fundamental theory supports
directly subsidiary hypotheses at b, c, and so forth. These, then, are differences in
over-all network structure. Within those structures our Kullbach-Leibler and Brier
divergence graphs show the network impact at different nodes of evidence across
the range of likelihood ratios. We can further consider variations in prior cre-
dences and conditional probabilities. We will emphasize Brier divergence simply
because of its conceptual simplicity and greater familiarity in the philosophical
literature.

For purposes of the rough rules of thumb we aim for here, we can think of
a credence as high if it is greater than .5 (corresponding to a greater probability
that it is true than that it is false), and as low if it is less than 0.5. In line with the
exponents on our x-axes, we can think of evidence with a likelihood ratio greater
than 1 as positive, with evidence with a likelihood ratio less than 1 as negative.
Negative evidence in the case of a hypothesis with low credence, like positive
evidence in the case of a hypothesis with high credence, we will term ‘credence-
reinforcing’ or simply ‘reinforcing’ regarding the current credence. The opposite
we will term ‘credence-counter’ or simply ‘counter evidence.’9 Finally, we can

9. We’ve resisted a temptation to use the term ‘confirmatory’ for negative evidence in the case of low
credences, and positive evidence in the case of high credences, in order to avoid confusion with
standard terminology in which ‘e confirms h’ is used to indicate that e raises the probability of h
regardless of h’s initial credence. We are obliged to an anonymous referee for pointing out the
potential confusion.
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think of a pair of conditional probabilities p(y | x) and p(y |∼ x) as positive if
p(y | x) > 0.5 and p(y |∼ x) < 0.5, as negative if p(y | x) < 0.5 and p(y |∼
x) > 0.5. Here we consider only symmetrical conditional probabilities, such that
p(y | x) and p(y |∼ x) sum to 1, and use the same conditional probabilities on all
links. These are particularly severe limitations in this first exploration of such a
model; we start with them here merely for the sake of simplicity.

The simplest case of our three examples, though illustrative of some general
principles that hold throughout, is the hub or star of figure 7. Figures 8a and
8b show the case in which conditional probabilities are positive throughout (uni-
formly [0.3, 0.7]) and our root node is given a high value of 0.6 on the left and a
low 0.4 on the right, with derivative high credences of 0.54 for all other nodes on
the left and a low 0.46 on the right.

Figure 8: Brier divergence at different likelihood ratios for introduced evidence in
the star network, with positive conditional probabilities ([0.3, 0.7]) and priors of
0.6 and 0.54 at root and leaf nodes (8a) and 0.4 and 0.46 at root and leaf nodes (8b)

The clear left-right reversal of the two graphs follows a simple pattern that
holds throughout the examples we give not only because the priors of 0.6 and 0.4
that we use as examples are symmetrical around .5 but because of the assumption
noted that our conditional probabilities for p(y | x) and p(y |∼ x) sum to 1. Both
of these are assumptions are made simply for the sake of simplicity in exposition.
Varying either of these modeling assumptions breaks the symmetry shown.

The fact that values are higher on the left in 8a and on the right in 8b follows
simple Bayesian principles. We offer figure 9 as a reminder of the differential
impact of evidence e gauged in terms of likelihood ratio contingent on the prior
for a hypothesis h.

A high prior given evidence with what we’ve termed a positive likelihood
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Figure 9: A reminder of the immediate Bayesian impact of evidence at a node, in
terms of likelihood ratio, depending on its prior

ratio (> 1) leaves us with a high posterior credence, but our posterior plummets
sharply as the likelihood ratio declines and turns negative. A low prior given
evidence with a negative likelihood ratio (< 1) leaves us with a low posterior, but
that posterior climbs sharply as the likelihood ratio climbs and turns positive.
With the conditional probabilities in place in this case that effect carries through
our example network as a whole. In 8a our credences for all nodes are high (>
0.5), with the result that positive evidence on the right side of the graph produces
a lesser impact than does negative evidence on the left. In 8b all credences are
symmetrically low (< 0.5), explaining the reverse pattern.

In this case illustrated in Figure 8, regardless of whether evidence is positive
or negative, it is the root node a that is the most influential. With this network,
these conditional probabilities and these priors, it is uniformly credence change
at the root that has the greatest impact. That changes, however, if our conditional
probabilities are changed from positive to negative in our rough sense, from [0.3,
0.7] to [0.7, 0.3]—from probabilities p(y | x) of 0.7 and p(y |∼ x) of 0.3 for a node
y and its parent x to probabilities p(y | x) of 0.3 and p(y |∼ x) of 0.7. With a prior
of 0.6 at node a priors for our leaf nodes are 0.46 in this case, giving us the Brier
divergence graphs of Figure 10.

The reversal in our two graphs is the same as before. The fact that our root
node has a higher impact than leaf nodes in the case of negative evidence in 10a,
but lower in the case of positive evidence, is explained by the disparity in our
priors. The prior for our root node is high; that for our leaf nodes is low. In this
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Figure 10: Brier divergence at different likelihood ratios for introduced evidence
in the star network, with positive conditional probabilities ([0.7, 0.3]) and priors
of 0.6 and 0.46 at root and leaf nodes (10a) and 0.4 and 0.54 at root and leaf nodes
(10b)

case, negative evidence constitutes counter-evidence for node a while reinforcing
credences in the leaf nodes, resulting in a higher credence change for the former
than the latter, here reflected in changes in the network as a whole. Positive
evidence, on the other hand, will be counter-evidence for our leaf nodes while
reinforcing for our root node, reflected in the reversal of effects from the left to the
right side of 10a. A mirror-image explanation applies for the mirror image graph
of 10b.

The interactive factors of priors, conditional probabilities, and evidence likeli-
hood play out along similar lines but with different effects in the different struc-
tures of our other sample networks. Figures 11a and 11b show Brier divergence in
a binary tree structure with priors set at 0.6 (11a) and 0.4 (11b) and with negative
conditional probabilities of [0.7, 0.3].

Here, the pattern is similar to that analyzed in the preceding section. For neg-
ative evidence in the case of 11a, it is the root node that has the greatest influence,
followed by the central nodes and finally the leaf nodes. This is what one might
expect from the same evidence impact at nodes with descending high priors. For
positive evidence, in contrast, it is the central nodes b and c that have the most
influence, followed by the leaf nodes and finally by the root. Here secondary ef-
fects of updating through the network dominate the simple effect of evidence at
impact nodes.

Figures 12a and 12b show Brier divergence with the same binary tree structure
and priors but in which conditional probabilities are set at [0.7, 0.3] throughout
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Figure 11: Brier divergence at different likelihood ratios for introduced evidence
in the binary tree network, with negative conditional probabilities [0.7, 0.3]. In (a),
a root node prior of 0.6 at node a entails credences of 0.54 at central branch nodes
and 0.516 at leaves. In (b), a root node of 0.4 entails credences of 0.46 at central
branch nodes and 0.484 at leaves.

instead of [0.3, 0.7].

Figure 12: Brier divergence at different likelihood ratios for introduced evidence
in the binary tree network, with positive conditional probabilities [0.3, 0.7]. In (a),
a root node prior of 0.6 at node a entails credences of 0.46 at central branch nodes
and 0.516 at leaves. In (b), a root node of 0.4 entails credences of 0.54 at central
branch nodes and 0.484 at leaves.

The role of positive evidence in the case of 12a and of negative evidence in
the case of 12b follows the same pattern as in the case of reversed conditional
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probabilities in 11a and b. The difference in conditional probabilities makes a
clear difference on the other sides of the graphs. In the case of negative evidence in
12a and positive evidence in 12b, the change in conditional probabilities collapses
the impact of central and leaf nodes. Here evidence at the root node has a high
impact, with evidence at all other nodes effectively the same, roughly as in the
case of the star.

Of our three basic network structures, it is perhaps surprising that a simple
linear network proves to be the most complex. Figures 13a and 13b show graphs
of Brier divergence for the purely linear network of Figure 7 where conditional
probabilities are again set uniformly at a positive [0.3, 0.7]. In 13a a root node
initiated at 0.6 gives us descending credences 0.54, 0.516, 0.5064, 0.50256, 0.501024,
and 0.50041 at nodes b through g. In 13b a root node of 0.4 gives us descending
credences of 0.4, 0.46, 0.484, 0.493, 0.497, 0.498, and 0.49959.

Figure 13: Brier divergence at different likelihood ratios for introduced evidence
in the binary tree network, with positive conditional probabilities [0.3, 0.7]. In (a),
a root node prior of 0.6 at node a entails credences of 0.46 at central branch nodes
and 0.516 at leaves. In (b), a root node of 0.4 entails credences of 0.54 at central
branch nodes and 0.484 at leaves.

Basic principles noted above still apply: our exploration of symmetrical priors
with an assumption of conditional probabilities that add to 1 still dictate a mirror
symmetry between the two cases, and counter-evidence in our sense will have a
greater impact on credence change in a node than will reinforcing evidence. But
the pattern does not show a simple descent in over-all node influence in terms of
either descending network order or diminishing prior credence (in the case of 13a)
or increasing prior credence (in the case of 13b). The fact that evidence at node
a has the highest impact in counter-evidence cases and the lowest in credence-
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reinforcing cases may be credited to its relatively high prior credence. But the fact
that evidence at node b, with the second highest prior, shows the lowest impact
of all nodes in counter-evidence cases and the highest in credence-reinforcing
cases calls for an explanation that includes node position in the network and
the asymmetrical strength of upward influence through conditioning, which is
sensitive to the priors of upwardly influenced nodes, and downward influence
through our conditional probabilities, which is not sensitive to downstream priors.
In each case those asymmetrical effects are magnified by the transitive effects
through successive nodes.

The situation becomes still more complex when our conditional probabilities
are set at [0.7, 0.3] instead of [0.3, 0.7], shown in Figure 14 for root node priors of
0.6 and 0.4.

Figure 14: Brier divergence at different likelihood ratios for introduced evidence
in the linear network, with negative conditional probabilities [0.7, 0.3]. In (a), a
root node prior of 0.6 at node a entails descending credences of 0.46, 0.516, 0.4936,
0.50256, 0.498976, and 0.50041 for nodes b through g. In (b), a root node of 0.4
entails descending credences of 0.54, 0.484, 0.5064, 0.49744, 0.501024 and 0.49959.

Here, unlike in the preceding cases, our priors are neither all high (>0.5) nor all
low (<0.5). Evidence with the same likelihood ratio will therefore affect different
nodes differently. Upward transfer by conditioning, moreover, will be differently
affected by the differently high or low credences of nodes through which it pro-
ceeds.

The variety of effects in even these simple structures, with differently positive
or negative evidence, conditional probabilities, and high or low initial priors, offer
some hints toward the form that a network metric for evidence influence in theo-
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retical networks would have to take. It is clear that influence metrics appropriate
to the simple contact networks that have been studied, directed or undirected—
without node credences, without differential evidence characteristics, and without
link complexities of conditional probabilities and the complexities of Bayesian up-
dating and Jeffrey conditionalization—will be inadequate here. Development of a
Bayesian net analogue to eigenvector centrality that includes these factors seems
a promising if forbidding prospect, but is beyond the scope of our work here.

5 Theoretical Structures Beyond Polytrees

In work to this point, for the sake of simplicity, we have concentrated on polytrees:
structures in which each node has a single parent. Things becomes more complex
when we expand consideration—as we should—to the wider range of directed
acyclic graphs in general. Both of our initial examples—the causal structure of
the failure of the 17

th street levee in New Orleans and the grounding structure
of theory regarding the COVID-19 pandemic—include not merely branches but
downward junctures or ‘colliders’ from multiple nodes as well as branches, well
beyond simple polytrees.

Figure 15 shows the simplest downward juncture, in which credence for c
is determined by values for both a and b. The simple conditional credences used
above must be replaced with a conditional probability matrix, reflecting values for
c contingent on combinatory values for a and b. Figure 16 shows Brier divergence
for a case in which we start with a credence of .6 at both and b and in which our
matrix is ‘or-like’, specifying a value for c of 0.9 if either a or b is true, a value of
0.1 otherwise. Figure 17 shows Brier divergence for the same values at a and b but
a conditional matrix that is ‘and-like’, specifying a value of 0.9 for c only if both a
and b are true, a value of 0.1 otherwise.

Figure 15: A simple downward juncture
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Figure 16: Brier divergence at different likelihood ratios for introduced evidence
in a simple ‘or-like’ juncture, with conditional probabilities [0.1, 0.9] for all cases
except a = 0 and b = 0, where conditional probabilities are [0.9, 0.1]. Root node
priors of 0.6 at both a and b entail a prior credence of 0.772 for c.

Figure 17: Brier divergence at different likelihood ratios for introduced evidence
in a simple ‘and-like’ juncture, with conditional probabilities [0.9, 0.1] for all cases
except a = 1 and b = 1, where conditional probabilities are [.1, .9]. Root node
priors of 0.6 at both a and b entail a prior credence of 0.338 for c.

With the same priors at root nodes and conditional probability ratios of 0.1
and 0.9, the difference between ‘and-like’ and ‘or-like’ junctures is clear even in
the priors entailed for the juncture node c: a positive 0.772 in the case of an ‘or-like’
juncture, 0.338 in the case of ‘and’. The result is a reversal of evidence importance
at nodes: the sensitivity of c dominates that of a and b with negative evidence in
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the case of an ‘or’ juncture, while both a and b dominate c with negative evidence
in the case of ‘and.’ Appropriately to their status as duals, the cases are reversed
for positive evidence.

We have already noted the quick complexity of evidence impact contingent on
theoretical structure, priors, and conditional probabilities in the case of polytrees.
Expansion to full directed acyclic graphs increases that complexity significantly
even with the simple ‘and-like’ and ‘or-like’ junctures illustrated, let alone for the
far richer palette of possible probability distributions.

The tools outlined do offer us greater prospects for understanding the parame-
ters of evidence impact in different theoretical structures, however. As a final illus-
tration, while fully recognizing its limitations, we offer a Brier divergence graph
for the COVID-19 graph with which we began (Figure 18). We use the formal
treatment outlined in previous section, which builds in independence assump-
tions that are undoubtedly unrealistic. Full specifications for our largely ad hoc
assignments of priors and conditional probabilities in this case are documented in
the Appendix.

Figure 18: Evidence sensitivity in the theoretical structure for COVID-19 shown
in Figure 2. Full specifications for conditional probabilities and priors, as well as
Brier scores for all nodes, appear in the Appendix.

It is perhaps not surprising that the theoretical structure exhibited for the coro-
navirus is most sensitive to negative or counter-evidence, which appears on the
left side of the graph, at or near the root nodes. Were we to find out that our basic
assumptions regarding germ theory, regarding the susceptible-infected-recovery
SIR model, or composition of viruses were incorrect, our credence in the other
propositions in the theory would be importantly impacted. On the right side
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of the graph, it is perhaps more surprising that positive or credence-reinforcing
evidence most affects the graph with confirmation that handwashing stops the
spread of COVID-19. It is perhaps less surprising that confirmation that SARS-
CoV-2 causes COVID-19 strongly strengthens credence in other elements of the
theoretical structure. As detailed in the Appendix, however, there is by no means
a simple inversion in node order with regard to evidence impact from the left to
the right side of the graph. Evidence regarding an R0 for the Coronavirus, for
example, appears relatively high on both the left and the right side of the graph,
in 8th and 5th places respectively.

6 Conclusion

The structure of scientific theories can be modeled as Bayesian nets, with values
at nodes modeling credence in different propositions in the structure and condi-
tional probabilities modeling the inferential and evidential connections between
elements of the theory. Precisely because of that structure, a scientific theory will
be more vulnerable to the impact of evidence of the same strength at different
nodes, modeled in terms of the Bayesian impact of evidence of a particular likeli-
hood ratio at that node.

This conclusion has two clear epistemic implications, both of which are prob-
ably intuitive but both of which are captured here in a quantitative model.

The first implication is that relative position of different nodes within a single
theoretical structure can make a major epistemic difference. Given a single theo-
retical structure, evidence impact at one point in a structure will have a different
effect on credences, percolated through the network, than will evidence impact
at another point. Calculating the network factors that lead to greater influence,
however, is far from simple, depending not merely on the skeletal structure of a
network but on the specific conditional probabilities on inferential and eviden-
tial links, the specific prior credences within the network, and the likelihood-ratio
character of the evidence itself.

The second and related implication is that the differences between different
theoretical structures can make a major epistemic difference. The same piece of
evidence at the leaf node of a star-like network will have an importantly different
effect than at the leaf node of a linear network, or a binary tree. Here again,
however, calculating the aspects of theoretical structure that make the difference
in evidence impact in different cases proves to be far from simple.

These are first steps; we have emphasized the preliminary and suggestive char-
acter of our work throughout. The promise of an approach to scientific theories
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as Bayesian nets is the promise of being better able to understand the theoretical-
structure-relative dynamics of scientific evidence and scientific change. Fulfilling
that promise will demand development of a more complete understanding of
node-importance centrality in Bayesian nets, further modeling of dynamic change
within Bayesian nets with iterated credence changes, and modeling of structural
changes in the theoretical structures themselves. That is where some of the ques-
tions of greatest interest lie, but all of that we leave to further work.

Appendix

Specifications of root node priors and conditional probabilities for sensitivity cal-
culations in the reconstruction of the covid-19 theoretical structure shown in sec-
tion 7.

Nodes:

a = germ theory
b = transmission
c = Koch
d = causes COVID-19

e = respiratory infection
f = airborne and contact
g = proxixmate human contact
h = social distancing
i = coronavirus composition
j = SARS-CoV-2 is coronavirus
k = breaking lipid
l = soap and water
m= handwashing coronaviruses
n = handwashing SARS-CoV-2
o = handwashing COVID-19

p = SIR
q = Kermack-McKendrick
r = R naught
s = COVID-19 R0 1.4 – 2.0
t = extremely contagious
u = sigmoid curve
v = levelling off

27



w = acquired immunity
x = COVID-19 extinction
Root nodes a, c, i, j, and p: prior credences 0.8.
Nodes l, f , s, w: prior credences 0.7

Conditional probabilities:

p(b | a) = 0.8; p(b |∼ a) = 0.2
p(d | b, c) = 0.8; 0.2 otherwise
p(e | d, f ) = 0.8; p(e | d,∼ f ) = 0.5; p(e |∼ d, f ) = 0.5; p(e |∼ d,∼ f ) = 0.2
p(g | f ) = 0.8; p(g |∼ f ) = 0.2
p(h | g) = 0.8; p(h |∼ g) = 0.4
p(k | i) = 0.7; p(k |∼ i) = 0.2
p(m | l, k) = 0.8; p(m |∼ k, l) = 0.5; p(m |∼ l, k) = 0.5; p(m |∼ l,∼ k) = 0.2
p(n | m, j) = 0.8; p(n | m,∼ j) = 0.5; p(n |∼ m, j) = 0.5; p(n |∼ m,∼ j) = 0.2
p(o | d, n) = 0.8; 0.2 otherwise
p(q | p) = 0.8; p(q |∼ p) = 0.2
p(r|q) = 0.8; p(r |∼ q) = 0.2
p(u|q) = 0.8; p(u |∼ q) = 0.2
p(t | r, s) = 0.8; 0.2 otherwise
p(v | u) = 0.8; p(v |∼ u) = 0.5
p(x | j, d, w, v) = 0.9; p(x |∼ j, d, w, v = 0.8; p(x |,∼ d, w, v = 0.8; p(x |∼
j,∼ d, w, v) = 0.7; p(x | j, d,∼ w, v) = 0.8; p(x |∼ j, d,∼ w, v) = 0.7; p(x |
j,∼ d,∼ w, v) = 0.7; p(x |∼ j,∼ d,∼ w, v) = 0.6; p(x ∼, d, w,∼ v) = 0.8;
p(x |∼ j, d, w,∼ v) = 0.7; p(x | j,∼ d, w,∼ v) = 0.7; p(x |∼ j,∼ d, w,∼ v) = 0.6;
p(x|j, d,∼)w,∼ v = 0.7; p(x |∼, d,∼ w,∼ v) = 0.6; p(x | j,∼ d,∼ w,∼ v) = 0.6;
p(x |∼ j,∼ d,∼ w,∼ v) = .02

Brier divergence scores by node for evidence likelihood 2
-5, left side of figure 21:

0.032702925196386255 p SIR
0.03197274586977256 q Kermack-McKendrick
0.02892300064134992 a germ theory
0.025206021616052884 i coronavirus composition
0.023849404607912673 c Koch
0.023530107955275256 b transmission
0.021985716054253094 j SARS-CoV-2 is coronavirus
0.021732855368419703 r R naught

28



0.020731908792273795 u sigmoid curve
0.02050306150659843 x COVID-19 extinction
0.018859774335903478 s COVID-19 R0 1.4
0.01876352205497495 v levelling off
0.018291007460366212 l soap and water
0.018142736120275237 f airborne and contact
0.01684255830020106 w acquired immunity
0.01577183852380332 m handwashing coronaviruses
0.015542370861284812 k breaking lipid
0.015403295972751313 n handwashing SARS-CoV-2
0.0153470017407081 d causes COVID-19

0.015074719685156309 h social distancing
0.013945521086314742 e respiratory infection
0.01066307009488828 g proximate contact
0.01028733771960207 t extremely contagious
0.006463834532320453 o handwashing COVID-19

Brier divergence scores by node for evidence likelihood 2
5, right side of figure 21:

0.01664743806591248 o handwashing COVID-19

0.01439930691393785 t extremely contagious
0.012583132032143445 d causes COVID-19

0.010663070094888275 g proximate contact
0.009542603689210295 r R naught
0.009103101547024603 u sigmoid curve
0.008347243506501229 e respiratory infection
0.007966962560939319 m handwashing coronaviruses
0.007820365918820486 q Kermack-McKendrick
0.0072646504369333125 k breaking lipid
0.007046065875329723 h social distancing
0.006301081627599784 n handwashing SARS-CoV-2
0.005755340972874356 b transmission
0.004496778986033397 v levelling off
0.0038829270106076202 s COVID-19 R0 1.4
0.003765826974073341 l soap and water
0.0037353002678103607 f airborne and contact
0.003467614372621885 w acquired immunity
0.002546901691876484 p SIR
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0.0022525214128471527 a germ theory
0.002231827418619689 x COVID-19 extinction
0.001963043327588758 i coronavirus composition
0.0018573900830391689 c Koch
0.0017122461394334491 j SARS-CoV-2 is coronavirus
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