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Abstract

Dynamical models of cognition have played a central role in recent cognitive

science. In this paper, we consider a common strategy by which dynamical models

describe their target systems neither as purely static nor as purely dynamic, but

rather using a hybrid approach. This hybridity reveals how dynamical models

involve representational choices that are important for understanding the

relationship between dynamical and non-dynamical representations of a system.
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1 Introduction

Timothy van Gelder’s seminal paper, “What might cognition be if not computation?”

(van Gelder, 1995) was an important salvo in the debate between those who take the

mind to be a digital computer and those seeking alternative characterizations. As an
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alternative to the standard computational picture, van Gelder argued that a dynamical

systems approach could account for various aspects of real-time cognitive performance,

while avoiding various complications and commitments of the computational picture (see

also Thelen and Smith (1996) and contributions to Port and van Gelder (1995)).

Dynamical modeling of cognitive processes has subsequently become a significant

research area and has inspired philosophical developments both in accounts of cognition

(Clark, 1998) and explanation (Bechtel, 1998; Zednik, 2011). In this paper, we argue

that these discussions have neglected a key aspect of dynamical modeling that is

important for assessing dynamicist claims about cognition.

The conception of computation to which van Gelder was reacting involves machines

going through sequences of discrete states in response to discrete inputs. This conception

is at the foundation of modern computer science and cognitive science. It was developed

into a philosophy of mind via Putnam’s machine-state functionalism (Putnam, 1960,

1967), and more generically as the computational theory of mind, further elaborated as

the computational-representational theory of mind (Fodor, 1981). In developing a

dynamical alternative to standard computational accounts, philosophers have

emphasized the use of coupled differential equations to model continuous changes

through time. This modeling approach reveals how complex patterns of self-regulation

can arise from continuous, reciprocal feedback loops in which it is difficult to isolate

particular parts as making distinct contributions to the overall behavior. This is claimed

to be at odds with the picture provided by standard computational accounts.

Van Gelder’s paradigm example of a dynamical system—the Watt governor—is not

itself taken to be a cognitive system, but rather is put forward as providing insights into

how cognitive tasks could be performed non-computationally. But which features of
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dynamical models make them a promising basis for modeling cognition? It might seem

like answering this question would require an account of what makes a system cognitive,

but one can make headway on it without such an account. It enough to compare the

simpler models thus far emphasized by philosophers with dynamical models for the

performance of tasks that more closely resemble cognitive ones, in order to see whether

the features that have been viewed as significant for cognition are also significant for

understanding the performance of the more complex tasks. Towards this aim we will

discuss papers by Randall Beer and collaborators (Phattanasri et al., 2007; Beer and

Williams, 2015), in which they evolve “minimally cognitive” agents able to perform tasks

related to learning and categorization, and then study these agents using both dynamical

and non-dynamical models. The dynamical models for these agents serve as a basis for

evaluating whether philosophical discussions of simple dynamical systems “scale up” to

more complex and cognitively interesting ones.

Here we argue that as a result of emphasizing generic features of dynamical models,

philosophers in this literature have neglected important representational choices that

matter for assessing the significance of these models to cognition. In particular, they

have paid insufficient attention to modelers’ choices concerning when to represent

quantities as time-dependent or as constant, and to how modeling the same quantity

alternately as time-dependent or constant enables modelers to capture structure in the

dynamics that is relevant to understanding how systems carry out cognitive tasks. By

representing the same quantities alternately using constants or variables, modelers

capture the dynamical evolution of a system in the context of a broader “attractor”

landscape, such that the instantaneous change in the system’s trajectory at each moment

depends on the abstract position of the system within the larger landscape (e.g., how far
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it is from equilibrium). We initially refer to representations employing this device as

hybrid representations, though in section 3.3 we will characterize this phenomenon more

precisely using the concept of a “quasistatic approximation” (Beer and Williams, 2015).

We argue that this hybridity provides a lens through which to understand the ability of

the modeled systems to perform tasks such as discrimination and learning, as it sheds

light on the representational choices involved in designing and analyzing dynamical

models to capture the systems’ behaviors. We claim that attending to these choices – as

opposed to the generic formal features of coupled differential equations such as continuity

and reciprocity – provides a much more promising route towards understanding the

relevance of dynamic models to cognition. Additionally, these choices are crucial for

understanding how to connect dynamical models to computational and information

processing models. To understand this connection, it is necessary to see that dynamical

descriptions of a system are just as much representational devices as non-dynamical

ones, even if they do not wear their representational choices on their sleeves.

2 Representations, Mechanisms and Explanations

Van Gelder’s (1995) paper has been very influential among philosophers working on a

variety of issues, from metaphysics of mind (e.g., whether minds are representational,

computational, etc.) to the nature of explanation in cognitive science (e.g., whether

dynamical models fit the criteria for being explanations). Van Gelder deploys the Watt

governor for regulating steam engines as a metaphor for the causal relationships

operating in brains and the bodies that contain them. The Watt governor consists of a

spindle with two hinged arms whose rotation is coupled to a steam engine. As the
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rotational speed of the spindle increases or decreases the arms go up or down,

respectively closing or opening a valve (i.e., a throttle) that controls the flow of steam,

thus regulating the speed of the engine. This negative feedback loop serves to stabilize

the otherwise erratic behavior of steam engines due to factors such as fluctuations in the

heat produced by burning coal and changes in the external load on the engine. The

mathematical analysis of governors took considerable work, by Maxwell and others, to

develop a set of continuous differential equations whose shared parameters model the

couplings across the system.

Van Gelder argues that standard computational theories with their commitment to

internal symbolic representations are inadequate to describe the workings of the

engine-governor system. He emphasizes the continuous and reciprocal nature of the

causal interaction between the angle of the arms and the speed of the engine, and he

claims that this relationship is “much more subtle and complex than the notion of

representation can handle” (1995, p.353). Instead, he maintains, this framework requires

the “mathematical language of dynamics” (ibid.) within which these quantities are

coupled. He concludes this discussion by stating: “The real problem with describing the

governor as a representational device, then, is that the relationship of

representing—something standing for some other state of affairs—is too simple to

capture the actual interaction between the governor and the engine” (ibid.).

It is worth highlighting van Gelder’s inference from the claim that a particular

relationship is described using the mathematical language of dynamics, to the claim that

any computational-representational model would be too simple to capture the actual

interactions. But what is the relationship between this mathematical language and the

target system it represents? To say that computational-representational models are too
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simple to capture the actual interactions in the system is to presuppose that there is

some minimal standard for what counts as adequately representing the system. But from

the fact that one can represent interesting features of the governor’s behavior using

models from dynamical systems theory, it does not follow that one must represent those

features in order to adequately represent the system for some purpose. Neither does it

follow that the differential equations by themselves provide the minimal standard.1

Van Gelder’s use of particular features of the dynamical model to argue that the

Watt governor cannot be understood on the standard computational-representational

picture is most salient in the following passage:

[In the Watt governor, n]ot only are there no representations to be

manipulated, there are no distinct manipulatings that might count as

computational operations. There are no discrete, identifiable steps in which

one representation gets transformed into another. Rather, the system’s entire

operation is smooth and continuous; there is no possibility of non-arbitrarily

dividing its changes over time into distinct manipulatings, and no point in

trying to do so. (van Gelder, 1995, p. 354)

In focusing on smoothness and continuity, van Gelder is appealing to mathematical

features arising in the application of differential equations. We will argue in section 5

that the question of whether a dynamical system can be non-arbitrarily decomposed

1In criticizing van Gelder for not attending to the relationship between the dynamical

representation and the target system, we are not directly addressing his position that the

target system should not be understood as processing representations. We flag the use of

these two notions of representation to prevent possible confusion.
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cannot be resolved by appealing to such mathematical features.

Aside from smoothness and continuity, van Gelder also emphasizes that the governor’s

activities “are happening continuously and at the very same time” (van Gelder, 1995, p.

354). While this is not an inaccurate description of the system, it neglects important

subtleties in the way that time is represented in dynamical models, as we will explain.2

Before proceeding, it will be useful to differentiate the questions we will be

addressing from those that have been considered elsewhere. There has been considerable

discussion in the philosophical literature about whether dynamicist cognitive science

excludes representational accounts of mind (Bechtel, 1998) and whether it provides an

alternative view of computation or is incompatible with computational theories of mind

(e.g., Wheeler, 2005). Authors in this debate have been concerned with questions such as

whether dynamical models are genuinely explanatory or merely descriptive of target

systems, and if explanatory, whether they conform to patterns of mechanistic

explanation, causal explanation or something else (see, e.g., Clark, 1998; Bechtel, 1998;

Wheeler, 2005; Chemero and Silberstein, 2008; Wilkenfeld, 2014; Kaplan, 2015).

In this paper, we do not engage with the vast debate on the nature of scientific

explanation in general or of model-based explanation more specifically (e.g., Bokulich,

2011). Nevertheless, we will briefly illustrate how participants in this debate have largely

focused on the features of dynamical models emphasized by van Gelder. For instance,

2Grush (1997) had already noted a mismatch between the temporal features highlighted

by proponents of the dynamic approach and those of the models they consider. In particu-

lar, while proponents emphasize “real-time” dynamics, many models used to demonstrate

the promise of the approach are not in real-time, but involve discrete time-steps corre-

sponding to task-sequences.
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debates over the explanatory status of dynamical models have concerned their purported

inability to explain a phenomenon by decomposing its mechanism into localized

components (Bechtel, 1998; Chemero and Silberstein, 2008; Kaplan and Craver, 2011).

These debates direct one’s attention to features of dynamical models that supposedly

threaten localization. This is just one way in which van Gelder’s emphasis on

decomposition has had long-lasting influence.

Zednik (2011) provides a good illustration of the extent of this influence. Zednik has

argued that dynamical explanations in cognitive science, despite sharing the common

feature of being formulated via differential equations, do not, in fact, constitute a single

explanatory type. Some models (e.g., those of Thelen and Smith (1996) and Beer 2003)

do, he maintains, support decomposition into entities and activities that allows them to

be characterized as providing mechanistic explanations, whereas others (e.g., Haken

et al., 1985) do not, but rather provide a covering law explanation (Hempel and

Oppenheim, 1948; Bechtel, 1998).

Zednik is correct to highlight the plurality of dynamical models and to put pressure

on hasty arguments for why such models cannot provide mechanistic explanations. But

he is uncritical in his assumptions about what it is that models of dynamical systems

must explain. He considers two primary challenges for modeling certain dynamical

systems mechanistically. One is that dynamical models involve an agent-environment

interaction. The other is that coupled dynamical systems involve continuous reciprocal

causation and thus allegedly cannot be decomposed into localized parts with localized

functions. Regarding the second claim, Zednik assumes that for systems involving

reciprocal continuous causes it will be “difficult or impossible to allocate responsibility

for any particular operation to one part of the system” (p.259), and thus must be
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represented using the models of dynamical systems theory. He merely disputes that this

entails that dynamic models cannot be given a mechanistic interpretation. For all that

he moves the discussion forward by distinguishing different types of dynamical models,

he nevertheless accepts van Gelder’s characterization of which features of dynamical

models merit philosophical discussion. In the next section, we highlight the importance

of other features of the models.

Our criticisms notwithstanding, philosophers since van Gelder have considered a wide

range of dynamical models that are significantly more complex than that for the

governor. A notable example is Eliasmith (2010), who posits an important cognitive

difference between dynamical systems that can and cannot be modeled using the tools of

control systems theory. Nevertheless, our discussion in this section motivates a more

general discussion of the features of dynamical systems that are relevant to cognition.

One advantage of focusing on Beer and colleagues’ “minimally cognitive” agents is that

the agents are evolved without making any a priori assumptions about how they should

perform the task. They thus provide a good basis for an empirically grounded discussion

of which modeling frameworks are suitable for modeling their dynamics.

3 Hybridity in Dynamical Representations

Van Gelder and subsequent writers have emphasized the use of differential equations to

represent the continuous evolution through time of a system of closely interacting parts.

This emphasis is the result of focusing on the derivatives in differential equations, which

are well defined for all values of a function when that function is smooth (in the sense of

being everywhere differentiable). Yet a myopic focus on derivatives can lead philosophers
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to miss the range of modeling decisions that go into modeling a system dynamically.

These decisions include: the specifications of initial conditions, boundary conditions, and

rigidity constraints, as well as the choice to model certain quantities using variables and

others using time-invariant parameters. These decisions reveal that dynamic modeling is

not merely a matter of specifying what quantities are changing, but also which remain

stable over a time-period of interest.

In this paper we focus on the way that dynamical models rely on assumptions about

the equilibrium or attractor states of a system, and how such assumptions are employed

in modeling the system’s evolutionary dynamics. The dynamical models we consider

cannot be understood as “pure” representations of a systems dynamics, but rather as

“hybrid” representations in which assumptions about the longer-term stability of a

system play a role in modeling the shorter-term transient dynamics. After highlighting a

few examples of such hybridity, we will show how it is more rigorously characterized

through the concept of a quasi-static representation (Beer and Williams, 2015).

In this section we will provide three examples of hybrid representations. The first is

based on a closer inspection of van Gelder’s treatment of the Watt governor. The second

and third are from more recent work by Randy Beer and his collaborators. By beginning

with van Gelder, we aim to show that the modeling device we are describing is employed

(though not often appreciated) even in widely-discussed examples from the literature.

Crucially, in highlighting formal similarities across the three examples, we are not

suggesting that the examples are all similarly relevant for modeling cognition. The

behaviors modeled for the agents in the last two examples are more complex and

relevant to cognition than that of the Watt governor. Furthermore, Beer and colleagues

employ hybridity in innovative ways that greatly expand both the capabilities of
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dynamical modeling as well as the tools for analyzing such models. Nevertheless, our

focus on hybridity provides a useful lens through which to compare the models. In

section 4 we will further discuss the relevance of hybridity for cognition, and will explain

why it becomes even more significant as one considers models for more complex cognitive

behaviors.

Despite our focus on cognition, it is worth noting that the features of dynamical

models we identify are ubiquitous across the sciences. The philosophers Jordi Cat (Cat,

2005), Mark Wilson (Wilson, 2017), Sarah Green and Robert Batterman (Green and

Batterman, 2017) have been particularly attentive to the ways that dynamical models in

areas as diverse as physics and biology use subtle representational devices to incorporate

information about a system’s steady-state and equilibrium behaviors in making

predictions about how it will evolve. Accordingly, a virtue of the present discussion is

that it creates a potential bridge between work on dynamical systems in cognitive science

and the more general study of how dynamical models function across the sciences.

3.1 Modeling the Watt Governor

We have already described the mechanism of the Watt governor above as consisting of a

spindle with flywheel arms connected to a throttle controlling the amount of steam

flowing into the engine. The dynamical model of the governor represents the behavior of

the system using terms that explicitly represent the angle of the arms from the vertical,

the speed of the engine, and the throttle setting. The governor’s key dynamical feature is

the feedback loop by which it regulates the speed of the engine so that the speed does

not substantially deviate from a desired value. The dynamical model captures this
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through linked equations sharing the common terms just mentioned. Although Maxwell’s

model is more complicated, van Gelder, following Beltrami (1987), boils it down to a

pair of equations (or, more accurately, one equation and one schema for an equation).

The first of these equations describes the current acceleration of the angle of the arms

given the current value and velocity of the angle.

(1)
d2θ

dt2
= (nω)2cos(θ)sin(θ)︸ ︷︷ ︸

(i)

− g
l
sin(θ)︸ ︷︷ ︸
(ii)

− rdθ
dt︸︷︷︸

(iii)

Here θ is the angle of the arms, ω is the speed of the engine and n, g, l, and r are

constants. The acceleration of the angle is given as a function of three terms (which we

have labeled (i), (ii), and (iii) above), the first two of which involve the current angle of

the arms (θ) and the third involves its velocity (dθ/dt). The current value of θ influences

its acceleration by determining the outward effect of the force exerted by the engine

(term (i)) and the inward effect of gravity (term (ii)—l is for arm length). The velocity of

θ influences the acceleration of θ by producing friction at the hinges of the device linking

the governor to the throttle valve (term (iii)). This dampening influence of friction is

necessary for the system to stabilize (just as without friction or air resistance a pendulum

will continue to swing indefinitely). The construction of the model is based on Maxwell’s

original work in which he explicitly invoked the notions of kinetic energy, potential

energy, and friction (or resistance) corresponding to the three terms respectively,

adapting the equations for a pendulum (terms (i) and (ii)) that is damped (term (iii)).

As van Gelder notes, in equation (1) ω is treated not as a time-dependent variable,

but as a fixed parameter. This may seem puzzling, since it is crucial to the functioning

of the governor that the speed of the engine changes as a function of θ. In discussing
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equation (1), van Gelder temporarily considers the case in which the governor is

detached from the throttle valve so that the engine speed no longer depends on θ. Under

such a scenario the engine speed could be constant, but we still need an explanation for

why equation (1) remains applicable to the case in which the link between the governor

and the throttle value is not broken. Here the key is to focus on the role of equation (1)

in predicting the stability of the system. Think of (1) as providing a snapshot of the

system at a time. Does the snapshot represent the system at a stable equilibrium point?

We can determine this by imagining that the acceleration and the velocity of the angle

equal zero—as they would when the system is at steady state. Doing so reveals that the

system will be at equilibrium only when the first and second terms are equal.

Additionally, whether the difference between these terms at points near equilibrium is

positive or negative in the neighborhood around equilibrium will determine whether the

equilibrium point is a stable one.

While the engine speed ω is given in equation (1) as a parameter (understood in this

context to be a non-time-dependent variable), in the second equation it is modeled as a

time-dependent variable. This is essential for modeling it dynamically, since if it were

modeled as a constant rather than as a variable, then its derivative would be zero at all

times. Van Gelder presents the second equation for the influences on the derivatives of ω

schematically:

(2)
dnω

dtn
= f(ω, ..., τ, ...)

where τ is the setting of the throttle valve. Van Gelder does not fill in the details of this

equation (e.g., the order of the derivative or the additional variables in the function) and
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Figure 1: Dynamic Causal Model for the Watt Governor: Solid arrows indicate causal
arrows, dashed arrows (labeled “I”) indicate integration links (see text for details)

we are willing to grant him that for the sake of modeling the feedback loop in this

system, these details do not particularly matter – i.e. they can be safely black-boxed.

Yet the fact that ω is represented alternately as a parameter and as a time-dependent

variable is important for understanding the representational division of labor underlying

the dynamical model. In modeling ω as a parameter, one represents the change in the

acceleration of θ resulting from the current state of the system, in particular how far the

system is out of equilibrium. One can then take the individual snapshots of the

instantaneous influence of ω on the acceleration of θ and combine this with information

about how ω varies as a function of θ (via the throttle setting) in order to model the

evolution of the system. This requires modeling ω using a time-varying variable.

A useful framework for modeling self-regulating systems such as the governor is

provided by Iwasaki and Simon’s dynamic causal models (Iwasaki and Simon, 1994).

These models take a framework that was designed for static sets of equations giving the

causal relationships among simultaneous variables and generalize the framework to

model systems in which some of the variables are away from equilibrium. Here we won’t

dwell too much on the causal interpretation of these models (Rescher and Simon, 1966;

Dash and Druzdzel, 2001; Weinberger, 2020), but will use them primarily as a way to

keep track of the temporal relationships among the variables for the governor.
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In figure 1 we have applied Iwasaki and Simon’s technique to provide a visualization

of the relationships among the differential equations in the model of the governor. The

influence of θ, θ′and ω on θ′′ is read off of (1) and the influence of τ on ω is given by (2).

We have also added a causal arrow from θ to τ , as the influence of the governor on the

engine speed via the throttle position is essential to its functioning. Solid causal arrows

model “simultaneous” relationships, and dashed arrows, or integration links, correspond

to the mathematical operation of integration—that is, of taking the integral of the

derivative function. The so-called simultaneous relationships in the model need not be

taken as entailing that the causal influences represented in fact take no time. Rather,

they may be understood as indicating that the effect variable has had sufficient time to

respond to any changes in its cause(s) at the point at which both variables are measured.

For instance, the mechanical coupling between spindle arms and throttle is not modeled

dynamically, with the underlying assumption being that this connection is effectively

rigid enough to be treated as instantaneous given the modeler’s interest in what happens

at the given time scale. This contrasts with variables that are linked via derivatives and

integration-links. Through integration, one can take the value of a variable at a

time-step and give a discrete approximation of its value at the next time-step. The

integration links are from higher-order derivatives to lower-order derivatives. All of the

solid causal arrows are straightforwardly derived from interpreting equations (1) and (2)

as equations in which the variable on the left-hand side is an effect of the variables on

the right-hand side.

One useful feature of the representation in figure 1 is that it enables one to easily

check that a necessary condition for the system’s stability is met. Specifically, for a

system to be stable, the highest-order derivative of any variable must be a function of
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the variable’s lower-order derivatives. If, for example, the angular acceleration d2θ/dt2

did not change with velocity, it could not be a feature of the dynamics that it would be

pushed back towards zero once the arms were in motion. It is straightforward to see that

the dependence of the highest order derivatives on the lower orders is met in the present

model (although this alone does not guarantee stability).

In figure 1, θ, but not ω, is modeled along with its time-derivatives. This corresponds

to the same division of labor involved in treating ω alternately as a parameter and as a

variable. Representing θ’s velocity and acceleration enables one to capture the feedback

loop by which the system as a whole tends towards a constant speed. Including

derivatives for a variable enables one to represent that variable (in this case θ) as having

been perturbed from a stable state and as not having had adequate time to return to

that state. Note that changes to a variable’s velocity or acceleration at a time do not

change that variable’s value at that time, although they will influence that variable’s

value an arbitrarily short period of time later (as can be calculated using integration). In

contrast, ω is represented without a time-derivative, and thus as if it responds

instantaneously to any change in the value of θ. As long as θ has not reached its

long-term steady-state value, neither will ω, but the model attributes the system’s being

away from equilibrium to the “stickiness” of θ. Given enough time for θ to adjust to

prior perturbations, ω can be treated as immediately following suit.

This explication of the dynamic model for the Watt governor highlights the way that

the coupled differential equations for the system do not provide a pure unstructured

description of its dynamics. By this we mean that they do not describe all of the

system’s variables as evolving simultaneously as a function of time. Rather, the

equations are specifically designed to model the governor’s equilibrium-preserving
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behavior. This is done via a hybrid form of representation in which ω is alternately

treated as a parameter and variable in the two equations. We now turn to more complex

dynamical models involving similar hybridity.

3.2 Phattanasri and Beer

Our discussion of hybridity in cognitive models is grounded in two papers by Randall

Beer and his collaborators coming out of their sustained effort to understand and defend

the application of dynamical models in cognitive science. We will focus on Beer’s projects

in which he evolves simulated neural network agents to perform relatively simple tasks

related to learning and categorization. These agents’ neural networks are modeled by

sets of coupled differential equations in which the parameters are tuned through a genetic

algorithm simulating the natural selection of the agents over many generations, where

fitness is defined in terms of their abilities to perform the relevant task. The systems

developed barely register as “cognitive”—they are, in Beer’s parlance, “minimally

cognitive agents”. Nevertheless, their capacities and their dynamics are considerably

more complex than the centrifugal governor. While the governor has been seen as

providing insights into cognition, few have suggested that it is in fact a cognitive system.

This subsection considers an experiment by Phattanasri et al. (2007) aiming to

understand the dynamics of an evolved artificial agent selected for its ability to adjust its

behavior to a contingent, changing relationship between a cue stimulus and a reward. In

the experiment, the cues were labeled as “smells”, which were predictive of two kinds of

“food”, but where the relationship between the smells and the food was reversed

unpredictably. Artificial selection was applied to simple agents with up to six internal
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neurons on the basis of whether they successfully timed the opening of their “mouths” to

obtain the “edible” food, or kept their mouths closed to avoid ingesting “inedible” foods.

Because the relationship between cues and the positive or negative reinforcement

provided by edible and inedible food was reversed during the agents’ “lifetimes”,

successful agents following a variable response strategy had to change behavior as a

result of experience (a capacity Phattanasri et al. refer to as “learning”).

Phattanasri et al. focus their analysis on the simplest successful agents, which had

three neurons. To study the internal dynamics of a successfully evolved agent in this

task, they applied a couple of techniques: (A) They tested the agent under conditions

that were not part of its “evolutionary history”, such as clamping an input to the

network (holding it constant) as if a smell cue appears but does not disappear. This

enables them to identify attractor basins in the state space defined over the activation

levels of the agents’ three neurons, which they represent using “phase portraits” (not

pictured here, see Phattanasri et al., 2007, 386). (B) They then map a trajectory of the

non-equilibrium dynamics by which the agent’s position in the state space changes as a

result of new inputs such as smells or positive/negative reinforcement (see figure 2).

The two-step process just described involves hybridity analogous to the dual

treatment of ω in the two equations for the Watt governor. Just as with the governor,

where the initial treatment of ω as a parameter was not to indicate that ω is constant,

but rather as a basis for then calculating how the system changes as ω changes

exogenously, Phattanasri et al. begin with these phase portraits in order to then consider

how the neuronal states will evolve as the inputs shift. In both cases, this

representational division of labor should not be taken to indicate that certain parts of

the system are stable and others varying, but rather to capture both equilibrium and
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Figure 2: Figure from Phattanasri et al. p. 388. The axes y1, y2, and y3 refer to the
states of neurons 1, 2, and 3, respectively. The system was strobed at the end of each smell
and reinforcement signal. Figure (A) uses ovals to divide the strobed regions into distinct
clusters. (B) depicts a trajectory through the state space in a trial involving multiple
changes of environment. (C) provides a finite state machine representation for how the
system responds to signals with ↑ and ↓ denoting the two different “smells” and + and −
denoting to positive and negative reinforcement signals.

non-equilibrium dynamics within a single representational framework.

Because the exact behavior of the agent varies from trial to trial, Phattanasri et al.

use a “strobing” technique to build a composite picture of the non-equilibrium dynamics

over multiple trials, showing that the agent’s states tend to cluster in localizable regions

of the state space just after key events such as the appearance of a cue or the appearance

of a reinforcer (Phattanasri et al., 2007, 388)(see part A of figure 2 below).

Using the results of these techniques, they identified the regions of state space in
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which the systems tend to be found under actual and possible input conditions. By

mapping and linking the strobed regions of state space which the system tends to be

passing through at critical points during the task, and treating those regions as states of

a finite state machine (FSM), they constructed a FSM representation that switches

between two different cycles depending on which of two “smell” cues is currently

predictive of the “edible” reward. They variously refer to this FSM as “embedded”

(Phattanasri et al., 2007, 388, fig. 7) in the evolved neural circuitry and “extracted”

(ibid.) from the dynamics, and they go on to explain that the circuits “work by

implementing finite state machines that capture the sensation-action-reinforcement

structure of this task” (Phattanasri et al., 2007, 391). Below we will provide some

critical discussion of the precise relationship between the dynamics and the FSM

representations, and will argue that the hybridity of the representation is relevant to

understanding this relationship.

3.3 Beer and Williams on Quasistatic Approximations

In a paper that has implications both for the present discussion as well as the debate

that motivates it, Beer and Williams (2015) compare approaches to cognition using

information theory (IT) to those using dynamical systems theory (DST). Beer and

Williams analyze a set of artificial agents who were evolved to make a behavioral

decision (intercept or avoid) based upon an asynchronous comparison of the relative size

of two objects which move towards the agent. While DST approaches track the evolution

of the agents’ neuronal activity, IT provides tools for determining how information about

the sizes of the cue and probe is distributed through the neurons over time. Beer and
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Williams view the IT and DST representations of the agents not as competitors, but

rather as complementing one another, and we are sympathetic to this position.

Before presenting the details of the experiment, we will first convey their notion of a

quasistatic approximation, which provides a more rigorous way to understand the form of

representational hybridity we have been discussing. Beer and Williams explain how one

and the same dynamical system can be represented either as a single system governed by

a time-invariant set of equations, or as two or more coupled systems in which the output

of one determines the values of the parameters in the equations of the others at a given

time. While in the former case, the dynamical law governing the system is autonomous,

meaning that it is fixed, in the latter case, the laws governing each subsystem are

non-autonomous, meaning that the parameters in their dynamical laws change over time.

The autonomous and non-autonomous perspectives can be combined into a quasistatic

approximation (Beer and Williams, 2015, 13) in which one represents the

non-autonomous dynamics of a part of the system as the result of a series of snapshots,

in each of which the dynamics are treated as autonomous. This is what was going on in

the Beltrami/van Gelder model of the Watt governor, where ω in equation (1) was

treated as a fixed input rather than as time-varying, and thus as if the dynamics were

autonomous. Phattanasri, Chiel and Beer similarly rely on a quasistatic approximation

when they appeal to phase portraits describing the dynamics of the system given fixed

inputs, prior to using these autonomous representations of the dynamics to account for

the system’s transitory non-autonomous dynamics when away from attractor states

(Phattanasri et al., 2007, 384).

The notion of a quasistatic approximation makes precise the sense in which the

dynamical models we have been considering are “hybrid” rather than “pure”. A “pure
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unstructured” description of the system’s evolution would represent all of the modelled

variables as evolving in time as a function of a single dynamical law. As Beer and

Williams’ discussion makes clear, whether a system is modeled in this way or using a

quasi-static approximation — and correspondingly whether it is modeled as a single

system or as two or more interacting subsystems — is a feature of the models, and any

inference from such features to claims about the modelled system must be handled with

care.

Beer and Williams evolved agents to perform a task consisting of two stages. In the

first stage, the agent passively observes a falling “cue”. In the second stage, the agent

must either catch or avoid a falling “probe” depending on whether it is bigger or smaller

than the cue. In their representations of the dynamics, the state space of the agent maps

the relationships among the activation levels of the agent’s different neurons as a

function of time or a proxy of time. Different trajectories correspond to different trials

with different cue sizes. One of their aims in dynamically modeling the systems is to

understand the different trajectories of the system in the cases where the agent either

catches or avoids the probe.

The bundles of trajectories in which the agent either avoids or catches the probe

correspond to different attractor states in the dynamical landscape. Beer and Williams

(2015, 16, figure 7) provide several graphs displaying the different bundles and

pinpointing when they diverge towards the different attractors. Yet, as they emphasize,

it is crucial not to think about the attractor landscape as a fixed map through which the

trajectories travel—the attractor landscape changes both simultaneously with and in

response to the changing trajectories of the neurons through the state space. In the early

moments of the probe’s descent all of the trajectories are all heading towards a single
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attractor point, but over time the attractor landscape changes to one in which there are

two distinct attractors towards which the different bundles tend. Such a change in the

attractor landscape is called a bifurcation.

Beer and Williams’ use of bifurcation diagrams to explain the split in the trajectories

involves a use of the quasistatic approach (Beer and Williams, 2015, p.13). Both the

agent and its environment change as a function of time, and in principle one could model

the agent-environment system as a single dynamical system with a fixed dynamical law.

Instead, Beer and Williams model the agent and its environment as two dynamical

systems with dynamical laws that change over time. While the agents’ neuronal

dynamics are constantly changing in response to the changing sensory inputs, at each

point in time the sensory input is represented as fixed. In this manner, one can represent

the way that the agents’ states change in response to the sensory input without

explicitly representing how the sensory inputs change over time. This representational

choice makes it possible to visualize a bifurcation diagram in which one can

transparently represent both how particular trajectories change over time and also how

different trajectories fall into different attractor basins. While the sensory inputs are also

changing over time in response to the agents’ movement, the quasistatic approach

enables the modeler to model this independently and to thus gain an understanding of

the splitting of the trajectories that would be unavailable otherwise.

The way in which Beer and Williams take the time-dependent variable for the sensory

input and model it as a parameter in the agent’s differential equations is, from a formal

perspective, similar to the way in which ω functions alternately as a variable and a

parameter in the equations for the Watt governor. Yet the behaviors illuminated by the

use of the quasistatic approach are much more interesting in the former case than in the
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latter, and Beer and Williams’ employment of the approach in the models is much more

sophisticated. Now that we have illustrated the common use of the approach in the three

different cases, we now use this commonality to illuminate the features of Beer’s agents

that make them more suitable than the governor as models for cognitive processes.

4 Quasistatic Models of Cognitive Processes

The Watt governor is, of course, entirely boring from a cognitive perspective; because of

the design of the system it can only be just slightly out of equilibrium, and it is always

tending towards a fixed equilibrium point in the absence of further input or inherent

minor fluctuations in state. While the “snapshots” of the governor employed in the

quasistatic approximation are informative about how far the system is away from

equilibrium, and thus about how long it will take to return to equilibrium, such snapshots

will at most provide a cumulative record of the prior perturbations to the system, with

no way of distinguishing between different types of perturbations—e.g. a decrease in the

total workload as opposed to a change in the combustion driving the engine.

Phattanasri et al.’s dynamical models are more complex in that they describe

systems with multiple attractor states. Different regions of the state space in the vicinity

of different attractors are associated with different responses to the same smell, and the

agent’s position in the state space shifts from one region to another in response to

negative reinforcement signals. While the purpose of the governor is to make the

behavior of a device relatively invariant to changes in its environment, the task

performed by Phattanasri et al.’s agents requires them to change their behavior based on

signals they receive from their environments. The position of the agent near a particular
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attractor in the state space is thus discriminative among different possible causal

histories—e.g. whether the agent is in an environment where a particular smell is to be

pursued or avoided. It is important to realize, however, that it is not necessary—or even

optimal—that that the system ever settles into a particular attractor, and its doing so

would in fact hinder the agents’ abilities to respond quickly and adaptively to

subsequent stimuli.

As a result of the increased complexity of Phattanasri et al.’s dynamical models, as

compared to the Watt governor, the “snapshots” of the quasistatic approximation are

more informative. The location of the agent in the abstract state space relative to an

attractor state provides information about its causal history and thus of the environment

that it is in. Representations of the system at a single point in time are thus informative

about both its transitory and longer term dynamics.

The dynamical models for the agents developed by Beer and Williams (2015) are

even more complex, in the sense that the dynamical attractor landscape changes over

time and involves a bifurcation. Although in all of the cases where quasistatic

approximations are employed it is important to realize that the parameters that are

treated as unchanging at a time are not in fact unchanging, this feature is especially

crucial for understanding the activities of these agents in catching or avoiding the probe.

While it would be possible to model the agent and its environment as a single system in

which both are constantly changing as a function of a single dynamical law, the use of

the quasistatic approximation enables one to model the agent’s internal dynamics

(semi-)independently of the broader attractor landscape in a way that (as we will further

explain) enables one to better understand its decision-making behavior.

All three models considered are dynamical and all three employ the quasistatic
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approach. Yet the Beer agents perform tasks that more closely resemble paradigmatic

cognitive tasks. Phattanasri et al.’s agents were able to learn and relearn regularities

linking signals to fitness-relevant features of their environment. Beer and Williams’

agents needed to maintain information about a previously observed object and then to

compare this to a novel object regarding which they were receiving and responding to

information over time. In each case, the use of a quasistatic approximation played a

different role in understanding how the agents’ performed their tasks. For Phattanasri’s

agents, it was relevant to seeing how the agents’ optimal strategies depended both on

their transitory dynamics as well as their position relative to an attractor state. For Beer

and Williams’ agents, it illuminated how agents perform a task during which they need

to alter their behavior to respond to constantly updating information.

This brief comparison between the three dynamical models highlights a point that

should be obvious, but which is nevertheless worth making explicit. Namely, the mere

fact that a system can be modeled dynamically tells one little about whether it exhibits

cognition-like behavior. Given that van Gelder does not claim that the governor is a

cognitive system, it is clear enough that if one wants to draw substantive conclusions

about cognition from features of dynamical models, more attention to the differences

among dynamical models is required than is typically paid in philosophical discussions of

these matters.
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5 The Relationship Between Dynamical and

Non-dynamical Models

The discussions in Phattanasri et al. (2007) and Beer and Williams (2015) are of

philosophical interest not merely because they consider cognitively-illuminating

dynamical systems, but further because they explicitly compare their dynamical

representations to non-dynamical ones. While Phattanasri et al. use their dynamical

models to derive a finite state machine (FSM) representation, Beer and Williams contrast

their dynamical models with information theoretic ones. In this section we describe how

the analysis of the dynamical systems as involving hybridity matters for understanding

the relationships between these dynamical and non-dynamical representations.

Recall that Phattanasri et al. (2007) derive the FSM representation by strobing the

system at various times. There is a tension in the way that they describe this

representation. On the one hand, they claim that “It is important to emphasize that the

extracted FSMs merely summarize the normal operation of the circuit dynamics, and are

not equivalent to this dynamics” (388). On the other hand, as noted above, they talk

about the FSM as being “embedded” (Phattanasri et al., 2007, 388, fig. 7) in the evolved

neural circuitry and “extracted” (ibid.) from the dynamics, and of the circuits as

“implementing” (291) the FSM. These comments suggest that the FSM representation is

more than a mere summary of the dynamics.

So what is going on here? Should we think of the FSM representation as merely a

partial and practical summary of the underlying dynamics, or as capturing a privileged

pattern that is “embedded” in the neural circuitry of the minimal cognitive agents? We

believe that this apparent tension can be resolved by thinking further about how the
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dynamical model functions. If one were to think of the differential equations as providing

an unstructured description in which every significant quantity is represented as

continuously evolving as a function of time, then the finite state representation will seem

like a cheap reproduction of a much richer representation of the (so-called) underlying

dynamics. Additionally, if the dynamics of the system lacked structure of the kind

provided by a quasistatic analysis, then any discretization or decomposition would seem

arbitrary in the sense that it would be conceptually confused to try to carve the system

at its (non-existent) joints. But the analysis of the dynamics of the system does not

proceed like this.

Far from providing an unstructured description of the system’s evolutionary

dynamics, Phattanasri et al. employed a quasistatic approximation in which they first

created phase portraits of the attractor states of the system when its inputs are held

constant and then traced the out-of-equilibrium dynamics as the system moves through

its (abstract) state space in response to typical changes in the inputs. The FSM model

(fig. 2c) provides an adequate representation of the dynamics insofar as it captures the

transitions of the dynamical system from one attractor state towards another. The key

point is that although the FSM representation introduces a discretization that did not

exist in the dynamical representation, the success of this discretization can be judged

based on the ability of the FSM model to capture features that are already present in

the dynamical representation. Notably, the characterization of the system as involving

distinct attractor states corresponding to distinct inputs and responses is an essential

part of the quasi-static approximation. It is because of this feature of the modeling that

it is not arbitrary to ask whether the particular finite state model delivered by strobing

appropriately represents the behavior of the system, and why it is illuminating to claim
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that the dynamics “implement” the discrete finite state machine.

Given our use of the word “decomposition”, it is worth taking a moment to clarify

the relationships between our discussion and other uses of this term in the literature.

The notion of decomposition arises prominently in the literature on mechanistic

explanation, in which the emphasis is on whether it is possible to decompose a

mechanism into its physical components. And, in fact, much of the work on the

relevance of dynamical models to causal and mechanistic explanation focuses precisely on

whether complex dynamical systems allow for such a mechanistic decomposition. For

this reason, it is important for us to emphasize that in using terms such as “structure”

or “decomposition” our primary focus is on features of the dynamical models. For

instance, in describing the structure employed in quasistatic approximations, we are

focusing on the distinction between quantities that are modeled as static and as

time-dependent. While we take such formal features to be relevant to addressing

questions about whether a system allows for decomposition, a main takeaway of our

discussion is that one must be extremely cautious in making inferences from formal to

substantive features of the system.

We have explained how Phattanasri et al. (2007) use quasistatic approximation to

connect a dynamical representation to a FSM representation. In this case, the

relationships between the representations are relatively transparent. In contrast, Beer

and Williams’ dynamical and information theoretical models do not allow for such

straightforward comparisons. Unsurprisingly, there are clear links between features of

their information theoretic models and features of the dynamic models employing

quasistatic approximations. But there are some key differences in how the dynamic and

information theoretic representations function, and it is due to these differences that
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they are able to play complementary but distinct roles in illuminating how the neural

agents perform their tasks. We submit that careful attention to the differences in how

DST and IT are used to represent their target systems will help one avoid the

temptation to view one type of representation as abstracting away from the other.

We begin with an overview of how Beer and Williams use the tools of IT to model

their agents. They measure the mutual information between different variables for the

agents (e.g. particular neurons) and the sizes of the cues and probes. Here, the mutual

information is not a relationship between the size of a particular cue in a particular trial

and the activation of the neuron in that trial. Rather it depends on the different levels of

the activation of the neuron corresponding to different sizes of the cue/probe across

trials, and on how a particular level of activation at a given time reduces uncertainty

about the size of the cue or probe. Using the tools of IT, Beer and Williams represent

the way that the information about the size of the cue is transmitted through different

parts of the system through both the cue and probe stages. For instance, in the cue

stage they are able to trace how the cue size information in each of the agents’ internal

neurons changes over time, and thus to determine where this information is maintained

at the end of the cue stage.

In tracing the way that the mutual information between two variables changes over

time, Beer and Williams extend information theory beyond its standard application. By

providing IT approaches with a dynamic formulation, they make it easier to compare

them to DST approaches, which also characterize the evolution of a system. But this

similarity between the approaches potentially obscures important differences in the way

that they each represent a single system. As emphasized, the mutual information

between (e.g.) the cue size and a neuron’s state depends on the degree to which
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variation in the neuron’s state (at a time) tracks variation in the cue size across trials (at

that time), and thus cannot be understood by reference to a trajectory in any single

trial. We emphasize this point not because there is any lack of clarity in Beer and

Williams’ discussion, but because we believe that such nuances are easily glossed over in

philosophical discussions of cognition.

As Beer and Williams describe, there are important relationships between the

dynamical and informational representations of the system. For example, in representing

the probe-stage dynamics, they model the mutual information between a particular

neuron and a variable for the relative sizes of the cue and the probe (p. 22, fig. 10). This

neuron provides the most information about relative size during the interval when the

dynamic trajectories corresponding to whether the agent catches or avoids the probe are

most distinct from one another (to speak somewhat imprecisely). The degree of

divergence among the trajectories is an emergent property of the system corresponding

to the time at which bifurcation occurs in the non-autonomous dynamics.

In Beer and Williams’ discussion, IT methods serve as a proxy for computational

approaches more generally. Although there is no simple way to characterize the

relationships between their dynamic and information theoretic models, the relationship is

certainly not what one would expect based on the philosophical literature on dynamical

models. In particular, the decision to model the agent and its environment separately

already exists within the quasistatic approximation employed in the dynamical models,

rather than being some abstraction introduced at the computational level. The main

difference we’ve highlighted here between DST and IT representations—that the former

involve a trajectory from a single trial and the latter require cross-trial comparisons—has

received scant attention. This difference is important for seeing why the different
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methods use different bases for categorization, and thus why one cannot be understood

as derived by simply abstracting way from the details of the other.

In contrasting our discussion of dynamical systems with others from the philosophy

of cognitive science literature, we have emphasized that whereas the latter focus on

generic modeling features such as continuity and reciprocity we focus on the role of

representational hybridity. The significance of this distinction is not that one can simply

look at details of the quasistatic approximation and read off facts about the target

system. This would be as problematic as inferring that because a model describes a

trajectory as continuous, the quantity described is not discretizable at a different scale.

Representational hybridity matters because considering it yields insights into the

representational choices that go into modeling and analyzing dynamical systems, and

these choices are important for understanding the relationships between different

representations of the same system. Our discussion here illustrates how representational

hybridity is important for properly understanding the relationship between dynamical

and non-dynamical representations.

6 Dynamical Models and Cognition

Twenty-five years after van Gelder’s seminal paper, it is time for a more nuanced picture

of dynamical models. While the Watt governor is a paradigmatic dynamical system, it is

not a cognitive one, and not all claims about its dynamical model generalize to models of

systems performing even “minimally cognitive” tasks. Even if van Gelder is correct that

the Watt governor does not support a non-arbitrary division into discrete operational

phases, it would not follow that other more complex dynamical systems fail to support
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such analyses. Whether a system can be fruitfully modularized is settled not by looking

at whether a dynamical system describes smooth trajectories, but by careful attention to

the model and the task. The dynamical models reviewed here, although simple, are

significantly more complex than that of the Watt governor, and these complexities

matter for determining whether they can be modeled using a more standard

computational approach.

In focusing on the use of quasistatic approaches, we have made salient one way in

which dynamical models are tools for representing a system. Although this point that

dynamical models are themselves tools for representing a system may seem obvious, we

have suggested that it gets lost in the setup of current debates. While philosophers

defending a particular computational or mechanistic model need to be explicit about

how the model divides up the system, the representational choices underlying dynamical

models are typically left implicit. Yet dynamical models do not, in general, provide

unstructured descriptions of a system’s temporal evolution, and careful attention to the

devices by which time is modeled yields insights into the conditions under which the

models apply.

What, ultimately, is the relationship between dynamical and non-dynamical

representations of a cognitive system? There is no general answer to this question.

Dynamical and computational models are not mutually exclusive, and very little can be

inferred from the mere fact that a system can be modeled in one framework or the other.

This, in fact, requires philosophers to pay more attention to the formal features of

particular models, since whether a system ought to be modeled computationally can only

be resolved by extended attention to how the agent’s dynamics enable it to perform its

task. Dynamical models of cognition will not replace computational ones, but promise a
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deeper understanding of how computational systems work.
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