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Abstract. Wenmackers and Romeijn (2016) formalize ideas going back to

Shimony (1970) and Putnam (1963) into an open-minded Bayesian inductive
logic, that can dynamically incorporate statistical hypotheses proposed in the

course of the learning process. In this paper, we show that Wenmackers and
Romeijn’s proposal does not preserve the classical Bayesian consistency guar-

antee of merger with the true hypothesis. We diagnose the problem, and offer

a forward-looking open-minded Bayesians that does preserve a version of this
guarantee.

1. Introduction

On the standard philosophical conception of Bayesian learning, an agent starts
out with a particular prior distribution and learns by conditionalizing on the data
it receives. Well-known results on the merger of opinion show that the specific prior
does not matter too much, as long as there is agreement on what is possible at all.
These same results can also be taken to show that the agent converges to the truth,
as long as its prior does not exclude this truth from the start (Earman, 1992, 141ff;
Huttegger, 2015).

However, a Bayesian agent cannot include in its prior every possible truth from
the start; not in practice, and not even in theory (Putnam, 1963; Dawid, 1985; Belot,
2013; Sterkenburg, 2019). A Bayesian agent must commit to restrictive inductive
assumptions in its initial choice of prior (Howson, 2000; Romeijn, 2004). Standard
results about convergence to the truth only apply if these initial assumptions are
actually valid in the learning situation at hand. But there is, on the standard
conception, no room for the agent to readjust; not even if these assumptions start
looking faulty.

In more explicitly statistical terms, a Bayesian agent’s prior can be seen to
specify a particular model, or set of hypotheses. If the model is appropriate, if one
of the hypotheses is true, there is—at least for a countable model—a guarantee of
consistency that the agent with probability 1 (almost surely, a.s.) converges on this
truth. But if it is not, the agent’s beliefs can with positive probability always and
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forever remain off the mark. On the standard conception, there is, again, no room
for the agent to later adapt this model (Dawid, 1982); there is, in particular, no
room to expand the model, to incorporate new hypotheses that might be more in
accord with the data (Gillies, 2001; Gelman and Shalizi, 2013).

The question of how to open up the standard conception to make room for
incorporating new hypotheses is the Bayesian problem of new theory (Chihara,
1987, 556ff; Earman, 1992, 132f; Romeijn, 2005). An early account that engages
with this problem is the tempered personalism due to Shimony (1970). Central
to Shimony’s account is an idea he traces back to Putnam (1963; see Shimony,
1970, 89; 1969, 2), and in more veiled form to Jeffreys (1961; see Shimony, 1970,
97ff; Howson, 1988). This is the idea that, rather than taking as starting point an
hypothesis set that is as wide as possible, Bayesian inference is relative to a limited
set of “seriously proposed hypotheses,” that is dynamically expanded as new such
hypotheses are proposed. In this context Shimony introduced the notion of a catch-
all hypothesis that is the complement of all seriously proposed hypotheses at any
given time.

Recently, Wenmackers and Romeijn (2016) have worked out these ideas, in a
statistical setting, into what they brand an open-minded Bayesianism. In a number
of different versions they propose a Bayesian inductive logic that allows for an agent
to adopt newly formulated statistical hypotheses during the learning process.

One important question that they leave untouched, however, is whether these
formalizations actually preserve the consistency guarantee of truth-convergence.
That is, if the true hypothesis is among the actually formulated hypotheses, thus
is or becomes part of the open-minded Bayesian’s hypothesis set, is the agent from
that point on still guaranteed to almost surely converge on this truth? That is the
question we investigate in this paper.

We proceed as follows. First, in section 2, we introduce the statistical framework
of Bayesian learning that Wenmackers and Romeijn employ, and discuss their differ-
ent versions of open-minded agents. Then, in section 3, we investigate the guarantee
of convergence to the truth. We focus on the property of weak merger with the true
hypothesis, and show that all proposed versions of open-minded Bayesians, unlike
the standard Bayesian, fail to guarantee this property. In section 4 we diagnose
the problem and the structure of the convergence we could possibly attain, in the
course of which we introduce the notions of an hypothesis and posterior scheme
and that of a completed agent measure. We then set out for a version of open-
minded Bayesianism for which we can show, for every hypothesis and posterior
scheme, strong merger of the completed agent function, from which weak merger of
the agent follows. This is our forward-looking open-minded Bayesian. The general
threat to truth-convergence lies in the possibility of an endless stream of false over-
fitting hypotheses: our forward-looking proposal meets this threat by neutralizing
the role of old evidence. In an initial proto-version this is achieved by a constraint
on the posteriors assigned to new hypotheses; in the final version this is achieved
by combining a constraint on new hypotheses’ priors (instantiating the idea of the
catch-all) with the stipulation that new hypotheses’ likelihoods on past data are
equal to the agent’s own past probability assignment.

We should emphasize that Wenmackers and Romeijn in their paper (and we
in this paper) are concerned with the question of how to incorporate externally
proposed new hypotheses: their proposals are attempts to make this aspect part
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of a Bayesian logic of inductive inference. They are in their paper (and we are
here) not concerned with when new hypotheses should be taken into consideration,
let alone with how new hypotheses are conceived. To paraphrase Lindley (2000,
303) paraphrasing de Finetti: if you have your statistical model, reasoning is mere
calculation, but constructing your model actually requires thinking. We are here
only concerned with the former, but presume, with Wenmackers and Romeijn,
that the scope of mere calculation may be slightly extended, to the procedure of
incorporating given new hypotheses into your model.

2. The open-minded Bayesians

In this section, we first set out the presupposed formal framework (sect. 2.1),
and then discuss the standard Bayesian (sect. 2.2), the vocal open-minded Bayesian
(sect. 2.3), the silent open-minded Bayesian (sect. 2.4) as well as its retroactive
variant (sect. 2.5), and finally the hybrid open-minded Bayesian (sect. 2.6).

2.1. Formal framework: outcomes and hypotheses. In the statistical set-up
employed by Wenmackers and Romeijn,1 the domain of a Bayesian agent’s probabil-
ity function is the Cartesian product Ω×Θ of an outcome space Ω and a statistical
hypothesis space Θ.

2.1.1. The outcome space. In all of the following, we assume the simple scenario
of repeatedly sampling from two possible elementary outcomes, 0 and 1. Formally,
the outcome space Ω is the space {0, 1}ω of all infinite binary sequences Eω. It is
convenient to treat a probability measure over this space as a function P over the
finite sequences, that satisfies P (∅∅∅) = 1, where ∅∅∅ is the empty outcome sequence,
and P (Et) = P (Et0) + P (Et1) for all finite outcome sequences Et, where EtE
denotes outcome sequence Et of length t followed by elementary outcome E ∈
{0, 1}. Formally, the set of cones JEtK := {Eω ∈ Ω : Eω extends Et} for all finite
sequences Et generates a σ-algebra F over Ω containing all the Borel sets, and an
assignment P as above induces a unique measure µ on (Ω,F) with µ(JEtK) = P (Et)
for all finite Et.

2.1.2. The hypothesis space. We consider statistical hypotheses that are given by
likelihood functions over the possible outcomes. That is, we take hypotheses H to
be themselves probability measures over the outcome space.

As a basic example, the i.i.d. or Bernoulli hypothesisHθ with parameter θ ∈ [0, 1]
assigns each length-t data sequence Et a probability Hθ(E

t) = θt1 · (1 − θ)t−t1

with t1 the number of 1’s in Et. This induces one-step conditional probabilities
Hθ(1 | Et) = θ at each time point t, i.e., independent of the past sequence Et. Thus
Hθ formalizes the data-generating process where the same elementary outcome is
always produced with the same probability; for instance, the process of repeatedly
tossing a coin (heads is 1, tails is 0) with bias θ.

Other hypotheses can express various dependencies of current probabilities on
the structure of the past data. At the extreme end are deterministic hypotheses,
that at each time only allow for one particular next outcome. This corresponds to
a measure assigning probability 1 to (each initial segment of) one particular infinite
outcome stream Eω.

1For a recent alternative proposal for open-minded Bayesianism in a framework that does not
explicitly deal with statistical hypotheses, see Raidl (2020).
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We will assume that at any time the Bayesian agent only has a finite number of
explicitly formulated hypotheses. These N hypotheses H0, . . . ,HN−1 are collected
in a hypothesis set ΘN := {Hi}i<N .

Below we will consider expanding sequences of hypotheses sets, for which the
following notation will be useful. Let N(t) denote the number of hypotheses formu-
lated before time t, so that the hypothesis formulated at time t (if it exists) is HN(t).
We often write t0 < t1 < t2 < . . . for the time points at which new hypotheses are
formulated. In that case we abbreviate Ni := N(ti) = N(t0) + i, so that HNi is the
hypothesis formulated at ti and ΘNi+1 = {Hi}i≤Ni is the hypothesis set right after
the formulation of HNi

. Note, again, that we do not make any assumptions on
the origin of the new hypotheses; all we suppose is that the inquiry prompts some
(possibly data-dependent!) stream of incoming hypotheses. We will have more to
say about this in our analysis in sect. 4.

2.1.3. Full probability functions from marginal over ΘN . Given some distribution
over ΘN for an agent’s marginal probability function over the formulated hypothe-
ses. Since hypotheses are likelihood functions, we can define the agent’s marginal
likelihood function over the outcomes, conditional on hypothesis Hi, by

(1) P (E | Hi) := Hi(E).

Then by the law of total probability we obtain the unconditional marginal likelihood
over the outcomes by

(2) P (E) = P (E | ΘN ) =
∑
i<N

P (Hi) ·Hi(E).

Thus stipulating the marginal over ΘN defines a probability function P over all of
Ω×ΘN .2

2.2. The standard Bayesian. A Bayesian agent starts with a set ΘN of N hy-
potheses, and a probability function P0, or prior, over ΘN and hence over Ω×ΘN .3

When the agent receives a new outcome Et at time t > 0, it must update its
probability function Pt−1 to a new probability function or posterior Pt.

The orthodox Bayesian way of updating on the evidence is by use of Bayes’s
rule,

(3) Pt(·) := P0(· | Et),

2Our account of hypotheses is a slightly simplified version of Wenmackers and Romeijn’s. They
take as hypotheses sets of probability functions, so that there is a difference between the “theoret-

ical context” TN = {Hi}i<N , the set of hypotheses, and ΘN = ∪i<NHi, the set of all probability
functions that constitute the hypotheses. Furthermore, an hypothesis’s likelihood is then only set-
tled with the aid of a subprior over the hypothesis’s elements. While this additional complexity
arguably does more justice to the actual shape of hypotheses in scientific or statistical inference,

nothing in the following should hinge on the simpler formulation we have chosen to adopt. (Wen-
mackers and Romeijn’s running example of the food inspection also only figures “elementary”

hypotheses that are singleton sets, i.e., single probability functions as in our framework.) That
said, a natural further development of the current work would allow for representing “hypotheses”
as models in the form of continuous distributions over parametric hypothesis spaces, so as to be
able to explicitly analyze, for instance, adding more parameters to a model.
3We always assume that the prior for given hypothesis set ΘN is regular, meaning that it assigns
nonzero probability to each element in ΘN .
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with Et the outcome sequence up to time t. In particular, for the agent’s predictive
probabilities, or its marginal probability function over finite-length future outcomes,

(4) Pt(E
s) = P0(Es | Et) =

P0(EtEs)

P0(Et)
.

Equivalently but more in line with the procedure in sect. 2.1.3, the agent first
updates the marginal posterior over the hypotheses, again by Bayes’s rule and by
Bayes’s theorem:

Pt(Hi) := P0(Hi | Et) =
P0(Hi) ·Hi(E

t)

P0(Et)
.(5)

Then, by the law of total probability on the conditional marginal likelihood,

Pt(E
s) = P0(Es | Et) =

∑
i<N

Pt(Hi) ·Hi(E
s | Et).(6)

Note that Pt is here always implicitly conditional on the hypothesis set ΘN , e.g.,
Pt(Hi) = Pt(Hi | ΘN ).

In summary, the standard Bayesian proceeds as follows.

(t = 0) N hypotheses. At the start each explicitly formulated hypothesis Hi in
ΘN receives a prior P0(Hi) > 0, such that

∑
i<N P0(Hi) = 1.

(t > 0) Evidence Et. Updating on evidence at a later point in time proceeds
by Bayes’s rule, equation (5).

(t > 0) New hypothesis HN . An hypothesis formulated at a later point in time
is not an element of the set ΘN of hypotheses. This hypothesis’s prior and
posterior probability is and will always remain 0.

2.3. The vocal open-minded Bayesian. Wenmackers and Romeijn’s proposal
of an open-minded Bayesianism starts with postulating, alongside the set ΘN of ex-
plicitly formulated hypotheses, a catch-all hypothesis (2016, 1231f; an idea presented
in but preceding Shimony, 1970, 95; e.g., Savage in a discussion edited by Barnard
and Cox, 1962, 70). This catch-all hypothesis ΘN comprises all (yet) unformulated
hypotheses; Wenmackers and Romeijn explicitly define it as the complement of ΘN

within the class of all possible hypotheses.
Their vocal variant of open-minded Bayesianism (Wenmackers and Romeijn,

2016, 1234f, 1238ff) derives its name from the fact that the catch-all hypothesis
comes with a symbolic prior and likelihood function that figures in all calculations.
This in contrast to the silent version (sect. 2.4 below), where no such prior or
likelihood is formulated.

2.3.1. Specification. Thus the vocal open-minded Bayesian starts with an hypoth-
esis set ΘN of N explicitly formulated hypotheses, and in addition a catch-all
hypothesis ΘN . Each explicit hypothesis is assigned a numerical prior probabil-
ity, summing to 1; and in addition the catch-all hypothesis is assigned an “in-
definite” or “merely symbolic” prior τN . The numerical probability assigned to
an H ∈ ΘN specifies the prior probability value P0(H | ΘN ), conditional on the
hypothesis set; the unconditional or absolute prior is given by the normalization
P0(H) := (1 − τN ) · P0(H | ΘN ), which is also indefinite because it involves τN .
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While the catch-all thus receives an explicit yet indefinite prior value P0(ΘN ) = τN ,
the prior probability values P0(H ′) of the (yet) unformulated hypotheses H ′ ∈ ΘN

are left fully unspecified.
In addition to the indefinite prior, the catch-all comes with a symbolic likelihood

function xN (·) := P0(· | ΘN ). Thus the unconditional marginal likelihood function,
analogous to (2) but now not conditional on ΘN , is given by the indefinite term

P0(E) =
∑
i<N

P0(Hi) ·Hi(E) + τN · xN (E)

= (1− τN )
∑
i<N

P0(Hi | ΘN ) ·Hi(E) + τN · xN (E).

The calculation of an explicit hypothesis’s posterior on receiving evidence E pro-
ceeds by Bayes’s rule and theorem in accordance with (5), but now also results in
an indefinite term because it involves P0(E).

Finally and crucially, at each point in time the open-minded Bayesian may receive
a newly formulated hypothesis. This new hypothesis, in terminology due to Earman
(1992, 196), is shaved off from the catch-all. Formally, the vocal agent extends its
current hypothesis set ΘN to the new set ΘN+1 = ΘN ∪ {HN} to include the
newly formulated hypothesis HN , leaving a cleanly shaven catch-all ΘN+1 = ΘN \
{HN}. To specify the new hypothesis’s prior P0(HN ) the agent then chooses a prior
probability value p that it takes from the prior τN , leaving the indefinite remainder
τN+1 := τN − p for the new catch-all ΘN+1. Writing xN+1(·) = P0(· | ΘN+1)
for the new catch-all’s indefinite likelihood function, expressions for the marginal
likelihoods and posteriors that explicitly contain HN can be calculated as above.

In summary, the vocal open-minded Bayesian proceeds as follows.

(t = 0) N explicit hypotheses. Each explicit hypothesis Hi in ΘN receives a
prior P0(Hi | ΘN ) > 0 conditional on ΘN , such that

∑
i<N P0(Hi | ΘN ) =

1. Moreover, the catch-all hypothesis ΘN = Θ \ ΘN receives an indefinite
unconditional prior P0(ΘN ) := τN , and the unconditional priors of the explicit
hypothesis are given by P0(Hi) := (1− τN ) · P0(Hi | ΘN ).

(t > 0) Evidence Et. Updating proceeds in the standard fashion, although
involving an indefinite prior and likelihood of the catch-all:

Pt (Hi) := P0(Hi | Et) =
P0(Hi) ·Hi(E

t)∑N−1
j=0 P0(Hj) ·Hj(Et) + τN · xN (Et)

.

(t > 0) New hypothesis HN . When a new explicit hypothesis HN is formulated,
extending the hypothesis set to ΘN+1 = ΘN ∪{HN}, the prior τN of the earlier
catch-all is decomposed into a value p < τN for the prior P0(HN ) of the new
hypothesis and a remainder τN+1 = τN − p for the prior P0(ΘN+1) of the new
catch-all.

2.3.2. Discussion. The obvious drawback of this proposal is the introduction of
purely symbolic terms for the priors and likelihoods of the catch-alls. Apart from
the pain of doing actual calculations with these terms, it is quite unclear how to
understand them.
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Wenmackers and Romeijn variously refer to these terms as “unknown,” “unde-
fined,” “indefinite,” or “unspecified.” But even if we grant that these terms can be
considered unknown to the agent (leaving aside worries about the notion, not just
of an unknown probability, but of an unknown epistemic probability), it seems to
us that there is a difference between terms that are unknown yet definite, and terms
that are not. Only in the first case is there an actual matter to the fact of, say,
τN < c for a numerical constant c. Thus it is only in the first case that it is clear
that the shaving off from the catch-all actually imposes a limitation on how much
prior the agent can still assign to a newly formulated hypothesis.4 In contrast, it is
less clear whether an indefinite probability value allows for shaving off any desired
definite prior. This might not be a problem to Wenmackers and Romeijn; indeed
this would fit their suggestion that the unconditional probability of the catch-all’s
complement is always infinitesimally small (ibid., 1248). However, for our purposes
it will prove to be important to impose such constraints on the agent, which is why
we will not further pursue the idea of indefinite or infinitesimal priors.

2.4. The silent open-minded Bayesian. The motivation for the silent version
of open-minded Bayesianism (Wenmackers and Romeijn, 2016, 1234f, 1241f) is to
evade the difficulties surrounding symbolic assignments to the catch-all. This is
achieved by doing away with this assignment altogether, namely, by always only
considering conditional evaluations, conditional on the current hypothesis set. The
corresponding agent is simply silent about the absolute probability values.

2.4.1. Specification. The silent open-minded Bayesian starts out, as before, with
an hypothesis set ΘN of explicitly formulated hypotheses, assigning each H ∈ ΘN

a conditional probability value P0(H | ΘN ). As opposed to the vocal open-minded
Bayesian, there is no bookkeeping of the catch-all or the unconditional prior P0.

Since all probability terms are conditional on the current hypothesis set, updat-
ing on evidence proceeds fully conditional on ΘN . That is, the term Pt(Hi | ΘN )
is evaluated via the usual Bayesian updating (5), conditional on ΘN .

If a new hypothesis HN is formulated, the silent open-minded Bayesian again
extends its current hypothesis set ΘN to the new set ΘN+1 = ΘN ∪ {HN} to
include the newly formulated hypothesis HN . It then assigns the new hypothesis
conditional on the new hypothesis set a posterior value of choice, i.e., a value for
Pt(HN | ΘN+1). The new posterior values of the earlier hypotheses are calculated
by renormalization, thus preserving the probability ratios.

In summary, the silent open-minded Bayesian proceeds as follows.

(t = 0) N explicit hypotheses. Each explicit hypothesis in ΘN receives a prior
P0(Hi | ΘN ) conditional on the initial hypothesis set.

(t > 0) Evidence Et. Updating proceeds in the usual way, conditional on the
current hypothesis set ΘN :

Pt(Hi | ΘN ) := P0(Hi | Et,ΘN ) =
P0(Hi | ΘN ) ·Hi(E

t)

P0(Et | ΘN )
.

4For instance, Wenmackers and Romeijn (2016, 1240) mention the possibility of assigning a uni-
form prior to a new hypothesis. If τN has an (unknown yet) definite value, then that would only

be possible if this value is in fact greater than 1
N+1

.
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(t > 0) New hypothesis HN . When a new hypothesis HN is formulated, extend-
ing the hypothesis set to ΘN+1 = ΘN ∪{HN}, the posterior Pt(HN | ΘN+1) is
set to a value p ∈ (0, 1), and the posteriors of the remaining explicit hypotheses
conditional on the new hypothesis set are renormalized by

Pt(Hi | ΘN+1) := (1− p) · Pt(Hi | ΘN ).

2.4.2. Discussion. In the silent version Wenmackers and Romeijn do away with
the explicit monitoring of the catch-all hypothesis by simply always “hiding behind
the conditionalization stroke” (2016, 1243). As they themselves point out, one
might feel uneasy about thus leaving unspecified the agent’s unconditional, absolute
convictions. One might indeed feel that this threatens to sufficiently compromise
coherence that this is no longer a Bayesian account (cf. Glymour, 2016, 1282).

However, it is surely more in tune with statistical practice that probabilities are
always evaluated under the tentative assumption of a particular model, without
any pledge to the truth of this model. The discussion by Sprenger (2020, also see
Sprenger and Hartmann, 2019, ch. 12, Vassend, 2019) is a recent example of several
earlier expressions of this view in the Bayesian literature (e.g., Lindley, 2000, 334;
1982, 611), that tends to go together with a commitment to coherence only for as
long as the model does not change (see indeed Shimony, 1970, 103f). Perhaps most
outspoken in this latter respect is Howson’s account of Bayesianism, “a theory of
valid inductive inference from pre-test to post-test distributions,” which offers the
worry of an “inconsistent assignment over time” a simple reply: “so what?” (1988,
81).

Moreover, while there is a clear sense in which open-minded Bayesianism, when
moving to larger models, loses the guarantee of dynamic coherence (see sect. 4.1.3
below for more details), there is also an important sense in which Wenmackers
and Romeijn’s proposals are “conservative extensions” where the probabilities con-
ditional on an expanded model do cohere with those conditional on the original
model (2016, 1235f). Bayes’s rule amounts to restricting the subalgebra on the
outcome space (to the subtree of the outcome space that extends the evidence)
while preserving all probability ratios within; the rule for incorporating new hy-
potheses enlarges the subalgebra on the hypothesis space (to the larger hypothesis
set) while likewise preserving all probability ratios within the original (ibid.).

We conclude that the silent version holds a conceptual advantage over the vocal
version. The main formal difference, for our purposes, is that in the vocal version,
a new hypothesis is assigned a certain prior value that is constrained by the catch-
all’s prior; whereas in the silent version, a new hypothesis is assigned a posterior
value, the choice of which is unconstrained.

Wenmackers and Romeijn indeed worry that “[t]he silent proposal allows too
much freedom in the assignment of a posterior to the new hypothesis—so much
freedom, that it is not clear that the old evidence has any impact” (ibid., 1245).
This prompts them to propose a hybrid variant of the vocal and the silent versions
(sect. 2.6 below). Before we turn to this version, we will take a quick look at a
more direct tweak of the silent version that replaces the choice of posterior by the
choice of prior, so that the calculation of the former requires some “reconstructive
work” that does take old evidence into account (ibid., 1242).
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2.5. The silent open-minded Bayesian: retroactive variant. Thus the alter-
native variant of the silent version is where we “retroactively” assign a prior to a
new hypothesis, i.e., a value p0 to P0(HN | ΘN+1). After renormalizing the priors
of the other hypotheses,

P0(Hi | ΘN+1) := (1− p0) · P0(Hi | ΘN )(7)

for all H ∈ ΘN , we can with the help of Bayes’s rule (using the the new likelihood
HN (Et)), calculate Pt(HN | ΘN+1) from there.

Note, however, that for the end result it does not make a difference whether we
calculate a posterior from a choice of prior, or the other way around. (Provided
that HN ’s likelihood on Et is positive, or its posterior can only be 0.) For any
posterior pt for a new hypothesis, we can uniquely reconstruct a choice of prior p0

that in combination with the new hypothesis’s likelihood, will result after Et in
that posterior. After all, there are, unlike in the vocal version, no constraints on
choosing a prior p0.

2.6. The hybrid open-minded Bayesian. The vocal and the silent version are
combined in the hybrid version (Wenmackers and Romeijn, 2016, 1245f) as fol-
lows. The agent starts out, as in the vocal version, with an explicit assignment to
the catch-all hypothesis. During the normal learning process of updating on the
evidence, it stays in the “silent phase,” in which it evaluates all probabilities con-
ditional on the current hypothesis set. Only when a new hypothesis is formulated
does it enter the “vocal phase,” in which it, like in the vocal version, retroactively
shaves off a prior for the new hypothesis from the catch-all’s prior, after which it,
like in the retroactive silent version, recalculates the priors and posteriors (again
conditional, but on the new hypothesis set) from there.

In summary, the hybrid open-minded Bayesian proceeds as follows.

(t = 0) N explicit hypotheses. Each explicit hypothesis Hi in ΘN receives a
prior P0(Hi | ΘN ) > 0 conditional on ΘN , such that

∑
i<N P0(Hi | ΘN ) = 1.

Moreover, as in the vocal version, the catch-all hypothesis ΘN = Θ \ ΘN

receives an unconditional prior P0(ΘN ) := τN , and the unconditional priors of
the explicit hypothesis are given by P0(Hi) := (1− τN ) · P0(Hi | ΘN ).

(t > 0) Evidence Et. Updating proceeds as in the silent version, conditional
on the current hypothesis set ΘN :

Pt(Hi | ΘN ) := P0(Hi | Et,ΘN ) =
P0(Hi | ΘN ) ·Hi(E

t)

P0(Et | ΘN )
.

(t > 0) New hypothesis HN . When a new explicit hypothesis HN is formulated,
extending the hypothesis set to ΘN+1 = ΘN∪{HN}, as in the vocal version the
unconditional prior τN of the earlier catch-all is decomposed into a value p < τN
for the unconditional prior P0(HN ) of the new hypothesis and a remainder
τN+1 = τN − p for the unconditional prior P0(ΘN+1) of the new catch-all. The
priors conditional on the new hypothesis set are obtained by renormalization,

P0(Hi | ΘN+1) =

(
1− p

1− τN+1

)
· P0(Hi | ΘN ),
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from which the conditional posteriors are obtained by the usual updating,

Pt(Hi | ΘN+1) := P0(Hi | Et,ΘN+1) =
P0(Hi | ΘN+1) ·Hi(E

t)

P0(Et | ΘN+1)
.

Thus the hybrid version combines the conceptually more pleasing conditional
reasoning of the silent version with the constraint on new priors introduced by the
catch-all in the vocal version. This constraint proves important for our concern in
this paper, the guarantee of truth-merging.

3. The failure of truth-convergence

We start by introducing the formal property of merger with the truth, as satisfied
by the standard Bayesian (sect. 3.1). After some preliminary remarks about this
property in the open-minded case (sect. 3.2), we demonstrate and diagnose its
failure for the silent (sect. 3.3) and the hybrid (sect. 3.4) version.

3.1. The standard Bayesian. Suppose the standard, “closed-minded” Bayesian
starts with a hypothesis set that includes the hypothesis H∗ that is actually true,
meaning that the probabilities given by H∗ are the true probabilities that govern
the generation of the data. In that case, one can prove a strong statement about the
agent’s convergence to this truth. Namely, one can prove that, H∗-almost surely,
the total variational distance

(8) sup
A∈F
|Pt(A)−H∗(A | Et)|

between the agent’s probabilities and the H∗-probabilities on future events goes to 0
as t→∞. That is, with true probability 1 (as given by H∗), the agent’s probabilities
conditional on the past will convergence on all events’ true probabilities. We say
that the agent strongly merges with the truth.

Definition 1. For probability measures P and Q on (Ω,F), we say that P strongly
merges with Q if Q-a.s.

sup
A∈F
|P (A | Et)−Q(A | Et)| t→∞−−−→ 0.(9)

A standard Bayesian’s strong merger with the truth follows directly from a fun-
damental result due to Blackwell and Dubins.

Theorem 1 (Blackwell and Dubins, 1962). For probability measures P and Q on
(Ω,F) such that the latter is absolutely continuous with respect to the former, i.e.,
Q(A) > 0 implies P (A) > 0 for all events A in the σ-algebra F on Ω, it holds that
P strongly merges with Q.

Namely, if the Bayesian agent’s hypothesis set contains H∗, meaning that its
regular prior probability P (H∗) > 0, then, in terminology due to Kalai and Lehrer
(1993, 1037), P holds a grain of H∗, or P holds a grain of the truth. That is to say,
there is an a ∈ (0, 1], namely a = P (H∗), such that the marginal prior P on the
outcome space equals a ·H∗+(1−a) ·P ′, for some other measure P ′. More precisely
still, from the fact that P (H∗) > 0, we have that P dominates H∗, meaning that
P (Et) ≥ a ·H∗(Et) for all finite outcome sequences Et. But one can show that this
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implies that also P (A) ≥ a ·H∗(A) for all events A ∈ F generated from the finite
sequences, which just means that H∗ is absolutely continuous with respect to P .

Corollary 1. If P holds a grain of the truth H∗, then P strongly merges with H∗.

Strong merger is a very strong notion, as it includes all tail events A, the oc-
currence of which can never be verified. A more down-to-earth notion of truth-
convergence is weak merger (Kalai and Lehrer, 1994), that only concerns the special
case of the next outcome. This is the notion we will be focusing on in this paper.

Definition 2. For probability measures P and Q on (Ω,F), we say that P weakly
merges with Q if Q-a.s.

sup
Et+1∈{0,1}

|Pt(Et+1)−H∗(Et+1 | Et)|
t→∞−−−→ 0.(10)

In fact, weak merger of two probability measures is equivalent, for every d ∈ N,
to merger where the supremum ranges over all future outcomes of length up to d
(ibid.). Nonetheless, as we will explain in more detail in our analysis in sect. 4, we
will in this paper focus on the case d = 1. Moreover, as we will explain there too, the
notion of holding a grain of the truth, already sufficient for strong merger, will be
central to our analysis. When in the following we refer to “a.s. truth-convergence”
without further qualification, we mean weak merger as in definition 2.5

3.2. The open-minded Bayesians. The question we shall investigate is whether
Wenmackers and Romeijn’s proposals can retain this conception of convergence
to the truth, whenever the true hypothesis H∗ is formulated. More precisely, the
question is whether we can show that, if H∗ is indeed formulated at some time t0,
the agent function Pt(· | ΘN(t)), as t > t0 goes to infinity, weakly merges with H∗.
The question is whether we can show that, after H∗ has been formulated, a.s.

(11) sup
Et+1∈{0,1}

|Pt(Et+1 | ΘN(t))−H∗(Et+1 | Et)|
t→∞−−−→ 0.

One might already object here that we should rather consider convergence of the
unconditional agent function Pt(·) = Pt(· | ΘN(t) ∪ΘN(t)). For an adherent to the
vocal variant, the agent’s beliefs are constituted by a function over all hypotheses,
including those in the catch-all, and so an agent’s truth-convergence should be taken
to mean convergence of that function. However, we already argued in favour of the
conditional perspective of the silent or hybrid version; and it is unclear to us where
to even start in analyzing convergence of a measure that is partly unspecified.

5There exist other notions of truth-convergence one could consider. Note, first of all, that the

presupposition of a true statistical hypothesis can be distinguished from what is perhaps the more

usual setting in philosophy, where the relevant truths are the events or elements of the outcome
space (Gaifman and Snir, 1982; Earman, 1992). Note, further, that the notion of merging is

concerned with learning the probabilities of future outcomes. This can be distinguished from

learning the correct hypothesis (“learning the parameter” in a statistical model), which would
correspond to the agent’s posterior concentrating on the correct element in the hypothesis set.

One reason why we do not consider this notion here is that such posterior-concentration is rather
trivially impossible unless we exclude the possibility of different hypotheses that from some point

on are “empirically equivalent” in that they give the same predictive probabilities (cf. Lehrer and

Smorodinsky, 1996, 148f). Finally, there are still less powerful notions of truth-merging, including
almost weak merging. See Lehrer and Smorodinsky (1996), Leike (2016, ch. 3) for overviews of

learning notions and necessary and sufficient conditions.
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This is not to say that the truth-merging of Pt(· | ΘN(t)) is unproblematic in
its interpretation. Indeed, we will below be much concerned with meeting two
challenges in squaring the semi-formal expression (11) with our intuitive demand
of truth-convergence. Semi -formal, because we have not yet made fully clear how
to understand the agent functions, with their dependence on proposed hypotheses,
under the scope of an “almost-sure” qualifier on outcome streams. For this we will
need to get clear, first, on the exact nature of the probability-1 qualification, and
second, on the exact nature of the agent measure that we seek merging for.

Nevertheless, the demand that (11) is supposed to capture is already sufficiently
precise to isolate a straightforward case in which truth-convergence is guaranteed
(sect. 3.2.1). This will then also already point us to the general case that might
be problematic (sect. 3.2.2). In fact, this is already enough to show that this case
is problematic: all the variants of open-minded Bayesianism are not in general
guaranteed to preserve truth-convergence (sects. 3.3–3.4). Only in the discussion
leading up to our diagnosis of this failure and our proposal of a forward-looking
open-minded Bayesian, in sect. 4, will we finally face the aforementioned challenges
head-on.

3.2.1. Finitely many new hypotheses. The answer to our question is a clear yes if
we can be sure that, after H∗ is formulated, no further new hypotheses will ever
be formulated. For each of the different versions of open-minded Bayesianism, the
agent with function Pt(· | ΘN(t)) after formulation of H∗ can then be treated as
a standard Bayesian that starts its investigation at t with a fixed hypothesis set
ΘN(t). Thus, as H∗ ∈ ΘN(t), the agent then holds a grain of the truth and we can
simply apply corollary 1 to Pt(· | ΘN(t)) to indeed obtain not just weak but strong
merger with the truth from there.

This observation easily extends to the more general case where we can be sure
that after some finite point in time there will no longer be new hypotheses formu-
lated. So suppose H∗ is formulated at t0 ≤ t, say in response to data Et0 . Then, to
put it graphically, from each of the possible nodes Et in the outcome tree extending
Et0 , we can run corollary 1 on the fixed agent function to obtain, with probability
1, truth-convergence from there; but that means we already have the guarantee of
truth-merger from here, at Et0 . Hence, under the assumption that no more hy-
potheses are formulated after some finite time t, we have strong merger whenever
the truth H∗ is formulated. This assumption can be reformulated as saying that,
on any infinite outcome stream, only a finite number of new hypotheses will ever
be formulated.

Fact 1. All open-minded Bayesians are guaranteed to strongly merge with the truth
whenever the truth is formulated, if there is a finite bound on the number of new
hypotheses that will be formulated.

3.2.2. Infinitely many new hypotheses. The previous assumption, in entailing that
from some point on the open-minded Bayesian reduces to a standard, fixed-minded,
Bayesian, thereby also neutralizes a good part of the distinctive interest of the
former. It is, more importantly, an assumption that we do not generally want
to make: we certainly do not want to assume that, when the true hypothesis is
formulated, who or whatever is responsible for designing new hypotheses knows
that it can stop now.
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On the other hand, it also sounds unrealistic that in an actual scientific inquiry,
certainly after the true hypothesis has already been found, one would mindlessly
keep incorporating newly arriving hypotheses indefinitely. One would presumably
only look out for new hypotheses if the currently available ones do not seem to do:
if there is some misfit between the data and the current hypotheses. Incorporating
this element, possibly in the shape of a formal model verification procedure, would
still not render the scenario of an unending stream of false hypotheses insignifi-
cant: there is now a tension to be resolved between risking sticking to suboptimal
hypotheses and risking incorporating false ones.

Important as this element is, it is beyond the scope of the current paper. We are
here first concerned with the consistency requirement of truth-convergence in the
most general case where the agent might forever keep receiving new (and false) hy-
potheses, which it has to incorporate irrespective of the past outcomes and current
hypothesis set.

This general case is potentially problematic because if the agent keeps having
to distribute some of its posterior to these new and false hypotheses (and so keeps
having to incorporate these in its predictions), this could get in the way of its
converging on the true hypothesis’s true predictive probabilities. In fact, this is
problematic, for all the versions of open-minded Bayesianism. We now first look at
the silent variants (sect. 3.3), where this shows very directly; and then at the more
interesting hybrid variant (sect. 3.4).

3.3. The silent open-minded Bayesian. This version is the least constrained
of the open-minded Bayesianisms, which makes it most straightforwardly fail to
guarantee truth-convergence. We first show this for the standard open-minded
version of sect. 2.4, and then for the retroactive variant of sect. 2.5.

3.3.1. The silent open-minded version: original variant. The reason for the failure
of truth-convergence is that we cannot exclude infinite streams of false hypotheses
that keep occupying a specific share of the posterior probability and in this way
keep distorting the predictive probabilities.

Fact 2. The original variant of the silent open-minded Bayesian is not guaranteed
to weakly merge with the truth whenever the truth is formulated.

Example 1. Consider the scenario where the data is generated by some Bernoulli
measure Hθ∗ . Suppose that θ∗ = 9/10, and that this true H∗ = Hθ∗ is indeed
formulated at some stage t0. Now consider the possibility that infinitely often (i.e.,
for each stage t′ > t0 there is a still later stage t > t′ at which) a new hypothesis
HN(t) is formulated that issues a one-step predictive probability HN(t)(1 | Et) =
0. Since there are no restrictions on the posterior which the silent open-minded
Bayesian can assign to these newly formulated hypotheses, it can choose to keep
assigning a value Pt(HN(t) | ΘN(t)+1) ≥ 1/10 + ε for positive ε. In that case there
will be infinitely many stages t at which the one-step predictive probability

Pt(0 | ΘN(t)+1) =
∑

H∈ΘN(t)+1

Pt(H | ΘN(t)+1) ·H(0 | Et)

>

(
1

10
+ ε

)
·HN(t)(0 | Et)

=
1

10
+ ε,
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blocking convergence to the correct predictive probability H∗(0 | ·) = 1/10. ♦

This example can be adapted at will to show that for any true H∗ there are
hypothesis streams and posterior assignments that block convergence. The essential
trait is that the newly formulated hypotheses receive—keep receiving—too much
posterior. This leads us to an obvious diagnosis: the silent open-minded Bayesian is
allowed too much freedom in assigning posteriors to newly formulated hypotheses.

3.3.2. The silent open-minded version: retroactive variant. Following up on the
previous diagnosis, one way in which it might seem we can constrain the freedom of
the open-minded Bayesian is to have the posterior be informed by the old evidence.
This is the retroactive variant of the silent open-minded Bayesian, sect. 2.5 above;
but as we explained there already, there is no formal difference between the two
versions. That is, barring hypotheses with likelihood 0, any choice of posterior can
be modeled as a retroactive choice of prior. This means that any counterexample
to the silent open-minded version also yields a counterexample to the retroactive
variant, including example 1.

Fact 3. The retroactive variant of the silent open-minded Bayesian is not guaran-
teed to weakly merge with the truth whenever the truth is formulated.

Example 2. The calculations now do depend on the likelihoods of all hypotheses
on the past data, something that was not specified in example 1. The most straight-
forward circumstance is where the new hypothesis’s likelihood on Et actually equals
the agent’s probability assignment of Et conditional on ΘN ,

HN (Et) = P0(Et | ΘN ),(12)

in which case a prior assignment P0(HN | ΘN+1) := p translates into a posterior
Pt(HN | ΘN+1) = p. In that case, a prior choice of p ≥ 1/10 + ε recovers the
previous example. If the new hypothesis’s likelihood on the past data is lower than
P0(Et | ΘN ), the prior must be set higher to retrieve the same posterior. As an
illustration, if HN (Et) = 1/3 · P0(Et | ΘN ), then a posterior pt > 1/10 requires a
choice of prior p0 > 1/4.

Arguably, however, the more plausible circumstance is for newly proposed hy-
potheses to have higher likelihood than the earlier hypotheses. Plausibly, new
hypotheses, formulated after the past data are in, rather overfit the data: in the
most extreme case, actually have a likelihood 1. In that case, of course, the same
posterior pt requires a smaller prior p0. To illustrate again, let the data be generated
by Hθ∗ with θ∗ = 0.9, so that P0(Et | ΘN ), with high probability, will not exceed
Hθ∗ ’s likelihood on the past data Et, which for typical data is about 0.90.9t ·0.10.1t.
In that case, for a new hypothesis HN with HN (Et) = 1, the same posterior only
requires an exponentially smaller prior: already for t = 10, for instance, it suffices
for posterior pt > 1/10 to set p0 > 1/200. ♦

The arguably most natural circumstance of new hypotheses that overfit is thus
also the most difficult case for our purposes. An extremely modest choice of prior
here already suffices for a substantial posterior, and the threat to truth-convergence
is precisely such substantial posterior assignments to new and false hypotheses.

One can defend the retroactive approach on the grounds that it accommodates
how old evidence confirms new theories (Wenmackers and Romeijn, 2016, 1244f);
or one can disown it on the grounds that it involves a “double counting” of the old
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evidence, since the hypothesis and presumably its prior was already formulated in
response to the evidence (cf. Earman, 1992, 132f). We only point out here that for
the above reason of overfitting hypotheses, a retroactive procedure appears more
challenging for the aim of truth-convergence. Of course, in the silent version, this
cannot make an essential difference: both variants are formally equivalent, and the
challenge above is limited to a moderate choice of prior in the retroactive variant
that does not correspond to a moderate choice of posterior in the original variant.
But our analysis below reveals that in the hybrid case, the difference between prior
and posterior assignments will matter for the guarantee of truth-convergence.

3.4. The hybrid open-minded Bayesian. The diagnosis from the previous sec-
tion was clear: the (retroactive) silent open-minded Bayesian is allowed too much
freedom in assigning posteriors (priors) to newly formulated hypotheses. Given this
diagnosis, one might expect the hybrid version to do better. After all, here there is
an explicit constraint on priors: there is only so much the agent can shave off from
the catch-all!

This is so, recall, because we interpret the catch-all’s prior as at least having
some determinate value. This does not exclude that it is “a number extremely
close to unity,” but it does exclude a conception on which it is some indeterminate
value arbitrarily close to 1, perhaps made precise as “unity minus an infinitesimal”
(Wenmackers and Romeijn, 2016, 1244). When it comes to truth-convergence, such
a conception renders the hybrid version on a par with the silent version: both put
no constraints on the choice of prior (posterior), wherefore convergence cannot be
guaranteed.6

We thus assume, more specifically, that the hybrid version features a certain
limited reservoir of prior probability from which the probability for new hypotheses
must be taken. We can think of this constraint as simply that, a constraint; we are
not committed to understanding this constraint in terms of a catch-all. Neverthe-
less, we see it as a conceptual plus that it can be understood in this way, and this
carries over to our own proposal in sect. 4.

3.4.1. Failure of truth-convergence. Unfortunately, the constraint introduced in the
hybrid version does not suffice: we can even produce a scenario where convergence
to the true predictive probabilities is guaranteed to fail. This scenario again exploits
the possibility of a stream of overfitting hypotheses, that despite the constraint on
new prior assignments still keep taking up too much posterior. More precisely,
on every possible outcome stream we repeat the following: wait while all current
probabilistic hypotheses get lower and lower likelihood on the unfolding sequence
of outcomes, until the difference with the maximal likelihood of a new overfitting
hypothesis is large enough for such a new hypothesis to have a sufficient impact,
despite its necessarily constrained prior, on the agent’s predictive probabilities.

Proposition 1. The hybrid open-minded Bayesian is not guaranteed to weakly
merge with the truth whenever the truth is formulated.

6Wenmackers and Romeijn (ibid.) evoke Earman’s worry that the procedure of shaving-off from

the catch-all “leads to the assignment of ever smaller initial probabilities to successive waves of

new theories until a point is reached where the new theory has such a low initial probability as to
stand not much of a fighting chance” (1992, 196). On our analysis, the danger is rather that new

theories keep amassing too much probability.



16 STERKENBURG AND DE HEIDE

Example 3. Suppose that the true hypothesis is the Bernoulli H∗ = Hθ∗ with
θ∗ = 1/2, and that this hypothesis is indeed formulated at a point in time t0. Thus
H∗ is assigned some unconditional prior value p∗ =: P0(H∗), leaving the catch-all
ΘN0+1 with some unconditional prior τN0+1 = τN0

− p∗.
Consider a history with t0 < t1 < t2 < . . . infinitely many later points in time at

which a new hypothesis is formulated. The vocal open-minded Bayesian is restricted
by the prior held by the catch-all in how much prior it can shave off and assign to
these new hypotheses; but it can choose to assign each HNi an unconditional prior

(13) P0(HNi) = 2−i · τN0+1,

since
∑∞
i=1 2−i · τN0+1 = τN0+1.

Now consider such a history where the newly proposed hypotheses all maximally
overfit the past data at their time of formulation, i.e., HNi(E

ti) = 1 for each i, and
then make some biased one-step prediction HNi(0 | Eti) = pi, with |pi − 1/2| > ε
for some fixed ε > 0.

Suppose, further, that all hypotheses formulated before the true hypothesis, and
all the new hypotheses after their formulation, issue one-step predictive probabilities
that are bounded away from 1: there is some δ > 0 such that all one-step predictive
probabilities are smaller than 1−δ. The idea is that, whatever the subsequent data,
the hypotheses in play will at each point in time leak some of their likelihood, so
that, when a new overfitting hypotheses HNi

comes in, after the stretch of time
between ti−1 and ti has been large enough, its relative likelihood is so large that its
biased prediction will sufficiently distort the overall predictive probability.

Specifically, fix some ε′ < ε, and let

(14) r =
1
2 + ε′

1
2 + ε

,

which itself lies in the interval
(

1
2 , 1
)
. Now if at each ti we have

(15) Pti(HNi
| ΘNi+1) > r,

then we have for E with HNi(E | Eti) > 1
2 + ε that

Pti(E | ΘNi+1) =
∑

H∈ΘNi+1

Pti(H | ΘNi+1) ·H(E | Eti)

> Pti(HNi
| ΘNi+1) ·HNi

(E | Eti)

>
1
2 + ε′

1
2 + ε

·
(

1

2
+ ε

)
=

1

2
+ ε′,

blocking convergence.
As worked out in appendix A.2, inequality (15) is guaranteed if each

(16) ti − ti−1 >
− log (1− r)− (− log r) + i− log τN0+1

− log(1− δ)
.

To break (16) down a little, note that if ε is reasonably large, and ε′ chosen very
small, then r is relatively close to 1/2 and has a minor influence on the bound.
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For instance, if r < 2/3, which would follow from ε > 1/4 and ε′ ≈ 0, then
− log (1− r)− (− log r) < 1, so that (17) is already implied by

(17) ti − ti−1 >
1 + i− log τN0+1

− log(1− δ)
.

Furthermore, we have δ = 1/2 and (17) reduces to

(18) ti − ti−1 > 1 + i− log τN0+1

in the extreme case where all hypotheses exceptHNi
after ti−1 always give predictive

probabilities 1/2. ♦

3.4.2. Discussion. The failure of truth-convergence of the hybrid open-minded agent
may strike one as surprising. It is, after all, characteristic of the hybrid proce-
dure that the true hypothesis, once formulated, holds an explicitly assigned share
p∗ > 0 of the absolute prior. As soon as the true hypothesis is formulated, the
unconditional agent function P0 holds a grain p∗ of this truth, no matter what
hypotheses with what priors are still added later. This carries over to the retroac-
tive prior measures conditional on any hypothesis set after the truth is formulated:
P0(H∗ | ΘN ) ≥ p∗ for all hypothesis sets ΘN after the formulation of H∗. But does
this not suggest that the agent function holds a grain of the truth, and was this
not already enough for strong truth-merger?

A complete answer to what is wrong with this intuition requires us to make
perfectly precise the desideratum of an open-minded agent’s truth-convergence. We
will here first briefly make the above intuition precise in a way that is faulty, but
that allows us to highlight the challenges we face in formalizing our desideratum of
an open-minded agent’s truth-convergence. In the next section we proceed to meet
these challenges and formalize our desideratum, to subsequently propose a version
of an open-minded Bayesian that does satisfy a version of truth-convergence.

Thus let us for a moment consider the retroactive measure P0(· | Θ∞), induced
by the actually generated hypotheses and prior assignments in the limit. This
measure must also hold a grain p∗ of the truth. What, exactly, is unsatisfying
about proclaiming truth-convergence of the open-minded agent, from the fact that
we can always derive, with corollary 1, strong truth-merger of this measure?

The straightforward answer is that this measure’s merger must be unsatisfying
because, as we already know from example 3, it can go together with a guaranteed
failure of convergence of the agent’s one-step predictive probabilities. But how can
this be? Here it is important to note that, in example 3, the hypothesis stream
emphatically depends on the actually generated data stream. While the agent
function P0(· | Θ∞) induced by this particular data and hence hypotheses stream
can be shown to merge with H∗ (as it contains a grain of H∗), this is still consistent
with it failing to converge on the actual data stream that induced it. (The latter
is consistent with a.s. truth-convergence, because, in our example, any particular
outcome stream that is actually generated is an H∗-probability-0 event.)

This provides an illustration of the two challenges we mentioned in sect. 3.2.
First, since we have an hypothesis stream as a moving part, we have to be very
careful with the interpretation of probability-1 statements on the data space. The
retroactive agent function P0(· | Θ∞) was only put in place, so to speak, after
already fixing the actually generated data stream, and the strong merger only
derived after that. In contrast, intuitively, the “almost sure” should range over the
possible data and all that depends on it, including the possible hypotheses (hence
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possible shapes of the agent function) that are formulated in response to it. The
challenge is to attain a formal a.s. convergence that is also still meaningful in this
sense. This is intertwined with the second challenge, which is to make precise which
agent function we actually seek convergence for. The obvious diagnosis is that the
functions P0(· | Θ∞), having this “after the fact” quality of being dependent on a
particular data and hence hypothesis stream, and indeed of then having available
this hypothesis set from the start, are not what we are after.

We now proceed to look for an answer to these two challenges, towards reclaiming
a property of truth-convergence.

4. Forward-looking open-minded truth-convergence

We further analyze the goal of truth-convergence, introducing the notion of an
hypothesis and posterior scheme and that of a completed agent measure (sect. 4.1).
We then propose a forward-looking open-minded Bayesian, the completed agent
measure of which does retain a grain of the truth, from which the agent’s weak
merger follows. We first propose a proto-variant of this version, which is a variant
of the silent open-minded Bayesian with a limited posterior reservoir (sect. 4.2),
before we introduce the final version, a variant of the hybrid open-minded Bayesian
with a restriction on new hypotheses’ likelihoods (sect. 4.3).

4.1. Towards regaining truth-convergence.

4.1.1. The hypothesis scheme. We start with the first challenge in drawing up the
desired convergence statement: how should we think about the “almost surely”?
In the following, we suppose for simplicity of presentation that the agent possesses
the true hypothesis H∗ from the start, H∗ ∈ Θ0.7

We first observe that it is impossible to derive a statement of the following form.

(i) For every H∗, there is an H∗-measure-1 class of infinite output streams on
which the open-minded agent converges to H∗, independent of the stream
of newly formulated hypotheses.

Already in the case of the standard Bayesian agent, the H∗-measure-1 class of
output streams on which the agent converges cannot generally be independent of
the other elements in the agent’s hypothesis class. Consider for the true H∗ again
the Bernoulli-1/2 measure: it is not hard to see that for each possible infinite
outcome stream, there exist hypothesis sets that contain H∗ yet are such that the
agent does not converge on this outcome stream. As an extreme case, the agent will
not converge on outcome stream Eω if the hypothesis set contains an hypothesis
that assigns probability 1 to this exact sequence Eω: the agent will converge,
not on the true predictive probabilities 1/2, but on predictive probabilities 1 for
the correct next outcomes. This example concerns the initial hypothesis set of
a standard (or indeed open-minded) agent, but easily transfers to the streams of

7For the general case where the truth is formulated after some finite time t, or more specifically,

after some finite sequence Et, mentions of “an H∗-measure-1 class of infinite outcome streams”

should be replaced by “an H∗(· | Et)-measure-1 class of infinite outcome streams extending Et,”
and the “stream (scheme) of newly formulated hypotheses” by the “stream (scheme) of newly

formulated hypotheses after Et.”
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newly formulated hypotheses given to any plausible version of an open-minded
agent.8 Thus a statement of form (i) is too strong.

This leads us to the following statement, where we have shifted the quantifiers
to allow the exact measure-1 class to depend on the hypothesis stream.

(ii) For every H∗, every hypothesis stream, there is an H∗-measure-1 class of
infinite outcome streams on which the open-minded agent converges to H∗.

In order to demonstrate a statement of the form (ii), we must prove, for any given
hypothesis stream, convergence on the presupposition of this stream. Formally, we
conceive of ΘN(·) as a function that maps each time t to an hypothesis set Θ.
Of course, this function must also return hypothesis sets in such a way that they
actually correspond to some possible open-minded agent. For instance, for each t
there can be at most one hypothesis in ΘN(t+1) \ΘN(t).

There is a clear sense, however, in which a statement of form (ii) is too weak.
The main challenge for establishing truth-convergence is, recall example 3, the
possibility of overfitting hypotheses in reaction to each possible outcome stream. In
light of such scenarios, presupposing a particular hypothesis stream, irrespective of
the generated data, is obviously unsatisfying.

But we may just as well assume that the generation of hypotheses is given by a
function that links hypothesis sets, not simply to the possible points in time, but to
all possible finite outcome sequences. That is, we presuppose some data-dependent
(what we shall call) scheme for generating hypotheses, or simply hypothesis scheme,
that is a function Θ(·) that maps each finite data sequence Et to an hypothesis set
ΘEt . Again, this function must also be constrained by the open-minded agent’s
specification.

This then leads us to aim for a convergence statement of the following form.

(iii) For every H∗, every hypothesis scheme, there is an H∗-measure-1 class of
infinite outcome streams on which the open-minded agent converges to H∗.

Note that the assumption of a particular H∗ in conjunction with an hypothesis
scheme comes down to treating hypothesis streams as random quantities, as they
are given by a function on the outcome streams governed by probability measure
H∗. One could take this further and consider for the true measure more elaborate
probabilistic models that also directly range over the class of possible hypothesis
streams. We do not go this way here: we stick here to a true measure H∗ that is a
function over outcome sequences only, and work towards a convergence statement
where the H∗ measure-1 class can depend on the hypothesis scheme. Of course,
there is more to say about the conceptual status of a convergence statement of the
form (iii), and we will say a bit more below.

We first observe, however, that there is still something left implicit in statement
(iii). This is the agent’s actual choice of posteriors (or, depending on the version,
retroactive choice of priors resulting in posteriors) for the incoming hypotheses.

4.1.2. The posterior scheme. But given a particular hypothesis scheme, perhaps
we could always derive convergence for a particular H∗-measure-1 class of outcome
streams, that is independent of the exact (positive) posterior values the agent
chooses to assign to these incoming hypotheses?

8We only need to assume that the agent’s posteriors will indeed converge on the predictions of
hypotheses that perform perfectly, which is a minimal condition for a version that will in fact have

the capacity to converge to the truth.
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Unfortunately, this is again not attainable in general. Again we indeed already
have for the standard Bayesian agent that a different choice of prior distribution over
the exact same hypothesis set (more exactly, a different regular prior distribution
that assigns each element positive probability) can result in a different H∗-measure-
1 class of outcome sequences on which it converges to H∗. In fact, we can show
that there are single hypothesis sets such that for every individual stream we can
tweak the priors in such a way that convergence fails on this stream.

Proposition 2. There exist countable hypothesis sets Θ and hypotheses H∗ ∈ Θ
such that for every infinite outcome stream Eω, there is a regular prior distribution
P over Θ such that the Bayesian agent P ’s predictive probabilities do not converge
to H∗ on Eω.

Proof. See Appendix A.3. �

This result pertains to the initial hypothesis set of a standard (or indeed open-
minded) agent, but the initial set is already part of an open-minded agent’s hy-
pothesis scheme, and the result could again readily be modified to pertain to the
posterior assignments to a scheme’s newly formulated hypotheses. Thus the result
implies that we must allow the measure-1 class to also depend on the posterior
scheme, that specifies what numerical posterior values are assigned to each (in-
coming) hypothesis. Formally, the combination of the hypothesis and the posterior
scheme is now codified in a function P(·) that maps each finite data sequence Et to
a posterior distribution PEt over the hypothesis set ΘEt . Again, this function must
also return distributions that actually correspond to some possible open-minded
agent; that is to say, these distributions must be consistent with the specifications
of the version of the open-minded agent in question. For instance, in case of the hy-
brid agent, the distribution PEt is the distribution Pt(· | ΘN ) after having observed
Et and with ΘN = ΘEt . By the specification of the hybrid agent, this distribution
Pt(· | ΘN ) = P0(· | Et,ΘN ) is derived from some prior distribution P0 over ΘN .
This latter distribution must cohere with the priors P0(· | ΘN ′) for earlier and later
hypothesis sets ΘN ′ , which likewise constrain the distributions PEs(·) = Ps(· | ΘN ′)
for Es that extend or are extended by Et. Whenever we invoke hypothesis and pos-
terior schemes in the following, we implicitly limit our attention to schemes that
actually correspond to open-minded agents of the version we are then considering.9

This then leads us, finally, to aim for a convergence statement of the following
form.

(iv) For every H∗, every hypothesis and posterior scheme, there is an H∗-
measure-1 class of infinite outcome streams on which the open-minded agent
converges to H∗.

Having thus derived the formal structure of the strongest statement we can hope
for, let us expand a little bit on its conceptual status. One possible interpretation is
that this statement corresponds to an assumption that prior to the inquiry, both the

9Some care is required in deriving relations between the functions PEt (· | ΘEt ) from the agent

specifications, which also involves matching the original notation for agent functions (“Pt(· | ΘN )”)
with the PEt (· | ΘEt ). The former notation leaves implicit what exactly are the past data

that have resulted in the posteriors and hypothesis sets, which becomes especially risky when

analyzing retroactive assignments (what future hypothesis set and posteriors is P0(· | ΘN ) actually
reconstrued from?). This will mostly matter for the proofs to follow: see appendix A.1 on notation

used there for details.
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future hypotheses and the posteriors that will be assigned to them are, albeit still
dependent on the random data and unknown the agent, already fixed. There is at
least a superficial tension between such an interpretation and a crucial motivation
for investigating open-minded agents, namely that hypotheses and their priors are
not fixed in advance, and the agent has full freedom to choose these on the go. How
problematic this is, would then conceivably depend on one’s view on the external
process where the hypotheses and posteriors come from: is this in the end some
mechanical procedure, or is this some process of creative and fundamentally opaque
scientific discovery? On the other hand, we think it is actually not so clear that
the mathematical structure of a statement of form (iv), “fix arbitary x, we now
show. . . ,” commits one to a conceptual view of the kind, “assuming that x is fixed in
advance, we have that. . . ,” let alone what it exactly means for an hypothesis scheme
to be (unknown to the agent but) determined in advance. These are philosophically
murky waters, and we will here limit ourselves to noting that mathematically, this
is the best we can aim for. Indeed, if already for the standard Bayesian agent the
precise measure-1 class must depend on the other hypotheses and exact priors, it
is only natural to aim for the analogous statement for the open-minded agent—in
general. This does not exclude the possibility of deriving statements of form (i)
with certain restrictions on the possible hypotheses, say a restriction of effective
computability. But this lies out of the scope of the current paper.

With this conceptual provision, we are now clear on the nature of the “almost
surely” qualification. In fact, we have also already touched on the second challenge:
what, exactly, is the agent function that we seek convergence for? We will now
proceed to make this perfectly precise.

4.1.3. The completed agent measure. Given an hypothesis and a posterior scheme,
an open-minded Bayesian’s probability assignments after each possible finite out-
come sequence are fully determined. For all finite Et, the agent’s assignment to
any event A is fixed and given by

(19) PEt(A) = PEt(A | ΘEt).

The corresponding convergence statement of form (iv), for strong merger, is
that for each hypothesis and posterior scheme, we have for an H∗-measure-1 class
of infinite outcome sequences that

(20) sup
A∈F

∣∣PEt(A)−H∗(A | Et)
∣∣ t→∞−−−→ 0.

Here we still adhered to the simplifying assumption made at the beginning of
sect. 4.1.1, that the truth H∗ is contained in the initial hypothesis class. The
general case is covered by adding the formulation of H∗ on the outcome stream
as a condition for the convergence. That is, for an H∗-measure-1 class of infinite
outcome sequences,

(21) H∗ is formulated =⇒ sup
A∈F

∣∣PEt(A)−H∗(A | Et)
∣∣ t→∞−−−→ 0.

For weak merger, this comes down to

(22) H∗ is formulated =⇒ sup
Et+1∈{0,1}

∣∣PEt(Et+1)−H∗(Et+1 | Et)
∣∣ t→∞−−−→ 0.

A circumstance that makes convergence of the terms (19) hard to analyze is that,
even under the assumption of a given hypothesis and posterior scheme, they may not
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correspond to a single probability measure. That is to say, the assignments PEt(·)
cannot in general be reconstrued as the conditional probabilities of a particular
measure: there need not be a single measure P such that P (· | Et) = PEt(·) for
each Et. This stems from the fact that an open-minded agent’s assignments can be
dynamically incoherent, in the sense that for finite sequences Et1 , Et2 , the second
extending the first,

(23) PEt1 (A | Et2) 6= PEt2 (A).

In words, the agent’s assignment to event A at time t1, conditional on the extended
outcome sequence Et2 , may not equal the agent’s assignment to A at time t2, after
having in fact seen Et2 . To make this slightly more concrete, consider again the
hybrid open-minded agent. From its specification, there is some prior distribution
P0 such that PEt1 (A | Et2) = P0(A | Et2 ,ΘEt1 ) and PEt2 (A) = P0(A | Et2 ,ΘEt2 ).
But there is no reason why the terms P0(A | ΘEt1 ) and P0(A | ΘEt2 ), conditional
on different hypotheses, should be equal.

Nevertheless, the agent’s one-step predictive probabilities, given a particular hy-
pothesis and posterior scheme, do induce a coherent set of probability assignments.
The predictive probabilities PEt(Et+1) induce a probability assignment P∞ on all
finite evidence sequences, by

(24) P∞(Et) :=

t−1∏
i=0

PEi(Ei+1),

and this induces a measure on all outcome streams. We will call this measure P∞

the completed agent measure.
If we are able to show that, for any given hypothesis and posterior scheme, this

measure retains a grain of the truth H∗, then a statement of form (iv), for strong
merger, follows from corollary 1. That is, for any given hypothesis and posterior
scheme, we can conclude that for an H∗-measure-1 class of outcome streams,

(25) H∗ is formulated =⇒ sup
A∈F

∣∣P∞(A | Et)−H∗(A | Et)
∣∣ t→∞−−−→ 0.

However, this statement concerns the completed agent measure P∞, and not
the open-minded agent’s actual assignments at each time, given by (19). These
assignments P∞(A | Et) and PEt(A) may not coincide. The potential disagreement
lies in the fact that P∞(A | Et) is already influenced by what future hypotheses,
formulated after Et, say about A; whereas PEt(A) only depends on the hypothesis
set ΘEt .

Still, we do have by definition that these functions coincide on the one-step pre-
dictive probabilities. We have that P∞(Et+1 | Et) = PEt(Et+1) for each outcome
sequence Et and single outcome Et+1, so that convergence statement (25) does
imply convergence statement (22).10

Thus, if we can show, for any given hypothesis and posterior scheme, that the
open-minded agent’s completed agent measure holds a grain of the truth, then we
can derive a convergence statement of form (iv) for weak merger of the agent func-
tions. Consequently, in the following, we will work towards ensuring this property,

10In fact, for any t, measures P∞(· | Et) and PEt coincide up to the smallest time ahead at which
a new hypothesis will be formulated; though this only implies weak convergence of the latter for

d > 1 if this time horizon will eventually always be at least d.
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that the completed agent measure holds a grain of the truth, whenever the truth is
formulated.

4.1.4. The failure of holding a truth-grain. Consider again the hybrid open-minded
agent. Connecting back to the discussion of sect. 3.4.2, it might seem that the
completed agent measure should hold a grain of the truth as soon as for every
single Et, the retroactive prior function P0(· | ΘEt) holds at least a grain p∗ of H∗;
that is, whenever all these P0(· | ΘEt) uniformly retain at least the same grain of
the truth. This, however, is not so.

That this cannot be so is again already implied by example 3. This example in
fact features a (partially specified) hypothesis and posterior scheme for overfitting
hypothesis generation, where every P0(· | ΘEt) for t ≥ t∗ holds at least a grain p∗

of the truth. Yet we saw that the agent (the completed agent measure) in that
example fails to merge with H∗, which by the contraposition of corollary 1 entails
that the completed agent measure cannot hold a grain of H∗.

Proposition 3. For the hybrid open-minded Bayesian, there are hypothesis schemes
with H∗ ∈ Θ0 such that nevertheless the completed agent measure fails to hold a
grain of the truth: there is no a ∈ (0, 1) with P∞(Et) ≥ a ·H∗(Et) for all Et.

Proof. Such a scheme is given by example 3: see appendix A.4 for details. �

What, intuitively, explains this fact, that each P0(· | ΘEt) can uniformly hold
a grain of the truth, yet P∞ does not? The difference between each of the former
functions and P∞ is that in the latter, overfitting hypotheses are not represented
in the predictive probabilities issued by the agent until this hypothesis actually
comes in. But by definition these overfitting hypotheses have high likelihood (and
thus issue high predictive probabilities) on these initial segments; so taking them
out will deflate the agents’ predictive probabilities on these initial segments. The
counterexample shows that this effect can be so strong that it destroys the grain of
the truth.

In our proposal of a forward-looking open-minded Bayesian, that we turn to
now, we focus on making sure that the completed agent measure does retain a
grain of the truth, whenever the truth is formulated, in order to derive a guarantee
of truth-convergence.

4.2. The forward-looking open-minded Bayesian, proto-version. We first
consider a version of an open-minded Bayesian, a proto-version of the forward-
looking open-minded Bayesian that we propose in sect. 4.3 below, that rests on
the following simple idea. Instead of a limited reservoir of probability for assigning
priors to new hypotheses, the agent has a limited reservoir of posterior mass to
assign to new hypotheses.

4.2.1. Specification. The forward-looking open-minded agent, in this proto-version,
is like the silent open-minded agent, in that we do not stipulate a catch-all or a
limited absolute reservoir of prior probability. However, we do stipulate a limited
absolute reservoir of posterior probability: unlike the silent open-minded Bayesian,
that can assign any posterior to a new hypothesis, the agent must shave off a
new posterior from this reservoir, thereby shrinking the reservoir for posterior as-
signments to future new hypotheses. We assume that the starting reservoir holds
a certain real-valued mass d > 0 (we do not need to assume that this mass is
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bounded by 1). In addition, as a minimal restriction that facilitates the proof of
truth-convergence, we assume that there is a constant c < 1 such that agent is not
allowed to assign a posterior greater than c to any single new hypothesis.

In summary, the proto-version of the forward-looking open-minded
Bayesian proceeds as follows.

(t = 0) N explicit hypotheses. As in the silent version, each explicit hypothesis
Hi in ΘN receives a prior P0(Hi | ΘN ) > 0 conditional on ΘN , such that∑
i<N P0(Hi | ΘN ) = 1. In addition, there is assumed a reservoir τN = d > 0

of posterior probability, and a maximal one-time probability c < 1.

(t > 0) Evidence Et. Updating proceeds in the usual way, conditional on the
current hypothesis set ΘN .

(t > 0) New hypothesis HN . As in the silent version, when a new hypothesis
HN is formulated, extending the hypothesis set to ΘN+1 = ΘN ∪ {HN}, the
posterior Pt(HN | ΘN+1) is directly set to a value pN ; but now this value
pN ≤ c must be obtained from decomposing the posterior reservoir τN into pN
and a remainder τN+1 = τN − pN that is the new posterior reservoir.

4.2.2. Verification. The forward-looking open-minded Bayesian’s constraints in at-
tributing posterior mass to newly formulated hypotheses rules out a scenario like
example 3, where constrained prior assignments still lead to high posterior values.
As a matter of fact, the restriction on posterior values results in a completed agent
measure that does retain a grain of the truth, whenever it is proposed.

Theorem 2. For the proto-version of the forward-looking open-minded Bayesian,
for any hypothesis and posterior scheme, the completed agent measure conditional
on any Et with H∗ ∈ ΘEt holds a grain of H∗.

Proof. See appendix A.5. �

Corollary 2. For the proto-version of the forward-looking open-minded Bayesian,
for any hypothesis and posterior scheme, we have that H∗-a.s.

H∗ is formulated =⇒ sup
Et+1∈{0,1}

∣∣PEt(Et+1)−H∗(Et+1 | Et)
∣∣ t→∞−−−→ 0.

4.2.3. Discussion. As mentioned, this proto-version of a forward-looking Bayesian
is a constrained version of the silent open-minded Bayesian. More precisely, it is a
constrained version, not of the retroactive, but of the standard variant of the silent
Bayesian. The posteriors of new hypotheses are chosen directly; and however this
is done (within the constraint of the posterior reservoir), it is not required to be
(not part of the agent’s specification to be) an explicit calculation of the posterior
from a chosen prior and the hypothesis’s likelihood on the past outcome sequence.

Again, the choice of posterior can always proceed like this: formally, any choice
of posterior corresponds, via the likelihood on the past data, to a choice of prior.
But the constraint on the posteriors does not translate into a simple constraint on
the priors, depending as it does on the contingent fact of the actually formulated
hypotheses’ likelihoods, and so a retroactive variant of the forward-looking Bayesian
does not appear a natural option—as, of course, its name is intended to suggest.
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That said, the idea of an absolute reservoir of posterior probability is not a terri-
bly natural conception. Unlike the idea of an absolute reservoir of prior probability,
it cannot be coupled to a conception of a prior assignment to a catch-all hypothesis,
from which new hypotheses may be shaven off. Perhaps the best way to understand
this is simply as a pragmatic device, that is easy to understand and does the job of
regaining the guarantee of truth-convergence.

However, we think there is yet a conceptually more satisfying option, that is
formally very similar to the current version but that has a more natural interpre-
tation. In fact, this version, our actual forward-looking Bayesian, does regain the
idea of shaving prior mass from a catch-all, while still looking forward.

4.3. The forward-looking open-minded Bayesian. An alternative way of de-
fusing the threat of extreme posteriors of incoming hypotheses is to place restric-
tions, not directly on the posteriors, but on the likelihoods of new hypotheses. Our
proposal is to introduce the stipulation that new hypotheses have some default
likelihood on past outcomes.

We will focus on an idea that we borrowed from the theory of competitive online
learning11, and that has important technical and conceptual advantages. This idea
is to identify the likelihood of new hypotheses on past data with the agent’s proba-
bility assignment to this data, induced from its past predictive probabilities. That
is, a new hypothesis HN ’s likelihood HN (Et) on the data sequence Et generated by

its time t of formulation is set equal to the product
∏t−1
s=0 P0(Es+1 | Es,ΘN(s)) of

predictive probabilities. Note that this is precisely the completed agent measure’s
assignment P∞(Et).12

This is a natural way of modeling that a new hypothesis is only evaluated after its
formulation; or that with respect to this new hypotheses, the old evidence does not
count. The new hypothesis is, to put it differently, at its time of formulation treated
in a neutral fashion, in that it is supposed to have had the same predictive success
on the past data as the agent itself. This also translates in this new hypothesis
having, for any chosen prior P0(HN | ΘN+1), at its time of formulation t a posterior
P0(HN | Et,ΘN+1) that simply equals the prior.

Moreover, this allows us to recover the picture of a catch-all, or more precisely,
the fixed well of prior probability from which the agent must draw in its assignment
to (new) hypotheses. In combination with the restriction on prior assignments
that this entails, this version of a forward-looking Bayesian indeed regains truth-
convergence.

4.3.1. Specification. The forward-looking open-minded Bayesian, in its current ver-
sion, proceeds exactly as the hybrid-open minded Bayesian, except for the crucial
stipulation that each new hypothesis Ni formulated at time ti satisfies

(26) HNi(E
t) := P∞(Et) for all t ≤ ti.

11See Cesa-Bianchi and Lugosi (2006) for a general account of competitive online learning or
prediction with expert advice. The idea that we refer to, first proposed, within the setting of

specialists (Freund et al., 1997), by Chernov and Vovk (2009), is known as the specialist or
abstention trick ; also see Koolen et al. (2012); Mourtada and Maillard (2017). An instance of this

idea also appears in Romeijn (2004, 349).
12An alternative way of phrasing—or enforcing—this stipulation is that we do not change hy-

potheses’ past assignments, but only allow hypotheses that satisfy this equality.
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In summary, the forward-looking open-minded Bayesian proceeds as
follows.

(t = 0) N explicit hypotheses. As in the hybrid version, each explicit hypothesis
Hi in ΘN receives a prior P0(Hi | ΘN ) > 0 conditional on ΘN , such that∑
i<N P0(Hi | ΘN ) = 1; and the catch-all hypothesis ΘN = Θ \ ΘN receives

an unconditional prior P0(ΘN ) := τN , so that the unconditional priors of the
explicit hypothesis are given by P0(Hi) := (1− τN ) · P0(Hi | ΘN ).

(t > 0) Evidence Et. Updating proceeds in the usual way, conditional on the
current hypothesis set ΘN .

(t > 0) New hypothesis HN . As in the hybrid version, when a new ex-
plicit hypothesis HN is formulated, extending the hypothesis set to ΘN+1 =
ΘN ∪ {HN}, the unconditional prior τN of the earlier catch-all is decomposed
into a value p < τN for the unconditional prior P0(HN ) of the new hypothe-
sis and a remainder τN+1 = τN − p for the unconditional prior P0(ΘN+1) of
the new catch-all. The priors conditional on the new hypothesis set are ob-
tained by renormalization, from which the conditional posteriors are obtained
by the usual updating on their likelihoods, where the new hypothesis’s likeli-
hood HN (Et) is stipulated to equal P∞(Et).

4.3.2. Verification. Although they differ in their interpretation and also slightly in
the precise shape of the formal constraints, the forward-looking Bayesian and its
proto-version share the property of a constraint on new posterior assignments. In
appendix A.5 we give a general proof that for both types of constraints shows that
a completed agent measure will hold a grain of the truth, whenever it is formulated,
from which weak merger of the agent follows.13

Theorem 3. For the forward-looking open-minded Bayesian, for any hypothesis
and posterior scheme, the completed agent measure conditional on any Et with
H∗ ∈ ΘEt holds a grain of H∗.

Proof. See appendix A.5. �

Corollary 3. For the forward-looking open-minded Bayesian, for any hypothesis
and posterior scheme, we have that H∗-a.s.

H∗ is formulated =⇒ sup
Et+1∈{0,1}

∣∣PEt(Et+1)−H∗(Et+1 | Et)
∣∣ t→∞−−−→ 0.

4.3.3. Beyond weak merger. Corollary 3 states, for the forward-looking agent, and
as a consequence of the strong truth-merger of the completed agent measure, the
weak truth-merger (with d = 1) of the agent measures PEt . The obvious further
question is whether we also have strong merger, or at least weak merger for any

13An alternative proof proceeds by deriving from the abstention stipulation (26) that the forward-
looking agent’s probability P∞(Et) must coincide with the retroactive prior probability P0(Et |
ΘNi

) for every ΘNi
with ti+1 > t. The additional stipulation of a fixed amount of prior mass

guarantees again that these P0(Et | ΘNi
) indeed uniformly retain a grain of the truth, so that

truth-merger follows. Recall from sect. 4.1.4 that the hybrid open-minded Bayesian’s completed
agent measure can fail to retain a grain of the truth even if every P0(· | ΘNi

) for i ≥ i∗ uniformly
does so: stipulation (26) thus rules out this possibility.
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finite d, for the agent measures PEt . We conjecture that already strong merger
does hold, but unfortunately we have no proof, and must leave this as an open
question.14

5. Conclusion

We investigated the failure of truth-convergence for Wenmackers and Romeijn’s
versions of open-minded Bayesianism, and, towards reclaiming this property, pro-
posed a forward-looking open-minded Bayesian. The general threat to convergence
to the truth is the possibility of new and false hypotheses that keep receiving too
much posterior: either by direct assignment or by retroactive calculation from a
high likelihood on the past evidence. The proto-version and the final version of
our forward-looking Bayesian implement the two respective ways of meeting this
threat: by restricting the posteriors, or by restricting the priors and likelihoods.

We think that the final version of our forward-looking agent, which is based on
an idea from the theory of competitive online learning, indeed provides an elegant
account of how a Bayesian agent should deal with newly formulated hypotheses.
The idea of identifying a new hypothesis’s likelihood with the agent’s probability
assignment on the past data is a graceful way of neutralizing the impact of old
evidence. Moreover, this idea has the pleasant consequence that the stipulation
of a limited reservoir of prior probability (with the associated interpretation of
a catch-all hypothesis) is sufficient to guarantee truth-convergence. Unlike the
proto-version, that we ourselves feel is mainly a technical device geared towards
the aim of truth-convergence, we think the final version makes intuitive sense quite
independent of this aim.

There are a number of avenues for further investigation. Firstly, we proved, more
precisely, the forward-looking agent’s weak truth-merger, or a.s. convergence to the
true one-step predictive probabilities. We leave as an open question whether this
may be extended to an arbitrary finite-length horizon, or even to strong merger,
that includes all tail events. Secondly, a possible lingering doubt is that in our con-
vergence statement the measure-1 class of sequences is dependent on the hypothesis
and posterior scheme. This at least suggests an interpretation where the latter are
somehow fixed prior to the inquiry, which, one might feel, does not sit well with the
original motivation for investigating an open-minded agent. Whether or not this
is so, we showed that in general one cannot avoid this dependence, as an analogue
in fact already holds in the case of the standard Bayesian. Nevertheless, it might

14For any infinite Eω in the measure-1 class of infinite streams on which we, for given hypothesis

and posterior scheme, have strong merger with H∗ of the completed agent measure, it might seem
that strong truth-merger of the agent functions PEt (· | ΘEt ) on this Eω should follow, too: as

the posterior reservoir is used up the measures P∞(· | Et) and PEt (· | ΘEt ) can differ less and

less. However, on any individual Eω , it is possible that the posterior reservoir is not fully used up:
this allows for a counterexample, on this particular stream, where the same constant posterior

keeps being assigned to new hypotheses on side-branches of Eω to force a difference between

P∞(· | Et) and PEt (· | ΘEt ). Now one could push further and consider the measure-1 class that
is the countable intersection of the previous class and, for every length s, the measure-1 class of

streams on which every measure PEs (· | Es), from that point treated as a standard Bayesian,

strongly merges with H∗. But even for a stream Eω in this class, it is still consistent that the
agent measures Pt(· | Et) do not strongly merge with H∗ on this particular Eω ; at the same

time, such a scenario is now so bizarre that it does not seem feasible to turn it into an actual
counterexample, for which this must actually happen with positive probability. This invites the
hope for some (martingale) argument that such scenarios must indeed have probability 0.
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be avoided as further refinements are added to our proposal. Perhaps the main
peculiarity about our approach is that in the course of an inquiry hypotheses are
not (should not be) introduced haphazardly. There will normally only arise a need
for formulating a new hypothesis if some misfit between the data and the current
model is observed, which may indeed be regulated via a formal model verification
procedure. This raises the question, finally, how (our version of) an open-minded
Bayesian inductive logic may be extended beyond just how to incorporate exter-
nally proposed hypotheses, to also include when to accept such new hypotheses,
and how this interacts with the guarantee of truth-convergence.

Appendix A. Calculations and proofs

A.1. Notation. We introduce additional notation for use in the appendices.
For sequences Et and Es we write Et 4 Es if Et is an initial segment of Et, and

Et ≺ Es if Et 4 Es and Et 6= Es. We write Et | Es if neither Et 4 Es nor Es 4 Et. For
the concatenation of sequences Et and Es we write Et+s = EtEs. For sequences Et 4 Es

we write Et:s for the sequence Es minus its initial segment Et.
Recall that an hypothesis and posterior scheme are given by a function P(·) that for

given sequence Et returns a distribution PEt = PEt(· | ΘEt) over hypothesis set ΘEt .
This induces the distribution PEt(·) =

∑
H∈ΘEt

PEt(H) · H(· | Et) over events in the

outcome space.
The conditional distributions PEt(· | Θ) for Θ ⊆ ΘEt are clearly well-defined. One can

also derive from the specifications of any of the open-minded versions we discussed that
for Es � Et

PEs(· | ΘEt) = PEt(· | Et:s,ΘEt),(27)

a fact that we will rely on in the proofs of lemma 1 and corollary 4, in A.5 below.
The conditional distributions PEt(· | Θ) for Θ ⊃ ΘEt are not well-defined, because

the posteriors of the elements in Θ \ ΘEt are not defined. Nevertheless, for the purpose
of analyzing an open-minded agent’s procedure of retro-actively setting a prior (as in the
proof of lemma 3 in A.5 below), it will be useful to agree on the following. For Es � Et, the
probability PEt(H | ΘEs) is the posterior probability of H ∈ ΘEs after Et, retroactively
calculated from the posterior probability PEs(H | ΘEs) after Es. More precisely, we can
define for all H ∈ ΘEs ,

PEt(H | Et:s,ΘEs) := PEs(H | ΘEs),(28)

from which the function PEt(· | ΘEs), by using the likelihoods of all H ∈ ΘEs on Et:s,
can unambiguously be retrieved.

A.2. Calculations for example 3. We want to ensure (15), that is,

(29)
P0(HNi | ΘNi+1) ·HNi(E

ti)∑
H∈ΘNi+1

P0(H | ΘNi+1) ·H(Eti)
> r.

Write q := P0(HNi | ΘNi+1) for the conditional prior, that by (13) equals

(30)
P0(Hi)

1− τNi+1
=

2−i · τN0+1

1− (1−
∑i
j=1 2−j) · τN0+1

=
2−i · τN0+1

1− 2−i · τN0+1
.

Since HNi(E
ti) = 1, (29) translates into

(31) q > r ·

q +
∑

H∈ΘNi+1\{HNi
}

P0(H | ΘNi+1) ·H(Eti)

 ,
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that is,

(32)
1− r
r
· q >

∑
H∈ΘNi+1\{HNi

}

P0(H | ΘNi+1) ·H(Eti).

Now assuming that there is positive δ such that all other hypotheses’ predictive probabil-
ities are no more than 1− δ for each possible outcome from ti−1 up to ti, so that

(33)
∑

H∈ΘNi+1\{HNi
}

P0(H | ΘNi+1) ·H(Eti) < (1− q) · (1− δ)ti−ti−1 ,

it suffices for (32) that

1− r
r
· q

1− q > (1− δ)ti−ti−1 .(34)

Writing out

(35)
q

1− q =

(
2−i·τN0+1

1−2−i·τN0+1

)
(

1− 2−i·τN0+1

1−2−i·τN0+1

) =

(
2−i·τN0+1

1−2−i·τN0+1

)
(

1
1−2−i·τN0+1

) = 2−i · τN0+1,

we thus require

1− r
r
· 2−i · τN0+1 > (1− δ)ti−ti−1 ,(36)

that is,

(37) ti − ti−1 >
− log (1− r)− (− log r) + i− log τN0+1

− log(1− δ) .

A.3. Proof of proposition 2. Let the truth H∗ ∈ Θ be Bernoulli-1/2, and put P (H∗) =
1/2. Define an infinite series of times t0, t1, t2, . . . by t0 = 0, ti+1 = ti + i + 3. For each

time ti, let Etij be the j-th (0 < j ≤ 2ti) outcome sequence of length ti. We will now
define a countable collection of hypotheses Hi,j that each overfit one particular sequence
between two successive times ti−1 and ti, and follow H∗ elsewhere. More precisely, we

define for each i, for each positive j ≤ 2ti and the corresponding j′ such that E
ti−1

j′ ≺ Etij ,

the hypothesis Hi,j by

Hi,j(E
s) =


2−ti−1 if E

ti−1

j′ 4 Es 4 Etij
0 if E

ti−1

j′ 4 Es but Es | Etij
H∗(Es) · 2ti−ti−1 if Etij ≺ E

s

H∗(Es) otherwise.

(38)

Given an infinite outcome stream Eω. We can now assign positive prior to each of these
hypotheses as follows. Denote by (Etij )C the sequence Etij with the very last outcome

inverted, 0 for 1 or vice versa. For each i, for each j ≤ 2ti , let

P (Hi,j) =

{
2−i−2 if (Etij )C ≺ Eω

2−i−2 · (2ti − 1)−1 otherwise.
(39)

This is a valid prior assignment because
∑
H∈Θ P (H) = 2−1 +

∑
i>0(2−i−1) = 1.

Now we consider, on the stream Eω, for arbitrary i and the j such that Etij ≺ E
ω, the

error in the agent’s predictive probability P (0 | Eti−1
j ) after having observed all of Etij

but the very last outcome. That is, we consider the distance∣∣P (0 | Eti−1
j )−H∗(0 | Eti−1

j )
∣∣ .(40)
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To this end, write Θ′ := Θ \ {Hi,j} and first consider the posterior ratio of P (Hi,j |
Eti−1
j ), write α, and P (Θ′ | Eti−1

j ) = 1− α,

α

1− α =
P (Hi,j | Eti−1

j )

P (Θ′ | Eti−1
j )

=
P (Hi,j) ·Hi,j(Eti−1

j )

P (Θ′) · P (Eti−1
j | Θ′)

.(41)

It follows from specification (38) that all hypotheses in Θ′ assign true probability

H∗(Eti−1
j ) to Eti−1

j , except for the overfitting hypotheses Hi′,j′ for i′ ≤ i and j′ such

that there is j′′ with E
ti′−1

j′′ ≺ E
ti′
j′ , E

ω. But for each i′ < i, among these hypotheses

Hi′,j′ there is only one Hi′,k′ that does not give probability 0 to Eti−1
j , and with assign-

ment (39) each member of the majority already holds at least as much prior as the single
exception Hi′,k′ . Similarly, for i, it is, among these Hi,j′ and apart from Hi,j , only the

hypothesis Hi,k for Etik ≺ E
ω that does not assign probability 0 to Eti−1

j , and each other
Hi,j′ already holds at least as much prior as Hi,k. We thus have that the likelihood of
hypothesis set Θ′ satisfies

P (Eti−1
j | Θ′) =

∑
H∈Θ′

P (H | Θ′) ·H(Eti−1
j ) < H∗(Eti−1

j ) = 2−ti+1,(42)

wherefore

α

1− α >
2−i−2 · 2−ti−1

(1− 2−i−2) · 2−ti+1

=
2−i−3

(1− 2−i−2) · 2−(ti−ti−1)

=
2−i−3

(1− 2−i−2) · 2−i−3

> 1,

meaning that α > 1/2.

Finally, apart from Hi,j , it is only the hypothesis Hi,k for Etik ≺ E
ω that is still included

in the posterior over Θ conditional on Eti−1
j (that did not assign probability 0 to Eti−1

j )

and that gives a predictive probability Hi,k(0 | Eti−1
j ) different from H∗(0 | Eti−1

j ) = 1/2.

Write α′ := P (Hi,k | Eti−1
j ) for the posterior of Hi,k, and abbreviate Θi;j,k := {Hi,j , Hi,k}.

Since indeed Hi,k(0 | Eti−1
j ) = 1−Hi,j(0 | Eti−1

j ),

P (0 | Eti−1
j ,Θi;j,k) =

α

α+ α′
·Hi,j(0 | Eti−1

j ) +
α′

α+ α′
·Hi,k(0 | Eti−1

j )(43)

evaluates to either α
α+α′ = 1− α′

α+α′ or α′

α+α′ . Using α′ < 1/2 < α, it follows that

∣∣P (0 | Eti−1
j ,Θi;j,k)−H∗(0 | Eti−1

j )
∣∣ = 1/2− α′

α+ α′
.(44)

We can then rewrite (40) as∣∣(α+ α′) · P (0 | Eti−1
j ,Θi;j,k) + (1− (α+ α′)) ·H∗(0 | Eti−1

j )−H∗(0 | Eti−1
j )

∣∣ ,(45)

which simplifies to

(α+ α′) ·
∣∣P (0 | Eti−1

j ,Θi;j,k)−H∗(0 | Eti−1
j )

∣∣ = (α+ α′) ·
(

1/2− α′

α+ α′

)
=
α+ α′

2
− α′

> 1/4− 1/2 · α′.
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But note that Hi,j and Hi,k have the same likelihood Hi,j(E
ti−1
j ) = Hi,k(Eti−1

j ), so that

by assignment (39) the ratio

α

α′
=
P (Hi,j)

P (Hi,k)
= 2ti − 1,(46)

which implies that α′ < (2ti − 1)−1 is arbitrarily small for large enough i. That means
that indeed for any choice of ε > 0, we have for infinitely many i that∣∣P (0 | Eti−1

j )−H∗(0 | Eti−1
j )

∣∣ > 1/4− ε,

blocking convergence on the stream Eω. �

A.4. Proof of proposition 3. Consider example 3 with t0 = 0, ε′ > 1/4, and where after
each ti all hypotheses HNj for j ≤ i always give predictive probabilities (1/2, 1/2). Let
the sequence of time points t0 < t1 < t2 . . . at which overfitting hypotheses are introduced
satisfy (16), with prior assignments given by (13). This defines a hypothesis and posterior
scheme, and thus induces a completed agent measure.

Next, take an infinite outcome stream Eω that is constructed as follows. For any i ≥ 0,
take for the subsequence Eti+2:ti+1 any sequence of length ti+1 − ti − 1, and let Eti+1 be
the outcome with Pti(Eti+1 | ΘEti ) < 1/2 − ε′ = 1/4 (for E1 take either 0 or 1). Now
the completed agent measure P∞ fails to hold a grain of H∗ on any such sequence Eω.
Namely, for such a sequence Eω we have by construction that for each t, with j maximal
such that tj < t, that

P∞(Et) <
(
2−1)t−j · (2−2)j = 2−t−j .(47)

But since 2−t−j/2−t = 2−j goes to 0 as t hence j goes to infinity, there is no positive a
such that P∞(Et) ≥ a ·H∗(Et) for all t. �

A.5. Proof of theorems 2 and 3. We show for both the forward-looking open-minded
Bayesian agent and its proto-version that for any hypothesis and posterior scheme, any
finite outcome sequence Et0 , for any hypothesis H ∈ ΘEt0 , there is a constant a ∈ (0, 1)
such that for every outcome sequence Et < Et0 it holds that

P∞(Et0:t | Et0) ≥ a ·H(Et0:t | Et0).(48)

In words, for any outcome sequence Et0 , the completed agent measure conditional on Et0

holds a positive grain of every hypothesis H in ΘEt0 . In particular, the completed agent
measure conditional on Et0 holds a grain of the truth H∗, if H∗ is in ΘEt0 .

Our proof consists of two main steps. First, we show that for any open-minded agent
the completed agent measure conditional on Et0 dominates the agent function PEt0 with
a factor that involves the posteriors assigned to new hypotheses (lemma 1 and corollary
4). Second, we show for (the proto-version of) the forward-looking open-minded Bayesian
that this latter factor is indeed at least a positive constant (lemma 2 and 3, respectively).

In all of the following statements we quantify over all Et0 and Et < Et0 , and in the
accompanying proofs we start by presupposing any such two sequences. This allows for
the following simplified notation, that unambiguously pertains to a particular instantiated
Et and initial segment Et0 . We abbreviate Ps := PEs and Θs := ΘEs for all Es 4 Et.
Moreover, we always let i ≥ 0 denote the number of new hypotheses that are formu-
lated along the sequence Et0+1:t, and we write pj := Ptj (H

E
tj | Θtj ) for the conditional

posterior assigned to the j-th (j ≤ i) such hypothesis H
E

tj ∈ Θtj \Θtj−1 , incoming at tj .

Lemma 1. For an open-minded agent, we have that for any hypothesis and posterior
scheme, for every Et0 , every Et � Et0 , every 0 ≤ j ≤ i,

Ptj (Etj :t | Θtj ) ≥
∏j−1
k=0(1− pk+1) · Pt0(Et0:t | Θt0)∏j−1

k=0 Ptk (Etk:tk+1 | Θtk )
.(49)
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Proof. We proceed by induction. The base case, j = 0, follows trivially from empty
products. Next, assuming as induction hypothesis that (49) holds for given j < i, we
derive for j + 1 that

Ptj+1(Etj+1:t | Θtj+1) =
∑

H∈Θtj+1

Ptj+1(H | Θtj+1) ·H(Etj+1:t | Etj+1)

≥ (1− pj+1)
∑

H∈Θtj

Ptj (H | Etj :tj+1 ,Θtj ) ·H(Etj+1:t | Etj+1)

= (1− pj+1)
∑

H∈Θtj

Ptj (H | Θtj ) ·H(Etj :tj+1 | Etj )

Ptj (Etj :tj+1 | Θtj )
·H(Etj+1:t | Etj+1)

= (1− pj+1) ·

∑
H∈Θtj

Ptj (H | Θtj ) ·H(Etj :t | Etj )

Ptj (Etj :tj+1 | Θtj )

=
(1− pj+1) · Ptj (Etj :t | Θtj )

Ptj (Etj :tj+1 | Θtj )

≥
(1− pj+1) ·

∏j−1
k=0(1− pk+1) · Pt0(Et0:t | Θt0)

Ptj (Etj :tj+1 | Θtj ) ·
∏j−1
k=0 Ptk (Etk:tk+1 | Θtk )

=

∏j
k=0(1− pk+1) · Pt0(Et0:t | Θt0)∏j

k=0 Ptk (Etk:tk+1 | Θtk )
. �

Corollary 4. For an open-minded agent, we have that for any hypothesis and posterior
scheme, for every Et0 , every Et � Et0 ,

P∞(Et0:t | Et0) ≥
i−1∏
j=0

(1− pj+1) · Pt0(Et0:t | Θt0).(50)

Proof. We write out

P∞(Et0:t | Et0) =

t−1∏
s=t0

Ps(Es+1 | Θs)

=

i−1∏
j=0

tj+1−1∏
s=tj

Ps(Es+1 | Θs)

 t−1∏
s=ti

Ps(Es+1 | Θti)

=

(
i−1∏
j=0

Ptj (Etj :tj+1 | Θtj )

)
· Pti(E

ti:t | Θti),

where the latter equality follows from the fact that for each j and tj ≤ t′j < tj+1 we have

t′j∏
s=tj

Ps(Es+1 | Θs) =

t′j∏
s=tj

Ptj (Es+1 | Etj :s,Θtj )

=

t′j∏
s=tj

Ptj (Etj :s+1 | Θtj )

Ptj (Etj :s | Θtj )

=
Ptj (Etj :tj+1 | Θtj )

Ptj (Etj :tj | Θtj )

= Ptj (Etj :tj+1 | Θtj ).
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But applying lemma (49) for i = j then yields

P∞(Et | Et0) ≥

(
i−1∏
j=0

Ptj (Etj :tj+1 | Θtj )

)
·
∏i−1
j=0(1− pj+1) · Pt0(Et | Θt0)∏i−1

j=0 Ptj (Etj+1 | Θtj )

=

i−1∏
j=0

(1− pj+1) · Pt0(Et | Θt0). �

Lemma 2. For the proto-version of the forward-looking open-minded agent, we have that
for every hypothesis and posterior scheme, there is a constant b ∈ (0, 1) such that for every
Et0 , every Et � Et0 ,

(51)

i∏
j=1

(1− pj) ≥ b.

Proof. We have by specification that 0 < pj ≤ c for each j and a positive constant

c < 1, and that
∑i
j=1 pj ≤ d for some positive constant d. Using the standard inequality

x−1
x
≤ lnx for x > 0, this allows us to derive

− ln

i∏
j=1

(1− pj) =

i∑
j=1

− ln(1− pj)

≤
i∑

j=1

pj
1− pj

≤ 1

1− c

i∑
j=1

pj

≤ d

1− c ,

where the second inequality follows from the fact that 1 − c ≤ 1 − pj for all j. Thus we
have

(52)

i∏
j=1

(1− pj) ≥ exp

(
− d

1− c

)
,

yielding the desired statement with constant b = exp
(
− d

1−c

)
independent of Et. �

Lemma 3. For the forward-looking open-minded agent, we have that for every hypothesis
and posterior scheme, there is a constant b ∈ (0, 1) such that for every Et0 , every Et �
Et0 ,

(53)

i∏
j=1

(1− pj) ≥ b.

Proof. By specification, and in particular the abstention trick (26), for each j the posterior
pj = Ptj (Htj | Θtj ) conditional on Θtj equals the prior P0(Htj | Θtj ) conditional on Θtj .

But the latter is calculated from a choice of absolute prior, denoted p′j , by

pj =
p′j

1− τj
=
τj−1 − τj

1− τj
,(54)
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where τj is the probability of the catch-all after formulation of Htj . We thus have

i∏
j=1

(1− pj) =

i∏
j=1

(
1− τj−1 − τj

1− τj

)

=

i∏
j=1

(
1− τj−1

1− τj

)
=

1− τ0
1− τi

≥ 1− τ0,

yielding the desired statement with constant b = 1− τ0 independent of Et. �

Finally, combining the previous results, we obtain that for the (proto-version of) the
forward-looking open-minded Bayesian, for any hypothesis and posterior scheme, any Et0 ,
any hypothesis H ∈ ΘEt0 , any Et < Et0 , it holds that

P∞(Et0:t | Et0) ≥
i−1∏
j=0

(1− pj+1) · Pt0(Et0:t | Θt0)

≥ b · Pt0(Et0:t | Θt0)

≥ b · Pt0(H | Θt0) ·H(Et0:t | Et0),

yielding the desired statement (48) with constant a = b · Pt0(H | Θt0) independent of
Et0:t. �
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