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Abstract

Approximate coherentism suggests that imperfectly rational agents should

hold approximately coherent credences. This norm is intended as a

generalization of ordinary coherence. I argue that it may be unable to play

this role by considering its application under learning experiences. While it is

unclear how imperfect agents should revise their beliefs, I suggest a plausible

route is through Bayesian updating. However, Bayesian updating can take an

incoherent agent from relatively more coherent credences to relatively less

coherent credences, depending on the data observed. Thus, comparative

rationality judgments among incoherent agents are unduly sensitive to luck.
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1 Introduction

Glauber De Bona and Julia Staffel argue that the credences of non-ideal Bayesians ought

to be approximately coherent, where coherence is evaluated by an appropriate measure

of divergence, such as normed distance or Kullback-Leibler divergence, from the closest

coherent credence function (Staffel, 2015; De Bona and Staffel, 2017, 2018). I’ll call this

norm approximate coherence (and define it appropriately in Section 3). It says that from

a (third person) evaluative perspective, if B’s credences are closer to coherence than A’s

credences, then B’s credences are to that extent more rational than A’s credences. By

third person evaluative perspective I simply mean, to paraphrase Pollock (1987), norms

we use to evaluate the rationality of others’ beliefs. This may be contrasted with first

person norms, which tend to be described as action-guiding.

De Bona and Staffel show that for every incoherent credence function there exists

an accuracy dominating less incoherent one, under fairly general conditions, whereas

Joyce showed that for every incoherent credence function there exists an accuracy

dominating coherent one (under similar conditions) (Joyce, 1998, 2009). Accordingly, we

can think about De Bona and Staffel’s notion of approximate coherence as extending

Joyce’s ordinary coherence norm by giving a graded judgment about rationality, rather

than a categorical judgment. I will argue that such graded judgments about rationality

can be misleading when we evaluate credences under updating.

Both coherence and approximate coherence should be distinguished from what some

call final ends in epistemology, like truth or accuracy, which say that as between two

beliefs or credence functions, the one that is in fact true or more accurate is better. To
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understand why consider, in ordinary decision-making, a norm that requires an agent to

maximize actual utility. Actual utility is analogous in many respects to actual accuracy

in epistemology. It is possible to be unlucky, so to speak, because which option actually

maximizes utility depends on which world turns out to be true. It may be that at time 1,

my decision procedure for choosing an act is better; and at time 2 the same decision

procedure, given the same acts and states, is worse, because an improbable state in

which that act does not maximize utility occurs.

Now consider the norm of maximizing expected utility. This norm is analogous in

some respects to the role that coherence and approximate coherence play in

epistemology. We ask: did the agent do the best they could with the information they

had available to them at the time of the decision? We do not want to render an adverse

judgment about their rationality due to factors outside their control. More precisely: we

ordinarily do not think – at least as (epistemic) decision theorists – that such factors

should adversely affect our assessment of the relative quality of their choices from an

evaluative perspective. Similarly, we typically suppose (as a convenient fiction, perhaps)

that an agent can choose their credences, and we evaluate their internal consistency or

rationality – an assessment that should likewise not be susceptible to luck or misfortune.

In this sense, coherence and approximate coherence are different from truth or accuracy

norms.

I attempt to capture, for our purposes here, this notion of immunity to luck or

misfortune, in the context of updating credences, through a principle I call comparative

consistency. I then argue that while coherence is comparatively consistent, approximate

coherence is not. Its verdicts regarding relative rationality between two agents (or,
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rather, their credence functions) can depend on factors outside the agents’ control. In

particular, it is possible to have the following: two agents, A and B, are such that B is

currently less coherent. They perform a simple experiment (e.g., toss a coin) and update

their credences about the coin’s bias. If the coin lands on tails, A becomes less coherent

than B, whereas if it lands on heads, B remains less coherent. Therefore, it is possible to

observe an ‘unfortunate’ sequence of data, so to speak, which adversely affects our

evaluative assessment of the relative quality of an agent’s doxastic state. A can go from

doing relatively better, to doing relatively worse, solely due to the outcome of the coin

toss.

The paper proceeds as follows. In Section 2, I explore the normative status of

accuracy and coherence/ approximate coherence. In Section 3, I define both norms in

the context of a simple example – credences about a coin’s bias. In Section 4, I motivate

and explain the notion of comparative consistency. I then show that while ordinary

coherence is comparatively consistent, approximate coherence is not. In Section 5, I

consider several potential objections. By way of conclusion, I suggest that what really

matters under updating in ordinary Bayesian epistemology is the binary question of

whether the posterior distribution can be identified. And since approximate coherentism

likely requires us to give up updating along ordinary Bayesian lines, I suggest an

important line of further research – namely, the nature of belief updating norms for

imperfectly rational agents.
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2 Background: Accuracy and Coherence

I develop the argument to follow within the general framework of Bayesian epistemology

or epistemic utility theory (Joyce, 1998, 2009). In this framework, minimizing expected

inaccuracy plays a similar role that maximizing expected utility plays in ordinary

decision theory. The main difference is that we replace the utility function with an

appropriate measure of accuracy, or scoring rule. The relevant details of the scoring rule

framework will be introduced below – fortunately, most can be omitted, because the

conditions required for De Bona and Staffel (2017)’s results are similar to those required

for Joyce (2009)’s results.

DeBona and Staffel give two types of arguments for approximating coherence. One

is a pragmatic defense – namely, that reducing one’s degree of incoherence decreases the

extent of their vulnerability to dutch books. I will not address that argument here.

Indeed, I find it compelling. However, there remains a question about whether

approximating coherence can be defended on non-pragmatic grounds. This is a natural

question to ask with respect to norms in Bayesian epistemology. For example, Joyce

(1998, 2009) gives a non-pragmatic defense of probabilism whereas Greaves and Wallace

(2006) give non-pragmatic defenses of updating by Bayesian conditioning. Fittingly,

DeBona and Staffel also offer a non-pragmatic defense for approximating coherence –

namely, that approximating coherence improves one’s accuracy outcomes. This is the

issue I take up in this paper.

Joyce (1998) introduces the guiding ideal for epistemic utility theory, namely, the

norm of graded accuracy. The norm of graded accuracy implies that as between two
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credence functions, the one that is closer to the truth, where closeness is evaluated by a

suitable measure of accuracy, is better. Accuracy is ordinarily assessed using a scoring

rule, which maps a pair of values – a credal assignment and the true state of the world –

to a positive real number. For example, if someone forecasts the probability of rain

tomorrow to be 0.8, a simple way to measure their accuracy would be the squared

distance from the true outcome, (Iv − 0.8)2, where Iv is an indicator variable that takes

the value 1 if it rains and 0 otherwise. This score, known as the Brier score, maps

credences to [0, 1] where 0 denotes perfect accuracy and 1 denotes maximum inaccuracy

(Brier, 1950).

Graded accuracy is similar to Goldman (2002)’s notion of veritism in ordinary

epistemology (Pettigrew, 2016). For most subjective Bayesians, it is a feature of primary

epistemic value regarding an agent’s credal state. It is better to be closer to the truth

than to be further away from it. However, when we evaluate the rationality of an agent’s

credences under conditions of uncertainty, we do not use graded accuracy on its own –

we recognize it is possible for an agent to formulate her credences diligently but end up

inaccurate due to misfortune.

For example, suppose Alice is making a forecast about the weather tomorrow in a

rainy city during a rainy season – Seattle in November, say. She estimates the

probability of rain to be 0.7. This is consistent with her evidence, including professional

forecasts and the November benchmark for Seattle. We can further suppose that she

updated her estimates by Bayes’ Rule, that she is perfectly coherent, etc. In other words,

she has done everything as well as we can expect. But in those possible (albeit relatively

improbable) worlds where it does not rain in Seattle tomorrow, Alice will be
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substantially inaccurate. Ordinarily, we do not hold such misfortune against an agent’s

epistemic rationality.

Rather, we use graded accuracy, together with an appropriate decision rule, in order

to identify certain evaluative norms for the assessment of an agent’s credal state. For

instance, Joyce (1998, 2009) defends coherence (the relevant norm) by showing that

every incoherent credence function is dominated (the decision rule) by some coherent

credence function with respect to the underlying measure of accuracy (the feature of

primary epistemic value). If an agent is incoherent we say they are to that extent

epistemically irrational. Likewise, Greaves and Wallace (2006) defend Bayesian updating

(the relevant norm) by showing that under relatively general conditions, updating by

Bayes’ Rule maximizes the expected value (the decision rule) of the underlying measure

of accuracy (the feature of primary epistemic value). Similarly, De Bona and Staffel

defend approximate coherence (the relevant norm) by showing that every incoherent

credence function is dominated by some less incoherent credence function (the decision

rule) with respect to the underlying measure of accuracy (the feature of primary

epistemic value).

3 Coherence and Approximate Coherence

In this section, I make the relevant notions of coherence and approximate coherence

more precise and explain that approximate coherence, as De Bona and Staffel

characterize it, is intended to be a graded generalization of its categorical relative – i.e.,

a notion that can help us make comparative rationality judgments on the basis of
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accuracy considerations. I consider cases where we are formulating a credence about a

single, continuous parameter – the unknown bias θ of a certain coin. One can also think

about the stylized objective chance of rain tomorrow, the unknown mean of a normally

distributed random variable, etc. I define the relevant concepts accordingly.

Coherence Norm. Let Ω denote our parameter space containing all

possible values of the true unknown quantity θ ∈ R. A credence function of θ,

p(θ), is coherent if (1) p(θ) ≥ 0 and (2)
∫

Ω
p(θ)dθ = 1.1

A coherent credence function is (from an evaluative perspective) better than

(more rational than) an incoherent one.

Coherence, as noted, is valuable because it guarantees improvements in accuracy.

De Bona and Staffel propose the norm of approximate coherence as a suitable

generalization to ordinary coherence which allows us to make comparative rationality

judgments about Bayesian agents. Since it is unrealistic to expect ordinary agents to be

coherent, we can evaluate them in terms of how closely they approximate that ideal. On

this approach, approximating coherence similarly promotes the ultimate goal of holding

accurate credences. We define this norm using the same framework as above.

Approximate Coherence Norm. Let Ω denote our parameter space

containing all possible values of the true unknown quantity θ ∈ R. Let f(θ)

1The two conditions above commit us to countable additivity since the density of a

countable union of disjoint regions is the sum of the densities of the individual regions due

to the linearity of integration.
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be a function that violates (1) or (2), from above, and p(θ) a probability

function. Let D : f × g → R+ be a measure of divergence between f and g.

The incoherence of f according to D is measured as ID(f) = arg minpD(f, p).

As between two credence functions f and g, if ID(f) < ID(g) then f is (from

an evaluative perspective) to that extent better than (more rational than) g.

This says that we should evaluate the degree of incoherence by looking at the

divergence of the incoherent credence function from its closest coherent credence

function, and that as between two incoherent credence functions we should judge the less

incoherent one to be relatively more rational or, as De Bona and Staffel (2017) put it,

epistemically better.

Note that for the purpose of this project, we will not look at violations of additivity,

which add a further layer of complication. Similarly, De Bona and Staffel illustrate

incoherence in terms of violations of normalization. For instance, in Section 3 of

De Bona and Staffel (2017), the working example is of two agents, Clara and Jane,

whose credences about a tripartite partition are incoherent in the sense of adding up to

more than 1, and less than 1, respectively. For agents who are incoherent in the sense of

violating additivity, ? argue for a generalization of Bayes’ Rule for updating such beliefs

using the notion of Choquet expected utility – an approach to computing expectations

with respect to non-additive functions.

De Bona and Staffel defend approximate coherence by relying on the property of

final epistemic value, accuracy, in the same way that Joyce defends coherence. In

particular, De Bona and Staffel (2018) show that as between two incoherent credence
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functions, the one that is closer to coherence guarantees improvements in accuracy, as

measured by a suitable measure of divergence (Proposition 2). In general, a divergence

measure is suitable if its associated scoring rule satisfies the conditions required by Joyce

(2009) (continuity, truth-directedness, and strict propriety) and it is additive.2 A scoring

rule is additive if we evaluate the inaccuracy of a credal assignment by adding up (not

necessarily in equal weight) the inaccuracies of the credences assigned to every possible

outcome in the relevant partition or algebra of events.

4 Coherence and Comparative Consistency

To begin, I want to highlight a basic insight that I think is generally accepted in

epistemic utility theory, insofar as the field is itself a type of decision theory, where the

rationality of epistemic acts is evaluated in terms of their expectations under conditions

of uncertainty. The insight, to paraphrase Wedgwood (2002), is that the rationality, from

an evaluative perspective, of a credence function should generally not depend on facts

about the world outside the agent’s control. The clearest illustration of this guideline is

2A scoring rule s(Iv, p) that measure the inaccuracy of credence p given that the true

state is Iv is a measure of divergence D(q, p) where q is a credence function that puts all

probability mass/density on the true outcome – i.e., q is the omniscient credence function.

That is, a scoring rule is a special kind of divergence; thus, when we say ‘a measure

of divergence and its associated scoring rule’, what is meant is a measure of divergence

between two credence functions and that same measure of divergence between a credence

function and the omniscient credence function. For a recent discussion of the structure of

scoring rules, and their relationship to divergence measures see Babic (2019).

10



the focus on expected (as opposed to actual) epistemic utility in evaluating the

rationality of a credence function.3

4.1 A Metanormative Principle for Epistemic Norms

The above general insight is underspecified for our purposes, however. To apply it here,

we will articulate a metanormative principle that captures its spirit in the context of

evaluating the rationality of credences as the agent obtains new evidence. I am

interested in whether our relative assessment about a credence function is appropriately

consistent, either over time or under equivalent representations of the agent’s doxastic

state. In particular, consider the following: if we render a verdict about the rationality of

A’s credences, relative to B’s credences, at time 1, and between time 1 and time 2 the

only relevant aspect of the situation that changes is that a new piece of evidence is

obtained, and A and B both update their beliefs diligently to account for the new

evidence, then this much seems clear: at time 2, it does not seem appropriate for our

assessment of the relative rationality of A and B’s credences to shift. In other words,

since A and B have both diligently updated their beliefs, the verdict rendered at time 2

should be consistent with the verdict rendered at time 1. For lack of a better term, I will

call this principle the requirement of comparative consistency.

Comparative Consistency.

Suppose A and B have credences about an unknown quantity θ. Evidence

3Perhaps one can put this in terms of the distinction between internalist and externalist

norms. I have tried to avoid this distinction as it may distract from what is a fairly

straightforward point about norms in decision-theoretic epistemology.
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about θ comes from experiments whose outcomes are denoted by X. If A’s

priors about θ are less incoherent than B’s then, for any value X = x that

might be observed, A’s posteriors about θ should not be more incoherent

than B’s.

In short, if A’s priors are less incoherent than B’s then, for any observation, A’s

posteriors should not be more incoherent than B’s.4 In some respects, comparative

consistency is like a stability condition on norms of epistemic rationality. It says that if

you now believe A’s credences to be more rational than B’s credences, you should not

change that assessment unless you have an appropriate reason to do so – such as a new

piece of evidence suggesting that one of them acted irrationally (or less rationally) in

some way. In other words, the verdict about comparative rationality should not shift

arbitrarily. While this is only a bare bones sketch of the notion, the goal of this project

is not to fully articulate and argue for a metanormative theory. Rather, I hope the

principle is sufficiently plausible for now.

4.2 Updating Incoherent Credences

I will show through a simple example that approximate coherence is not comparatively

consistent. The updating situation is ordinary. There are no issues of uncertain evidence

that would trigger Jeffreys’ Rule or some alternative to it; or of misleading evidence, etc.

4In Section 5, I take up potential objections to the Bayesian updating assumption. I

also explain, in Section 4.3, that under some fairly modest assumptions, the only updat-

ing strategy for incoherent agents that satisfies reflection and the martingale principle is

Bayesian.
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Further, our agents will indeed diligently update. The notion of comparative consistency

prohibits a verdict which deems one of them more rational before the update and less so

following the update.

Suppose we have two agents, A and B, who have opinions about the unknown bias

of a certain coin, which may take any value θ ∈ [0, 1]. These opinions are expressed by

their credence functions for θ, denoted by pA(θ) and pB(θ), respectively. A and B may

not be coherent, which means that pA(θ) and pB(θ) can fail to be probability

distributions. However, in the case we will consider, these functions remain additive.

This is similar to the kind of incoherence that De Bona and Staffel use to describe

graded incoherence (violations of normalization). Suppose for illustration that A and B

will perform a simple experiment. In particular, they are going to toss the coin once.

The assumption that our agents will toss the coin once is adopted for ease of exposition.

It will be clear that the problem can arise for any finite number of tosses. We will denote

the result of the coin toss with the random variable X which can take the value 0 (for

heads) or 1 (for tails). After observing the result they will update by Bayes’ Rule to get

the posterior credence functions pA(θ|x) and pB(θ|x). For ordinary coherent priors,

updating would be straightforwardly accomplished through the familiar expression of

Bayes’ Rule, as follows:

p(θ|x) =
f(x|θ)p(θ)
m(x)

(1)

where

m(x) =

∫ 1

0

f(x|θ)p(θ)dθ (2)

is the marginal credence function for X = x over all possible values of the unknown
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quantity θ and f(x|θ) is the data generating distribution.

For incoherent agents, however, m(x) may or may not be a valid probability

function. In ordinary Bayesian inference, this is usually not an issue, because the

function m is not a function of the unknown quantity of interest, θ, but is instead a

function of the data, x. Accordingly, we would proceed as usual, treating this function as

a pseudo marginal distribution, focusing on the components that are functions of θ, and

taking the posterior to be proportional to the prior times likelihood:

p(θ|x) ∝ f(x|θ)p(θ). (3)

This is indeed what I will do.

But whereas for ordinary credences we might, if desired, normalize the posterior so

as to rescale the resulting distribution into [0, 1], for our purposes here doing so is not

innocuous. Our main subject of interest is the incoherence in the agent’s credence

function. Accordingly, I do not want to automatically rescale because I am taking it for

granted, as De Bona and Staffel do, that there is something noteworthy about the agent’s

imperfect doxastic state, and I want to preserve that aspect of the situation under

updating. Accordingly, I want to take the prior distribution to a posterior distribution as

faithfully as possible without arbitrarily wiping out the initial incoherence and thereby

changing the agent’s subjective representation of uncertainty. Since the agent’s beliefs

remain additive, the Bayesian posterior is a faithful posterior that maintains prior

proportions of probabilities while reflecting the new evidence. Further, inferences on θ

and predictions about X remain the same whether we normalize or not. After updating,
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I want to compare relative incoherence under different possible observations X = x to

see if the ranking is stable. That will be the strategy in the next section.

Ultimately, however, we will see what it takes to normalize each credence function.

Rather than hiding the ball, so to speak, we will do things one step at a time. Recall

that for a fixed value of X = x, the quantity m(x) is a constant. The core of the problem

will be that for credence functions that can be normalized, it is a finite normalizing

constant whereas for credence functions that cannot be normalized, the problem we

identify persists for any real number assigned to this quantity.

Comparative consistency requires that our normative assessment of the quality of A

and B’s new credence functions should not depend on whether the coin lands on heads

or tails. Since their mental states are the same in all relevant respects in both the heads

world and the tails world, and their updating behavior is the same, and neither has done

anything to suggest a change in our verdict regarding their relative rationality, our

post-experiment normative assessment about the rationality of their credences should

not depend on the observed outcome. It should be consistent with our pre-experiment

verdict.

4.3 Reflection and Expectation

The updating strategy in Equation 3 is far from arbitrary. Rather, it is a more general

expression of the ordinary statement of Bayes’ Rule as given in Equation 1. Huttegger

(2014, 2017) argues that in order for an update rule to count as a reasonable response to

a learning experience it must satisfy the principle of reflection or, more specifically, the
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martingale principle. And drawing on Zabell (1982), he further shows that, given some

fairly modest assumptions (called exchangeability, regularity, and sufficientness), the

general expression in Equation 3 is the only one that does so for the kind of case we are

considering (single parameter inference for an unknown proportion) (See Huttegger,

2017, Chs. 5-6). This remains true whether the agent is coherent or not, provided their

credences remain additive.

In our context, the martingale principle requires that the conditional expected value

of the probability of heads/tails on the n+ 1th toss, given the result on the nth toss, is

equal to the probability of heads/tails on the nth toss. We can show that the update

rule in Equation 3 indeed satisfies the martingale principle, as follows. To simplify, I will

express the point using the first and second toss.

First, we need to define the predictive distribution of an as yet unobserved outcome

of X, which we will denote as X̃, given the outcomes of X that have so far been

observed, which we will denote with the lowercase x. This distribution takes the

following form:

Pr(X̃ = 1|x) =

∫ 1

0

Pr(X̃ = 1|x, θ)p(θ|x)dθ =

∫ 1

0

θp(θ|x)dθ = E[θ|x] (4)

That is, the probability that X̃ = 1 (the coin lands on tails) is given by the posterior

mean of θ after conditioning on the tosses that have been observed. Before any tosses

have been observed, we would simply use the prior mean for θ, given by E[θ]. This would

be the predicted probability that X1 = 1. Under the above assumptions, both the prior

and the posterior mean can be computed from the kernel of the prior/posterior
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distribution – i.e., we do not need to determine the normalizing constant. Now we want

to show that the expected value of the probability that the second toss lands on tails,

given the result of the first toss, is equal to the probability that the first toss lands on

tails. That is,

E[Pr(X2 = 1)|X1 = 1] = Pr(X1 = 1) (5)

We know from Equation 4 that the quantity Pr(X2 = 1)|X1 = 1] is given by the

posterior mean, that is, E[θ|X1 = 1]. And by the law of iterated expectation, we know

that E [E [θ|X1 = 1]] = E[θ]. The same point holds for any sequence of outcomes

X1, ...Xn.

Thus, both expressions of Bayes’ Rule (Equation 1 and Equation 3) remain faithful

to the martingale principle and more generally reflection. This has to be true because

they are proportional to each other and as a result inferences on θ and associated

predictions about X remain unchanged. The constant, c = m(x), rescales the

distribution of θ, but the scale is irrelevant to inference. What matters is the relative

density assigned to different regions of the parameter space. But, if we move to some

other non-Bayesian update rule, it is not clear how we could satisfy the martingale

principle. I discuss the Bayesian updating assumption further in Section 5.2, and the

normalization point in Section 5.3.
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4.4 A Counterexample

Suppose that A and B’s credence functions before the experiment are given by,

pA(θ) =
1

1− θ
pB(θ) =

1√
θ(1− θ)

(6)

These credences are not coherent. It is not entirely clear how we should interpret

incoherent credence functions. If we assume that they indeed encode an agent’s partial

beliefs, as De Bona and Staffel suggest, then the interpretation of agent A would be that

they are very confident the coin is tails-biased whereas the interpretation of agent B

would be that they are just as confident that the coin is biased but indifferent as to

which direction it is biased toward. However, for any plausible measure of divergence B’s

credence function is more rational (better) because A’s credence function is a non-finite

measure over the parameter space [0, 1] whereas B’s credence function is an

unnormalized probability. Specifically,

∫ 1

0

1

1− θ
dθ = +∞

∫ 1

0

1√
θ(1− θ)

dθ = π (7)

Suppose we assess the degree of A and B’s incoherence by applying the well-known

Kullback-Leibler divergence. Between pi(θ) and pj(θ) it is defined as,

KL(pi||pj) =

∫
Ω

pi(θ) log
pi(θ)

pj(θ)
dθ (8)

Nothing in this argument depends on KL divergence being the ‘right’ measure of

divergence. I use this measure for illustration, as it is well-known, corresponds to the
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Shannon measure of information entropy (Shannon, 1948a,b), and to the strictly proper

logarithmic scoring rule (Gneiting and Raftery, 2007). Applying this expression to the

bias of the coin and rearranging, we have,

KL(pi||pj) =

∫ 1

0

pi log pidθ −
∫ 1

0

pi log pjdθ (9)

For any coherent candidate credence function pC , KL(pA||pC) is either undefined or ∞,

since the left-hand side of the difference is ∞ and the right-hand side is either ∞ or 0 (if

C’s credences are uniform on θ, pC = 1). Meanwhile, KL(pB||pC) is a finite number. For

example, if C’s credences are uniform then KL(pB||pC) = 4.35. Therefore, our initial

assessment must be that B’s credences are better. A’s credences are not coherent and

they cannot be made coherent – there is no finite normalizing constant that would turn

A’s credence function into a valid probability distribution. If instead we use simple

absolute value distance (or squared distance, for that matter) then the divergence

between A and the closest coherent distribution (indeed, any coherent distribution) is

likewise ∞ since x/(1− x) is not bounded above on [0, 1]. To summarize,

Verdict, according to approximate coherence, of the rationality of A and B’s

credences:

At time-1,

A is awful, and

B is better.

In short, B > A

Consider, next, what happens after our agents perform a simple experiment. The
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distribution of the coin is given by θx(1− θ)1−x. Accordingly, when the coin lands on

tails, the posterior density is proportional to the prior density multiplied by θ, and when

the coin lands on heads, the posterior density is proportional to the prior density

multiplied by 1− θ.

Case 1: The coin is tossed and it lands on tails.

If the coin lands on tails, we obtain the following posterior credences,

pA(θ|X = 1) =
θ

1− θ
pB(θ|X = 1) =

√
θ

1− θ
(10)

In this case, A’s credences are given by the odds for heads whereas B’s credences

correspond to their square root. As a result,

∫ 1

0

θ

1− θ
dθ = +∞

∫ 1

0

√
θ

1− θ
dθ = π/2 (11)

Approximate coherence gives the verdict that A remains awful and B remains better. To

use the shorthand from above: B > A. This is consistent with the verdict rendered

before the coin was tossed. So far so good – approximate coherence is comparatively

consistent. Now consider what happens if the coin lands on heads.

Case 2: The coin is tossed and it lands on heads.

If the coin lands on heads, we obtain the following posterior credences,

pA(θ|X = 0) = 1 pB(θ|X = 0) =

√
1− θ
θ

(12)
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In this case, A’s credences are uniform. The density is a straight line at y = 1 for every

value of θ between 0 and 1. Meanwhile, B’s credences correspond to the odds for tails –

i.e., they are reciprocal to B’s credences when the coin lands on heads. As a result,

∫ 1

0

1dθ = 1

∫ 1

0

√
1− θ
θ

dθ = π/2 (13)

A has become perfectly coherent, whereas B remains as incoherent as they would be if

the coin landed on tails. The verdict according to approximate coherence is now the

reverse: A’s credences are better and B’s credences are worse. Approximate coherence is

no longer comparatively consistent. Insofar as approximate coherence is a standard for

making comparative rationality judgments between agents – or between their credence

functions – then B is in effect punished for being unlucky. The following box summarizes

the possible results after updating on a single coin toss.

Verdicts, according to approximate coherence, of the rationality of A and B’s

credences:

At time-2,

If the coin lands on tails, then B

is better, and A is awful.

(B > A)

If the coin lands on heads, then A

is perfect, and B is worse.

(A > B)

The verdict according to approximate coherence, as between whether A has more

rational credences than B, depends on whether the coin lands on heads or tails, a feature

of the problem that is external to both agents and over which they have no control.
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In short, we have the following: if credences that sum to 1 are less incoherent than

those that do not, and posteriors that can be normalized by a (finite) constant are less

incoherent than those that cannot be, then approximate coherence violates comparative

consistency. This problem is guaranteed to occur for any finite number n of tosses if we

observe a sequence of n heads or tails. In particular, if we observe a sequence of n tails,

then approximate coherence will give the verdict that B is better and A is awful,

whereas if we observe a sequence of n heads, approximate coherence will give the verdict

that A is better (though not necessarily perfect) and B is worse. So while the problem is

increasingly improbable as n increases, it is a problem nonetheless and can occur for any

finite n.

5 Objections

In this section, I try to preempt certain potential misconceptions and consider several

more general objections.

5.1 Misleading Evidence

First, it’s worth emphasizing that the issue is not about misleading evidence – i.e., a

situation where the agent receives some evidence about the outcome of the coin toss

which may or may not correspond to what actually happened. The outcomes of the toss

in either case are by hypothesis accurately observed and recorded. Rather, the concern is

that if a credence function about the bias of a coin is said to be relatively more

rational/irrational conditional on heads, it should be equally rational/irrational

conditional on tails. There is no relevant distinction to be made between the heads state
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and the tails state that would motivate a shift in the evaluative verdict regarding the

agents’ comparative rationality.

5.2 Bayesian Updating

Second, and more importantly, one might question whether incoherent agents should

update along Bayesian lines. The updating strategy adopted here is a standard

application of Bayes’ Rule for single parameter inference in the case of an unknown

proportion with an improper prior (e.g., Lindley and Phillips, 1976). I presuppose that

the agents’ update should be a reasonable response to a learning experience and thus the

update rule should satisfy the martingale principle (Huttegger, 2017). It is possible, of

course, to insist that for subideally rational agents, everything goes out the window –

they cannot update along Bayesian lines and more generally they violate the martingale

principle and reflection. One might defend this on the ground that when you deviate

from rationality in one respect, it is overall better to deviate from rationality in other

respects as well, in the spirit of the theory of the second best (Lipsey and Lancaster,

1956). But the very idea of approximate coherence suggests that when one is not ideal, it

is better to be closer to the ideal than to be further away from it.

Further, the prior I have used is one with a distinguished history in Bayesian

statistics – it is the Jeffreys’ Prior (for person B) and its transformation (for person A)

(Jeffreys, 1946). Both are closely related to the uninformative (and incoherent) Haldane

prior (Haldane, 1932). It is fair to say, then, that this project starts from the observation

that incoherent priors are an important part of the Bayesian paradigm. Indeed, in many

types of problems, both invariant (in the sense of Jeffreys) and uninformative priors are
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often incoherent. For example, a conventional uninformative prior for the mean (µ) and

variance (σ2) of a normal likelihood is a prior that is uniform on (µ, log σ) (Gelman

et al., 2013, Eq. 3.2). This prior is incoherent.

However, one might insist that an incoherent agent ought not update before making

the prior coherent. While this might seem like a reasonable request, it would arbitrarily

restructure the agent’s representation of uncertainty in the absence of new evidence and

significantly limit the scope of Bayesian inference.

In some cases, the request might be feasible. In particular, when the prior integrates

to a finite constant, the position would be that we must normalize before updating.

Even here, the demand is not innocuous. It would create substantial impediments to

inference. Often, we normalize after updating in order to avoid computing the marginal

distribution of the data (in our case x), which is not a function of the parameter of

interest (in our case θ). This request would make inference less tractable in difficult

problems. But suppose we grant that this is what rationality requires of imperfect

agents, so to speak. There is a further problem still.

Sometimes, the prior is incoherent in such a way that its integral does not converge

– i.e., is improper. For example, the prior I used for person A. If we demand that this

prior must be made coherent, the request is impossible to meet. As a result, if we took

this position, it would commit us to prohibiting the use of improper priors, such as the

Jeffreys’ and Haldane priors for inference involving proportions. Suppose we grant this

too. There is yet a further problem, which is that proper priors on one space are often

improper on simple transformations of that space. So it is not clear how we should
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understand such a request – i.e., the request that improper priors must not be used in

Bayesian inference.

For example, instead of reasoning about our problem using a prior for the unknown

parameter θ, it is often useful in Bayesian inference to reason about such a problem

using a prior for the natural parameter of the exponential family representation of the

data-generating process. In our case, that would be the log odds for θ, ϕ = log θ
1−θ ,

because θx(1− θ)1−x = exp[log(θ/(1− θ))x− log(1− θ)] which is of the form

exp[ϕx− A(ϕ)] for A = log(1 + eϕ). In the absence of information about ϕ, a natural

starting point would be a prior that is uniform for all its possible values. However, using

the change of variable formula, a uniform prior for ϕ would lead to a prior for θ that is

proportional to 1/(θ(1− θ)) which is not integrable – i.e., is improper. Yet the two

distributions should be equivalent in terms of corresponding to the same representation

of uncertainty. In other words, if we insist that no updating can be done until the prior

is made proper, then making the prior proper on the transformed space will often imply

an improper prior on the original space. Thus, whether or not one is permitted to apply

Bayes’ Rule will then be sensitive to the parameterization of the problem. Yet it is the

same underlying inference problem. Consistent with these remarks, Robert justifies the

use of improper priors as follows: “the inclusion of improper distributions in the

Bayesian paradigm allows for a closure of the inferential scope (figuratively as well as

topologically)” (Robert, 2007, pg. 28).

Perhaps it will be helpful to explain by analogy the strategy adopted in this paper.

Suppose we have an imperfectly rational agent, not in the sense we are currently

considering (imperfect coherence) but in the sense of imperfect precision. When an agent
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is imprecise, we can identify their upper and lower probabilities for an event and thus

compute their interval estimate for the event. Seidenfeld and Wasserman (1993) describe

a phenomenon where an agent starts with an interval estimate for an event, obtains some

evidence, updates the initial set of priors by Bayesian conditioning, and ends up with a

posterior interval that strictly contains the prior interval. This is the well-known

phenomenon of probabilistic dilation. By identifying this phenomenon, Seidenfeld and

Wasserman (1993), among others, suggested there is a problem either with imprecise

probability models, or with the assumption that one should update them by Bayes’ Rule

because, intuitively, one’s interval should become narrower – or, at least, not wider –

after undergoing a learning experience. By framing the problem in terms of this

potential incompatibility – made explicit by the occurrence of dilation – they encourage

us to think carefully about how the imprecise framework fits with the standard Bayesian

updating picture. Since then, there have been many proposed solutions of the apparent

conflict. My goal in this paper is to highlight something similar for approximate

coherence – i.e., to identify a potential conflict between the approximate coherence

framework and standard Bayesian updating, but whereas Seidenfeld and Wasserman

(1993)’s underlying normative principle for interval estimates is that they should not

dilate under updating, my underlying normative principle is that comparative judgments

about rationality should be consistent under updating.

5.3 To Normalize or Not?

Third, one might question why I don’t automatically normalize the agent’s credences as

part of the update. Instead, I break up the analysis as follows. First, I derive the
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posterior, taken to be as prior times likelihood, then I show what it would take to

normalize it. For example, in Equation 10, pA is A’s non-normalized posterior and PB is

B’s non-normalized posterior. In the next step, Equation 11, I show just how incoherent

they are by highlighting what it would take to normalize them – pB sums to π/2, and pA

is non-convergent. Thus, pB can be normalized by dividing by the marginal probability,

which is equivalent here to the integral of the unnormalized posterior treated as a

function of x. That is, 1/(π/2)× (π/2) = 1. But for pA, there is no finite normalizing

constant, which is what makes it epistemically “worse”.

I do this in order to be faithful to De Bona and Staffel’s project and create room for

evaluating deviations from coherence across updates. In other words, I don’t normalize

because our starting point is that there is something interesting about the doxastic state

of an agent whose credences violate normalization. Another way to put the point is as

follows: If we take incoherent priors and normalize them automatically as part of the

update rule, then we erase the agent’s incoherence by the same stroke. No matter how

incoherent one is, the update rule wipes it all out. In that case, approximate coherentism

under updating would only apply to violations of additivity, and one could only violate

the normalization axiom in one’s ur-prior. Moreover, normalizing as part of the update

rule would make my own conclusion somewhat circular. I would suggest that there is not

much room for approximate coherence judgments under updating because my update

rule eliminates any incoherence.

Now, we could normalize right away and draw a similar overall conclusion. The

conclusion would be that credences which cannot be normalized by a finite constant are

beyond repair, whereas those that can be normalized are all essentially on the same
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footing from the perspective of epistemic rationality. The fact that one normalizable

credence is closer to coherence than another normalizable credence is epistemically

insignificant. Thus, the spirit of the conclusion would be the same: what really matters

under updating is the binary question of whether the posterior can be normalized, not

the graded question of how far from coherence it happens to be. This is what I have

tried to show.

One might still object: couldn’t the same type of problem arise for ordinary

coherence if we don’t normalize as part of the update? It could, but this would be the

result of forcing the approximate coherence model into the ordinary coherence

framework. In other words, it is not a problem for the ordinary coherentist. The

ordinary coherentist is not interested in ranking credence functions in terms of their

degrees of incoherence. As a result, it is not problematic for the ordinary coherentist to

normalize as part of the update – normalizing does not jeopardize the relevance of

coherence as a normative principle for evaluating the epistemic rationality of a person’s

credences. The same is not true for approximate coherence because, as mentioned,

normalizing wipes out precisely that feature of the person’s doxastic state that

approximate coherence is designed to help us model and evaluate.

For the ordinary coherentist, being incoherent is epistemically bad because one’s

credence function is then accuracy dominated. But the ordinary coherentist is not in the

business of telling us how to move to a coherent credence function. Thus, if we ask the

ordinary coherentist should the incoherent agent update and normalize, the answer

ought to be yes. And if we ask, should the coherent agent update and normalize, the

answer should likewise be yes. And neither answer undermines the role of ordinary
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coherence as an evaluative norm for the rationality of an agent’s credences.

But suppose that in the ordinary coherence framework we have one coherent agent,

who updates and normalizes, and one incoherent agent, who updates but does not

normalize. Is this a problem for the ordinary coherentist? It is not because in this case

they are doing different things. Still, we can take note that the coherent agent will

remain coherent. And the incoherent agent will be sometimes coherent and sometimes

not. Thus, the non-ideal agent will never become epistemically better, and the ideal one

will remain ideal. It is the graded nature of the approximate coherence framework that

suggests itself to making ongoing comparisons under updating, but as I hope to have

shown, these ongoing comparisons can be misleading.

5.4 Synchronic or Diachronic Norms?

One might further object to the concerns articulated here on the ground that De Bona

and Staffel only assess the rationality of a credence function at a time. To what extent,

then, should they be persuaded by this notion of comparative consistency over time?

Note, as I flagged in Section 4, that while I articulate comparative consistency in terms

of what happens before, and after, a learning experience, the temporal framing is a

heuristic for illustrating the problem. The notion of comparative consistency is at a

minimum a relation among a person’s doxastic attitudes. In the preceding paragraphs, I

suggested that it would be difficult to banish improper priors from the Bayesian

landscape because a proper prior under one representation of a problem commits an

agent to an improper prior under a slightly different representation of the same problem.

Here, a similar suggestion is appropriate: comparative consistency applies between a
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prior (unconditional) credence function and a posterior (conditional) credence function.

While the prior/posterior language suggests a temporal perspective, we can also

understand the notion in terms of the agent’s conditional commitments. My current

credence function commits me to a certain credence function in a heads world and to a

certain credence function in a tails world. That is, our commitments can be understood

from a time-slice centric perspective of rationality, to borrow Hedden (2015) and Moss

(2015)’s expression. From an evaluative perspective, the heads and tails worlds, or the

estimates conditional on heads and the estimates conditional on tails, are

indistinguishable. Yet approximate coherentism’s assessment differs among them.

In the large literature pertaining to the proper scope of the requirements of

rationality, Broome (2007) argues that they should be understood as state requirements.

In the epistemic context, state requirements require the agent’s doxastic attitudes to be

a certain way at a given time (by comparison, Kolodny (2005) argues for a process

interpretation). The notion of comparative consistency suggested here can be understood

within a state-based picture of the requirements of rationality. It is a notion of

consistency between unconditional doxastic attitudes and the conditional doxastic

attitudes one is thereby committed to. The concern on this framing would be that

comparative judgments about relative rationality at a time are sensitive to normatively

innocuous features of a state (i.e., one’s conditional credence given the event Heads vs.

one’s conditional credence given the event Tails). Note that this is a minimalist

conception of comparative consistency. It is of course possible to understand the concept

diachronically, in terms of the temporal framing. I only wish to highlight that such a

conception is not necessary in order to find the idea compelling.
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6 Concluding Remarks

The Bayesian version of the likelihood principle suggests that the only relevant

ingredient for drawing inferences should be the posterior distribution. Therefore,

whether or not the prior is approximately coherent or, indeed, whether it converges is

not especially important. What really matters is a categorical question: can the

posterior be normalized? If it can be, then Bayesian inference proceeds as usual. If it

cannot be, then one cannot make inferences because the posterior distribution is not

identifiable. Therefore, while it is tempting to take a graded approach to evaluating

Bayesian agents, perhaps the question that really matters is categorical: A Bayesian

agent’s behavior is either rational, or not. If it is not, it can be misleading to rank

degrees of irrationality because any such ranking can depend on luck.

The lessons of this article, therefore, can be summarized as follows: in the standard

Bayesian framework, approximate coherence may not be a helpful guide for evaluating

comparative rationality, and in the partial coherence framework, updating should not

proceed along Bayesian lines. It remains to be seen what a non-Bayesian updating policy

for incoherent agents might look like, how it would compare to Bayesian updating, and

on what grounds it might be justified. It would be especially interesting to see future

work in this area – i.e., on belief updating norms for imperfectly rational agents.
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