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Abstract: The cognitive basis of pure geometry is basically unknown. Even the ‘simpler’ issue of 
what kind of representation of geometric object we have. In this work, we set forward a model of the 
representation of geometric objects at a neurological level for the case of the pure geometry of Euclid. 
To arrive at the model, we take into account historical aspects of practical and pure geometry together. 
This enables us to arrive at a coherent model of geometric objects consistent with the historical record.   
 
 
 
 
 
 
1. Introduction 
 
The purpose of the present work is to set forward a model of the neural representation of geometric 
concepts that underline our cognitive activity related to the practice of pure geometry.3  
     From the perspective of a philosophy of mathematical practices (see, e.g., Ferreirós 2016), we 
should take into account actual practices in their historical context. This is particularly the case with 
the present endeavor. Our purpose is not to address modern forms of pure geometry but pure geometry 
at its beginning, or close to it. Our object is the pure geometry of Euclid’s Elements. To arrive at a 
coherent model, we found it necessary to take into account earlier forms of geometry.   
     The models will be based on the hub-and-spoke theory (Ralph, Jefferies, Patterson, and Rogers 
2017). According to this theory, the neural representation of concepts is made in terms of spokes, 
which are modality-specific brain regions that codify modal features of concepts. For example, there 
are the spokes that encode visual, verbal (speech), and praxis representations. There are also 
integrative regions – the hub – which blends, in an amodal format, the different aspects codified in 
the spokes and gives rise to coherent concepts. The hub enables a modality-free codification of further 
aspects of concepts; accordingly, “[It] allows the formation of modality-invariant multi-dimensional 
representations that […] code the higher-order statistical structure that is present in our transmodal 
experience of each entity” (Ralph 2014, 7). We can address a particular concept directly in terms of 
‘spokes’ and a ‘hub’ not has regions in the brain but as ‘parts’ of the concept. In this way, “each 
concept also has a ‘hub’ – a modality-independent unified representation efficiently integrating our 
conceptual knowledge” (Eysenck and Keane 2020, 319). 
     The organization of this work is as follows. In section 2, we will address the practical geometry of 
ancient Greece. Since not much is known, we take into account also elements of the practical 
geometry of other ancient cultures. This helps in given a more general characterization of practical 
geometry and arrive at a model of geometric figure for it. In section 3, we consider the earliest extant 
form of pure geometry as revealed in Hippocrates of Chios’ work. We develop a model for the case 
of this pure geometry, which has important differences to that of Euclid’s Elements. In section 4, we 
present the corresponding model of the neural representation of geometric objects in Euclidean 
geometry.  

 
1 Pablo de Olavide University, Seville, Spain. Email: mar.bacelar@gmail.com. 
2 This is a simplified stable draft of a more fully developed work, which is available upon request. Please do not use this 
version as a reference. 
3 For other works on somewhat related issues, see, e.g., Hohol and Miłkowski (2019) and Ferreirós and García-Pérez 
(2020). 
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2. Practical geometry in ancient Greece 
 
Not much is known about Greek practical geometry previous or contemporary to pure geometry (see, 
e.g., Asper 2003, 109-114). So, in this work, we will consider basic aspects of the Greek practical 
geometric practice that are common to other practical geometries.  
     A key aspect of land measurements is to have a common unit of length so that we have a common 
standard. In this way, different surveyors will arrive at the same measure when using different 
measuring instruments (e.g., rods or cords). These measuring instruments are ‘calibrated’ to the 
adopted standard. For example, in ancient Egypt, the unit of length measure was the cubit. This unit 
corresponds to the common measure of the forearm (Imhausen 2016, 47; Rossi 2007, 59). For land-
surveying, it seems that Egyptian used ropes having a standard length of 100 cubits, which were 
divided using knots placed at 1-cubit intervals (Imhausen 2016, 18; Rossi 2007, 154). Regarding the 
Greek length units, a widely used unit during Hellenistic times was the foot which was about 30-32 
cm (Lewis 2004, xix). 
     Besides the measurement of the boundaries of fields, it was essential to calculate the areas of these 
fields. Agricultural plots in the ancient Near East usually had rectangular shapes. This led to the 
development of the so-called surveyors’ formula, which gives good results when a shape approaches 
that of a rectangle. Let l1, l2, l3, and l4 be the sides of a quadrilateral field plot that are measured by a 
surveyor (e.g., l1 and l3 are the ‘long sides’, and l2 and l4 are the ‘short sides’). The surveyors’ formula 
gives for the area of the field plot the value (l1 + l3)/2 x (l2+ l4)/2. 
    Here, we find an important and common feature of practical geometries. The lengths are measured 
(or taken to be measured), and as such are given in terms of a unit of measure. The area is calculated 
from these length measures and given in terms of a unit of area. For example, in the Old-Babylonian 
period, the main unit of length was the rod (approximately 6 m), and the unit of area was the sar, 
corresponding to one square rod (36 m2) (Robson 2008, 294). 
     For different reasons, in practical geometries, some figures are widely used. These figures are 
clearly distinguished from all the other possible figures by naming them, even if definitions do not 
exist (contrary to the case of the pure geometry in Euclid’s Elements). A good example is the circle. 
In ancient Mesopotamia, a circle, like other geometrical figures, was conceptualized in terms of its 
boundary. The circle was the shape enclosed in a circumference. In this case, both had the same name. 
A translation of the name might be “thing that curves” (Robson 2004, 20). The area of the circle was 
determined from the measure of the length of the circumference.  It was given by the square of the 
length of the circumference divided by 12 (Robson 2004, 18). The circle was drawn using a specific 
instrument – the compass (Høyrup 2002, 105; Friberg 2007, 207). The compass made it possible to 
have a precisely drawn figure. 
     In terms of a model based on the hub-and-spoke theory, we can conceive of the concept of circle 
as relying heavily on a ‘visual spoke’ that represents aspects related to the visual shape of a circle, a 
‘verbal spoke’ that codifies the name of the circle, and a ‘praxis spoke’ related to the drawing and 
measurements on the circle. Here, going beyond the spokes taken into account by Ralph and co-
workers (see, e.g., Ralph et al. 2017), we propose another spoke related to measure-numbers, i.e., 
numbers that result directly from measurements in the case of length, or indirectly in the case of areas, 
and are addressed in terms of abstract symbols in the context of metrological systems (see figure 1).4 
 

 
4 In this work we departure from the idea that the spokes consist in modality-specific representations. In our case the 
symbolic number spoke is amodal. Also, it might be best to address the verbal spoke in terms of an amodal representation 
if we are to include more than simple words in it. 
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Figure 1. Hub-and-spoke model of the neural representation of geometric figure in practical geometry. 
 
Another aspect shared by different practical geometries is the existence of written geometrical 
problems. These are couched in the terminology of practical geometry. But they are a somewhat 
different way of doing practical geometry. Being written problems that are disconnected from an 
immediate surveying activity, there are no actual measures taken into account in the problems. The 
measures are putative measures that could have been made according to the practice of practical 
geometry. This led, for example, to the adoption of conventional lengths in the problems. In Old 
Babylonian mathematical texts, all circumferences are taken to have the same standard length. This 
is so independently of the actual length of the circumference drawn with a compass (Friberg 2007, 
207). So, while there are references to length measures in problems, these have not been actually 
measured, and neither corresponds to the actual measures of the drawn figure. 
     Whatever cognitive processes are at play during actual measurements these are not active during 
problem solving with conventionalized measures. One still uses whatever conceptual representation 
is at play when also making measurements, but only part of it. For example, the concept of line 
segment must include aspects related to the act of measuring. These are the procedures by which one 
attributes to the line segment a number (its length). In problems, we address these segments taking 
into account that there is a number associated with them – it is part of the concept –, but we disregard 
the use of a measuring instrument and the procedure by which the number is obtained. In our view, it 
might be the case that some aspects of the concept are only loosely taken into account. 
     One example of a geometrical problem is a Hellenistic geometrical problem from a papyrus written 
in demotic Egyptian in the third-century BCE (here, we take this problem not to have been influenced 
by the existing pure geometry). The statement of the problem is as follows: “A plot of land that 
<amounts to> 60 square cubits, [that is rec]tangular, the diagonal (being) 13 cubits. Now how many 
cubits does it make [to a side]?” (Cuomo 2001, 71). We have a rectangle and are asked to determine 
the length of its sides. These are calculated to have 12 and 5 cubits (Cuomo 2001, 71). This is a 
problem of practical geometry; however, we do not have an actual shape whose relevant lengths were 
measured. In fact, in a strictly practical practice, this problem is unfeasible. We can only calculate the 
area after measuring the lengths of the long side and the short side. In any case, as a didactic problem 
of practical geometry, the rectangle is conceived in terms of practical measures (in this case, the length 
of the diagonal) or values that are determined from practical measures (in this case, the area that is 
calculated from the lengths of the sides). In the problem, we consider a rectangle that is not measured 
nor even drawn, which has an area of 60 square cubits, a diagonal of 13 cubits, and sides that have 
(as calculated) 12 and 5 cubits. 
     These geometrical problems are known by us thanks to written accounts. But we know that many 
aspects of practical mathematics relied on oral accounts (see, e.g., Asper 2003). Much of this is lost 
to us. However, we might ‘reconstruct’ some of these practices.  
     It has been defended that a well-known passage in Plato’s Meno about finding a square that doubles 
the area of another square is an example of Greek practical geometry (Valente 2020). Regarding this 
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passage, it had already been argued by Saito (2018) that it is an example of a written rendering of the 
oral teaching and discussion of geometry in ancient Greece. It might be the closest we get to the 
ancient oral communication of geometry. Here, we will address this passage taking into account this 
two-fold aspect of it.  Socrates helps a boy having recollections of his knowledge about a geometric 
figure – the square. We can re-frame it as an episode of geometrical teaching – a lecture on a particular 
geometrical subject. We may assume that the teacher begins the lecture by drawing a square on a wax 
tablet (Saito 2018, 928; Netz 1999, 15): “Tell me now, boy, you know that a square figure is like this? 
—I do. A square then is a figure in which all these four sides are equal? —Yes indeed.” (Plato 1997, 
881). The teacher draws two lines perpendiculars to the sides of the square and passing by the center: 
“And it also has these lines through the middle equal? —Yes.” (Plato 1997, 881). The teacher then 
starts to address issues related to the area of the square: 
 
And such a figure could be larger or smaller? —Certainly. If then this side were two feet, and this 
other side two feet, how many feet would the whole be? Consider it this way: if it were two feet this 
way, and only one foot that way, the figure would be once two feet? —Yes. But if it is two feet also 
that way, it would surely be twice two feet? —Yes. How many feet is twice two feet? Work it out and 
tell me. — Four, Socrates. (Plato 1997, 882) 
 
For our purpose, we do not need to go further with the lecture. In this part, we see a feature of practical 
geometry that we have called attention to. We have a drawing of a figure, but we do not measure its 
sides. We take it to have measures that are useful in a didactic context. The teacher (Socrates) asks 
the student (the boy) to consider that the sides of the square measure two feet, and asks him to 
calculate the area, which the student does, arriving at the result of four (square feet). We have here a 
clear example of a written rendering of oral teaching of practical geometry. This is an example of the 
cognitive loosening we mentioned before. We perceive the square to have a particular dimension – it 
might look as having approximately one foot, for example. But we conceive it as having two feet. All 
this is made without an actual measurement procedure. The kind of conceptual representation at play 
is in some way ‘vaguer’ than when we pick up a rod and measure the sides of the square and determine 
that they have one foot. 
 
 
3. Early pure geometry 
 
Hippocrates’ quadrature of lunules is taken to be the earliest evidence of Greek pure geometry (see, 
e.g., Netz 2004; Høyrup 2019). We know of Hippocrates’ work by a text of Simplicius from the sixth-
century CE. This text is based on two previous accounts, one by Alexander of Aphrodisias and the 
other by Eudemos.   Hippocrates’ work is believed to be from the early second half of the fifth century 
BCE. Written prose was rare; because of this Netz considers that “Hippocrates’ treatise on the lunules 
could well be among the first treatises written in Greek mathematics” (Netz 2004, 247). Regarding 
Eudemos account, Netz realizes an exercise of reconstruction, trying to determine what in the text is 
closer to Hippocrates’ original. Netz assumes that the text “should have two layers, one closer to 
Hippocrates’ original, and another closer to late fourth century mathematics” (Netz 2004, 259). The 
main difference between these layers is the adoption or not of lettered diagrams, and the use of letters 
in the text to refers to parts of these diagrams. Netz’s assessment is as follows: 
 
While Eudemus has written his own text, he had before him Hippocrates’ text and, even against his 
will, he would be likely to be influenced by this text. I suggest that he had in front of him an unlettered 
text, and that he had modernized it in the two more complicated quadratures. Even there, however, 
he let himself here and there reproduce the original structure of the argument, correlating it however 
with his own lettered diagram. Thus, some letters are redundant. (Netz 2004, 265) 
 
Here, we want to suggest that the text might refer to an early written rendering of oral teaching by 
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Hippocrates. This is not that a bold suggestion. We know that Hippocrates taught about astronomy 
and geometry (Høyrup 2019, 160). Even if Netz takes Hippocrates to have written a treatise he also 
mentions the following: 
 
If you wish to convey an argument which relies, among other things, on a diagram, then you must 
have at least the ‘written’, i.e., drawn diagram to accompany it […] Briefly, then, some use of writing, 
in the sense of a physical drawn object, is a necessary aspect of Greek mathematics. (Netz 2004, 246) 
 
This is perfectly compatible with oral teaching of geometry like we have seen in the case of Plato’s 
Meno. Hippocrates might have presented his arguments orally to his students accompanying them 
with the corresponding drawing. Independently that Hippocrates might have made a written rendering 
of his lectures on geometry we take these to be the main vehicle of his approach to geometry. We 
suggest that like in the case of practical geometry, in pure geometry there is also an oral practice 
which might well be the earliest. 
     In what follows we will consider the passage about the first quadrature as a rewriting of an initially 
written rendering of oral teaching. It is as follows: 
 
(1) ... Therefore we shall discuss and quote them <=the quadratures> at length. (2) So he made his 
starting point by assuming, as the first among the things useful to the quadratures, that both the similar 
segments of the circles, and their bases in square, have the same ratio to each other. ((3) And this he 
proved by proving that the diameters have the same ratio, in square, as the circles). (4) This being 
shown to his satisfaction, he first proved by what method a quadrature was possible, of a lunule having 
a semicircle as its outer circumference. (5) He did this after he circumscribed a semicircle about a 
right-angled isosceles triangle and, about the base, <he drew> a segment of a circle, similar to those 
taken away by the joined <lines>. (6) And, the segment about the base being equal to both <segments> 
about the other <sides>, and adding as common the part of the triangle which is above the segment 
about the base, the lunule shall be equal to the triangle. (7) So the lunule, having been proved equal 
to the triangle, could be squared. (8) In this way, taking the outer circumference of a semicircle as the 
<outer circumference> of the lunule, he readily squared the lunule. (Netz 2004, 248-9) 
 
Our purpose here is to determine what has changed in relation to practical geometry that leads us to 
say that here we are in the context of a pure geometric practice. 
     The first quadrature is that of a lunule whose outer circumference can be seen as a semicircle. 
Thinking in terms of an oral presentation, Hippocrates after mentioning the assumption to his 
audience might have drawn an isosceles triangle and using a compass drawn a semicircle 
circumscribing it (see figure 2). 
 
 
 
 
 
 
 
 
Figure 2. Initial drawing with a semicircle circumscribing an isosceles triangle.   
 
Afterward, he might have completed a square based on the triangle and using a corner of the square 
as the center of a circle drawn an arc segment that is similar to the two formed previously. According 
to Netz’s rendering of the text in English, “<he drew> a segment of the circle, similar to those taken 
away by the joined <lines>” (Netz 2004, 249) (see figure 3). 
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Figure 3.  Completion of the drawing of the lunule. 
 
As Høyrup mentions, Hippocrates’ arguments have a ‘single-level’, directly based on the assumptions 
taken into account (Høyrup 2019, 179). Based on the presupposition mentioned at the beginning, 
Hippocrates simply mentions that the area of the circular figure about the base is equal to that of both 
circular figures about the other sides of the triangle. He then proceeds to add the area not included in 
either of these to each one of them. We have what we might call a visual operation in which we 
alternatively imagine each of the area addition operations (see figure 4, left and right). 
 
  

 
Figure 4. Two ways of doing the ‘visual operation’ of adding areas of figures. 
 
Evidently, the area of the two figures is the same and so “the lunule, having been proved equal to the 
triangle, could be squared” (Netz 2004, 249). This addition of areas is something that we find in 
practical geometry. In fact, it is one of the basic elements of ancient Near Eastern geometry (Damerow 
2016, 115). We have what we might call the principle of conservation of area.  
     What is it then that makes this example a case of early Greek pure geometry and not of Greek 
practical geometry? The key evidence that we are not engaged in a practical geometrical practice is 
the lack of reference to metrological units. They are completely absent. This corresponds to a crucial 
conceptual change that is at the crux of the reformulation of practical geometry as pure geometry. We 
assist to a perfectioning of the geometrical figures that leads to what we might call the exactification 
of lengths. 
     We have seen that within practical geometry we assist to a loosening of the conception of 
geometric figure by not taking into account directly the measurement practices. As we have seen, we 
can have geometric figures that we do not measure but conceive as having lengths that cannot be even 
approximately like those of the figure. We mentioned the case of circles in Old Babylonian problems 
that adopt a conventional length for the circumference or the case of the passage in Plato’s Meno, in 
which the sides of the square are taken to have a particular measure not related to the actual measure 
of the drawing. In Hippocrates’ pure geometry we have what we might call perfect figures. These are 
figures that look as having no irregularities and that if we were to measure them, we would find 
measure-numbers that are the same. That is, whatever small differences there are, they are invisible 
to the eye even when using the available measuring tools. This perfection of the geometric figure 
does not correspond to doing a more precise practical geometry. It is the opposite; not measuring the 
figures with better measuring techniques we take them to be perfect. In this way, e.g., the sides of a 
square are taken to be exactly equal. This is what we mean by the exactification of lengths. In this 
context, the lengths are exact and ‘belong’ to the figures.  A length as a measure-number is the result 
of a measurement procedure in which, e.g., we put a measuring rod side by side with the side of a 
square and check that they are congruent. The length as a measure-number arises from this 
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measurement procedure. In Hippocrates’ case, we do not have this anymore. The sides of the square 
have lengths ‘of their own’, independently of whatever measurement we might make, and it is 
senseless to mention a metrological unit in this context. 
     As it is, early Greek pure geometry is the geometry of perfect figures (not yet of geometric objects). 
Like in the case of practical geometry, these are not explicitly defined. As mentioned by Høyrup, 
“there is not the slightest reference to a definition in the Eudemos text” (Høyrup 2019, 179). This has 
important consequences that we will address in the next section when comparing Hippocrates’ pure 
geometry to that of the Elements. The main difference with the previous practical geometry is a further 
loosening of the concepts in relation to its more practical aspects related to measurements. 
     In terms of the very simple hub-and-spoke model of geometrical concept that we are using in this 
work, the main difference in relation to the concept of geometric figure of practical geometry is in 
the praxis and symbolic number spokes. In the praxis spoke the main features represented are related 
to the drawing of figures; however, there is still a representation not so much of particular 
measurement procedures as of the possibility of making measurements on the figure – there are ‘traces’ 
of the praxis of measuring. Regarding the symbolic number-magnitude spoke there is no encoding of 
measure-numbers or metrological units. Instead, we have a representation of length, which, taking 
into account the praxis spoke, is dissociated from any particular measurement procedure. The visual 
spoke is basically the same; it encodes the visual shape of a geometric figure. The verbal spoke is 
also the same. It encodes the ‘label’ for the figure. A ‘higher order’ change can be taken to occur in 
the hub that would enable to encode a conceptualization of figure as a perfect figure (see figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Hub-and-spoke model of the neural representation of geometric figure in Hippocrates’ pure 
geometry. 
 
 
3. The pure geometry in Euclid’s Elements 
 
We think that we can conceive the early stages of the geometry of the Elements in terms of lectures 
in which the teacher helps the student to memorize the enunciation of the proposition (the protasis). 
According to Saito the role of the protasis was to enable to memorize and refer to the propositions 
(Saito 2018, 928-9). It suffices to memorize the protasis and the corresponding diagram. Accordingly, 
“with the [unlettered] diagram in your memory, you can surely understand the protasis” (Saito 2018, 
929). With these two elements, a practitioner can recover the whole of the content related to a 
proposition as manifested in the Elements. In Saito’s view, “mathematical teaching was very probably 
performed directly and orally by drawing a diagram in front of pupils, and explaining it” (Saito 2018, 
924). We can conceive of a lecture as starting with the teacher reciting an enunciation (protasis) of a 
proposition. He would then proceed, e.g., to construct a particular figure by starting to draw a diagram 
and pointing to the correctness of the successive steps until the final figure is constructed.  
     The diagram was probably drawn “on sand or a wax tablet” (Saito 2018, 928), and, importantly, 
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the teacher would indicate the “points and other geometrical objects by finger”. (Saito 2018, 928). In 
the context of an oral presentation, it is very unlikely that the teacher assigned labels to the diagram. 
As Netz shows, there is a close relationship between lettered diagrams and the type of written text 
adopted in the demonstrations of pure geometry (Netz 1999). According to him, “the introduction of 
letters as tools is a reflective use of literacy”. (Netz 1999, 62). In this way, with the written form, “the 
lettered diagram is the tool which […] was made more central” (Netz 1999, 66). By contrast, the oral 
teaching as rendered in Plato’s Meno reveals that “the diagram is not lettered, and the geometrical 
objects in it are referred to by the word ‘this’” (Saito 2018, 932). According to Saito, “the written text 
of the Elements with lettered diagrams shows certainly a more developed stage” (Saito 2018, 932). 
     In a more organized lecture, the teacher would first present the necessary definitions, postulates, 
and common notions, or he would refer to them as needed. This would be the counterpart of 
Hippocrates’ practice, where we would start by mentioning the presuppositions that are used in the 
demonstration.  
     Where do we find then a cognitively relevant difference between Hippocrates’ pure geometry (PG1) 
and Euclidean pure geometry (PG2)? In our view, the difference is in the way we learn to look at the 
diagrams and use them. That there is a crucial change from the Hippocratic practice can be seen in 
the fact that in the Euclidean practice we have explicit linguistic definitions at play. For example, a 
point is defined as “that which has no part” (Euclid 1956, 153). Regarding lines, according to 
definitions 2 to 4, “A line is breadthless length. The extremities of a line are points. A straight line is 
a line which lies evenly with the points on itself” (Euclid 1956, 153). 
     According to Harari, the definition of point makes reference to the idea of measurement by 
‘contraposition’: “a point is characterized as a non-measurable entity, as it has no parts that can 
measure it” (Harari 2003, 18). In the models of geometrical concept that we tentatively suggest in 
this work, when going from practical geometry to PG1 there is a loosening in the praxis spoke of 
aspects related to measurements. The change from PG1 to PG2 might be seen as the ‘overwriting’ 
using the verbal spoke of any encoding related to a measurement praxis still existing in PG2 (and 
‘inherited’ from PG1). This is achieved by extending the content of the verbal spoke that would consist 
now of a definition and not just a label. The changes in the spokes go hand and hand with changes in 
the hub that gives rise to a coherent concept. That this might be so can be seen, e.g., in the definitions 
related to lines. In PG1 we already have a perfect figure but one that has a breadth; in PG2 we move 
beyond this and conceive of something that is breadthless. This linguistic term points to something 
that is not even visualizable – it is an abstract object. 
     Taking this into account together with the definition of point we see that this definition goes 
beyond the “non-measurability” mentioned by Harari. The point is also an entity that goes beyond a 
visualized figure – as perfect as it might be. The verbal spoke helps to recreate the concept of perfect 
figure of PG1 as the concept of abstract object of PG2. 
     What does this imply regarding the diagrams that are drawn during the lectures? These are not 
conceived anymore as perfect figures. They are representations of geometrical objects as defined and 
instantiated following the postulates in the Elements (Valente 2020). This has consequences 
concerning how we address the diagrams during the oral lectures (or in the written treatises). 
According to Ferreirós: 
 
The first definitions indeed suggest a way of reading diagrams, a perspective for seeing or conceiving 
what is implied by a diagram, and what is not. And this way of reading is not at all evident, especially 
if one previously knows only practical geometry. For the definitions and the reading that comes with 
them lead the practitioner to certain crucial idealizations. More importantly, the definitions suggest 
certain forms of response (and of indifference) to some aspects of the diagram: thus, the crossing of 
two drawn lines will be a (very small) planar region, but we are taught to disregard this and consider 
in the argumentation that one and only one point has thus been determined. (Ferreirós 2016, 144). 
 
We suggest that the conceptual change leading from PG1 to PG2 might have arisen in a practice based 
on oral lectures with PG1 where the above-mentioned way of looking into and reading diagrams arose. 
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That is, PG2 does not lead to this particular way of attending to the diagrams; it would be the other 
way around. This way of attending to the diagrams (or a very similar precursor) would give rise to an 
early oral version of PG2. This change would be made more explicit and stable by developing explicit 
linguistic definitions that help to stabilize the concepts, and further ‘sedimented’ by written treatises 
and a teaching practice that would rely more and more on these. 
     In terms of the simple model of geometrical concept that we are working with in the present paper, 
the verbal definition might be encoded in the verbal spoke that would be much more developed than 
in the cases of practical geometry and Hippocrates’ pure geometry. In these cases, the content of the 
verbal spoke consisted only of the label used to name a geometric figure. Now we have a definition. 
The main difference would occur in how the hub re-represents the encoding in the spokes (see figure 
6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Hub-and-spoke model of the neural representation of geometric object in Euclidean pure 
geometry. 
 
The representations in the visual, praxis and symbolic number-magnitude spokes are represented in 
a highly abstract way by taking into account the encoding of the verbal spoke. When we look at a 
figure there is a particular indifference and responsiveness to its features related to the verbal 
definition such that we re-conceive the figure in terms of an abstract geometric object and not as a 
perfect figure anymore (as mentioned, the figure becomes for us a representation of the geometric 
object). In this way, the verbal spoke becomes decisive in how the representations in the visual, praxis 
and symbolic number-magnitude spokes are interpreted and recombined in the hub giving rise to a 
‘higher order’ representation of geometric abstract objects.    
     In our view, the hub-and-spoke models of the neural representation of geometric figure/object 
make more intelligible what a geometric object might be since we can relate its neural representation 
to that of a geometric figure in Hippocrates’ pure geometry and in practical geometry. 
 
 
5. Conclusions 
 
The purpose of this work is to set forward a tentative model of the neural representation of abstract 
geometric objects. This model might be useful in relation to the development of a future theory of the 
semantic cognition underpinning pure geometry. 
     To develop the model consistent with the previous geometrical practices, we have considered a 
historically informed account of practical geometry. The objective was to provide a basic 
characterization of practical geometry. Taking into account these basic ‘characteristics’ we build a 
model of the neural concept representation of geometric figure in practical geometry using in a very 
simple way the hub-and-spoke theory of neural concept representation. 
     We then address pure geometry. Previous to the geometrical practice related to Euclid’s Elements, 
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there was a development of a pure geometry that was an intermediary stage between practical 
geometry and the pure geometry of the Elements. 
     In this work, we present a basic characterization of this geometrical practice as revealed in 
Hippocrates’ work on the quadrature of lunules. In our view, this pure geometry deals not with abstract 
objects, but still with geometric figures – perfect figures. We provide a model of the neural concept 
representation of perfect figures again relying on the hub-and-spoke theory. 
      We then address what kind of neural representation of geometric concept we have in Euclidian 
pure geometry. For that, we reconstruct some aspects of the Euclidean practice taking into account 
how these are different from the corresponding aspects in the Hippocratic practice. Taking these 
differences into account together with the models of neural concept representation in practical 
geometry and Hippocrates’ pure geometry we proposed a simple model of abstract geometric object. 
Comparing this model with the ones related to geometric figures makes more intelligible what it is to 
have a concept of abstract object and how this concept may underline the Euclidean practice. 
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