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Abstract. Douven (2021) observes that Schurz’s meta-inductive justification

of induction cannot explain the great empirical success of induction, and offers
an explanation based on computer simulations of the social and evolutionary

development of our inductive practices. In this paper, I argue that Douven’s ac-

count does not address the explanatory question that Schurz’s argument leaves
open, and that the assumption of the environment’s induction-friendliness that

is inherent to Douven’s simulations is not justified by Schurz’s argument.

1. Introduction

Douven (2021) offers an explanation of the success of induction to complement
Schurz’s (2008; 2019) meta-inductive justification of induction. Schurz’s proposal
is a refinement of Reichenbach’s “pragmatic” justification (see Salmon, 1991), and
builds on results from the machine learning theory of competitive online learn-
ing or prediction with expert advice (see Cesa-Bianchi and Lugosi, 2006). Schurz
argues that the provable optimality of meta-induction, a specific kind of success-
based induction at the level of competing methods, also confers justification to
object-induction, induction at the level of events, in virtue of the latter’s observed
empirical success. Douven accepts Schurz’s argument, but points out that it leaves
unexplained this empirical success, and sets out to offer such an explanation. Dou-
ven’s leading idea is that we must take account both of the social interaction and
the evolutionary development of inductive reasoners, and this idea he backs up with
computer simulations. Specifically, he embeds Carnap’s (1952) inductive methods
in the Hegselmann-Krause (2002) model of opinion dynamics to model communities
of interactive agents, and employs an evolutionary algorithm to simulate how se-
lection on the basis of inductive performance quickly leads to communities of more
inductively successful agents.

In this paper, I argue that Douven misdiagnoses the extent to which Schurz’s
argument leaves the success of induction unexplained, and that as a consequence,
his proposal does not suffice to remedy this. In particular, Douven’s simulations
incorporate an assumption of induction-friendliness of the environment; and this
assumption is not, as Douven suggests in passing, justified by Schurz’s argument.

In section 2, I summarize Schurz’s proposed justification (sect. 2.1) and exhibit
two relevant limitations (sect. 2.2). In section 3, I discuss Douven’s proposed ex-
planation, and argue that it falls short of complementing Schurz’s argument. I
conclude in section 4. Finally, in an appendix I collect some formal performance
guarantees that support my observations about the simulations’ inherent induction-
friendliness.
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2. Schurz’s meta-inductive justification of induction

2.1. The argument. I here give a very brief and non-technical summary of Schurz’s
argument (for details, see Schurz, 2019; Sterkenburg, 2020). The argument infers
from, first, the analytical optimality of meta-induction (sect. 2.1.1) and, second,
the empirical success of object-induction (sect. 2.1.2), a justification for the latter
(sect. 2.1.3).

2.1.1. Step one: the analytical optimality of meta-induction. Schurz’s argument is
formulated within the formal framework of sequential prediction. In a prediction
game, we have a pool Π of prediction strategies, that each attempt to predict an
(unending) succession of outcomes (say, values in the unit interval). In each round
n, every prediction strategy P ∈ Π submits a prediction pn for this round’s outcome
(say, again, a value in [0, 1]), after which this outcome en is revealed, and each P ’s
prediction is scored with the help of some error function (say, the square error
function, returning error (en − pn)2). By each round n, all prediction strategies
thus have a certain cumulative error, or sum of errors so far.

A meta-inductive prediction strategy is a strategy that makes its predictions for
events by aggregating the predictions of all the members of Π (that we also call the
object-strategies). It turns out that, by clever ways of aggregating, meta-inductive
strategies can provably attain a certain optimality. That is, no matter the actual
sequence of outcomes, such strategies will not do (much) worse than any of the
strategies in Π. More specifically, they not only converge on the minimal (among
all P ∈ Π) average (over n) error in the long run, but also satisfy certain tight
bounds on the excess (relative to any P ∈ Π) cumulative error in the short run.

The details depend on the kind of prediction game (types of outcomes, predic-
tions, and error function; see Cesa-Bianchi and Lugosi, 2006). But we can say
in general that such optimal meta-inductive strategies predict by weighted aver-
ages over the predictions of the object-strategies, where the weights in each round
depend on the latters’ cumulative error by that round. For instance, the cen-
tral exponentially-weighted-average meta-inductivist weighs strategy P by exp(−η ·
errorn(P )) for some optimizable parameter η > 0, thus assigning strategies with
lower error (much) more weight.

What is, in sum, important for Schurz’s argument is that for a wide class of pre-
diction games there exist meta-inductive strategies that are optimal in the previous
sense, and that these optimal strategies predict by combining performance-weighted
predictions of the object-strategies. In particular, the object-strategy (or strate-
gies) that so far has (have) been performing best receive(s) the largest weight. It
is in that sense that we can say that a meta-inductive strategy favors strategies as
to their relative success so far, and favors most the strategy (strategies) that has
(have) been most successful. Abstracting away from the precise prediction game,
and hence which precisely is the strategy that I will now simply call “the meta-
inductive strategy MI,” we can summarize the first step of Schurz’s argument as
the analytical statement that

(A)
The meta-inductive strategy MI, that at each point in time favors strate-
gies to the extent of their relative success so far, is an optimal strategy.

2.1.2. Step two: the empirical success of object-induction. The second step is the
empirical observation that object-induction has turned out to be the most successful
prediction strategy so far. Object-induction does not need to be precisely defined
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(Sterkenburg, 2020, 533ff): we assume for the argument that it is agreed that there
is something called inductive method that we use “in the real world” (Schurz, 2019,
85), and that we can distinguish from alternative, and (up to now!) predictively
much less successful, non-inductive methods. No matter how we map this circum-
stance from the real world to a formal prediction game, we will end up with one
or more object-inductive methods (I will simply talk about “the object-inductive
strategy OI”) and a collection of alternative methods, where in the round n that
corresponds to this point in history the first have a (much) lower cumulative error
than the latter. Thus we can summarize the second step of Schurz’s argument as
the statement that

(E)
As a matter of empirical fact, the object-inductive strategy OI has been,
at this point in time, the most successful strategy (among all its non-
inductive competitors).

2.1.3. Conclusion: meta-induction favors object-induction. From (A) and (E) it
follows that

(C)
The meta-inductive strategy MI for the pool Π of OI and its non-
inductive competitors, an optimal strategy for Π, favors most, at this
point in time, the object-inductive strategy OI.

Note, however, that (C) does not yet express the desired justification of OI. For
this, we need to take the further step from the fact that an optimal strategy at this
time favors OI most to the claim that the latter is justified. A closer look at this
step brings out some limitations in the kind of justification that follows.

2.2. Two limitations. As noted before (Sterkenburg, 2020, 538), one limitation
is that the argument can at best provide a justification for sticking with the object-
inductive strategy for now.

The empirical premise (E) only asserts the success of OI in the past. It is perfectly
consistent with (E) that in the future, other strategies become more successful than
OI. In that case, the analytically optimal strategy MI will cease to give the largest
weight to OI: it will cease to favor OI most. If we accept that a method being
favored most by the optimal strategy MI constitutes a justification for following
this method’s predictions, then the most that Schurz’s argument can therefore
establish is that we are justified in following OI’s predictions for now. We do not
have a justification for always following the inductive method: the justification we
have attaches to the next couple of rounds of inductive predictions. One could say
that we do not have a justification for thinking that inductive method is a good
method ; and this is perhaps not too surprising, given that Schurz’s argument does
not use any particular properties of inductive method, other than its past success.1

Note that this is not the same point as the basic observation that Schurz’s
argument does not show the reliability of object-induction. We also do not have
a proof of the reliability of meta-induction, but we do have an analytic argument
for the optimality of MI, and in that sense we have a justification for believing

1In fact, even this justification for OI’s immediate prediction needs a qualification. It would

go through if OI’s and MI’s immediate predictions are more or less identical, but this is not
yet guaranteed if MI “favors most” (gives the largest weight to) OI. If the remaining weight is

given to other strategies that predict wildly different from OI, then, if the size of this weight

is still significant, there can be a substantial difference (cf. Shogenji, 2020, 230f). To exclude
this possibility we would have to strengthen the empirical statement (E) and proclaim the much

greater success of object-induction (Sterkenburg, 2020, 538).
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MI is a good method (if only in a “best-alternative” sense). The point is that
this optimality justification for MI only partially transfers to the object-inductive
strategy: we do not have a justification for thinking OI is a good method (be it in
the sense of reliability or of optimality), but only for sticking with it for now.

There is actually a further limitation in the scope of the above justification.
Moreover, this is a limitation that also pertains to the optimality justification for
the meta-inductivist. Namely, this justification only concerns predictions about
the next round. The optimality results as stated, in the framework of sequential
prediction, only pertain to the scores over the immediate, one-step predictions. As
stated, they do not pertain to predictions, in any round, about rounds further in
the future (say, a prediction in round n about the event in round n+ 10, or indeed
of the events in rounds n + 1 to n + 10). But this only gives us a justification for
following MI’s one-step predictions. Similarly, since OI’s predictions are justified
in virtue of being in line with the predictions of the optimal MI, we only have a
justification for following, for now, OI’s one-step predictions.

Note that the limitation here is not that we do not have a justification for k-step
predictions for fixed k. This might indeed be overcome by slightly tweaking the
optimality result.2 The limitation is that we do not have a justification for k-step
predictions for any k simultaneously. The limitation is that the argument does
not allow us to say that we are justified (for now) in adopting OI’s predictions,
not only for the next outcome, but also for the outcome two steps ahead, and the
one after that, and so forth.3 I am not claiming that this limitation cannot be
overcome by tweaking the argument and/or the optimality results. But this does
require more work; as it stands, Schurz’s argument does not give us this. And
a much more formidable challenge still would be to extend the argument to the
infinite future, to what we may call universal inductions. These are predictions of
the kind, “all next outcomes will be 1’s,” or “the limit relative frequency of 1’s will
be 1/2.” Schurz’s argument does not give us a justification for following OI in such
predictions.

I think it would still be an important result to have a justification for following,
for now, object-induction’s immediate predictions. Nevertheless, this is a more
limited result than what is normally understood by a justification of induction, and
this limitation will be relevant to Douven’s proposal.

3. Douven’s explanation of the success of induction

In this section, I will evaluate Douven’s proposed explanation. I will first discuss
the explanatory challenge that Schurz’s argument leaves open (sect. 3.1). Next I
will give a summary of Douven’s simulations (sect. 3.2), and point out that their
inherent induction-friendliness means they cannot provide the required explanation
(sect. 3.3). Finally, I will argue that this induction-friendliness is not justified by
an appeal to Schurz’s argument (sect. 3.4).

2It is trivial to reformulate the optimality result to the case of making k predictions ahead in each
round nk for n ∈ N (we simply reformulate the game to make every consecutive sequence of k

rounds one round). More relevant is the case of making k predictions ahead in each round n: this
is slightly more involved but I suspect still allows for a similar optimality result—for fixed k.
3A problem I see for extending the argument to this case is that the different predictions might
be inconsistent : by which I mean that, for instance, the optimal 1-step meta-inductivist predicts

the outcome 1, while the optimal 3-step meta-inductivist predicts the outcome 000.
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3.1. The need for explanation. Douven’s starting point is that Schurz’s proposal
leaves unexplained the great empirical success of our inductive methods.4 This is
surely right.

One concern with Reichenbach’s original argument for the justification of induc-
tion was that it seems too good to be true that such an informative conclusion
could be derived, be it pragmatically, by purely a priori or deductive reasoning
(e.g., Black, 1954, 181ff). What makes Schurz’s argument so innovative is that it
combines Reichenbach’s argument with an informative empirical component: in-
duction’s past success. However, this does mean that induction’s past success is
simply taken as an input component to the argument: it is not itself derived from
or explained by the argument.

In earlier proposals, the justification of induction is much more intertwined with
an explanation of its success. A justification of inductive method in the form of
reason to believe induction is reliable would immediately give us an explanation for
the success of inductive method: it is successful because it is bound to work well.
For instance, in proposals that stipulate some general principle (or more specific
postulates) of induction-friendliness of the world (e.g, Russell, 1948; Burks, 1953),
this stipulation can serve at the same time to justify induction and to explain its
success (induction is successful because the world has the right structure).

Proposals of the latter kind are, of course, hopelessly question-begging (Salmon,
1953), and another merit of Schurz’s argument, like Reichenbach’s, is that it has no
need for such principles. But Schurz’s argument does not give us a reason to believe
that induction is reliable, nor that induction is optimal. As noted in sect. 2.2 above,
Schurz’s argument does not give us a justification for believing induction is a good
method. This also means that it does not in the above way automatically give us
an explanation of the success of inductive method. Again, the argument needs to
be explicitly supplied with the empirical fact of the past success of induction.

In short, Douven is right to pose the explanation for the success of induction
as an important question that Schurz’s account leaves open. However, Douven’s
own phrasing of what is missing—namely, an explanation why “these [inductive]
practices have so far been highly successful” (2021, 2, emphasis original)—actually
suggests that he believes Schurz’s argument does give an explanation for the success
of induction, but one that falls short of an explanation of its great success.5 Here
lies the root of the shortcoming of Douven’s simulations that I will discuss in sect.
3.3 below. But let me first provide a brief overview of the simulations.

3.2. The simulations. Douven (2021, 2) writes,

To explain the substantial success of induction, we turn to insights
from social epistemology, . . . and make these formally explicit in a
framework that combines the Hegselmann-Krause model for opin-
ion dynamics and Carnap’s system of λ-rules. Within this frame-
work, we use a standard evolutionary algorithm to show how com-
munities of interacting agents may, through variation and selection,
come to consist of highly successful inductive reasoners.

4This is also noted by Shogenji (2020, 231).
5In this context Douven also writes that “to satisfy the optimality requirement, induction only
needs to be as successful as random guessing” (ibid., 2, also see 4), but this is a puzzling claim

that I do not see supported by Schurz’s argument.
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The inductive problem in Douven’s simulations is to estimate the unknown bias
τ of a Bernoulli process (a sequence of experiments where on each repetition a
successful outcome occurs with probability τ , the prime example being repeated
coin tossing with constant probability τ of heads).

The inductive methods in the simulations are based on Carnap’s λ-rules (1952).
Following such a rule, agent i would return on evidence en (a sequence of n out-
comes) the estimate

ci(en) =
n1 + λi/2

n+ λi
,(1)

where n1 denotes the number of successes in en, and λi ∈ R≥0 is an agent parameter
of choice.

For agent i’s actual estimate pi(en), however, Douven conjoins these rules with
a “social” component, that is based on the Hegselmann-Krause model of bounded
confidence updating (Hegselmann and Krause, 2002). Write

si(en) =

∑
j∈Xi(u)

pj(en−1)

|Xi(u)|
,(2)

whereXi(u) = {j : |pi(en)− pj(en)| ≤ εi} are the agents j whose previous estimates
pj(en−1) were εi-close to agent i’s estimate pi(en−1), with εi ∈ [0, 1] an agent
parameter of choice. Then the estimate of agent i based on en is given by the
mixture

pi(en) = αi · si(en) + (1− αi) · ci(en),(3)

with αi ∈ [0, 1] an agent parameter of choice.
Douven runs two sets of simulations. In the first set (2021, sec. 4.1), the previous

type of agents (“Carnapians”) are set against two other types: “dogmatists” who
uniformly randomly pick an estimate and forever stick with it, and “randomizers”
who after each outcome uniformly randomly pick a new estimate. For each simula-
tion, a “parent population” of twenty agents of each type is generated (with, for the
Carnapians, uniformly randomly generated parameters λ ∈ (0, 50) and ε, α ∈ (0, 1)).
The second set of simulations (2021, sec. 4.2) features Carnapians only. For each
simulation, an initial number of fifty such agents is randomly generated.

In both cases, each individual simulation tracks a fixed number of generations
of agents. Each generation starts with a “parent population” (intially generated
as above, subsequently the survivors of the previous generation) that is extended
to a twice as large “full population” using “cross-over and mutation operations.”
These are the first steps of the “standard evolutionary algorithm” (namely, the
Nondominated Sorting Genetic Algorithm, or more specifically still, the version
NSGA-II, Deb et al., 2002) that Douven employs to model the evolutionary process.
This full population is then submitted to 25 tests, each of which proceeds as follows.

A bias τ ∈ (0, 1) is generated uniformly randomly, and for each agent in the
population one hundred outcomes are generated from the Bernoulli-τ process, in
response to each of which the agent updates its estimates. After this, all agents are
scored, along two dimensions: the sum of squared errors (τ−pi(en))2 of all estimates
(“accuracy”) and the number of outcomes it took for the agent’s estimates to arrive
and stay within a distance of 0.1 from τ (“speed”).
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Finally, all agents’ average scores over the 25 tests are used as input for the
NSGA-II algorithm to select in a specific way (“nondominated sorting” and break-
ing ties by “crowding distance,” see ibid, 10 for the details) the fifty percent most
successful agents. These are the survivors that form the parent population for the
next generation.

That concludes my summary of the set-up of Douven’s simulations. The main
results are the following.6

In the first set of simulations (Carnapians together with dogmatists and random-
izers), we find that randomizers and then dogmatists quickly die out. Randomizers
make it (on average over all simulations) barely to the second generation; dogma-
tists at most to the fourth (ibid., fig. 4). This is despite the fact that randomizers
and dogmatists were “dominant” in the cross-over operation used to expand the
parent populations, “loading the dice against the Carnapians” (ibid., 13).

In the second set of simulations (Carnapians only), we see that the population’s
mean score (i.e, mean accuracy and speed) over the generations quickly improves.
Within the first 25-30 generations (on average over all simulations) there is espe-
cially rapid progress, and in the remainder (of a total of one hundred generations)
there is slight improvement still (ibid., fig. 6). The mean values of the α and ε
parameters in the population increase by about 0.2 and 0.1, respectively, while the
mean λ values show a steep drop from 50 to slightly below 2 (ibid., fig. 7).

This is beautiful work, and a great example of computational philosophy in
action (Mayo-Wilson and Zollman, 2021). But in what sense does this give us an
explanation of the success of induction?

3.3. The explanation. As we saw, the simulations are to “show how communi-
ties of interacting agents may . . . come to consist of highly successful inductive
reasoners” (2021, 2). Further on, Douven writes in similar vein that the aim is “to
complement Schurz’s justification of induction by showing how inductive reasoning
may have come to be the powerful cognitive tool that it is” (ibid., 4). The expla-
nation envisioned is thus essentially a plausible narrative or reconstruction of how
evolutionary and social factors can lead to very successful inductive reasoners.

More precisely, this would be a reconstruction of how evolutionary and social
factors can lead to the selection of (very) successful inductive reasoners, given that
(certain) inductive reasoners are, in fact, reliable, and can be expected to be (very)
successful. The simulations start out with agents following methods that include
(in the first simulation) or are restricted to (the second simulation) variations of
the λ-rules, and, crucially, presuppose an environment for which λ-rules are well-
equipped. If the inductive problem is to estimate the unknown bias of an i.i.d. or
Bernoulli process, and this is the inductive problem in the tests that are run in the
simulations, then λ-rules are good choices of method: they can be seen to especially

6Douven has made the Jupyter notebooks with the code available at https://osf.io/6njgd/.

https://osf.io/6njgd/
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fit this problem,7 and come with certain probabilistic guarantees of success.8 To
put this point differently, if we identify inductive methods with the λ-rules, then
the simulations presuppose an induction-friendly environment.

It is even the case here that some of the λ-rules are more reliable (i.e., can be
expected to be more successful) than others. The inductive problem that the agents
are in each test subjected to is, more precisely, to estimate an unknown bias of a
Bernoulli process that is itself uniformly randomly generated. If one also takes into
account the way the bias is sampled, then one can show that some choices of λ are
better than others; in particular, for squared error, the choice λ = 2 is optimal.9

Furthermore, from the simple fact that in the simulations the same test is run
every time, and that some agents are better in this test than others, it follows
that greater success in earlier tests is indicative of greater success in further tests.
This means that the presumed set-up is also explicitly meta-induction-friendly: a
meta-procedure, that picks out the best performing agents in earlier collections of
tests (like an evolutionary algorithm), can be expected to narrow down the class of
agents to those that are best, and that can hence be expected to continue to be very
successful.10 And indeed we see in the first set of simulations that the Carnapians
survive at the expense of the randomizers and dogmatists, and in the second set of
simulations that the mean value of λ for the later generations “is not significantly
different from 2” (Douven, 2021, 15f).11

7The λ-rules for binomial outcomes correspond to Bayesian prediction methods with a prior that

is a mixture over all possible Bernoulli processes (Good, 1965, 17; Rosenkrantz, 1977, 71f). (More

precisely, they correspond to a subset of the mixtures weighted by a beta distribution over the
possible biases; the more general λ-γ continuum of inductive rules (Carnap and Stegmüller, 1959)

for binomial outcomes corresponds exactly to the class of these mixtures (see Festa, 1993, 66).)

One can say that the λ-rules are methods that operate under the inductive assumption that the
data is generated by some Bernoulli process, exactly the situation at hand.
8In particular, one can formally derive their expected speed and accuracy and show this to be
much better than the “non-inductive” dogmatist or randomizer. See the appendix.
9This may not be so surprising, when one realizes that the probabilistic model—a uniform mixture
over Bernoulli processes—is exactly the full Bayesian distribution corresponding to the λ-rule with

λ = 2 (the corresponding beta distribution is the uniform distribution). Douven writes that “there

has been some discussion about whether there might be an optimal value for λ, but this has not
led to any definitive answer” (ibid., 8). There is no optimal value absent any assumptions on τ ;
but in Douven’s set-up, there is. Or rather, there are optimal values, since they are relative to the

way we score agents. For convergence speed as defined by Douven, the optimal value (perhaps
more surprisingly) does not equal 2; it lies a little below it. See the appendix for details.
10This meta-induction-friendliness is to be distinguished from the optimality of meta-induction
that Schurz invokes. There are, first, some differences between optimal performance-weighing
procedures and the evolutionary meta-procedure. The latter could be seen as irrevocably throwing

out badly performing object-strategies, which is risky as circumstances could radically change and
discarded strategies might have started doing much better. What I here call the simulations’ meta-

induction-friendliness rules this out: success in the past is “projectible” to success in the future.
This is more demanding than Schurz’s optimality, that holds whenever: in a world where success
is no indication of further success, all agents, the optimal meta-inductive procedure included, will
not perform very well in an absolute sense.
11I ignore here the element of social interaction between the agents. Douven’s “Carnapians” are

not “pure” λ-rules but mixed with a social component. But there is no obvious reason why this
would change the fact that in the assumed model “inductive methods” are good and some among
them are best, and this is borne out by the simulations. Of course, it is still of much interest if the
social component makes a community of agents on average more successful or even speeds up the

evolutionary selection of the best agents (also see Douven and Wenmackers, 2017; Douven, 2019).
This provides support for Douven’s intended explanation—discussed in the main text shortly.
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One might at this point be tempted to conclude that all the simulations have
shown us is that “in an environment that is both induction- and meta-induction-
friendly, a meta-inductive procedure will pick out (very) successful inductive rea-
soners.” But simply pointing out that this is indeed not a very interesting statement
is itself an uninteresting criticism. First, one could not reasonably hope for more:
in simulations that robustly show that a meta-procedure converges on successful
inductive reasoners, we are always going to find structural assumptions that make
this possible, and that we can subsequently interpret as assumptions of (meta)
induction-friendliness. Second and more important, Douven is clearly aware of the
(meta) induction-friendliness of the simulations’ environment, and equally clearly
does not seek to give an explanation of how there can exist (very) successful in-
ductive reasoners in the first place. If he did seek the latter, then to explicitly
assume that the environment is such that that there can exist (very) successful in-
ductive reasoners is indeed to beg the question. Rather, the goal is an explanation
of how we could have quickly converged on adopting (very) successful inductive
procedures among less successful procedures, where it is taken as a given that (the
world is such that) there exist such (very) successful inductive procedures. Pre-
cisely, the proposed explanation is a plausible reconstruction of how the specific
meta-inductive process of evolution, in combination with the specific dynamics of
social interactions, could have quickly lead us to pick out increasingly good induc-
tive procedures. The question of the explanatory value of the simulations then
becomes the question whether they are indeed “realistic enough to provide insight
into how we may have become such skilled users of induction” (Douven, 2021, 11).

Clearly, however, this more limited aim falls short of addressing the question
identified in sect. 3.1 above. Schurz’s argument does not just leave open how
we could have converged on highly successful inductive methods, given that (the
world is such that) there exist successful inductive methods; it leaves fully open why
induction is successful (why inductive methods are successful) in the first place. We
can already conclude that Douven’s intended explanation, even if it were successful,
would not suffice to complement Schurz’s meta-inductive justification of induction
in the sense of settling the explanatory question that Schurz’s argument leaves open.

Furthermore, even within the scope of Douven’s more limited explanation one
could wonder about the assumption of induction-friendliness. As noted above,
the question at stake here is how realistic the reconstruction is. In particular, how
accurately do the simulations model the actual historical process of the development
of our inductive procedures? I will not here go into this question in any depth, apart
from noting that it still leads us back to the assumption of induction-friendliness.
Namely, this assumption takes here the role of a modeling choice. In the simulations’
model of the real-world process of the development of our inductive reasoning, the
real world itself is modeled as being induction-friendly. This raises the question of
the reason for this modeling choice. Why does it make sense to model our world as
being induction-friendly?

Douven briefly addresses this question at the very end of his article. His answer
is that this assumption is justified by Schurz’s argument.12

12Douven only makes this claim, as said, at the conclusion of his article, and in response to a

referee comment. It is thus only fair to note here that he does not consider this claim a crucial
component of his intended explanation (personal communication), and indeed I note at the end

of sect. 3.4 that arguably he does not need to make this claim at all. Nevertheless, it is a natural
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3.4. The justification for induction-friendliness. Douven (2021, 19) writes,

There is strong inductive evidence that induction is highly success-
ful, which requires that our world satisfy certain uniformity condi-
tions. Our reliance on induction here is entirely justified in light of
Schurz’ results.

Thus from the empirical observation that induction has been highly successful,
we inductively infer that induction is indeed a good method, which requires a certain
induction-friendliness of the world. The inductive step, this suggestion goes, is
warranted by Schurz’s meta-inductive justification of induction. Let us see how,
exactly, we might use Schurz’s argument to try and justify this step.

First, we might try to infer directly from Schurz’s argument that we have reason
to think induction (that is, object-induction) is a good method. (Douven seems to
suggest such a reading of Schurz’s argument at times, when he writes that Schurz
has shown induction to be optimal.) But as I pointed out in sect. 2.2, Schurz’s
argument does not give us such a justification for inductive method. It shows, at
best, that we have reason to follow inductive method for now, which is different
from the universal conclusion that induction is a good method, that we may then
connect to a universal conclusion of the induction-friendliness of the world. (In
particular, there is no claim that inductive method is optimal, at least as good as
any other method.)

What Douven appears to have in mind in the above passage, however, is some-
thing more like the following reasoning. Schurz’s argument at least tells us that we
have good reason to follow induction now, at this point in history. But do we then
not have good reason to now make the above inductive inference? That is, if we
have good reason to follow induction now, then it seems we have good reason to
now make the inductive inference from the success of induction in the past to the
universal (past and future) success of induction: to the conclusion that induction
is, after all, a good method.

Note that this is actually a meta-inductive inference, an inference about meth-
ods. But it does not really matter how exactly one embeds this in the framework
of Schurz’s argument: as an object-inductive inference as above (where now the
“objects” are actually methods and “object-induction” is justified in virtue of an
optimal virtual “meta-inductivist” that is actually a meta-meta-inductivist) or as
a meta-inductive inference (that is directly justified in virtue of its optimality).
Namely, the second limitation discussed in sect. 2.2 now becomes relevant, and this
limitation applies in both cases. This limitation is that the optimality argument
does not give a justification for an object- or meta-inductivist’s universal induc-
tions, inferences to universal conclusions. But the conclusion that the world is
induction-friendly is such a universal conclusion: the only way, it seems to me, to
understand this conclusion in the assumed framework is as a statement about infi-
nite outcome sequences. In sum, Schurz’s argument cannot provide a justification
for the conclusion that the world is induction-friendly.

This point is really a reiteration of the earlier observation in sect. 3.1 that
Schurz’s argument cannot explain the success of inductive method. If the argument
could justify a belief in the induction-friendliness of the world, then we would have

response to give, and, I think, in itself interesting that Schurz’s proposed justification cannot
actually justify this.
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such an explanation for free (induction works well because the world is induction-
friendly). But it cannot give such an explanation, and Douven, in misdiagnosing
the reach of Schurz’s argument, aims at an explanation more limited than that.

Indeed, one might argue that for Douven’s more limited aim, it is actually not
needed to have a justification for the induction-friendliness of the world. For his
proposed explanation of the great success of induction, this argument would go,
what we model are our inductive methods in the past, and we may at least assume,
in virtue of the past success of inductive methods, that the world was induction-
friendly. Granted that the simulations are sufficiently realistic in other respects, we
would then have a plausible account of how social and evolutionary factors could
have facilitated our convergence on (very) successful inductive methods. Then not
only does Douven’s proposal not answer the question left by Schurz’s argument:
Douven himself does not actually need Schurz’s argument at all.

4. Conclusion

I argued that Douven’s simulations do not answer the explanatory question left
open by Schurz’s argument, and that, in turn, Schurz’s argument cannot justify the
assumption of induction-friendliness in Douven’s simulations.

Douven seeks to give an explanation of how we have come to adopt (very) success-
ful inductive methods, given that there are such methods to begin with. Whether
we can judge this explanation to be convincing, depends on whether we judge plau-
sible his modeling of inductive method, the social component, and the evolutionary
process. But however the verdict, the simulations cannot explain why inductive
method is successful in the first place, the question left open by Schurz.

The success of particular explications of inductive method, here variations of
Carnap’s λ-rules, is inextricably bound up with an environment that makes it so. In
order to explain the former, it will obviously not do to simply stipulate the latter—
but what noncircular reason can we give for thinking that our world constitutes an
environment that is friendly to inductive method? We saw that Schurz’s argument
does not give us this. Indeed, we may wonder whether it makes sense at all to ask
for such a thing: to put our hopes in some grand yet vague principle of “uniformity”
or “induction-friendliness” of the world (Salmon, 1953; Sober, 1988).

As argued by Okasha (2001) and more recently, in the context of machine learning
theory, by Sterkenburg and Grünwald (2020), we are analogously led to wonder
whether “inductive method” can be plausibly explicated as some set of purely
data-driven rules. Part of the attention then shifts to the choice of “local” models
that inductive procedures must take as additional input; but so does the challenge
of explanation: why have these choices been successful?

This local perspective does cast doubt on the plausibility of Douven’s modeling of
inductive method, and as such already on his intended, more limited, explanation.
Nevertheless, the leading idea that social and evolutionary factors must be part
of such an explanation remains plausible; and it only appears natural to try and
further connect this to the development of the local models underlying inductive
inferences. Perhaps such work could even bring progress in the larger explanatory
question. As it stands, however, the important problem of explaining why our
inductive practices are successful at all remains wide open.
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Appendix

This appendix derives formal performance expectations for the agents in Douven’s
simulations, extending his own remarks about “what we should expect . . . in the statistical
model underlying our simulations” (2021, 17), and providing the basis to the observation
in the main text about the simulations’ inherent induction-friendliness.

For both the dogmatist and the randomizer the expected cumulative squared error after
each update (or cumulative risk), as a function of bias τ , is 100 times

Ep∼U(0,1)
[
(p− τ)2

]
= τ2 − τ + 1/3,

while that of a λ-method (see Carnap, 1952, 67) is

EX100∼τ

[
100∑
n=1

(cλ(Xn)− τ)2
]

=

100∑
n=1

EXn∼τ
[
(cλ(Xn)− τ)2

]
=

100∑
n=1

(
nτ(1− τ) + (1/2− τ)2λ2

(λ+ n)2

)
.

Plotting this we clearly see the difference in the agents’ risks (figs. 1, 2). More interestingly,
in the simulations it is also the case that τ itself is uniformly randomly generated. Taking
this into account, the cumulative risk of a dogmatist/randomizer equals 100 times

Eτ∼U(0,1)
[
τ2 − τ + 1/3

]
= 1/3− 1/2 + 1/3 = 1/6,

or about 16.67, while that of a λ-rule equals

Eτ∼U(0,1)

[
100∑
n=1

(
nτ(1− τ) + (1/2− τ)2λ2

(λ+ n)2

)]
=

100∑
n=1

∫ 1

0
nτ(1− τ) + (1/2− τ)2λ2dτ

(λ+ n)2

=

100∑
n=1

1/12λ2 + n/6

(λ+ n)2
.

Evaluating the derivative w.r.t. λ,

100∑
n=1

nλ/6− n/3
(λ+ n)4

= 0,

we see that we must have nλ/6− n/3 = 0, that is, λ = 2. This is the optimal value of λ,
that comes with a cumulative risk of about 0.62 (see fig. 3). Incidentally, the choice λ = 50
still does much better than the randomizer/dogmatist; indeed, as we let λ go to infinity,
converging to the constant rule that is as little receptive to the data as these agents, the
risk will still stay below half their risk: 100 ·Eτ∼U

[
(τ − 1/2)2

]
= 100/12 ≈ 8.33.

Squared error is only one of the two dimensions that the agents are scored on in the
simulations’ evolutionary algorithm; the other is speed of convergence. Douven (ibid.,
8) writes that “there is typically a trade-off to be made between speed and accuracy.”
The two dimensions can indeed come apart: despite identical risk, the expected (over
τ ∼ U(0, 1) and X100 ∼ τ) convergence speed (number of updates to arrive and stay
within 0.1 of τ , with speed 101 if there is no convergence) of the randomizer is different
from that of the dogmatist. Namely, the probability that uniformly randomly drawn τ
and p are 0.1-close is 0.19 (Douven, 2021, 17), so that the expected speed of the dogmatist

is 0.81 · 101 = 81.81 and that of the randomizer is
∑101
i=1 i · 0.81 · 0.19101−i ≈ 100.77.

(This explains why in the first set of simulations, the dogmatists last longer than the
randomizers.) In the case of the λ-rules, it does not seem feasible to derive an analytical
expression of the expected speed, even as function of τ . But one can write a program
to calculate the latter, and plot this as in fig. 4. Comparing this to fig. 2, we see that
the dimensions of accuracy and speed rather pull into the same direction. Nevertheless,
approximating the areas under the curve, one can determine that the best λ-values now
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Figure 1. Risk of various agents. Figure 2. Detail of figure 1.

Figure 3. Risk of λ-rules for

uniformly random bias τ .

Figure 4. Expected speed of

various agents.

(roughly) lie in the interval (1, 1.8), rather than at 2. This is in line with the observation
(ibid., 15) that the mean λ-value of the last generations of Carnapians lies around 1.7.
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