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Abstract

This article discusses the important and influential views of John Burgess on the

nature of mathematical rigour and John Norton on the nature of thought

experiments. Their accounts turn out to be surprisingly similar in spite of different

subject matters. Among other things both require a reconstruction of the initial

proof or thought experiment in order to officially evaluate them, even though we
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almost never do this in practice. The views of each are plausible and seem to solve

interesting problems. However, both have problems and would seem not able to do

justice to some interesting examples. They fail in similar ways. More pluralistic

accounts of proof and of thought experiment could embrace aspects of each, while

rejecting their claimed universality. An ideal account (not provided here) would

contribute to explanation and understanding. These are important topics for future

work.

1 Introduction

Many academic disciplines could be called spectator sports. We can read about

them, watch them, enjoy them. Sports events are, of course, spectator sports, but

so are musical concerts and theatre performances. One does not have to work

through them, as it were, to enjoy them. We simply listen to a piece of music or

watch a football game and are consequently excited and entertained. Intellectual

life is often similar. We can be told about the expanding universe or how we

evolved from earlier life forms. As exciting as it is, this sort of learning is still a

passive activity.

Mathematics and thought experiments (TEs) are not spectator sports. To take in a

piece of mathematics one has to work through it. It is an active, not a passive

process. TEs are similar in this regard. One cannot simply read a TE to take it in.

One has to actually work through it to understand the claim and how the reasoning

goes. Like mathematics this is an active exercise, not a passive one. Active

evaluation is an intrinsic part of it, the way it is not an intrinsic part of watching a

tennis match or listening to jazz. We can read about an actual experiment in a

scientific journal and we take what the experimenter is telling us as a report of the

observational facts.1 Proofs and TEs are quite different from this. We don’t simply

1Of course, this is oversimplified. Experiments often include some interpretive theorizing, with
which we might quibble. But raw data is usually presented as a fait accompli and passively accepted
as such by the reader. The distinction between the active and the passive might be fuzzy, but there
is a distinction none the less.
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read the conclusion; we actually have to work through the proof or the TE. We are

given the evidence and we must check for ourselves. It should come then as no

surprise that mathematics and TEs might have something important in

common.

John Burgess and John Norton have proposed strikingly similar views within their

respective fields of interest. Burgess has given an account of how mathematical

rigour is achieved and Norton an account of how thought experiments work. Their

virtues are similar and significant, and they rightly impress us by taking some of the

mystery out of reasoning in mathematics and in thought experiments, respectively.

They also run into similar problems, which I will try to make clear.

2 Burgess on Mathematical Rigour

Burgess has recently produced a thorough and insightful study of the troublesome

notion of rigour, Rigor and Structure (2015). Many would concur when he says,

“Rigor requires that new mathematical material be logically derived from old, and

ultimately from first principles.” (2015, 51) Actual published proofs are seldom

explicit derivations, so how can we reconcile the ideal with the actual? After

surveying a long history of candidates, Burgess adopts and clarifies the definition of

Hyman Bass: “A proof is what convinces the mathematician that a formal proof

exists.” Burgess takes “a formal proof here to mean something like a deduction in

which every inferential step is a fairly simple one recognized as valid by essentially

all logic texts...” (2015, 96) Crucially, he adds “To be a genuine proof, a supporting

argument must not only produce conviction that a formal proof exists, but it must

do so in the right way... [Moreover] ‘the right way’ to produce conviction that a

formal proof exists is primarily by supplying enough steps of the purported formal

proof.” (2015, 97)

In sum, Burgess’s account of rigour includes four key features. (1) A rigorous

(informal) proof is one that convinces mathematicians that a formal proof exists.

(2) A formal proof is a derivation from first principles or from earlier established
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theorems. (3) A rigorous (informal) proof has a structure that indicates the

structure of the formal proof by containing key steps, at least in outline. (4)

Evidence for a theorem ultimately rests on the existence of a correct formal

proof.

Others have offered versions of proof in the same neighbourhood. Saunders Mac

Lane, a prominent mathematician and one of the fathers of category theory,

expresses the standard view as follows:

A mathematical proof is rigorous when it is (or could be) written out in

the first order predicate language L(ε) as a sequence of inferences from

the axioms ZFC, each inference made according to one of the stated

rules.... To be sure, practically no one actually bothers to write out

such formal proofs. In practice, a proof is a sketch, in sufficient detail to

make possible a routine translation of the sketch into a formal proof....

What is at hand is not the practice of absolute rigor, but a standard of

absolute rigor. (Mac Lane 1986, 377)

There is a huge range of alternative views about proofs, which I will not pursue. A

small slection of views include: Azzouni (2013a, 2013b), Lakatos (1976), Horgan

(1993), Rav (1999), Avigad (2020), Detlefsen (2008)2

2I will, however, mention a couple of things in this footnote. Michael Detlefsen is skeptical of the
common view, but puts it forward this way: “(i) proper proofs are proofs that either are or can be
readily be made rigorous; (ii) proofs that are or can be readily be made rigorous are formalizable;
therefore (iii) all proper proofs are formalizable.” (Detlefsen 2008, 17) Jeremy Avigad is skeptical of
the standard view, which he describes as follows: “Modern logic offers idealized accounts of what it
means to be correct, based on the notion of a formal derivation. On that account, the mathematical
objects we talk about are defined in a suitable formal foundation, our theorems are expressed as
formal statements in that system, and our proofs are required to conform to the axioms and rules....
Of course, ordinary mathematical texts are not nearly as regimented as formal proofs. But, on the
logical story, they can be seen as an approximation to the ideal.” (Avigad 2020, 1) He adds two
objections: “One is that a formal system cannot possibly be the operant standard because most
mathematicians cannot even state the axioms of a particular formal system. The other is that there
are various formal foundations on offer, and who is to say which is the right one?” (ibid., 1)

These are important remarks, causing us to clarify the Burgess position on his behalf. When
Burgess says a rigorous informal proof convinces a mathematician of the existence of a formal
system, we need not say she knows precisely which formal system or what the particular details of
the formalization are. On a more liberal view all we need say is that there is some robust sense
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The idea in general and Burgess’s version in particular is a very clear and plausible

characterization of mathematical rigour. It will appeal to many, perhaps to most

mathematicians. A few things can be noted. Burgess’s expression “produces

conviction” probably means produces a sense of certainty. Some, still in the spirit

of Burgess, might want to modify his characterization in favour of a fallibilist

version. And “convinces the mathematician” could reasonably be understood as

meaning convinces the kind of mathematician with the right training. We need not

worry about the reaction of nonspecialists. Even among specialists, there are those

who are convinced by a faulty proof and those who resist a good one. Burgess

addresses these possibilities, but I will ignore them here.

I should also note that Burgess has interesting things to say about ideal elements,3

elementary vs non-elementary proofs,4 and other matters. These play a part in any

complete account of rigour, but will be ignored here as not relevant to my chief

interest, which is the four features of Burgess’s account that listed that I listed

above.

3 Proofs and Formal Proofs

Burgess’s account fits a great deal of mathematical experience. I will illustrate with

a non-trivial example taken almost at random from a standard text, Rudin,

Principles of Mathematical Analysis (1976). Rudin follows the common

definition-theorem-proof pattern; he begins with a definition of the Γ function,

of a formal proof that the working mathematician has in mind and that is sufficient for Burgess’s
purposes.

3Imaginary numbers and points at infinity are sometimes called “ideal elements.” They simplify
proofs but are considered by some to be only useful fictions. Hilbert took such a view.

4An elementary proof, say of a theorem in Peano arithmetic, is a derivation from the Peano
axioms using only the concepts of that theory. It does not matter how long or complicated the
proof is as long as it sticks to the elements of Peano arithmetic. A proof of the same theorem using,
say, group theory or complex analysis is non-elementary, even if it is only an easy few lines long.
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followed by a three-part theorem about the function, and then a proof of the

theorem. I will comment briefly on the proof after reproducing the whole passage

from Rudin (1976, 192).

Definition: For 0 < x <∞, Γ(x) =
∫∞
0
tx−1e−tdt.

Theorem:

(a) The functional equation Γ(x+ 1) = xΓ(x) holds, if 0 < x <∞.
(b) Γ(n+ 1) = n!, for n = 1, 2, 3, ...

(c) log Γ is convex on (0,∞)

Proof: An integration by parts proves (a). Since Γ(1) = 1, (a) implies

(b) by induction. If 1 < p <∞ and (1/p) + (1/q) = 1, apply Hölder’s

inequality [established earlier in the text] and the definition of Γ and

obtain Γ(x/p+ y/q) ≤ Γ(x)1/pΓ(y)1/q. This is equivalent to (c).

This informal proof illustrates Burgess’s account well. It tells us the main step in

proving (a), assuming we already know how to integrate by parts. We can next

prove (b) assuming we know how to prove things by mathematical induction. (c) is

more tricky, since we might have to remind ourselves of the properties of convex

sets. But in each of these three cases we can (perhaps with some effort) construct a

formal proof, that is, a derivation, using the information given in the informal —

but still rigorous — proof. Consequently, Rudin’s informal proof counts as a

rigorous proof by Burgess’s lights. One need only look through standard textbooks

or research journals to see similar examples in abundance.

Incidentally, the Rudin example also illustrates the worth of informal proofs.

Rather than grinding through a formal proof, we often only need to be told that

something follows, say, by induction. Frequently we can see how it might go right

away, contributing to the often elusive mathematical insight or understanding that

we all crave. Mathematics is always worthwhile, but it is the occasional aha effect

that makes it fun.

Burgess rightly notes features such as this, including the fact that the informal

proof is much more intelligible. He also notes that the informal proof might yield
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greater certainty that the formal proof, paradoxically, because the latter is often so

hard to follow that we might miss outright mistakes.

I will return to Burgess’s account after describing John Norton’s strikingly similar

views on a different topic. But before leaving Burgess for Norton, I should say

something about definitions. Much of what is said about proofs applies to

mathematical definitions, as well. Burgess cites Weierstrass’s definition of

continuity and uniform continuity as an example. (2015, 30f) This was the

beginning of ε-δ methods, which are now universal. Before Weierstrass there was

much confusion about continuity and uniform continuity. This was one of those

cases where a modicum of formalization clarified everything. In natural language

we often use “for all there is” and “there is for all” interchangeably, usually without

confusion, as in: “For everyone there is someone” and “There is someone for

everyone.” We know, in fact, that they do not mean quite the same as is illustrated

with the pair: “For every number there is one greater” and “There is a number

greater than every numbers.” When it comes to continuity vs uniform continuity

the difference between ∀ ∃ and ∃ ∀ makes all the difference but is easy to be

confused about. Formalization sorts it out.5

4 Norton on Thought Experiments

Thought experiments present us with a wonderfully interesting problem: How is it

possible, just by thinking, to learn something new about the world? There is a

5Here is the difference in detail. There are three distinct definitions involving continuity of a real
valued function f defined on the interval [a, b]. f is continuous at a point c in [a, b] if and only if ∀ε >
0 ∃δ > 0∀x ∈ [a, b] (|c− x| < δ → |f(c)− f(x)| < ε). If we wish to say that f is continuous at every
point in [a, b], then we add another quantifier at the beginning of the above. Thus, f is continuous at
every point in [a, b] if and only if ∀c∀ε > 0 ∃δ > 0 ∀x ∈ [a, b] (|c−x| < δ → |f(c)−f(x)| < ε). For the
stronger idea of uniform continuity we rearrange the quantifiers. Thus, f is uniformly continuous
on [a, b] if and only if ∀ε > 0 ∃δ > 0 ∀x ∈ [a, b]∀c ∈ [a, b] (|c−x| < δ → |f(c)−f(x)| < ε). The order
of quantifiers was successively: ∀ ∃∀ for continuity at a point, then ∀ ∀∃ ∀ for continuity at every
point, then ∀ ∃∀ ∀ for uniform continuity. These examples show the enormous value of rigorous
definitions. Without the benefit of explicit quantifier rules and quantifier symbols it would be very
had to keep track of the different types of continuity.
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large spectrum of answers, from a form of rationalism to a staunch empiricism,

with several plausible accounts in between.6 John Norton holds a view of thought

experiments that is exceptionally clear and powerful, and has been highly

influential. Norton’s answer to the question is that we actually do not learn

anything new, although we might draw out things that hadn’t previously been

recognized. He asserts that

Thought experiments are arguments which

(i) posit hypothetical or counterfactual states of affairs and

(ii) invoke particulars irrelevant to the generality of the conclusion.

The account is motivated by a staunch empiricism.

Thought experiments in physics provide or purport to provide us

information about the physical world. Since they are thought

experiments rather than physical experiments, this information does not

come from the reporting of new empirical data. Thus there is only one

non-controversial source from which this information can come: it is

elicited from information we already have by an identifiable argument,

although that argument might not be laid out in detail in the statement

of the thought experiment. The alternative to this view is to suppose

that thought experiments provide some new and even mysterious route

to knowledge of the physical world. (Norton 1991, 129)

Galileo’s wonderful argument in the Discorsi shows that all bodies, regardless of

their weight, fall at the same speed (Galileo 1974, 66f.). It is easy to imagine, so no

need for a diagram. It begins by noting Aristotle’s view that heavier bodies (e.g., a

cannon ball, H) will fall faster than light ones (e.g., a musket ball, L): (H > L).

We are then asked to imagine that the heavy cannon ball is attached to the light

musket ball, making a combined object (H + L). What would happen if it were

6My own view, which is on the rationalist side can be found in Brown (1991/2011, 2004). Norton
holds down the empiricist pole in a number of articles including Norton (1991, 1996, 2004a, 2004b).
Stuart et al (2017) is a useful source of a range of topics and issues.
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released?

Reasoning in the Aristotelian manner leads to an absurd conclusion. First, the

light ball will slow up the heavy one, acting as a kind of drag, so the speed of the

combined system would be slower than the speed of the heavy ball falling alone

(H > H + L). On the other hand, the combined system is heavier than the heavy

ball alone, so it should fall faster (H + L > H). We now have the absurd

consequence that the heavy ball is both faster and slower than the combined

system. Thus, the Aristotelian theory of falling bodies is inconsistent; hence,

destroyed.

But the question remains, Which falls faster? The right answer is now plain as day.

The paradox is resolved by making them equal; they all fall at the same speed

(H = L = H + L).

According to Norton, this thought experiment can be reconstructed as an explicit

argument. Reconstructing is no easy matter and often involves considerable effort.

Norton’s reconstruction of the Galileo thought experiment in the form of an

argument goes as follows:

1. Assumption for reductio proof: the speed of fall of bodies in a given

medium is proportionate to their weights.

2. From 1: if a large stone falls with 8 degrees of speed, a smaller stone

half its weight will fall with 4 degrees of speed.

3. Assumption: if a slower falling stone is connected to a faster falling

stone, the slower will retard the faster and the faster speed the slower.

4. From 3: if the two stones of 2 are connected, their composite will fall

slower than 8 degrees of speed.

5. Assumption: the composite of two weights has greater weight than

the larger.

6. From 1 and 5: the composite will fall faster than 8 degrees.
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7. Conclusions 4 and 6 contradict.

8. Therefore, we must reject assumption 1.

9. Therefore, all stones fall alike. (Norton 1996, 341-2)

I think this is adequate to get the idea behind Norton’s proposal. However, he

acknowledges that more detail might be necessary, but for our purposes, we need

not include it here.7

After the reconstruction, the evaluation of a TE, according to Norton, takes the

following process: Evaluate the premisses: Is there sufficient evidence of their

truth? Typically, this is an empirical task. Second, evaluate the argument’s

7For those wanting the full story, here are the extra details Norton provides.

This final step is actually quite tricky. Its analysis varies according to whether the
thought experimenter makes a tacit assumption:

8a. Assumption: The speed of fall of bodies depends only on their weights.

However, in either case, with or without this assumption, it is hard to see any room
for a Platonic leap in the final step. If assumption Ba is made, then the move from
the refutation of Aristotle’s theory (8) to Galileo’s theory (9) is a simple inference.
The most general viable theory is that the speed of fall of bodies is some arbitrary
monotonic increasing function of their weights. (Any other choice would have to allow
the function to decrease somewhere, which amounts to the possibility of a heavier
body falling slower than a lighter one!) Galileo’s own theory arises as the special case
of a constant function. Now any admitted function other than Galileo’s leads to a
contradiction through a simple argument almost exactly the same as the argument
steps 1-8 and immediately obvious to anyone who has followed Salviati’s inferences.
Consider a faster-falling, heavier body and a slower-falling, lighter body. If we connect
them in their fall, the slower will retard the faster, so that the composite falls at an
intermediate speed. This contradicts the consequence that the heavier composite must
fall no slower than either of its lighter parts. Thus we can give the transition from8
to 9 as:

8a. Assumption: The speed of fall of bodies depends only on their weights.

8b. Assumption: The speed of fall of bodies is some arbitrary monotonic increasing
function of their weights.

8c. From 3, 5. If the function is anywhere strictly increasing, then we can find a
composite body whose speed of fall is intermediate between the speed of fall of its
lighter components.

8d. The consequent of 8c contradicts 8b.

9. From 8d. The function is constant. All stones fall alike. (Norton 1996, 342-3)
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validity: Does the conclusion follow deductively or inductively8 from the premisses?

If the answer to both questions is yes, then the TE is a good one. If it fails on

either, then it is bad.

Norton is taken to be an empiricist, and this is largely correct, but it does need

some qualification. He allows that there are TEs in mathematics and in ethics,

which means that when reconstructed as arguments they will have non-empirical

premisses. Even in some physics TEs verificationism might be a premiss, which, of

course, is a normative principle, not an empirical fact. Norton’s empiricism is

secondary to his account. His claim that a TE can be reconstructed as an argument

is his central point. It is also the feature that makes his view similar to Burgess’s

account, since the latter also stresses the importance of reconstructing a proof as a

formal proof, an argument.

5 Discovery vs (Two-stage) Justification

How do Burgess and Norton compare? The main similarity is this: They rely,

respectively, on a reconstruction of the initial proof or initial thought experiment in

order to evaluate it. The reconstruction need not be manifest, but it must be

thought to exist in principle. For Burgess an informal mathematical proof is

rigorous provided there is a corresponding correct formal proof. For Norton, a

thought experiment is a good one provided there is a corresponding sound

argument. In both cases, the initial reasoning, that is, the intuitively natural line of

thought produced by mathematicians or by scientists (in the form typically

published in textbooks or journals), is of evidential value only in so far as it is

8Deductive logic is well understood, but not so inductive. Norton realizes this but is rightly not
bothered in this context. He can leave that to others to sort out. It does, however, present a special
problem for Norton, since he holds unusual views of about inductive logic. He claims that there
are no general principles of induction and every case must pay attention to its own special features.
He calls this “the material theory of induction.” It’s an interesting and important view. It does,
however, get him in trouble with TEs which seem to require general principles of induction to play
a role in the evaluation of the reconstructed argument. Stuart (2020) brings this problem to light.
Fortunately, this plays no role in our concerns here.
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linked to the reconstruction. It is the reconstruction that bears the ultimate

evidential burden for both Burgess and Norton. To repeat, it seldom matters

whether the reconstruction is made manifest; its acknowledged existence (in Plato’s

heaven?) is what matters. In both cases it must be obvious that the reconstruction

can in principle be done.

The nature of the connection between the informal proof or TE and the

reconstruction is one important place where they slightly differ. Burgess requires

the right sort of connection between them for the informal proof to be rigorous. To

repeat, “...the right way to produce conviction that a formal proof exists is

primarily by supplying enough steps of the purported formal proof.” (2015, 97)

This suggests that an informal proof is an enthymeme, which means that we could

construct the corresponding formal proof by filling in the missing parts. This is a

rather strong requirement and might not be satisfiable in some cases, which I will

explain momentarily. Norton, by contrast, has not specified any required

connection between the initial TE and the reconstructed argument. All he demands

for a good TE is a reconstruction that is a good argument. The connection might

be as disparate as an apple falling on Newton’s head and the theory of universal

gravitation. He does, however, suggest that a typical TE will have an obvious

argument form that can without much difficulty be turned into a specific argument.

If pressed, Norton could easily add something similar to the Burgess requirement of

making key argument steps part of being a good TE.

Given the similarity between the views of Burgess and Norton, we might think they

ought to hold the same view on this point. But which way should they tilt? Given

that published mathematical proofs are overwhelmingly informal, there really

couldn’t be a huge gap between what we read and find persuasive in mathematical

texts and journals and a formal proof, which Burgess considers the ultimate

evidence. An appeal to the usual justification-discovery distinction would no do. It

would be like reading a chemistry book and when the structure of the benzine

molecule is discussed, we are not told that it is a ring, only that Kekulé had a

dream about a snake. Freud might find this interesting, but chemistry students
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would be mistified. The connection between the informal proof or TE and the

formal proof or reconstructed TE needs to be fairly close. The informal proof/TE,

after all, is typically persuasive in its own right. The formal proof or reconstructed

TE cannot consist in utterly different evidence. Burgess has this covered by

insisting that to be rigorous the informal proof must contain the key steps of a

formal proof (if only in a sketchy form).

Burgess acknowledges the traditional discovery-justification distinction but brushes

it aside. “One of the first things to note about rigor is that it pertains only to what

philosophers of science call the ‘context of justification,’ as opposed to the ‘context

of discovery’.” (Burgess 2015, 8) This is important for a couple of reasons. Burgess

is surely right to think of a rigorous proof as evidence, hence as justification. But it

also implies that justification is a two-step process. First comes the informal

rigorous proof, then the formal proof. Together they are the complete justification.

The discovery stage was earlier, based on seeing a falling apple, having a dream

about a snake, calculating lots of examples until a patterns seemed to arise, and so

on. These are not evidence but they might suggest a possible theorem and even

suggest a proof of that theorem.

Norton does something similar. That is, he notes the discovery-justification

distinction but then puts everything important into justification — though he does

not use the terminology in precisely this way. He also turns justification into a two

stage process. I use “context of discovery/context of justification” differently than

Norton does in the following passage, but that is a mere terminological

matter.

Two forms of the thesis. The thesis that thought experiments are

arguments requires some elucidation. Is the claim merely that thought

experiments can do no more than argumentation when it comes to

justifying claims? Or is it, in addition, that the actual execution of a

thought experiment is just the execution of an argument? Following

Norton (1996, p. 354), I intend the stronger version and urge both:
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(1a) (Context of justification) All thought experiments can be

reconstructed as arguments based on tacit or explicit assumptions.

Belief in the outcome-conclusion of the thought experiment is justified

only insofar as the reconstructed argument can justify the conclusion.

(1b) (Context of discovery) The actual conduct of a thought experiment

consists of the execution of an argument, although this may not be

obvious, since the argument may appear only in abbreviated form and

with suppressed premises. (Norton 2004b, 50)

To say, as Norton does, that the unreconstructed TE is a non-obvious argument,

because it is abbreviated or has suppressed premisses, sounds a lot like Burgess’s

rigorous informal proof. At this stage we are already in the realm of justification.

The discovery stage has long passed and now a Galileo or a Newton or an Einstein

is presenting us with evidence for some theory. Norton’s explicit arguments are like

Burgess’s formal proofs.

Norton seems to be saying implicitly what Burgess made explicit. A rigorous proof,

according to Burgess, convinces mathematicians “in the right way” because it

contains key steps in the corresponding formal proof. Norton is not so specific and

allows that the argument character of a TE might not be obvious, but it

nevertheless is an argument and might, for instance, merely need the suppressed

premisses to be made explicit. At a minimum, the TE is suggests a proper

argument.

Discovery plays no role for either Norton or Burgess. Justification is everything.

What is important about their common view is that justification is a two-stage

entity, even if the second stage is normally not carried out. For Burgess a normal

informal proof is rigorous because we are convinced that a formal proof exists.

Only rarely do we bother to construct one. For Norton a TE, as we normally

encounter them, is a good one, because there is a corresponding argument that is

sound. In most cases we are convinced of this, but only rarely make the argument

explicit.
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Questions naturally arises. For Burgess: Are there any proofs that we could

plausibly call rigorous that do not have corresponding formal proofs? For Norton:

Are there any TEs that need not be reconstructed as arguments to be convincing in

their own right? As we shall see, the answer is yes in both cases.

6 Problems with Burgess

There is one more aspect of Burgess’s view that I want to consider before looking

at specific problems. A great deal of mathematical activity does not involve proof,

however we might conceive of proof. It is often called inductive or experimental

mathematics, although those terms do not cover all. It is important for all sorts of

reasons. For one thing, mathematicians need to have some idea of what problems

might be worth tackling or suitable for assigning as a PhD topic. A young career

could be ruined by stupid problems. Perhaps more interesting are kinds of evidence

that differ from proofs. For instance, the evidence cited for speculations and

conjectures made in conference talks or in blogs, which are an increasingly popular

outlet for mathematical ideas in an early stage.9 Such conjectures are often

supported by inductive evidence that would be considered stellar in the sciences,

but fall short of proof, as normally conceived by the mathematical

community.

Recall my summary of Burgess’s account of rigour, which includes four aspects. (1)

a rigorous (informal) proof is one that convinces mathematicians that a formal

proof exists. (2) A formal proof is a derivation from first principles or from earlier

established theorems. (3) A rigorous (informal) proof has a structure that indicates

the structure of a formal proof by containing key steps, at least in outline. (4)

evidence for a theorem ultimately rests on the existence of a formal proof.

My unease with the Burgess account of rigour turns on two aspects of his account.

9Here are two excellent ones by leading mathematicians. Both are rather advanced: Timothy
Gowers’s blog: https://gowers.wordpress.com, Terence Tao’s blog: https://terrytao.wordpress.com.
There are lots more on the Internet at various levels of sophistication.
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(1) and (3) are the problem. (2) and (4) are either okay as they are or could be

slightly modified into acceptable form. (For instance, I would reject (4) if it says

that evidence rests exclusively on the existence of a formal proof.) Before

proceeding, however, I stress that the Burgess account seems quite right for a great

many cases, perhaps even most. I also think it would be accepted by the general

mathematical community. What I am disputing is its claim to universality. The

cases where it fails are important and shed light on the nature of

mathematics.

Contra (1): (A rigorous informal proof is one that convinces mathematicians that a

formal proof exists): First, on the Burgess account it is a mystery why we value

multiple proofs of the same theorem. If the point of a proof is to convince us that a

formal proof exists, then why multiple proofs when the first one did the job of

convincing us? The usual answer to this question is that different proofs give us

different kinds of insight into what is going on. To be fair, Burgess could rightly

reply that he is only interested in what makes a proof rigorous, not what make it

insightful. This is a perfectly acceptable reply, but we should always keep in mind

the importance of explanation and understanding, even though they are very

difficult to characterize.

Second, there are fields of mathematics where the first principles are not complete,

thus, there will be propositions P such that neither P nor not-P is derivable from

those first principles. And yet, we might have an informal proof that P is true.

Two examples come to mind. Gödel famously proved that any system strong

enough to represent arithmetic would have true but unprovable sentences. He

constructed a sentence G that could be understood to say of itself that it is

unprovable, which indeed it was. So, it is plausible to claim (as did Gödel) that G

is true and we have a kind of proof of it, but there is no formal proof.10

10Gödel’s incompleteness theorem can be found in most advanced logic books. An interesting
special case is described in Paris and Harrington (1977). They find an explicit example of a true
but unprovable sentence of Peano Arithmetic.
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A second example concerns the continuum hypothesis (CH) which is independent

from the axioms of set theory, hence there is no formal proof of it or its negation.

(This independence is from the rest of mathematics, if we think that it all reduces

to set theory). I will briefly give an informal proof due to Freiling (1986) that CH is

false. If the informal proof works, then it would be a case of a rigorous proof

without a corresponding formal proof. I can here give little more than a hint of the

actual argument, which is rather technical.11

The CH is the claim that the continuum of real numbers R has the cardinality ℵ1.
Cantor’s diagonal argument showed that it is larger than the natural numbers N

and the rational numbers Q which are both ℵ0. CH is the claim that the

continuum is the next infinite number. Since the cardinality of R is 2ℵ0 , CH is the

claim that ℵ1 = 2ℵ0 . Thanks to the work of Gödel and Cohen we know that CH

cannot be proved or refuted on the basis of existing set theory. That is, there exists

no formal proof of CH or of not-CH. But, as any mathematical realist would say,

CH is nevertheless true or false; we merely don’t know which. Could there be some

sort of argument for CH or against it?

Chris Freiling (1986) produced a remarkable argument that shows CH is false.

Needless to say, it is somewhat controversial. However, it is sufficiently interesting

to be worth considering and even if the proof fails to work, it can be highly

instructive here. It provides an example of a kind of mathematical reasoning that is

plausible and should be considered legitimate in principle.

We begin by assuming CH is true, aiming for an absurdity, then concluding it must

be false. As background, we assume ZFC (Zermelo-Frankel set theory with the

axiom of choice). This implies what is known as well ordering, which means we can

line up the real number with the so-called ordinals, including the transfinite

ordinals. It will be enough to restrict ourselves to the real numbers in the interval

(0, 1). A well ordering of (0, 1) is not the usual ordering based on size, but

something else. In fact, we have no idea of what a well ordering of the reals would

11For a more detailed exposition, see Freiling (1986), Mumford (1999),
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be, but ZFC implies that one exists. Our assumption that CH is true means that

the size of (0, 1) is ℵ1.

Next we imagine tossing two darts at the interval (0, 1). Obviously, this is a

thought experiment. The darts hit two real numbers p and q. They do this (1) at

random, (2) independently from one another, and (3) symmetrically, in that the

order of tosses is not relevant.

Each ordinal contains its predecessor. Thus, 3 = {0, 1, 2}, and ω is defined as the

set of all finite ordinals, ω = {0, 1, 2, 3, ...}. The ordinal number ω corresponds to

the cardinal number ℵ0, which is the cardinality of a countable infinity. The set of

all countable ordinals is Ω, which corresponds to the cardinal number ℵ1.12 The

ordinals, which are automatically well ordered, are:

0, 1, 2, 3, ..., ω, ω + 1, ..., ω + ω, ..., ωω, ...,Ω, ...

The well ordering theorem and the assumption that CH is true means we can line

up (0, 1) with these ordinals. They will jump around, not maintaining their normal

order, but every number in (0, 1), including the the ones we picked out with the

darts, p, q, would correspond to some ordinal. Perhaps p = π/4 might correspond

with ω + 284 and q = 0.9943 might correspond with 17.

The person who tosses the dart that lands on p can argue as follows: No matter

where p is in the well ordering, there will be a countable number earlier and an

uncountable number later. Appealing to a standard result in measure theory, any

countable set has measure zero. Interpreting probabilities as measures, it follows

that the probability of the other dart being earlier in the well ordering is zero. (It

could happen, since probability zero does not imply impossibility, but there is zero

chance that the event will happen.)

The second dart thrower reasons the same way. No matter which number q I hit

12Different symbols are used. If we were going beyond the first uncountable ordinal, here called
Ω, it would be best to use: ω0, ω1, ω2, ... which correspond to the cardinal numbers ℵ0,ℵ1,ℵ2, ...
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with my dart, there will be a countable number earlier and an uncountable number

later in the well ordering. So, p must be later. The probability of p being earlier is

zero (though still a possibility).

We have reached an absurdity. In any pair of tosses, one must be earlier than the

other in the well ordering, yet by the correct reasoning of each dart tosser the

probability of either being earlier is zero. The assumption that CH is true led to

this, so we conclude that CH is false. Of course, logically speaking, some other

assumption might be to blame. Freiling (in correspondence) tells me that he has

changed his mind and now blames the well ordering principle. That would require a

significant overhaul of existing set theory. I will not pursue this issue here, nor will

I discuss the critics of Freiling’s dart TE, since my only purpose in using this

remarkable example is to illustrate a type of reasoning that is plausibly rigorous

and yet, contra Burgess, cannot be linked to a formal proof.

Contra (3): (A rigorous proof has a structure that indicates the structure of the

formal proof by containing key steps, at least in outline): I doubt that all informal

proofs (rigorous or not) have a structure that is captured by a formal proof, even if

a formal proof exists. Picture proofs, for instance, would typically fail, though not

always. Burgess could say that shows they are bad proofs, but he would be begging

the question against those who claim pictures can be genuine, convincing, even

rigorous evidence. A typical modus ponens vs modus tollens standoff. I will give

examples, so that readers can judge for themselves.

Burgess acknowledges that diagrams would seem to violate the spirit of his

characterization of rigour, but he gives the issue only a footnote.

One thing the proposed formulation does not seem to leave room for is

a role for diagrams, such as one can find in almost any issue of almost

any current journal in the library: Their inclusion may play a part in

convincing readers that a formal proof exists, even though diagrams are

not themselves deductive steps in a formal proofs.... But the issue is a

large one, deserving a monograph of its own, and I will have to set it

19



aside. (Burgess, Ch 2, fn25)

He is right; it is a large issue. But it is central to my case, so I will not set it aside.

Rather than rule diagrams out in consequence of not meeting Burgess’s condition,

we might let them in (at least some of them) and claim that they do indeed exhibit

key features of a formal proof. A very nice example from Littlewood might

illustrate. Burgess could accept it as an instance of a rigorous proof that fits his

account.

First, Littlewood defends pictures in general: “A heavy warning used to be given

that pictures are not rigorous; this has never had its bluff called and has

permanently frightened its victims into playing for safety. Some pictures, of course,

are not rigorous, but I should say most are (and I use them whenever possible

myself)” (Littlewood 1953/1986: 54). He then goes on to illustrate with a nice

example.

One of the best pictorial arguments is a proof of the ‘fixed point

theorem’ in one dimension: Let f(x) be continuous and increasing in

0 ≤ x ≤ 1, with values satisfying 0 ≤ f(x) ≤ 1, and let f2(x) = f{f(x)},
fn(x) = f{fn−1(x)}. Then under iteration of f every point is either a

fixed point, or else converges to a fixed point. For the professional the

only proof needed is Figure 1. (Littlewood 1953/1986: 55)

It would be plausible for Burgess to claim that this picture proof is indeed rigorous

(as Littlewood claims), since it arguably would convince a mathematician that a

formal proof exists. The crucial condition in the theorem is illustrated in the

diagram, which could be seen as strongly suggesting what a formal proof would

involve, namely, a convergent series of iterated terms.13

The great value of Littlewood’s example is that it shows two important things.

First, (some) diagrams can be rigorous.14 Second, (some) diagrams can satisfy the

13Burkill (1962, 36f) briefly remarks on the graphical representation of recurrence relations such
as Littlewood’s.

14There is no universal agreement on this. Giaquinto (2007) says “I would not call this a proof,
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Figure 1: Littlewood’s picture proof of the fixed point theorem.

Burgess condition of being convincing because they contain key steps in the formal

proof. Chalk this one up for Burgess. And while we are at it, chalk up another: a

simple diagrammatic proof that the number of real numbers in (0, 1) is the same as

in any other interval (a, b) and even the same as in R. Here are diagrams that seem

to convincingly show this. Figure 2 (left) shows the 1-1 correspondence between

(0, 1) and another finite interval (a, b). What about the infinite interval (−∞,∞),

which is R? Figure 2 (right) makes it clear.

Of course, there are many analytic expressions that will also establish 1-1

equivalence of (0, 1) and R, for instance, tan((π/2)(2x− 1)).

The question that naturally arises next is this: Are there rigorous picture proofs

that clearly do not contain key ingredients of a formal proof? The answer is

yes.

There is a theorem in number theory that is generally well known. The sum of the

numbers up to n is equal to (n2 + n)/2. Or, equivalently,

even for the professional... But it may be possible to substantiate a weaker claim than Littlewood’s:
seeing or visualizing the diagram can initiate a partly visual pass to discovery of the fixed point
theorem.” (2007, 177) He goes on to give a detailed analysis of how this might work (2007, 186-190).
Notice Giaquinto’s implicit appeal to the discovery-justification distinction.
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Figure 2: Equivalent intervals.

Theorem : 1 + 2 + 3 + ...+ n = n2/2 + n/2.

Here is the proof (Figure 3). Try to see how it works. I will explain below.

Figure 3: Picture proof of a number theory theorem.

The little squares represent numbers, so stating from the top and adding, we get:

1 + 2 + 3 + ...+ 7. Next, consider the whole as if it were a 7× 7 square cut in half

by the diagonal. So the number of squares is 72/2. The diagonal cut 7 squares in

half; we want to add them back, 7/2. Thus, the total number of squares is

72/2 + 7/2. This proves the theorem for the special case of the number 7. But

when we understand how this proof works, we are able to grasp all generality and

see that n2/2 + n/2 holds for any number n.

On any reasonable characterization of rigour, this picture proof is, I claim, perfectly
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rigorous. But could it pass the Burgess test for an informal rigorous proof, that is,

does it convince mathematicians of the existence of a formal proof by providing key

steps in the formal proof? There is, of course, a formal proof. It is a proof by

mathematical induction. Does the diagram suggest mathematical induction? No.

The key step in induction is the passage n→ n+ 1, whereas here the diagram

could only suggest the next line, which is the passage 7→ 8. That is not enough.

Grasping the picture proof is not an instance of some dim awareness of a formal

proof by mathematical induction.15

The remarkable thing about some diagrams is that we can somehow grasp all

generality. We literally see the special case of 7, but we intellectually grasp the

proof for all n. This is a remarkable cognitive capacity that we have, a form of

non-sensory intuition. Of course, it is fallible and sometime leads us astray, but

then so do non-diagrammatic proofs.

The upshot of these examples is that the Burgess account of rigour cannot be

completely correct. There are many examples where it does full justice. That is,

there are proofs we can rightly call rigorous because they convince mathematicians

of the existence of a formal proof, and the reason they are convincing is because

they indicate key features of the formal proof. The number theory picture proof is

not like that at all. It is clearly rigorous yet its correctness is not recognized by any

connection to a formal proof. It stands alone.

The ability to stand alone as evidence is what links mathematical picture proofs

with thought experiments. To pursue this I now turn to Norton’s account.

7 Problems with Norton

Not all TEs lead to a conclusion. Some present us with a puzzle, not an answer.

For instance, in the the TE known as the Ship of Theseus we are asked to imagine

15For more examples of picture proofs and for a discussion of various aspects of them, see Brown
(1999/2008).
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a ship that over time has every part replaced, so that eventually nothing remains of

the original. We might further imagine the old parts recombined so as to form a

ship. Which of these two is the true ship of Theseus? This is the fundamental

metaphysical problem of identity. What makes a thing the thing that it is? The TE

is a mere curiosity when it comes to ships but highly significant when it comes to

people: What (if anything) makes a person the same person over time? No theory

of identity is either supported or undermined by the Ship of Theseus TE. The point

is to make the problem of identity manifest. Reconstructing the TE as an argument

is not possible; there is no argument because there is no conclusion.

Some TEs are illustrations of a theory. They play a pedagogical rather than an

evidential role. Newton’s cannon TE, for instance, produces that wonderful sense of

understanding how bodies such as the moon can stay in place by perpetually

falling. We imagine a cannon firing cannon balls farther and farther, eventually

circling the earth and returning to their starting point and, hence, repeating their

orbital motion indefinitely. (See Figure 4.) Newton already calculated the result

without a TE. He gave us the TE to help us understand. Again, an argument from

premisses to conclusion is beside the point. Helping us to “see” is everything.

Other TEs try to establish how something is possible. Critics of Darwin, for

instance, claim that so-called natural selection could not produce something like

the eye or the opposable thumb. Darwin and biologists since him have been at

pains to specify evolutionary pathways that would have these results. They are not

always claiming that this is what happened. They only claim that known early

conditions could be followed by a sequence of changes allowed by natural selection

that resulted in the complex human eye. There is no deductive or inductive

argument that begins with empirically justified premisses and concludes with the

formation of the eye. It is only showing that the possibility of such a result is

compatible with what we know. It is a “how possible,” not a “how actual”

demonstration. It is a refutation of the “not possible” claim.

I do not think cases such as these hurt Norton’s main point, at least not much.

They do, however, show that TEs, like real experiments, work in multiply different
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Figure 4: Newton’s TE on projectile motion.

ways. We can ignore these diverse examples and restrict our discussion of Norton

to TEs that play an evidential role of some sort in coming to a definite conclusion.

Not all TEs can be arguments, but perhaps the main ones in physics can be. It

would be a great achievement for Norton to account for the influential TEs of

Galileo, Newton, Einstein, and others in terms of arguments. These are the ones we

really care about.

Besides reconstructing specific examples of TEs as arguments, Norton offers

another consideration for his argument view.

Reliability thesis. If thought experiments can be used reliably

epistemically, then they must be arguments (construed very broadly)

that justify their outcomes or are reconstructible as such arguments.

(Norton 2004b, 52)
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Understood strictly, Norton’s point is that if a TE cannot be reconstructed as an

argument then its conclusion would need to be justified some other way, such as a

priori intuition. This is impossible on empiricist grounds. It is fair to say that the

thesis assumes TEs can indeed be used reliably as evidence, and it is done on

empiricist grounds. Moreover, TEs (most, if not all) can be used reliably,

independently from their reconstruction as an argument. This reliability,

independent from reconstruction, must be based on empirical grounds.

Let T be a specific TE and its reconstruction as an argument T ′. According to

Norton the thing to be evaluated ultimately is T ′. As mentioned above, this is done

by asking: Are the premisses true (or at least evidentially supported) and is the

derivation of the conclusion deductively or inductively valid? If yes to both of

these, then T ′ is a good TE.

However, to repeat, Norton rightly acknowledges that T can be reliably used in its

own right independent from the reconstructed argument T ′. “Thought experiments

are commonly taken to be more than just generators of interesting hypotheses.

Thought experimentation is also taken to be a reliable mode of inquiry.” (2004b,

52) In other words, TEs operate within the realm of justification, not discovery.

The reliability thesis is a welcome feature of Norton’s account, since it embraces

the obvious fact that normal TEs are in their own right taken to be evidence for

their conclusion. Scientists, philosophers, and anyone else reading a standard TE

will typically not need the reconstruction to be convinced.

Most TEs have not been reconstructed as arguments, just as most mathematical

proofs have not been reconstructed as formal proofs. The views of Norton and

Burgess turn out to be the same on this fundamental point. For both of them

justification is a two-stage process, with the second not playing much of a role. The

first stage typically convinces us by itself. But, according to Burgess and Norton,

the first stage also convinces us of the existence of the second stage, the formal

proof or the reconstructed argument. It is belief in the existence of a second stage

that is so crucial for them.
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The problem is this: if the first stage is rightly convincing by itself, why bother

with the second, except, perhaps, in rare questionable cases? This is a problem for

Norton and for Burgess, alike. I have already discussed the problem as it arises in

Burgess. Now to the problem as it occurs in Norton.

Norton declares, “The reconstructions are generally rather straightforward and

often differ little from the original narrative of the thought experiment.” (Norton

2004b, 50). Recall that Burgess says a rigorous proof typically contains the key

steps in a formal proof. If Norton had made it a condition of a good TE that it

outlined the structure a fully specified argument, then we would have exactly the

same view. As it is, they come pretty close.

I will not attempt to provide a TE that cannot be reconstructed as an argument,

but maybe we can come close.16 According to Norton, a good (but not yet

reconstructed) TE is already an argument although only in rough form. Perhaps it

is missing a premiss that we could fill in without too much difficulty. This is why it

is both convincing and reliable. The relevant question is how close is the original

TE to the reconstruction?

Before producing a TE that might pose a problem, we should consider some simple

examples that strike us as non-arguments but nevertheless as plausible inferences. I

am not asserting that any one of these is true, only that they illustrate candidates

for an alternative to deductive/inductive inference as a way to extend out

knowledge.

Descartes’s cogito strikes many as a good inference that is in no way an argument,

either deductive or inductive. The proposition “I think, therefore I am” seems

16Permit me a biographical remark. From time to time I find a TE that I am confident cannot be
reconstructed along Norton lines. I send it to John, who has been a friendly rival for many years,
and gleefully wait for him to throw in the towel. Alas, within a day or two I am rebuffed with a
plausible reconstruction, often cleverly done. I have now given up the hope of ever finding a clear
counterexample. I am still not won over to his view, but I resist it for other kinds reasons. I am
only concerned here with that aspect of Norton’s account of TEs that is similar to Burgess’s view
of proofs. I leave other considerations aside. See Brendel (2017) for a survey of critical discussions
of various aspects of Norton’s view.
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correct to us as soon as we understand it. But there is no rule of inference taking

us from the premiss to the conclusion.

Moore’s paradox is another example where we grasp the falsity of a proposition

without deductive or inductive rules playing a role. The paradoxical proposition is:

“P is true, but I do not believe P.” It is immediately recognized as somehow

self-contradictory even though “P is true” does not contradict “I do not believe p.”

(Note that “P is true but I did not believe P” is unproblematic. It is only the

present tense version that is paradoxical. We recognize a problem without any

empirical input and without appealing to any rule of inference, deductive or

inductive.

Colour exclusions are another candidate. “If X is red all over, then X is not blue all

over.” Neither deductive nor inductive logic will get us from the antecedent to the

consequent. Nor is it an analytic truth, since the concept of not blue is not

contained in the concept red. And yet it seems incontestably true.

These examples are controversial, but, to repeat, that is of little concern to us. I

cite them only as possible candidates; they show the possibility of inferences that

are not justified by logic. Thought experimental reasoning is sometimes more like

these than like a deductive or inductive argument. They are examples of intuitions,

a nonsensory form of cognition. Now to some TEs.

Galileo’s TE on falling bodies can be reconstructed as an argument. The first part

fits Norton’s argument view very well; it is a reductio ad absurdum of Aristotle’s

account. The second part, however, involves some sort of insight and is not

obviously an argument, but more like a direct perception. Of course, it could be

both, an intuition and reconstructable as an argument.

Stevin’s double inclined plane TE is also reconstructable as an argument, but in

considering it, we come to have an epiphany. The background knowledge of the

impossibility of perpetual motion machines and the intuition about symmetry do

the trick. See Figure 5, top. Which way would the chain move on the frictionless

double inclined plane? It is steeper on the right, but there is more weight on the
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left. By adding the weights underneath, we easily solve the problem. The

additional weights will pull each side symmetrically. If the whole starts to move

(or, if it speeds up when already moving), then we would have the makings of a

perpetual motion machine from which we could draw endless energy, which is

impossible.

Figure 5: Stevin’s double inclined plane TE.

Herman Weyl was a big fan of symmetry and had no qualms about a priori

physics, which he saw as linked. “As far as I see all a priori statements in physics

have their origin in symmetry.” (Weyl 1952, 126)

Norton can reconstruct TEs as arguments with the same conclusion as Galileo or

Stevin. However, I claim, the link between the initial TE and the argument
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reconstruction is weak; it is not a mere filling in of missing but obvious premisses.

Both of these TEs are correct; no one disputes them. And I will not dispute

Norton’s ability to provide a sound argument reconstruction for each. However,

they also strike most people as obvious at first reading. This is the crucial point.

No reconstruction is needed to appreciate their veracity. The reconstruction

contributes nothing, just as the Burgess’s formal proof contributes nothing to the

evidence.

8 Concluding Remarks

Time to take stock. Burgess and Norton have put forward plausible, detailed

accounts of mathematical rigour and thought experiments, respectively. In one

important respect they are identical. Burgess justifies the standard evidence we

find in mathematics, explaining that it is indeed rigorous because it convinces

mathematicians of the existence of a formal proof, the gold standard. Moreover,

the ordinary proof typically contains the key steps of the formal proof. This has

the virtue of minimizing the epistemic gap between them. Norton similarly claims

that any TE can be reconstructed as an argument. Moreover, he too, claims that

typically we can easily recognize the argument structure of the initial TE, making

the epistemic gap small, as well.

Against Burgess I presented examples, especially picture proofs, that would seem to

be genuine trustworthy proofs that do not correspond to formal proofs. And

against Norton I presented examples where the reconstruction would seem to be

irrelevant, since the initial TEs are utterly convincing in their own right.

One particularly interesting feature of these two accounts is that they do not play

on the traditional discovery-justification distinct. Whatever might go into the

discovery of a proof or TE in the first place, is of no concern to the two-stage

justification process. Burgess proofs and Norton TEs are already in the realm of

justification. We might even call it early and late justification, corresponding to the

initial proof or TE and then to the formal proof or reconstructed argument. What
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I hope to have shown is that this way of looking at things is a mistake, at least if it

is taken to be universal. The early stage is complete evidence for a theorem or a

TE as it stands.

New questions arises: What is it about the initial proof or the initial TE that

accounts for the recognition of its sufficiency as evidence? Burgess wants rigorous

proofs to build on what went before. But how reliable is that? It could be genuine

objective knowledge or it could be arbitrary stipulations. The examples and the

history of mathematics suggest something closer to the former, while theorems

about chess are, of course, more like the latter. I won’t argue for it here, but I

remain convinced of a broadly platonistic outlook, and think it intact after

considering Burgess’s account of rigour. I am inclined to say something similar in

light of Norton’s account of TEs. We seem to have some cognitive ability that

allows us to grasp truths in the abstract realm, which is the source of our

knowledge. I have argued for this elsewhere and will not repeat the case for it

here.17 The initial proof or TE guides our intuitions (at least in some cases) of the

abstract realm, which is why the proof or TE not only seems right but reliably is

right.

The case against Burgess and Norton is not merely a refutation of their views, but

also opens new possibilities for evidence. Mathematical proofs need not be tied to

formal proofs, and TEs need not be tied to derivations from empirically justified

premisses. New ways of learning are possible.

Let me end with a profession of hope. I think the Burgess account of mathematical

rigour is plausible and probably right for most cases — but not for everything. And

I think the Norton account of TEs is also right for many cases — but is not the

whole story. The abstract realm, the home of proofs and TEs, is so rich and varied

in its content that there is very likely not a single kind of evidence. A pluralistic

outlook seems best. Wittgenstein remarked that mathematics is a “motley of

techniques of proof.” (Wittgenstein 1956/78 46). He meant it somewhat

17See Brown (1991/2011 and 1999/2008.)
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disparagingly — I do not. The same could be said about TEs. Yes, proofs are

evidence, but so are diagrams, and intuitions, and statistical arguments, and much

more. And they not only yield truths, but sometimes also explanations and

understanding. (To be fair to both Burgess and Norton, explanation and insight

are not intended to be part of their concerns.) We accept things because of the

available evidence for them. But there is no reason to confine ourselves to formal

proofs or to empirical observations and deductive or inductive logic as the only

legitimate forms of evidence. Rational belief runs well beyond what these can

justify by either Burgess or Norton means. In mathematics and in thought

experiments — and everywhere else — we should be guided by these fundamental

epistemic principles: (1) We have many cognitive capacities, including (fallible)

intuition. (2) Truth and understanding are achievable, although certainty is not.

(3) We are always in the middle working out in all directions, often using newly

invented means as we go.

What do we want? Truth and explanation and understanding. We often get it with

TEs; the initial version is usually sufficient. Reconstruction and rigour can’t deliver

much. They can give us truth and certainty only if we start with truth and

certainty. How likely is that, given empirical fallibility or that mathematical axioms

are fallibly self-evident or outright conjectures? Reconstruction and rigour do not

even try for explanation and understanding. At best, they maintain them, if they

are in the initial proof or TE. The problem with making much of rigour is that it

leaves out a great deal of mathematical activity. Huge advances are made with

definitions. Think of Dedekind’s definition of real numbers. All sorts of important

things rigorously follow from it; modern analysis largely rests on it. But no one has

ever proved that it is correct. Instead, we see it as a brilliant solution to a problem

of dealing with irrational numbers and we embraced it for that reason. It is outside

the realm of rigour. But it is inside the realm of explanation and understanding. Is

it certain? No, but we can reasonably hope it is true.
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