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Abstract

This paper is concerned with the possibility and nature of rela-
tivistic hidden-variable formulations of quantum mechanics. Both ad
hoc teleological constructions of spacetime maps and frame-dependent
constructions of spacetime maps are considered. While frame-dependent
constructions are clearly preferable, they provide neither mechanical
nor causal explanations for local quantum events. Rather, the hidden-
variable dynamics used in such constructions is just a rule that helps to
characterize the set of all possible spacetime maps. But while having
neither mechanical nor causal explanations of the values of quantum-
mechanical measurement records is a significant cost, it may simply
prove too much to ask for such explanations in relativistic quantum
mechanics.[1]

1 Teleological Constructions

It is difficult to find a satisfactory formulation of relativistic quantum me-
chanics. More specifically, it is difficult to provide a dynamical account of
the process of measurement and the production of determinate measurement
records that is compatible with the constraints of relativity (Barrett 2003).
This paper concerns the most direct way of providing a hidden-variable for-
mulation of quantum mechanics that is compatible with relativity. The strat-
egy guarantees determinate measurement records but ultimately forfeits any



mechanical or causal explanation of the production of such records or of any
other physical process.

One might naturally suppose that a formulation of quantum mechanics is
compatible with relativity if it can be given without reference to any preferred
inertial frame. And, in the context of special relativity, one might suppose it
to be sufficient that the dynamics assign a unique local quantum-mechanical
state to all regions in Minkowski spacetime. But if this is all one requires,
then it is easy, perhaps too easy, to get a formulation of quantum mechanics
that is compatible with relativity.

Bloch (1967) provided an early discussion of the difficulties one faces in
reconciling quantum mechanics and relativity. He understood the problem
as one of finding a collapse formulation of quantum mechanics that (i) was
compatible with the constraints of special relativity and (i7) would explain
the determinate measurement records generated by particle detection ex-
periments. Using particle counters as quantum measuring devices, Bloch
explained how one might get a weak sort of compatibility with relativity by
supposing collapses to occur along the backward light cones of measurement
interactions.[2]

Bloch concluded his discussion of relativistic quantum mechanics by de-
scribing how one could, if one pleased, define a “teleological wave function”
by simply stipulating the value of the wave function so that it corresponds to
whether or not each particle counter is triggered at each particular location
in spacetime where a measurement is made (1967, 156). That is, one might
construct an empirically adequate spacetime map of the quantum-mechanical
state by stipulating that the local value of the wave function in each region of
Minkowski spacetime is an eigenstate of the recording variable wherever and
whenever there is in fact a measurement record. One might then complete
the spacetime map by filling in local values for the wave function in all other
regions subject to the constraints imposed by the values in those regions
where there is a determinate record. There are several ways one might do
this. If one used the standard unitary dynamics to fill in the values outside
the determinate-record regions (insofar as possible), then the resultant space-
time map might look as if collapses of the wave function had generated the
determinate measurement records. Indeed, such a complete spacetime map
might be constructed from Bloch’s backward light-cone collapse prescription
above if one knew the result of each measurement. But there is a sense in
which it does not really matter how one completes the spacetime map since



one already has the right determinate measurement records by stipulation. In
any case, a teleological spacetime map constructed from observed measure-
ment records would clearly be both empirically adequate (by stipulation)
and perfectly compatible with relativity (insofar as it is just a map of local
quantum-mechanical states in Minkowski spacetime).

A closely related procedure would be to stipulate the values of the deter-
minate measurement records in only some privileged spacetime region (rather
than the values of all measurement records), then to use these local records
together with the unitary dynamics to construct a fictional wave function for
all spacetime regions that represents the conditional probabilities of various
possible records in those regions given the stipulated records in the privileged
region. A wave function so constructed would be fictional outside the priv-
ileged region since, assuming the standand eigenvalue-eigenstate link (more
specifically, without the introduction of hidden-variables), the actual wave
function would be an eigenstate of whatever measurement records are in fact
obtained outside the privileged region and would consquently assign prob-
ability one to each actual measurement record and probability zero to all
other possible records. Since it does not determine the values of the deter-
minate physical records there and consequently cannot be taken to provide
a complete and accurate representation of the state outside the privileged
region, one might naturally conclude that such a fictional wave function rep-
resents possible epistemic states of observers who only know the actual mea-
surement records in the privileged region. In any case, given the standard
eigenvalue-eigenstate link, it is the teleological state map, which can only
be constructed here after one knows the value of all measurement records,
not a fictional state map representing conditional probabilities, that can be
taken to represent the complete quantum-mechanical state in each region of
spacetime.[3]

Concerning the construction of such ad hoc teleological spacetime maps,
however, Bloch concluded that “such a procedure appears to have little to
recommend it” (1967, 156). While one cannot help but agree with this conclu-
sion, it is also unsurprising to find such teleological constructions throughout
the literature on relativistic quantum mechanics given the difficulties inher-
ent in finding a dynamical account of the quantum measurement process that
is compatible with relativity.

Hellwig and Kraus (1970) have proposed adopting precisely the ad hoc
procedure that Bloch found objectionable in order to extend Bloch’s dis-
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cussion of particle-detection records to the construction of spacetime maps
for quantum field variables. The procedure here is simply to stipulate the
corresponding local value of the field variables in those spacetime regions
where there are in fact determinate measurement records, then to fill in the
quantum-mechanical field state map in other regions using the standard uni-
tary dynamics. Hellwig and Kraus’ concrete proposal for how to complete
the spacetime map amounts to an application of the collapse dynamics along
the backward light cone of each measurement event in spacetime and an ap-
plication of the standard unitary quantum dynamics everywhere else (1970,
567).

While such spacetime maps can clearly be taken to be empirically ade-
quate models of any collection of actual determinate measurement records
and while there is a sense in which they are also clearly compatible with the
constraints imposed by special relativity, they are nevertheless blatantly ad
hoc. Such constructions guarantee empirical adequacy by stipulation. While
such a spacetime map may predict and explain our empirical results in the
sense of logically entailing the determinate records we in fact find, the predic-
tions are ad hoc and the explanations are the most impoverished imaginable.

The salient question is whether we can do any better than such ad hoc
constructions of quantum-mechanical spacetime maps. 1 think we can. In
particular, I will argue that frame-dependent constructions of hidden-variable
spacetime maps are clearly preferable. While I take frame-dependent hidden-
variable constructions to be preferable, they also limit the sort of explanations
available in relativistic quantum mechanics. I will use both basic and gen-
eralized Bohmian mechanics to illustrate frame-dependent hidden-variable
constructions. Then I will discuss the relative virtues and vices of such con-
structions.

2 Frame-Dependent Constructions

As the most popular hidden-variable formulation of quantum mechanics,
Bohm’s theory (1952) provides a convenient context for discussing frame-
dependent constructions (This description of Bohmian mechanics follows Bell
1981 and 1982).

In basic Bohmian mechanics, a complete physical description consists of
the standard quantum-mechanical state 1) together with a specification of the



always-determinate position () of each particle. It is the determinate particle
configurations relative to the wave function that are supposed to explain our
determinate measurement records in this theory.

According to basic Bohmian mechanics, the standard quantum-mechanical
state, always evolves in the standard deterministic unitary way. In the sim-
plest nonrelativistic case, this evolution is described by the time-dependent
Schrodinger equation

Lo .
ih 5 = Hvy (1)
where H is the Hamiltonian of the system.

The determinate particle configuration () also evolves in a deterministic
way. For an N particle system, the particle configuration can be thought of
as being pushed around in 3/N-dimensional configuration space by the flow
of the norm-squared of the wave function (the probability current) just as a
massless particle would be pushed by a compressible fluid. More specifically,
the motion of the particles is given by

dt mp P

evaluated at the current configuration (), where my, is the mass of particle k.
While this dynamics is local in configuration space, local in configuration
space is not local in spacetime. Indeed, since a single point in configuration
space represents the simultaneous positions of every particle, one must choose
a preferred inertial frame in order to have a configuration space representation
at all. Moreover, according to Bohm’s dynamics, the velocity of a particle at a
time is typically a function of the simultaneous positions of distant particles.
And since it is this feature of the dynamics that explains the correlated
results of EPR experiments in Bohm’s theory, one might naturally conclude
that the Bohmian dynamics is essentially incompatible with relativity.
Since both the evolution of the wave function and the evolution of the
particle configuration are fully deterministic in Bohmian mechanics, in order
to get the standard quantum probabilities, one must assume a special sta-
tistical boundary condition. The distribution postulate requires that there
be a time t; where the epistemic probability density for the configuration @
is given by p(Q,to) = |¥(Q,to)|?. If the distribution postulate is satisfied,



one can show that Bohm’s theory makes the standard quantum statistical
predictions as epistemic probabilities for possible particle configurations.

Basic Bohmian mechanics can be generalized to make virtually any dis-
crete physical quantity determinate. In particular, generalized Bohmian me-
chanics can be used to provide a hidden-variable theory where field quantities,
rather than particle positions, are always determinate. Just as in the basic
version of the theory, the standard quantum-mechanical state i) evolves in
the usual unitary deterministic way and an auxiliary dynamics describes the
time-evolution of the determinate physical quantity. The only significant
difference is that the auxiliary dynamics is typically stochastic.

There are several empirically equivalent ways to specify an auxiliary dy-
namics for generalized Bohmian mechanics. The following describes the
choices made by Bell (1984) and Vink (1993). Suppose that the current
value of discrete physical quantity @) is ¢,,. The probability that the value
jumps to ¢, in the time interval dt is T,,,dt, where T,,, is an element in
a transition matrix that is completely determined by the evolution of the
wave function. More specifically, the wave function evolves according to the
time-dependent Schrodinger equation

iho |y (t)) = H|ib(1)), (3)
where H is the global Hamiltonian. The probability density P, is defined by
Pu(t) = anly ()] (4)
and the source matrix J,,, is defined by
T = 2 Im (((8)|Gn) (qn | H | @) (@ | (2)))- (5)
Finally, if J,,, > 0, then for n # m

and if J,, < 0, then T,,, = 0. On analogy with the Bohmian particle
dynamics, here one can think of the change in the discrete value of () as a
discrete random-walk in ()-space biased by a compressible fluid with current
Jmn- If the distribution postulate is satisfied here, this dynamics makes the
standard quantum statistical predictions for the value of the determinate
quantity @ (Vink 1993).



That both the basic and generalized formulations of Bohmian mechan-
ics make the same empirical predictions as standard quantum mechanics
for whatever physical quantity one takes as determinate has two immediate
consequences. While the dynamics is clearly incompatible with relativity in
the sense that one must choose a preferred inertial frame, if the distribu-
tion postulate is satisfied, then (i) one cannot communicate superluminal
signals in either theory and (i) there is no empirical way to detect which
preferred inertial frame was used to calculate the evolutions of the determi-
nate physical quantities. There is a sense then in which Bohmian mechanics
is observationally compatible with relativity.[4] But one can get a stronger
sort of compatibility between the two theories by sacrificing the dynamical
explanations Bohm’s theory typically provides.

A hidden-variable spacetime map consists in an assignment of a local
value of each hidden variable to each region of spacetime. Both the basic
and generalized formulations of Bohmian mechanics provide frame-dependent
procedures for constructing such spacetime maps.

The basic formulation of Bohmian mechanics allows one to construct
particle-trajectory spacetime maps. Choose a preferred inertial frame. Use
the associated family of spacelike hyperplanes of simultaneity to define a 3N-
dimensional configuration space associated with the preferred frame. Choose
an appropriate wave function in configuration space at an initial proper time.
Subject to the probabilities specified by the distribution postulate, randomly
choose an initial particle configuration. Run the standard non-relativistic
unitary dynamics on the wave function in configuration space associated
with the preferred inertial frame and run the auxiliary dynamics on the
determinate configuration (using the proper time for the preferred frame in
each case). Then map the individual particle trajectories represented by the
evolution of the preferred configuration to worldlines in Minkowski spacetime.

A closely related procedure can be used to construct the set of all possible
Bohmian particle-trajectory spacetime maps together with a prior probabil-
ity distribution over the set. Start with the wave function in the configu-
ration space associated with the preferred inertial frame at an initial time.
Suppose that an initial particle configuration has been determined subject
to the distribution postulate, but that this is all one knows about the ini-
tial configuration. The distribution postulate then determines an epistemic
probability distribution over possible configurations at a time in the preferred
frame. Rather than tracking the evolution of the actual configuration, which
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by assumption one does not know here, track the evolution of every pos-
sible configuration that is compatible with the initial epistemic probability
distribution in configuration space as specified by the distribution postu-
late. This initial probability distribution might be understood as providing
the prior epistemic probabilities for each possible type of particle-trajectory
spacetime map in fact describing our physical world (each possible type of
spacetime map since in basic Bohmian mechanics the initial probability dis-
tribution will be represented by a continuous probability density). These
prior probabilities may then be updated by conditioning on what one learns
from empirical experience concerning the determinate features of the actual
spacetime trajectory map.

Here the physical theory is just a set of possible spacetime maps and a dis-
tribution over these maps representing the probability that a particular type
of map correctly describes our physical world. What is usually thought of
as the dynamics, the standard unitary dynamics and the Bohmian auxiliary
dynamics, is here just a prescription for how to construct the set of possible
spacetime maps. But perhaps it is natural in statistical theories like Bohmian
mechanics to think of the theory as just providing a set of possibilities and a
probability measure over the set. In any case, the theory consturcted here is
just a spacetime version of the many-threads theory discussed in Barrett 1999
where the connection rule is replaced with the prescription for constructing a
spacetime hidden-variable map. In other words, the present frame-dependent
theory fits nicely with hidden-variable formulations of quantum mechanics
generally.

As in basic Bohmian mechanics, the epistemic probabilities one gets by
conditioning on new evidence will agree with the standard quantum probabil-
ities particle trajectories. And both the actual particle-trajectory spacetime
map and the epistemic probabilities over all possible such maps are perfectly
compatible with relativity in the sense that each map is just a description
of the local value of each determinate physical parameter (here particle po-
sition) in each region of Minkowski spacetime and the probabilities are just
representations of our uncertainty concerning which spacetime map in fact
correctly describes our world.[5]



3 Virtues and Vices

The particle-trajectory spacetime maps produced by frame-dependent con-
structions in basic Bohmian mechanics certainly fall short of what one should
want from a satisfactory hidden-variable spacetime map in relativistic quan-
tum mechanics. While such maps are in some sense perfectly compatible with
relativity, the phenomena they represent are manifestly non-relativistic. Such
maps do not, for example, account for even elementary relativistic phenom-
ena such as particle creation. But getting the right empirical predictions for
such relativistic phenomena here may be more a matter of ingenuity rather
than of general principle.

As a first step toward getting the right relativistic predictions, there is
good reason to exchange particle-trajectory maps for field-value maps. Here
generalized Bohmian mechanics might then be used to provide constructions
of possible determinate-field spacetime maps. While there would be a mat-
ter of fact concerning which determinate-field spacetime maps accurately
describe our world, one would not know which, so one would update the
prior epistemic probability distribution over possible determinate-field maps
(as given by the distribution postulate) by conditioning on empirical evidence
concerning the actual spacetime field map of our world.

While this is a step in the right direction, in order to get the right rela-
tivistic phenomena one would also need to use an appropriate field-theoretic
version of the unitary dynamics in the frame-dependent construction. Indeed,
assuming that the distribution postulate gives the right epistemic proba-
bilities, getting the right relativistic phenomena here would ultimately de-
pend on having the right frame-dependent field dynamics. Providing an
adequate hidden-variable dynamics for the such frame-dependent construc-
tions would, insofar as there are regularities in our determinate measurement
records, there are such rules for constructing possible hidden-variable space-
time maps.[6]

While such hidden-variable spacetime maps would exhibit unexplained,
nonlocal correlations between the values of the determinate measurement
records, there is a sense in which maps themselves would be perfectly com-
patible with relativity. Indeed, any empirically adequate formulation of rel-
ativistic quantum mechanics that allows one to represent determinate mea-
surement records in spacetime at all would be associated with just such a
determinate record spacetime map. So, if one does not like the spacetime



maps exhibiting nonlocal correlations between measurement records that are
associated with the present theory, it must be that one does not like how they
are constructed. But here, unlike the the teleological spacetime maps consid-
ered earlier, the problem is not that frame-dependent maps are straightfor-
wardly ad hoc. They are, after all, constructed using rules that may or may
not yield the right empirical predictions. Rather, the problem here is that
the dynamical laws that are adapted from the nonrelativistic hidden-variable
theories are in the relativistic hidden-variable theory not really behaving as
dynamical laws. Indeed, the frame-dependent rule for constructing hidden-
variable spacetime maps here is just part of the characterization of the set
of possible spacetime maps.

Philosophers of physics noted that one can get a spacetime formulation
of virtually any physical theory and that this formulation can be made co-
variant in precisely the sense in which general relativity is uncontroversially
covariant. Michael Friedman provides just such a reminder in his discussion
of the covariance and invariance of spacetime theories (1983, 46-70). He also
provides a concrete example of how to construct a spacetime formulation
of Newtonian mechanics that is covariant in the sense of general relativity
(1983, 71-95). The same can be done for Bohmian mechanics. Indeed, it is
the ease of producing such covariant formulations of most any physical theory
that is typically taken to show why the possibility of a covariant formulation
of a particular theory is a poor indicator of the degree of compatibility be-
tween the theory and relativity. Nevertheless, if such constructions can be
made empirically adequate, they are clearly preferable to teleological space-
time maps constructed from a collection of actual measurement results that
guarantees empirical adequacy by stipulation.

The frame-dependent rules do not provide dynamical, mechanical, or
causal explanations for the determinate events represented in the constructed
spacetime maps. But, while neither dynamical, mechanical, nor causal, these
rules nevertheless code for empirical regularities in a way that provides for
empirical predictions and exposes them to potential empirical refutation and
they arguably allow one to support counterfactual conditionals as well as any
spacetime theory does.

How comfortable one is with frame-dependent constructions ultimately
depends on the sort of explanations one wants from relativistic quantum
mechanics. By opting for frame-dependent rules that do nothing beyond
characterizing the set of possible hidden-variable spacetime maps, one is left
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without the richer mechanical or causal explanations we like to have whenever
we can get them. On the other hand, it is not at all clear whether we will
always be able to get satisfactory mechanical or causal explanations. And
the assumption that we will is particularly suspect in the context of our best
spacetime theories and in the context of quantum mechanics and hidden-
variable formulations of quantum mechanics in particular.

Depending on what one requires from mechanical explanations, both
Bell’s theorem and the Kochen-Specker theorem may amount to no-go theo-
rems for such explanations in any empirically adequate formulation of quan-
tum mechanics.[7] Whether causal explanations of events are always possible
in quantum mechanics also depends on what counts as a causal explanation.
But if one must be able to support counterfactual conditionals in order to
provide causal explanations, then we may end up not being able to give causal
explanations in our best hidden-variable formulations of quantum mechanics.

Michael Dickson has argued that it is at least contentious to claim that
Bohmian mechanics predicts nonlocal causal relations since it does not sup-
port the counterfactual conditionals one might require in order to make sense
of causal relations at all (1998, 202-8). More specifically, in the context of
basic Bohmian mechanics, one can only support counterfactual conditionals
of the sort represented by “What would have happened if the experiment had
been set up differently?” by supposing that at least some particles were dis-
tributed differently than stipulated by the distribution postulate. But since
it is the initial state being selected as stipulated by the distribution postu-
late that explains quantum probabilities in Bohmian mechanics, the theory
cannot support such the counterfactual conditionals.

One problem with this argument is that the distribution postulate does
not stipulate any particular initial state. Rather, it just requires that an
initial state be randomly selected subject to the standard quantum probabil-
ities. One might defend Dickson’s conclusion by insisting that the particular
initial state required for the analysis of a particular counterfactual condi-
tional is never a state randomly selected subject to the distribution postulate.
But there is another line of argument available.

The distribution postulate must be satisfied in order to get the right quan-
tum statistical predictions given the standard Bohmian dynamics. But one
can get essentially the same statistical predictions with a weaker statistical
boundary condition if one adds an appropriate stochastic term to the aux-
iliary dynamics. That is, there is a trade-off between the dynamics and the
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statistical boundary condition in hidden-variable formulations of quantum
mechanics like Bohmian mechanics such that one can get the right statisti-
cal predictions with many different dynamical-law-boundary-condition pairs.
This is closely tied to the fact that there is typically no empirical way to
determine what the actual particle dynamics is in a world described by even
basic Bohmian mechanics. For our purposes, the important point here is
that in a hidden-variable theory like Bohmian mechanics the boundary con-
ditions and the dynamical laws work together to yield the right statistical
consequences. The associated moral is that there can be little epistemic or
methodological justification for arguing that boundary conditions and dy-
namical laws have an essentially different status in Bohmian mechanics: it is
only together that they explain the standard quantum statistics.

If this is right, if the boundary conditions have the same status as the
dynamical evolution of the state in Bohmian mechanics, then one cannot
analyze causal relations by considering counterfactual boundary conditions.
That is, if I am right here, to support a counterfactual conditional by consid-
ering a different boundary condition in Bohmian mechanics would be akin to
supporting a counterfactual conditional by considering different dynamical
laws. And counterfactual conditionals supported by considering counterfac-
tual dynamical laws would clearly tell us nothing about the causal structure of
our actual world. Similarly, if there is no principled difference in the method-
ological status of boundary conditions and dynamical laws, one should not
worry much about replacing dynamics laws by the boundary conditions rep-
resented by the frame-dependent rules used to characterize possible spacetime
maps.

The intimate relationship between dynamical laws and boundary condi-
tions that prevents the analysis of causal structure by considering counter-
factual boundary conditions is not limited to hidden-variable formulations of
quantum mechanics. In general relativity, one might think of the geometry of
spacetime and the distribution of matter as mutually constraining. The ge-
ometry and the matter distribution either satisfy the field equations together
and thus represent a physically possible spacetime and matter distribution or
they do not satisfy the field equations and thus do not represent a physically
possible spacetime and matter distribution. Moreover, in general relativity,
just as with frame-dependent hidden-variable spacetime maps, local space-
time stucture typically does not determine global spacetime stucture. Since
the field equations of general relativity represent a global constraint on the
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relationship between the distribution of matter and the geometry of space-
time, if one tries to analyze causal structure by asking about a counterfactual
distribution of matter in some spacetime region, the answer must typically
be that the theory simply cannot support such a counterfactual.

That hidden-variable theories like Bohmian mechanics and that spacetime
theories like general relativity do not generally support analyses of dynami-
cal, mechanical, or causal structure that depend on the straightforward eval-
uation of counterfactual conditionals, is certainly relevant to how much we
should worry that hidden-variable spacetime maps constructed from frame-
dependent rules do not provide dynamical, mechanical, or causal explana-
tions.

4 Conclusion

Frame-dependent hidden-variable constructions of spacetime maps are clearly
preferable to teleological constructions since the former at least explains why
the statistical properties of the observed measurement records are to be ex-
pected while the latter take the observed measurement records as given then
simply stipulate an appropriate corresponding spacetime map. There are ex-
planatory costs to settling for frame-dependent rules for characterizing pos-
sible spacetime maps and an epistemic probability distribution over the set.
In particular, this sort of relativisitic hidden-variable formulation of quantum
mechanics cannot provide the dynamical, mechanical, or causal explanations
we like to have whenever we can. On the other hand, it is difficult to find
a formulation of quantum mechanics where one can provide an empirically
adequate dynamical explanation of one’s determinate measurement records
that is also compatible with relativity. And there are independent reasons to
suppose that traditional sorts of mechanical and causal explanations may not
ultimately be possible in hidden-variable formulations of quantum mechanics
or our best spacetime theories anyway.
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ENDNOTES

1. T would like to thank David Malament and Brian Woodcock for helpful
discussions and comments.

2. His discussion here is built on the earlier work of Aharonov, Bergmann,
and Lebowitz and directly inspired the later work of Hellwig and Kraus
(1970). Tt also foreshadowed relativistic collapse proposals like Aharonov
and Albert’s (1983) and hyperplane-dependent collapse theories.

3. An approach along these lines was suggested by Schlieder (1968). See
Hellwig and Kraus (1970, 569) for a description of how Schlieder’s spacetime
maps are updated.

4. Peter Holland has argued that while some sort of violation of relativistic
intuitions is “inevitable in a theory whose basic dynamical equations are
defined in configuration space rather than ordinary spacetime,” in Bohmian
mechanics, relativity is nevertheless “statistically valid” (1993, 498). This
sort of compatibility between Bohmian mechanics and relativity has often
been noted. See for example, Albert (1992) and (2000), Bohm and Hiley
(1993), Maudlin (1994) and (1996), and Dickson (1998).

5. That such relativistic particle theories are possible shows the sense in
which particle no-go theorems like Malament’s (1996) are contingent on ex-
actly how one seeks to explain determinate measurement records in relativis-
tic quantum mechanics. See Dickson (1998, 214-5) and Barrett (2002) for
further discussions of this point.

6. Explanations of relativistic phenomena will ultimately turn on the spe-
cific choice of the frame-dependent dynamics. Ideally, one would want these
explanations to be the result of some special novelty generated by the in-
teraction between the basic principles of quantum mechanics and those of
relativity, but it is unclear to me exactly how this could work in a frame-
dependent construction. If this cannot be accomplished, it would represent
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an important sense in which such constructions are ad hoc.

7. These theorems suggest that one may not be able to get all of the tra-
ditional ingredients for mechanical explanations in quantum mechanics (a
full set of determinate quantities, locally mediated interactions, functional
relationships between quantities, etc.). See Bell (1987), Kochen and Specker
(1967), and Bub (1997) for descriptions and discussions of these theorems.
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