
 

March 23, 2021 

An Infinite Lottery Paradox 

John D. Norton 
Department of History and Philosophy of Science 

University of Pittsburgh 
Pittsburgh PA 15260, USA 

jdnorton@pitt.edu 
 
 

and  
 

Matthew W. Parker 
Rotman Institute of Philosophy 
University of Western Ontario 

London, Ontario N6A 5B7, Canada 
matthew.parker@uwo.edu 

 

Forthcoming in Axiomathes, Special Issue Epistemologia 2022 

 

ABSTRACT:  In a fair, infinite lottery, it is possible to conclude that drawing a 

number divisible by four is strictly less likely than drawing an even number; and, 

with apparently equal cogency, that drawing a number divisible by four is equally 

as likely as drawing an even number. 
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1. Introduction 

 A fair, infinite lottery selects without favor among a countable infinity of possible results, 

numbered 1, 2, 3, … . It is realized in a thought experiment by an imaginary machine that can 
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select from an infinity of balls, numbered 1, 2, 3, …, such that none is favored. This thought 

experiment has long had a place in analyses of the foundations of probability. De Finetti (1972, 

§5.17) used it to argue against the countable additivity of probability measures. Benci, Horsten 

and Wenmackers (2018) used it to argue for infinitesimal probabilities. 

 Subsequently, one of us (Norton, forthcoming), has argued that the infinite lottery 

thought experiment requires us to discard not just a countably additive probability measure, but 

even a finitely additive notion of chance. Norton’s analysis depends on realizing the condition of 

selection without favor as the requirement that the likelihood or chance of some outcome 

depends only on the sizes of the set of balls favorable to it and the set of balls unfavorable to it. 

Norton’s implementation, the other of the present authors (Parker, 2020) has objected, 

presupposes that chances are the values of a function over the outcome space. Parker has 

presented an alternative analysis, in terms of a comparative chance relation, that restores finite 

additivity (in a comparative form) and also makes every outcome set more likely than any of its 

proper subsets. (For a response, see Norton, forthcoming a, §11.) 

 This note reviews the arguments for each analysis and leaves the final decision as an 

open question. The two arguments depend on different notions of the comparison of sizes of 

infinite sets. Do we compare them better by cardinality or by set theoretic inclusion? Norton’s 

analysis privileges the first over the second. Parker’s analysis privileges the second over the first. 
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 The precise notion of chance1 invoked here will remain incompletely specified.  The 

paradox is intended to be a motivation to discover which formal properties of a notion of chance 

allow the paradox to be addressed most satisfactorily. 

2. The Paradox 

 A formal condition, ‘label independence,’ asserts that the chance of an outcome, 

specified as a set of numbers, is unaffected by any relabeling that merely permutes the numbers 

assigned to the balls. This condition expresses the fairness of the drawing since a permutation 

preserves the sizes of the sets, both favorable and unfavorable to the outcome. Those sizes are, 

by supposition, all that determines the outcome chances. For example, the outcome even is just 

the drawing of a ball with an even number; and odd is the drawing of an odd number. A 

permutation of the numbering merely switches the numbers on the sets of balls associated with 

the two outcomes according to 1 « 2, 3 « 4, 5 « 6, … It now follows that even and odd 

outcomes must have the same chance, since the outcome set originally labeled even has become 

odd under the relabeling, and conversely. 

 A second condition on the chances is also attractive. The outcome ‘fours’ is just the set of 

multiples of 4: {4, 8, 12, 16, …}. It is a proper subset of even. Thus, whenever we have an 

outcome fours we have an outcome even, but not conversely. Hence the chance of fours should 

be strictly less than that of even. To strengthen this last conclusion, consider the outcome ‘fours – 

2’: {4 – 2, 8 – 2, 12 – 2, 16 – 2, …} = {2, 6, 8, 10, 14, …}. The outcomes fours and fours – 2 are 

 
1 ‘Chance’ here is not intended to imply a notion of objective physical chance like those 

associated with propensity, frequency, or Humean best-systems accounts, nor do we exclude 

such interpretations by fiat. We adopt ‘chance’ as a convenient word distinct from ‘probability,’ 

for we do not assume the standard probability axioms. 
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related by a permutation of labels and so have equal chances under label independence. The 

outcome even is partitioned into just these two outcomes, fours and fours – 2. Hence even and 

fours do not differ by an outcome set negligible on chancy scales, but by an outcome whose 

chance equals that of fours. 

 The analysis so far involves several individually plausible propositions:2 

(1) Label independence. The chances of outcomes in a fair, infinite lottery are unchanged 

under a permutation of outcome labels. 

(2) Containment. Outcome fours has strictly less chance than even. 

(3) Completeness. It is possible to assign mutually comparable chances to all outcomes of a 

fair, infinite lottery. 

The paradox is that these propositions are jointly inconsistent. For there is a permutation of the 

balls that takes those that were numbered even and maps them just to those numbered fours. The 

induced relabelings are: 

2 à 4, 4 à 8, 6 à 12, 8 à 16 … 1 à 1, 3 à 2, 5 à 3, 7 à 5, … 

Read these to say, ‘The ball formerly numbered 4 is now relabeled 2,’ etc. It now follows from 

label independence that if fours has chance X, then so does even. For they are each realized by 

the same ball drawings, but now just labeled differently. 

 The paradox can be escaped by denying at least one of the propositions above. The 

present authors differ, both from each other and from other authors, on which to deny. 

 
2 This is not meant to be a complete analysis of all the implicit background assumptions in the 

finest possible granularity. It is just enough to set up our paradox. 
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3. The Probabilists’ Escape 

 Probabilistic approaches to infinite lotteries escape the paradox by denying Label 

Independence (1). It is well known that if each single outcome {1}, {2}, {3}, … has the same 

chance, then the probability axiom of countable additivity fails. Probabilists have often been 

willing to reject countable additivity in the case of an infinite lottery while still regarding finite 

additivity as essential to coherence (e.g., De Finetti 1972; Benci et al. 2018).  

 In imposing a finitely additive measure, probabilists are changing the problem posed. The 

defining characteristic of this version of the infinite lottery problem is that the chance of an 

outcome depends on the size of the outcome set and its complement; and only these sizes. A 

finitely additive measure violates the ‘only’ condition.  For any set of balls that is both infinite 

and co-infinite, there is a numbering in which that set of balls is the even-numbered set. Once a 

designation of even is made and a specific probability 1/2 is assigned to it, finite additivity 

implies that most other infinite, co-infinite sets cannot have that same probability. Which of all 

possible infinite co-infinite sets in the outcome space can be even and carry the same probability 

is determined by restricting the numberings to a subset of all possible numberings. The 

requirement of these preferred numberings adds structure to the problem in a way that violates 

the ‘only’ condition. For, both set sizes and preferred numberings are now required in order to 

determine the probabilistic chances of outcomes. 

 In short, denying Label Independence (1) does not address the problem posed here. We 

are not suggesting that cardinality and co-cardinality determine chances in other situations such 

as a game of darts with a continuous dartboard. But here, denying label independence does not 

solve the problem; it merely changes the problem posed. 
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4. The Cardinality Escape 

 One of us (Norton) denies Containment (2) in order to preserve Completeness (3). We 

saw above that the distinctive characteristic of a fair, infinite lottery, label independence, requires 

that even and fours have equal chances (if they have chances at all). This result is only 

unwelcome, Norton claims, if one proceeds with intuitions tutored by finite sets. Among infinite 

sets, a set can have the same size (cardinality) as one of its proper subsets. Cardinalities of sets 

and their complements alone should determine the equality of chances. 

 What results is a novel account of the chances of outcomes of infinite lottery drawings 

that assigns a chance to all sets of outcomes. Completeness (3) is preserved. Finite sets of 

outcomes are assigned various, very small chances. Infinite sets that are co-finite are assigned 

various very high chances. The intermediate case—infinite sets of outcomes that are co-

infinite—all have the same intermediate chance. 

 One might conjecture that this escape is untenable since, in repeated drawings, the 

outcome even should, with increasing chances, occur roughly twice as often as fours. However, 

the chance relations arising from label independence do not support this difference of 

frequencies. That is, n outcomes of even among N drawings has the same chance as n outcomes 

of fours among N drawings (for all N and each n, 0 £ n £ N). Label independence ensures that the 

outcome fours has the same chance as even in a single draw, so neither is favored. By similar 

means, label independence ensures that repeating the drawings continues equally to favor equal 

frequencies of fours and even. While this outcome is unlike the corresponding result in familiar 

probability theory, it is only an unfamiliar result of an unfamiliar calculus. It is no more curious 

than the original result that fours and even have the same chance. (For details, see Norton, 

forthcoming.) 
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5. The Containment Escape 

 The other of us (Parker) defends the alternative of denying Completeness (3). Perhaps we 

are not justified in supposing that all outcome sets can be mapped into one linearly ordered set of 

things called chances. Instead, we can define a partial relation of ‘is at most as likely as’ between 

outcome sets, a relation that satisfies label independence and yet makes fours less likely than 

even, so that both Label Independence (1) and Containment (2) hold.3 On this view, chances are 

still determined by the sizes of the favorable and unfavorable sets, but with two provisos: (i) 

‘Size’ is understood in a sense that favors the Euclidean axiom, that the whole is greater than the 

part, over Cantor’s criterion of 1-1 correspondence (cf. Mancosu 2009, Parker 2009), and (ii) 

chance is a partial two-place relation on events, rather than a total one-place function. Then 

chance relations are determined by size when the events are comparable, which is not always the 

case. Disjoint, countably infinite sets like even and odd, for example, remain incomparable. We 

could even adopt a partial, relational notion of size, so that relative size (and incomparability 

thereof) always determines relative chance (and incomparability thereof). 

 The value of making fours less likely than even (Parker claims) is not merely to preserve 

intuitions tutored by finite sets. In one respect, it makes chance a better guide to decision 

making. Suppose you are offered a chance to make one of two bets at the same cost: that the 

outcome of our drawing will be in even or that it will be in fours. If in fact the outcome is in 

fours, it is also in even, so you win on either bet.  If, however, the outcome is in even, it might 

 
3 (1) and (2) are mutually consistent in this relational context, for here we cannot assert that the 

chance of fours is some specific value X and then infer by label independence that the chance of 

even is also X. For a specific chance relation, and proof that it satisfies (1) and (2), see Author 2 

2020. 
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not be in fours. In fact, there are infinitely many such outcomes, forming the set fours – 2, which, 

on either view, is non-negligibly likely to occur. Hence it would be irrational to bet on fours 

when one could more safely bet on even for the same price. If fours and even are assigned equal 

chances, those chances do not tell us which bet to choose, whereas if fours is taken to be less 

likely than even, the chances capture the asymmetry of such betting scenarios and related 

decisions. 

It is important that this notion of chance is not only partial, leaving some outcome sets 

incomparable, but also purely comparative. It will not do to have instead a monadic chance 

function over some proper subclass of the events. For then, label independence would force a 

poor outcome: either fours and even have the same chance, or no infinite, co-infinite set is 

assigned a chance at all.  If even one such set is assigned a chance, then by label independence, 

they all are, and they are all assigned the same chance. A function that instead assigns chances 

only to finite and co-finite sets would fail to capture the feature that the infinite, co-infinite sets 

are intermediate in chance between the finite and co-finite ones. As well, it would not give even 

greater chance than fours. Therefore, a partial, comparative chance relation is here far preferable 

to a partial, monadic chance function, for it expresses much more.  

To this one might reply, following Easwaran 2014, that a chance function need not 

express all the relative chances between proper subsets and supersets, for those are captured 

instead by the subset relations themselves. But that is just to admit that the chance function does 

not tell the whole story, nor, in this case, hardly any of it. It is only a superfluous representation 

of a small portion of the relative chances implied by the setup. Or so says Parker. 
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6. Conclusion 

How are we to choose between Containment (2) and Completeness (3)? We are at an 

impasse. The difference between our two views corresponds to two different ways of comparing 

the sizes of outcome sets and thus the chances these sizes dictate.4 Do we compare them by 

cardinalities and suffer the consequence that fours is as likely as even? Or do we compare them 

by the Euclidean axiom and suffer the consequence that the chances of many outcomes, such as 

even and odd, are incomparable? 
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