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Abstract

According to the free energy principle, life is an “inevitable and emer-
gent property of any (ergodic) random dynamical system at non-equilibrium
steady state that possesses a Markov blanket” (Friston 2013). Formulat-
ing a principle for the life sciences in terms of concepts from statistical
physics, such as random dynamical system, non-equilibrium steady state
and ergodicity, places substantial constraints on the theoretical and em-
pirical study of biological systems. Thus far, however, the physics foun-
dations of the free energy principle have received hardly any attention.
Here, we start to fill this gap and analyse some of the challenges raised by
applications of statistical physics for modelling biological targets. Based
on our analysis, we conclude that model-building grounded in the free
energy principle exacerbates a trade-off between generality and realism,
because of a fundamental mismatch between its physics assumptions and
the properties of actual biological targets.

Keywords: Free Energy Principle; Dynamic equilibrium; Homeostasis; Phase
space; Ergodicity; Attractor

1 Introduction

Life scientists use the term “equilibrium” in various ways. Sometimes they use
it to refer to an inert state of death, where the flow of matter and energy through
a biological system stops and the system reaches a life-less state of thermody-
namic equilibrium (Schrödinger 1944/1992, 69-70). More often, they use it to
mean homeostasis, which is the ability of keeping some variable in a system
constant or within a specific range of values (Bernard 1865; Cannon 1929, 399-
400). Some other time, the term “equilibrium” is associated with the concept
of robustness, which refers to the capacity of systems to dynamically preserve
their characteristic structural and functional stability amid perturbations due
to environmental change, internal noise or genetic variation (Kitano 2004).
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Over the past twenty years, theoretical neuroscientist Karl Friston and col-
laborators have developed an account of the conditions of possibility of a certain
kind of dynamic equilibrium between a biological system and its environment.
The core of this account is a “free energy principle”, according to which all bio-
logical systems actively maintain a dynamic equilibrium with their environment
by minimizing their free energy, which enables them to avoid a rapid decay into
an inert state of thermodynamic equilibrium (Friston 2012, 2013; Ramstead,
Badcock, and Friston 2018; Parr and Friston 2019).

The free energy principle has received a lot of attention. But its foundations
in statistical physics and dynamical systems theory have not been probed yet.
This lack of attention is unfortunate, because the theoretical adequacy of the
free energy principle, as well as its practical utility for the study of key biological
properties such as homeostasis and robustness depend on the validity of those
foundations. Here, we begin to fill this gap.

We start, in Section 2, by introducing Friston and collaborators’ free energy
principle (readers familiar with the free energy principle may want to skip this
section.) In Section 3, we put into better focus the phenomenon free energy the-
orists intend to account for, noting that it remains somewhat unclear what this
phenomenon exactly is and whether it is a distinctively biological phenomenon.
In Section 4, we critically examine the validity and role of the concepts of phase
space, ergodicity and attractor in the free energy principle. On the basis of our
discussion, we conclude, in Section 5, that, because of a fundamental mismatch
between its physics assumptions and properties of its biological targets, model-
building grounded in the free energy principle exacerbates a trade-off between
generality and biological plausibility (or realism).

As we are going to argue, the foundations in physics concepts allow models
built from the free energy principle to achieve maximal generality; but these
assumptions also decrease the ability of these models to include enough factors to
provide biologically plausible representations of the causal networks responsible
for living systems’ dynamic equilibrium. To better appreciate why this trade-off
arises and what its epistemic consequences are, we should pay closer attention to
fundamental differences between physics and biology and how these differences
interact with importing concepts from physics into the modelling of biological
targets.1

1To forestall any confusion, our focus is on free-energy theorists’ assumptions that all
biological systems at any scale can be modelled within the framework of ergodic random
dynamical systems, and that homeostasis and/or robustness can be defined and studied in
terms of dynamical attractors. While our discussion should suggest that concepts and mathe-
matical representations from statistical physics and dynamical systems theory are sometimes
abused in biology (May 2004), it should not suggest that those concepts and representations
have no use in the life sciences. In fact, dynamical systems theory has been used to explain
various biological phenomena, make predictions about cognitive behaviour, and suggest novel
hypotheses and experiments (Brauer and Kribs 2016 Beer 2000; Izhikevich 2007).
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2 Introducing the free energy principle

The free energy principle (FEP) says that unless a biological system minimizes
its surprise, it will rapidly die (Friston 2012, 2013; Ramstead, Badcock, and
Friston 2018).2 More specifically, FEP presupposes a view of biological systems
as “essentially persisters” (Godfrey-Smith 2013; Smith 2017), and foregrounds
the conditions of possibility for the persistence of biological systems (Colombo
and Wright 2018).

Free energy theorists have formalized their principle by relying on concepts
and mathematical representations from statistical physics and random dynam-
ical systems. Parr and Friston, for example, write that “[t]he minimisation of
free energy over time ensures that entropy does not increase, thereby enabling
biological systems to resist the second law of thermodynamics and their implicit
dissipation or decay” (Parr and Friston 2019, 498). Hohwy (2020) refers to a
system’s periodic, phase attractive dynamics in state space to define what it is
for a biological system to exist. He writes: “biological inexistence is marked by
a tendency to disperse throughout all possible states in state space (e.g., the
system ceases to exist as it decomposes, decays, dissolves, dissipates or dies). In
contrast, to exist is to revisit the same states (or their close neighbourhood)”
(Hohwy 2020, 3).

Given this definition of biological (in)existence, the problem free energy the-
orists set out to address is specify the conditions under which a system that
is far from thermodynamic equilibrium attains a non-equilibrium steady state.
In Parr and Friston’s (2019) words: “if a system is alive, then it must show
a form of self-organised, non-equilibrium steady-state that maintains a low en-
tropy probability distribution over its states” (498).3

In order to specify these conditions, free energy theorists relate the notion
of entropy to the information-theoretic quantity of surprise,4 and suggest that
a biological system’s attaining “homeostasis amounts to the task of keeping the
organism within the bounds of its attracting set” (Corcoran, Pezzulo and Hohwy
2020; Friston 2012, 2107).

This suggestion implicates that life scientists can use the mathematics of
random dynamical systems to build dynamic models of target biological systems
that focus attention on some of the core factors responsible for homeostatic

2By “biological system”, free energy theorists refer to individual organisms, parts of or-
ganisms (e.g., their genome or brain) and ensembles of individuals (e.g., species). We use
“biological system” in a similar, encompassing way.

3In relation to this idea, it is worth pointing out one of the historical threads of the FEP
is W. Ross Ashby’s work in cybernetics (Seth 2014), where one leading hypothesis is that a
biological system’s survival can be adequately explained in terms of the stability of a pertinent
dynamical system (e.g., Ashby 1956, 19; see Froese and Stewart 2010 for a critical evaluation
and refinement of this hypothesis.

4Informally, surprise is a measure of the uncertainty of an outcome. Different states of the
environment – say, an external temperature of 30 degrees Celsius vs. two degrees Celsius –
can generate different outcomes – say, rain vs. snow. Given the state of the environment,
some outcomes are more uncertain than others, and so, more surprising. The outcome snow is
more surprising than the outcome rain, for example, if the external temperature is 30 degrees
Celsius.
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processes. By finding a suitable attractor in the dynamic model, life scientists
would be able to gain understanding of the workings of homeostasis in the
system being modelled. The details of different random dynamical models will
vary, depending on idiosyncrasies of particular organisms and the scale at which
it is studied. But, in each of these different dynamical models, there should
be a set of numerical values, an attractor, that denotes a homeostatic state
in the target system; and finding that attractor would depend in all cases on
minimizing a free energy functional, which is presumed to be one fundamental
underlying constraint common to the dynamics of any biological system. To
better understand what this means, let’s examine how such idealised models
are developed, and why free energy theorists opt to build their models starting
from concepts from physics.

2.1 Self-organizing dissipative systems

The starting point of Friston and collaborators (e.g., Friston and Stephan 2007)
is that biological systems are kinds of self-organizing dissipative systems. The
concept of dissipative system can be traced back to another of the historical
threads of the FEP, that is, the work by Ilya Prigogine and collaborators. Pri-
gogine and Nicolis (1967) used the term “dissipative system” to refer to pro-
cesses that take place under far-from-equilibrium conditions and display order
through fluctuations. Dissipative systems are self-organizing, in the sense that
local interactions between their micro-components can produce new spatial or
temporal structures, or new functions. An example of self-organizing dissipative
(non-biological) systems is convection instability, which occurs when a fluid –
water in some container, for example – is heated from the bottom and kept at
a fixed temperature at the top. If the temperature difference (temperature gra-
dient) is small, then the fluid remains unchanged. However, if the temperature
gradient reaches a critical value, then the fluid starts a macroscopic motion with
beautiful and well-ordered patterns such as hexagons and rolls (Haken 1983).

According to Turner (1982, 57; see also Goldbeter 2008 and Janson 2012),
there are three necessary conditions for self-organization in biological systems:
i. the system is open to exchange energy and matter with its surroundings;
ii. the interactions among the various components of the system are nonlinear,
meaning that the response of a component receiving inputs from other com-
ponents or from the environment is not equivalent to the sum of its responses
to the individual inputs; and iii. the system operates in far-from-equilibrium
conditions. Because there are several non-biological systems that satisfy these
conditions and present self-organization – including turbulent flows, hurricanes
and economies, those three conditions do not suffice to pick out some distin-
guishing feature of biological self-organization.

In fact, free energy theorists have emphasised that

biological systems are more than simply dissipative self-organising
systems. They can negotiate a changing or non-stationary environ-
ment in a way that allows them to endure over substantial periods
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of time. This means that they avoid phase-transitions that would
otherwise change their physical structure.” (Friston and Stephan,
2007, 422)

To clarify the idea that biological systems “can negotiate a changing or non-
stationary environment in a way that allows them to endure over substantial
periods of time”, it will be useful to introduce a toy example discussed in Friston
et al. (2006), namely the example of a winged snowflake. This toy example will
help us put into better focus fundamental differences between the domain of
physics and biology, and how these differences affect model-building grounded
in the FEP.

2.2 The explanatory scope of the FEP. A winged snowflake

Snowflakes are crystals of ice that grow from droplets of water and water vapour.
Given the right temperature and air pressure, an initial few water molecules in
a cloud will freeze together in ringed unit cells. As the frozen droplets accumu-
late water vapour from the surrounding cold air, the molecules of water will get
fixed in a crystal with increasingly distinct boundaries. Internal to their bound-
ary, snowflakes have some degree of structure, meaning that their component
molecules and dynamics have a distinct morphology, and spatial and tempo-
ral organization. Because ice growth is sensitive to the temperature, humidity,
pressure and other states in the local environment, the growth behaviour and
morphology of snowflakes will change over time as they are passively dragged
around. After some time, snowflakes will encounter a phase-boundary, at which
the temperature in the environment will cause them to lose their boundaries
and internal structure, and melt.

Friston et al. (2006, 72; see also Friston and Stephan 2007, 422-3) ask us to
imagine a snowflake endowed with wings. This winged snowflake could move, use
its wings as solar reflectors or fans, and exchange energy with the environment
for a much longer period than we would expect of an inanimate piece of ice to
keep going under identical circumstances. Unlike familiar snowflakes, the winged
snowflake can choose actions, which are the means by which different outcomes
are brought about in different states of the environment. Its wings allow the
snowflake to bring about outcomes such as lowering its core temperature in
response to an increase in air temperature.

If the winged snowflake has the capacity to “regulate itself with respect
to the boundaries of its own viability” (Di Paolo 2005, 430), that is, has the
capacity to bring about outcomes that causally contribute to its own survival,
then the winged snowflake can behave adaptively. But, the winged snowflake
can also make choices that are detrimental to its existence; for example, if
it decides to visit a sauna, this choice is likely to cause a rapid loss of its
“thermodynamic homeostasis” (Friston et al. 2006, 72). But, if we do not
distinguish between different kinds of perturbations, then it is plausible that
visiting a sauna will produce not only a loss of “thermodynamic homeostasis”
in the winged snowflake, but also a loss of structural and functional integrity,
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that is, a loss of robustness: its constituent water molecules will degenerate into
less orderly configurations. And the snowflake will eventually melt, losing its
own constitutive organization.

In fact, free-energy theorists want to account for both biological homeostasis
and biological robustness at the same time, as they often emphasise that to
the extent an organism minimizes its expected free energy, it will maintain its
structural and functional organization amid change in the environment (Allen
and Friston 2018, 2473; Kirchoff 2018).

Both homeostasis and robustness contribute to the dynamic stability of a
biological system. But the networks of causes responsible for robustness and
homeostasis are different; and the types of interacting factors in such different
networks vary, both between different types of biological systems and within the
same type of system (Bich et al. 2016). If a model-based representation of sta-
bility in biological systems fails to distinguish between self-organizing processes
aimed at maintaining approximately normal homeostasis and self-organizing
processes aimed at maintaining robustness, and also fails to capture enough
factors of the relevant causal structure, but can be applied to many systems
in the world, then that representation sacrifices biological realism for increased
generality.

Models grounded in the FEP seems to make exactly this trade-off. By relying
on a mathematical formalism and assumptions from physics, these models are
applicable to any target system that exists in some sense – whether the system is
biological or not. But in gaining this generality, their degree of biological realism
is minimal, which compromises their explanatory and/or predictive power with
respect to actual biological phenomena. Ongoing discussions about the scope of
the FEP are aware of this trade-off between generality and realism, and appeal
to various properties that might distinguish biological systems from other kinds
of systems in a principled way, so as to avoid that the FEP generalizes to all
”existing” systems, risking triviality.

Kirchhoff and Froese (2017), for example, suggest that distinctive biological
properties such as adaptivity and autopoiesis are not built into the mathemat-
ics of the FEP, but should be viewed as added, external constraints to better
appreciate the biological significance of FEP. Kitchoff et al. (2018) make a dif-
ferent proposal. They introduce the distinction between “mere active inference”
and “adaptive active inference,” where the “key difference... rests upon select-
ing among different actions based upon deep (temporal) generative models that
minimize the free energy expected under different courses of action” (5). This
distinction emphasises that, unlike purely physical systems, biological systems
can coordinate their actions with their here-and-now sensorimotor state, antic-
ipate possible future states and act to realize these states. Corcoran, Pezzulo,
and Hohwy (2020) make a similar suggestion, arguing that biological cognition is
distinctively grounded in the ability to make counterfactual (active) inferences.

This work has helped clarify the intended scope of the FEP. Yet, one problem
is that the recursive, hierarchically organized behaviour of some non-biological,
dissipative systems, such as whirlpools, tornadoes, hurricanes, Benard cells,
economies and the Earth’s climate, have also been represented as engaged in
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adaptive active inference (e.g., Rubin et al. 2020). And more importantly here,
existing discussions of the scope of FEP do not explicitly address the reasons
behind the trade-off between maximal generality and minimal realism. To ad-
dress these reasons, we now turn our attention to the question of how biological
systems can mathematically be represented as random dynamical systems.

3 Biological systems as random dynamical sys-
tems

In the previous sections, we pointed out that Friston and collaborators use the
mathematics of random dynamical systems and statistical physics in order to
build model-based representations of biological systems aiming to account for
the conditions of possibility of biological persistence. We have also alluded to
the active inference models grounded in the FEP (e.g., Friston et al. 2017;
Friston et al. 2020).

Active inference models are phase-space representations of biological systems
as forming expectations over observable external states and inferring policies
(i.e., state-action mappings) that minimize the expected free energy of those
states under a generative model in some pre-defined Markov decision process.
By minimizing expected free energy, the modelled system would attain a non-
equilibrium steady state, and so, it would “maintain”, in some sense, a low
entropy probability distribution over its states.5

An assumption made by the active inference models developed by free en-
ergy theorists is that target biological systems can be represented as random
dynamical systems. What does this assumption mean exactly?

In physics, random dynamical systems consist of two elements: i. a model
of “noise” formalized by a base flow θ(t) : ω → ω, which comprises measure-
preserving measurable functions for each time t ∈ R on a probability space
(Ω, B, P ), where Ω is the sample space, B is a sigma algebra over Ω and P :
B[0, 1] is a probability measure; ii. and a model of the dynamics on the phase
spaceX affected by the noise formalized as a measurable flow ϕ : R×Ω×X → X,
which satisfies the co-cycle property: ϕ(τ, θ(ω)) ◦ ϕ(t, ω) = ϕ(t + τ, ω). This
measurable flow can be interpreted as solutions to the stochastic differential
equations governing the dynamics of the system and the noise can be interpreted

5Active inference modelling evolves rapidly. As Maxwell Ramstead helpfully reminded us in
conversation, up to roughly 2012 the dynamics of internal and active states in active inference
models were determined through gradient descent on variational free energy. From around
2012 up until recently, active inference models have been equipped with algorithms for policy
selection, which evaluate the average free energy expected under each policy. In their latest
work, the active inference community have endowed their models with a recursive expected
free energy functional, which enables the models to represent target systems’ “higher-order,
counterfactual beliefs,” which are “beliefs” a system has about the “beliefs” it would have
as a consequence of action. Because these modelling advances all seem to make assumptions
about the ergodicity of biological systems and the biological meaning of dynamical attractors,
the points we make in what follows may help explain why all active inference models thus far
tend to trade off realism for maximal generality.
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as the environment in which the system is immersed.
In order to motivate and define the FEP, Friston (2012)6 allows for a parti-

tion of the state space X = R×S, where R ⊂ X precludes direct dependency on
the base flow and, in this sense, constitutes an internal state space. On the other
hand, S ⊂ X constitutes an external state space. This means that there exists
a Markov blanket that separates two other sets in a statistical sense.7 Internal
states have a dynamics that depends on external states, on their relationships
with other internal states and on internal noise, while external states have a
dynamics that depends on internal “active” states, on their causal relationships
with other environmental states, and on fluctuations in the environment.

According to Friston (2012), this partition applies to all biological systems,
in which external states can be regarded as causal influences on the sensory
receptors, while internal states as effects of sensory input. In a single cell, for
instance, external states can be identified with the causal influences of, e.g.,
ambient temperature on the cell’s trans-membrane receptors. External states
generate sensory samples (aka sensory inputs), which can be identified as energy
arrays impinging on the cell’s sensory surfaces. These energy arrays influence
the state of the cell’s transmembrane receptors, and have causal consequences
on the internal state of the cell, for example on the concentration of intracellular
metabolites. Crucially, internal states include active states denoted by a(t) ∈
A ⊂ R, which control how environmental fluctuations are sampled by sensory
states. An example of an active state in a single cell is the motion of flagella,
which can change the position of the cell in its surrounding environment, and
so, how the cell’s environment influences the cell’s receptors.

Given this set-up, free energy theorists are interested in finding the active
states of those systems that are confined to a bounded subset of states and re-
main there indefinitely. Such active internal states in an organism can allegedly
be represented as random dynamical attractors in a dynamical model, which are
defined as a random compact set A(ω) ∈ X that is invariant under the flow map
such that φ(t, ω)(A(ω)) = A(θt(ω)). If one assumes that the dynamics of the
target organism is ergodic, then random dynamical attractors can be associated
with the ergodic density p(x|m), which is proportional to the amount of time

6In what follows, we concentrate on Friston’s (2012) and (2013) treatments of the FEP,
because of the transparency of their exposition and explicit focus on all biological systems.

7More precisely, take a Bayesian network, which includes a set of random variables and
their probabilistic conditional (in)dependencies. The Markov blanket of a target random
variable X in that network is a subset of the network that contains all random variables that
screen off X from all the other variables in the network. Fixing the values of the variables in
the Markov blanket leaves X conditionally independent of all other random variables. This
means the Markov Blanket of X suffices to infer the value of X. In philosophy, the notion
of a Markov Blanket has generated some discussion. Is there a Markov Blanket that picks
out the mind? Is the network of autopoietic processes in a biological system identical to the
Markov Blanket of that system? What’s the metaphysical status of Markov blankets? These
debates in the metaphysics of the FEP can be left on the side, since we are not interested in
metaphysics here.
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each state is occupied by the organism:

p(x|m) = lim
T→∞

1

T

∫ T

0

δ(x− x(t))dt. (1)

In other words, the ergodic density is an invariant probability measure that can
be interpreted as the probability of finding the target system m in any state
x when observed at a random point in time (Friston 2012). The assumption
of ergodicity is important to get the FEP off the ground, since it ensures that
organisms can be modelled as having invariant characteristics over time.

Next, Friston (2012) shows that the entropy H of the ergodic density of a
random dynamical system m is upper bounded by the Lebesgue measure of its
attractor (if it exists):

H(X|m) ≤ lnλ(A(ω)) (2)

This means that if the measure is small, then the entropy must be smaller.
Friston (2012) then uses this result to give a more precise definition of active

states: Internal states are said to be active, if they “minimize the entropy of the
ergodic density over external states” (2108).

The a priori rationale for this definition is that biological systems that do
not minimize their informational entropy (and therefore their surprisal) would
be unlikely to exist. After all, if the measure of the random dynamical attractor
of a dynamical system representing an organism can be arbitrarily large, then
the time required to achieve asymptotic stable behaviour can be arbitrarily
long. And if the asymptotic stable behaviour of the dynamical model denotes
homeostasis or robustness in the biological target, then the target could not
feasibly attain homeostasis.

With this definition of active states in hand, Friston (2012) finally formulates
the principle of least action as follows:

Principle of least action: The internal states of an active system
minimize surprisal L, such that the variation δS of action S with
respect to its internal states r(t) ∈ R vanishes (2108).

The FEP would suffice to derive the principle of least action, and is defined
by Friston (2012, 2109) as follows:

The free energy principle: Let m = (Rd, φ) be an ergodic random
dynamical system with state space X = R× S ∈ Rd. If the internal
states r(t) ∈ R minimize free energy, then the system conforms to
the principle of least action and is an active system.

Bearing out the ambiguity we noted above about the intended explanatory
target of the FEP (i.e., Is it homeostasis? Is it robustness? Is it biological
persistence? Is it existence?) Friston (2013) explains that “active states [...]
will appear to place a [free energy] upper bound on the dispersion [entropy] of
biological states. This homoeostasis is informed by internal states, which means
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that active states will appear to maintain the structural and functional integrity
of biological states.” (5)

When expressed in these terms, the FEP provides us with an account of
biological persistence broadly understood, as a generic type of stability attained
by targets modelled as random dynamical systems. To illustrate the FEP at
work, Friston (2012, 2013) discusses a number of computer simulations. But, as
he recognizes: “The examples presented above are provided as proof of principle
and are as simple as possible. An interesting challenge now will be to simulate
the emergence of multicellular structures using more realistic models with a
greater (and empirically grounded) heterogeneity and formal structure” (Friston
2013, 11). Let’s then put into better focus some of the difficulties involved in
this challenge, and ask: Is there any reason to believe that all biological systems,
at any scale, can be modelled as random dynamical systems? And how does
this maximal generality bear on the degree of realism of these models?

4 Modelling biological active states as random
dynamical attractors

Free energy theorists’ account of biological systems’ persistence relies on three
main modelling assumptions: i. ergodicity, ii. the existence of Markov blankets
that imply a partition of states into internal and external, iii. the existence of
random dynamical attractors. In this section, we concentrate on assumptions
i. and iii., and on the more fundamental challenge of defining phase spaces for
target biological systems in the life sciences.

4.1 Phase spaces in biology

Dynamical systems theory tracks the behaviour of one or more variables over
time (occasionally other variables). This framework has proven to be useful in
the construction of many mathematical models in biology. A popular example
of the successful use of dynamical modelling in the life sciences is the Lotka-
Volterra model usually applied to account for the dynamics of biological systems
where two species interact: predator and prey (Matsuda et al. 1992).

In order to apply dynamical systems theory and assign probabilities to the
different states of a target biological system, one first needs to define a phase
space for that target. In dynamical system theory, the phase space of a system is
a ‘giant’ space formed by the relevant degrees of freedom of the target system. A
point in the phase space of a target system corresponds to a micro-state, which
consists in a complete determination of the system in terms of the variables and
parameters required for analyzing its dynamics. The dynamics of the system is
determined by its equations of motion, which describe the evolution of points,
or trajectories, in phase space.

In order to assign probabilities to the micro-states of a system, the phase
space is usually coarse-grained into a set of macro-states of the target sys-
tem that supervene on its fine-grained micro-states. The latter means that
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any change in the macro-state must be accompanied by a change in the fine-
grained micro-state, and correspondingly that to any given micro-state there
corresponds exactly one macro-state (Frigg 2008). For example, macro-states
of a system of water vapour include its pressure, volume and temperature. For
each of these macro-states, there is some set of micro-states of the system, for
example the velocity and position of its water molecules, that fix the macro-
state.

In statistical physics, the formulation of a pertinent phase space for a given
kind of system, the assignment of probabilities to the different micro-states and
macro-states of the system, and the selection of the criteria for the coarse-
graining of the phase space are non-trivial tasks. They require background
knowledge about some features of the causal structure of the target system and
its laws of motion; they also require to choose a relevant set of observables
and symmetries, which determine what properties of the system being modelled
are preserved (or remain invariant) under some transformation (Espanol 2004;
Robertson 2020).

In the domain of biology, these challenges are compounded by at least three
facts: first, usually a biological system has many more degrees of freedom than
non-biological systems; second, the symmetries (or invariant preserving trans-
formations) underlying observed regularities in biological phenomena are more
unstable than in physics; third, the phase space for many real-world biological
targets is much less stable than that of the kinds of target systems studied in
physics.

The degrees of freedom of a target system are the number of independent
factors that define its state at any point in time. Biological systems usually
have more degrees of freedom than non-biological ones. In some cases, the
number of their degrees of freedom can be so large that it can be unfeasible to
construct a phase space that takes account of all those causal features of the
system modelled that have a genuine influence on the behaviour of interest. 8

Kauffman (1993) develops various computer simulations of dynamic, Boolean
networks of molecules defined in an idealized “protein space”. While this ideal-
ized protein space trades off biological realism for computational tractability, it
allows us to evaluate whether or not evolutionary processes of natural selection
are required to produce auto-catalytic cycles of peptides exhibiting autopoietic,
self-producing features characteristic of living systems. Kauffman (1993) identi-
fies general molecular regimes under which an auto-catalytic system can emerge,
showing that it is possible that a system of molecules spontaneously becomes
to display ordered macroscopic behaviour, without the cumulative selection of

8One might try to construe the a phase space as a genotype space for a type of biological
system. Behind this approach is the assumption that the phenotype of a biological system cor-
responds to its coarse-grained macroscopic states (e.g., cells, organs, tissues, agent-ecosystem
interactions) and the genotype to fine-grained microstates. However, the size of the genotype
space Ω for a protein consisting of N residues chosen from an alphabet of amino acids of
size m is Ω = mN , which can be an enormous number. To give a better idea of the size of
this phase space, in the case of a 100-residue bacterial protein, the population size of possible
sequences with 20 amino acids to choose at each residue is 20100 ≈ 10130 (McLeish 2015, 3;
Kaufmann 1993, Ch. 2).
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many, smaller increases in order. By constructing and analysing an idealized
phase space for some generic biological system, and exploring the behaviour
of this system with computer simulation, one can learn whether or not some
causal factors are always necessary to give rise to the phenomenon of interest.
This model-based representation sacrifices biological realism for tractability and
generality. But, given Kauffman’s purpose, the generality of its models does not
result in an oversimplification or distortion of target causal networks, and thus
preserves some explanatory and predictive power.

A second fact that makes the construction of phase spaces in biology more
challenging than in physics is that biological phenomena are characterised by a
continuous breaking of symmetries (Longo, Montévil and Kauffman 2012). Typ-
ically in physics, the key observables, such as energy, momentum and charge, are
the invariants of relevant mathematical representations. Such invariants allow
modellers in the domain physics to construct phase spaces for “generic objects
[that] will follow a specific trajectory determined by its invariants obtained by
calculus” (Longo and Montévil 2014, 128). If the domain of biology does not
present sufficiently stable symmetries or invariances, then one may not be able
to rely on observable biological properties to construct and analyse the phase
space of a given target system.

Furthermore, typically in statistical physics, symmetries or invariant pre-
serving transformations enable modellers to assign probabilities to the different
macro-states of a system. An important assumption in Boltzmann’s statistical
mechanics is the so-called “combinatorial argument”, which says that in a par-
tition of the phase space into cells, the macro-states are determined only by the
number of particles in each cell and not by the specification of which individ-
ual particle is in which cell. This means that there is a symmetry or invariant
transformation under permutation, and so, macro-states with the same number
of particles in each cell will correspond to the very same macro-state.

In biology, symmetries or invariants are sometimes insufficiently stable to al-
low for an empirically informed attribution of probabilities to the macro-states.
One reason is that different levels of biological organization affect each other
both in an “upward” and “downward” manner at various temporal scales (e.g.,
Okasha 2012; Bechtel 2017). For instance, methylation, i.e. the addition of a
methyl group on a substrate, can downwards modify the expression of genes
(Longo and Montévil 2014, 198). Furthermore, small changes at the molecu-
lar scale may be amplified by cell to cell interaction and affect the phenotype,
whose changes may downwards affect tissues and even entities at the molecular
scale itself. This inter-level dependency compounds the challenge of establishing
which changes at the genotype (or microscopic level) are causally irrelevant or
relevant for the phenotype (or macroscopic level). In default of background em-
pirical knowledge of lawful relationships between observables at different levels
of biological organization, it can then become even more challenging to assign
probabilities to the macro-states of large and complex target systems.9

9Parr et al. (2019) argue that any (weakly mixing) random dynamical system that possesses
a Markov blanket will be equipped with an information geometry, which permits defining a
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A third fact that makes the construction of phase spaces in biology harder
than in physics is that phase spaces for biological systems can themselves change
persistently if they are to capture the continual symmetry changes in these sys-
tems. This is particularly salient in biological processes studied in evolutionary
biology. Longo, Montévil and Kauffman (2012) point out, for instance, that
while in physics one can “pre-state” the phase space for target systems based
on stable invariances and symmetries, historical processes studied principally in
evolutionary and population biology (e.g., processes of mutation, migration, de-
velopmental plasticity and modification of gene regulatory processes, inclusive
inheritance, niche construction, and so on) involve symmetry breaking, which
makes phase spaces structurally unstable, ever-changing and unpredictable.

Because we cannot prestate the ever changing phase space of biolog-
ical evolution, we have no settled relations by which we can write
down the “equations of motion” of the ever new biologically “rel-
evant observables and parameters”, but that we cannot prestate.
More, we cannot prestate the adaptive “niche” as a boundary con-
dition, so could not integrate the equations of motion even were we
were to have them. (Longo et al. 2012, 1379).

The three challenges just discussed cast doubt on the possibility of modeling
most biological systems in terms of random dynamical attractors, and therefore
on the possibility of formulating a principle for the life sciences based on this
assumption, that is at the same time biologically plausible and general. The
generality of the FEP would come at the cost of not including enough biological
factors to provide plausible representations of causal structures responsible for
persistence in relevant biological targets.

But let us grant for the moment that this challenge is successfully met re-
garding the feasibility of constructing the phase space of any biological system
of interest. Let us also assume that we know the equations of motion governing
the dynamics of all biological systems, which would enable modellers to assign
probabilities to different states of an organism of interest. There still remains
the question of whether this phase space representation has the appropriate
properties that allow one to define a random dynamical model; and there still
remains the question of whether the attractors in the model meaningfully cor-
respond to the homeostatic states of real-world biological systems. We discuss
these two issues next.

4.2 Ergodicity

One of the assumptions of the FEP is that all biological systems are ergodic.
Ergodicity (or more precisely metric transitivity) in random dynamical systems
means that there exists a probability measure P on X (phase space), such that

phase space and assigning probabilities to the relevant states. However, in order to have
an information geometry for all biological systems, one should be able to model them as a
(random) dynamical systems, which is precisely what we are calling into doubt in this section.
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for almost each x ∈ X, the flow ϕ(t, ω) converges weakly to P in the asymptotic
limit t → ∞ (Scheutzow 2007). This means that there is an ergodic density
p(x|m) representing the probability to find the system (m) in a particular state,
which is proportional to the amount of time each state is occupied (Friston 2012,
13). Formally, the ergodic density can be expressed as follows:

p(x|m) = lim
T→∞

∫ T

0

δ(x− x(t))dt

.
From the previous expression, it is clear that, in order to warrant ergodicity

assumptions, one has to demonstrate that the infinite time limit (T → ∞)
exists, which means that, for long times, the values of the observables associated
with the measurable flow ϕ will converge towards the asymptotic (stationary)
values.10

Birkhoff (1931) demonstrated that if a dynamical system is ergodic, then
the infinite time limit exists and coincides with the phase average for almost all
initial conditions x ∈ X. This is called the “ergodic theorem”. Friston (2012,
2018) relies on this theorem to prove the “principle of least action” discussed in
the previous section, which states that the internal states of an active system
minimize surprisal. “The proof [of the principle of least action] is straightforward
and rests on noting that action and the entropy of the ergodic density over
external states are related via the ergodic theorem [Birkhoff 1931]” (Friston
2012,2108).

However, the application of the ergodic theorem to real systems, whether
in physics or biology, presents several challenges (Earman and Rédei 1998),
and there are good reasons to think that this theorem cannot realistically be
applied in the domain of biology. One reason is that, in order to make the
theorem meaningful for a target system, it does not suffice to prove that the
infinite limit exists. One has to show that the convergence rate, i.e. time needed
to attain the time average, is also plausible for that target (Palacios 2018). In
situations in which the values of the functions describing the target’s behaviour
are constantly changing, this time can be of the order of the recurrence time,
which even in simple models, such as a small sample of diluted hydrogen gas,
can be much larger than the age of the universe (Gallavotti 1999).

Compared to a non-biological system, it is harder, if not unfeasible, to esti-
mate a characteristic time needed to attain asymptotic values in most biological
systems, because of non-uniformities in its dynamics. For instance, Mendell and
Seltz (1990) show that the dynamics of a biological system associated with dis-
tinct phenotypes can a-periodically oscillate between a small number of states in
time scales that range from minutes, to days, to years. This is referred to as the
“production of distinct alternative phenotypes” (Mendell and Seltz 1990). The
dynamics may also suddenly escape a parameter region of previous stability and
gouge out an equilibrium with the emergence of new structural phenomena (e.g.

10The assumption of ergodicity also implies that eventually the system will visit almost
every measurable region in X.
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peramorphosis, or speciation). Furthermore, invasion, disturbance, evolution,
species movement and other fluctuating resources can all destabilize the values
of the observables, and prevent asymptotic behaviour. As Drake et al (2006)
put it, “asymptotic behavior is seldom realized in the real world because nature
happens” (168).

Another reason why ergodicity cannot plausibly be assumed in biology is that
the ergodic theorem requires the dynamics of the system to be ergodic, which
means that, eventually, almost every point x ∈ X will visit every measurable
region inX. Proving that ergodic systems exist has been a challenging enterprise
in statistical physics, and even if there have been some positive results stating
the existence of concrete examples of ergodic systems (e.g., Sinai 1970), it is
widely recognized that most of the systems studied in statistical mechanics are
most likely non ergodic (Wightman 1985; Earman and Rédei 1996; van Lith
2001).

Do we have any positive reason to believe some biological systems are ac-
tually ergodic? Prima facie, we don’t, especially if we interpret ergodicity in
biology as the assumption that any (complex) phenotype is the result of a ran-
dom exploration of all possible molecular combinations along a path that will
(eventually) explore all molecular possibilities. There are studies suggesting
that no biological system can be ergodic in this sense. For instance, Kauffman
(2002) argues that the universe will not make all possible proteins of length 200
amino acids in 1039 times its lifetime. So, proteins’ organization into a charac-
teristic phenotype cannot be the result of the ergodicity of physical dynamics.
The same conclusion applies to cells, since the presence of a membrane in a cell
canalizes the whole cellular activities along a very restricted form of possible
dynamics. Furthermore, the same conclusion applies to any biological system,
since any biological system is an historical entity, where processes of differential
selection and retention, at either developmental or evolutionary time scales, ex-
clude most of the paths the system might take, which means that the system
prevents ergodic exploration.

Friston and collaborators recognize that adaptivity may restrict ergodic ex-
ploration in biological systems. However, instead of concluding that biological
systems are not ergodic, they use this restriction to motivate a definition of
active systems as ergodic random dynamical systems that minimize surprise:

The motivation for Definition 1 [ active systems] is simple: systems
that do not minimize their entropy [i.e., surprise] are unlikely to
exist, in the sense that the measure of their random dynamical at-
tractors A(ω) can be arbitrarily large and their recurrence times
arbitrarily long. (Friston 2012, 2108)

In subsequent work, Ramstead et al. (2018) talk of “local ergodicity.” They
define this notion informally, as the idea that “all living systems revisit a
bounded set of states repeatedly (i.e., they are locally ergodic)” and appeal
to intuitive examples to illustrate it. The problem here is that this informal
notion of “local ergodicity” may not suffice to prove the Principle of Least Ac-
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tion, and, in any case, it is controversial if it picks out a genuine property of
biological systems being modelled.

A different strategy is to rely on an analogous theorem called “Multiplicative
Ergodic Theorem,” which can be used in differentiable random dynamical sys-
tems to prove the existence of random dynamical attractors (Engel and Kuehn
2019). The problem here is that this notion of ergodicity implies that the base
flow θ preserves the probability P , which means that the model of noise (en-
vironmental fluctuations) is fixed and the probability measure µ is invariant
(Engel and Kuehn 2019). In other words, in ergodic random dynamical sys-
tems, there is a one-to-one correspondence between invariant random measures
(noise) and stationary measures of the associated stochastic process (dynamics
of the system). The problem is that the invariance of the probability measure µ
and the existence of stationary measures in biological systems are very hard to
prove, because, as we explained in Section 4.1, biological systems continuously
change, species evolve and interact with other species and with different types
of environments modifying the dynamics and sometimes the phase space itself
(Wright 1932, Van Valen 1973, Drake et al. 2006).

The assumption of ergodicity to give a definition of equilibrium states is a
controversial assumption even in the domain of physics, especially due to ex-
istence of physical systems in equilibrium that have proven to be non-ergodic
(Palacios 2021). This is the reason why physicists and philosophers have of-
fered alternative approaches to equilibrium that do not rely on ergodicity (e.g.
Lebowitz 1993: Goldstein and Wallace 2016). Even philosophers that defend a
“quasi-ergodic approach to equilibrium”, recognize that this definition of equi-
librium may plausibly apply only to a restricted class of systems such as gases.
Frigg and Werndl (2013) say, for instance:

Two scenarios seem possible. The first is that epsilon-ergodicity will
turn out to be a special case of a (yet unidentified) more general
dynamical property that all systems that behave TD-like posses. In
this case epsilon-ergodicity turns out to be part of a general explana-
tory scheme. The other scenario is that there is no such property
and the best we come up with is a (potentially long) list with differ-
ent dynamical properties that explain TD-like behaviour in different
cases. But nature turning out to be disunified in this way would be
no reason to declare explanatory bankruptcy: ‘local’ explanations
are explanations nonetheless!

In this section, we have argued that there is less reason to believe that er-
godicity plausibly characterises any biological systems. This does not mean of
course that ergodicity, or a weaker notion of “local ergodicity”, may sometimes
be a reasonable assumption to make for some biological systems. Indeed, there
are some attempts to demonstrate approximate ergodic behaviour in a certain
class of biological systems and this can even serve to give local explanations
of homeostatic states, analogously as in physics (McLeish 2015). However, the
fact that one cannot plausibly extrapolate the assumption of ergodicity to the
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behaviour of all relevant systems in biology casts doubt on the project of for-
mulating a principle that depends on this assumption, and is both maximally
general and biologically realistic.

4.3 Random dynamical attractors

We have just explained that ergodic assumptions are generally not easy to prove,
and why they are implausible for biological systems. This is problematic, be-
cause free energy theorists use ergodicity to define active steady states as random
dynamical attractors. What makes the application of the FEP to accounting
for the behaviour of real-world biological systems even more challenging is that
one also needs: (i) to prove the existence of an attractor in the relevant dy-
namical model of the target (Scheutzow 2007, 331), and (ii) justify why certain
attractors but not others (if they exist) plausibly denote homeostatic states in
the target.

Informally, attractors can be understood as solutions to the dynamics to-
wards which the system evolves over time. For instance, the familiar carrying
capacity (K) of a population growing logarithmically in continuous time is an
attractor of the dynamics. The set of all initial conditions flowing towards an
attractor is called the basin of attraction, which can lead exclusively to a fixed
point (like a carrying capacity), or to a repeating sequence of states, which may
exhibit complicated and itinerant behaviour (Ruelle and Takens 1971). Be-
cause attractors are invariant to the dynamics, they correspond to asymptotic
solutions. 11

As we mentioned in Section 3, random dynamical attractors are specifically
defined as a random compact set A(ω) ∈ X that is invariant under the flow map
such that φ(t, ω)(A(ω)) = A(θt(ω)). 12

Finding biologically interesting attractors in a dynamic model of a target
organism is distinctively challenging compared to finding attractors in models of
non-biological systems. One reason is that various processes at different spatial
and temporal scales – including, plasticity, development, invasion, evolution,
species movement and fluctuating resources – eliminate, reshape, and replace
the attractors associated with target biological systems altogether (Drake et al.
2006). For instance, in the model of population growth proposed by May (1976),
if one assumes that two systems originally identical interact at different points
during the evolution they may end up exhibiting different attractors representing
phenotypic differences (Drake et al. 2006, 170). Differences among replicate
source communities may develop suddenly, because of sensitive dependence upon

11Kaufmann (2016, 48ff) distinguishes the main types of attractors of nonlinear dynamical
systems into four types. One type includes stable steady states and unstable steady states. A
second type is a “limit cycle.” A third type of attractor winds through and around a torus.
The fourth main type of attractor Kaufmann discusses is “chaotic attractors.”

12In the ergodic theory, this means that there is a unique and stationary ergodicity densitiy
p(x|m), where m represents the the dynamical system, which is proportional to the amount of
time each state is occupied. Free energy theorists interpret this density in either of two ways:
as a description of the flow of a system’s state, or as a joint probability distribution over all
the system’s variables and (implicitly) external states.
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small variations in their interactions with other systems or with the environment.
More generally, the interaction of a system with other systems may change
the dynamics, and whether or not an interaction develops between systems is
contingent on many factors. A small contingent event that permits or prohibits
colonization by some species may act as a dynamical switch, which may prevent
the evolution towards an attractor or change the value of the attractor. When
the result of coupling is a new system, extinctions can occur. As Drake et al.
(2006) put it: “[a]ttractors can dynamically break, after which may be no link,
trajectory or solution from the original attractor or parent to the new or child
attractor” (179).

Another reason is that a biological system can possess several attractors, but
only a subset of them can plausibly be interpreted in terms of a homeostatic
state, or some other biologically interesting property. In theoretical models of
self-organization in biology (e.g., Nicolis and Prigogine 1977), the non-linearity
of the equations governing the evolution of a system allows for the co-existence of
multiple (kinds of) attractors. While the presence and functional significance of
two stable steady states has been validated experimentally in various biological
systems at molecular and cellular scales (Goldbeter 2018, Sec. 2), for most
other biological systems at higher scales it remains theoretically and empirically
unclear whether the co-existence of two or more attractors should be interpreted
as a form of functional organization where an actual living system can operate
in one or more homeostatic states.

For example, building on developmental biologist Conrad Waddington’s ideas
of “epigenetic landscapes” (Goldberg, Allis and Bernstein 2007), gene regula-
tory networks have been represented as far-from-equilibrium dynamical systems
(Kauffman 1971; Karlebach and Shamir 2008). Depending on their initial con-
ditions, internal constraints, and local molecular relationships of inhibition or
activation, these regulatory networks can evolve into different possible attrac-
tors, which are taken to represent distinct types of cell phenotypes individuated
as arrays of mRNA transcripts (Huang et al. 2005). As noted by Huang, Ern-
berg and Kauffman (2009, 871-3), some gene regulatory networks can produce
complex landscapes with many attractors. Some of these attractors correspond
to observed gene expression patterns (i.e., to actual cell types), including can-
cer cells. But, most of them do not correspond to any actual cell type; and it
is currently unclear which attractors in a complex epigenetic landscape corre-
spond to viable gene expression patterns, or more generally, which attractors in
a dynamical models of a target have biological significance.

Increasing the biological plausibility of attractors in some dynamical model
generally involves reducing the generality of the model. This increase in plausi-
bility generally relies on knowledge of the historical and environmental contin-
gencies that influence particular target systems and on experimental data about
relevant causal mechanisms that constrain model-building (Brigandt 2013; Gold-
beter 2018). For example, studies of the processes of canalization in embryos of
the fruit fly Drosophila melanogaster have employed dynamical systems models
of a network of genes known to be involved in generating the basic body plan of
this organism. Validated and tested with high-precision empirical data about
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gene expression in Drosophila melanogaster, these dynamical models indicate
that coupled chemical reactions with multiple attractors can explain two prop-
erties of canalized developmental systems, namely: their discrete and buffered
responses to external perturbations (Manu et al. 2009a, and Manu et al. 2009b).

A type of attractor that can potentially serve to plausibly understand the
dynamic and homeostatic equilibrium of at least some biological systems is the
Milnor attractor, which has the peculiar property of being asymptotically un-
stable (Drake et al. 2006). An advantage of Milnor attractors is that they can
account for cases in which trajectories visit attractor after attractor exhibiting
metastable “equilibrium” behaviour that is far from stable (thermodynamic)
equilibrium. The latter is called “switching”, and can plausibly capture phe-
nomena exhibited by biological systems, such as binocular rivalry (see, e.g.,
Friston, Breakspear and Deco 2012 for an application grounded in the FEP).
Another advantage of Milnor attractors is that they allow modellers to take small
fluctuations into account and they are compatible with situations in which the
trajectory of the system visits regions of phase space that lay outside of the
original attractor basin of the system. Finally, Milnor attractors have the ad-
vantage of being compatible with the itinerant (wandering) dynamics, which is
an ubiquitous feature of self-organizing systems, whether in physics or biology.
However, despite these attractions, in order to give a more general charac-
terization of homeostatic equilibrium in biology in terms of Milnor attractors,
considerable theoretical and experimental work remains to be done, which could
bridge attractors in abstract dynamical systems models and measurable observ-
ables in real-world biological systems and it is not clear whether this generality
can be achieved.

In summary, making a convincing case for the biological relevance of attrac-
tors found in dynamical models of target biological systems requires taking into
account enough of the relevant causal factors of particular systems that can
account for their homeostasis. The greater the number of the causal factors
included in a dynamical model, the more realistic the model. But this increase
in realism decreases the scope of the generalizations the model allows.

5 Discussion

In the previous sections, we have analysed three challenges involved in the jus-
tification of the FEP, namely: the problem of pre-stating phase spaces for most
biological systems, the lack of theoretical and empirical warrant for making er-
godicity assumptions in biology, and the challenge of identifying, in general,
homeostatic states with attractors in the phase space.

Based on our analysis, one overall conclusion is that, because of a funda-
mental mismatch between its physics assumptions and properties of biological
targets, model-building grounded in the FEP achieves maximal generality for
minimal biological plausibility. Its foundations in concepts and mathematical
representations from physics allow free energy theorists to build models that
are applicable to theoretically any biological system. But, achieving this gen-
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erality comes at the cost of minimal biological realism, as those models fail to
accurately capture any real-world factor for most biological systems.

While this conclusion coheres with other analyses of trade-offs in model
building in various fields of biology (Levins 1966; Matthewson 2011; Elliott-
Graves 2018), one initial objection to our conclusion is that, at best, we have
shown that the FEP makes false idealizing assumptions, such as ergodic as-
sumptions. But idealization is pervasive throughout science, and allows free
energy theorists to focus attention on only the core causal factors responsi-
ble for the phenomenon of interest (see, e.g., Batterman 2001; Weisberg 2013;
Potochnik 2017). The FEP, and, more generally, any physics approach that
models biological systems as ergodic far-from-equilibrium random dynamical
systems possessing a non-equilibrium steady state are nothing special in these
respects. Like for any other idealized scientific representation, even if the FEP
involves simplifying distortions, it does not follow that it must be minimally
realistic, and have limited explanatory or predictive power.

The problem with this initial objection is that it is actually controversial
if models grounded in the FEP take account of any of the core causal factors
that give rise to homeostasis (or robustness) in real-world biological targets.
Consider the Ising model. This is a mathematical model originally created to
explain ferromagnetism in statistical mechanics, which represents atoms or other
physical particles as points along a linear lattice, and allows these points to be
in one of two states (i.e., +1 or -1). Although the Ising model is very simple and
includes almost no realistic feature of its target systems, it has been fruitfully
used to explain phase transitions in a variety of systems, by capturing some
of the core interactions that can give rise to them. For example, it has been
used to generate explanations of how a large number of simple components (like
neurons) can acquire abilities such as memory (Hopfield 1982), and even the
occurrence of stock market crashes (Sornette 2003). It is in virtue of, and not
despite, its simplified distortions that the Ising model plays an explanatory role
in highlighting a minimal set of factors that suffice to explain how a system can
undergo a phase transition between an ordered and a disordered phase in two
dimensions. Furthermore, the explanations generated by the Ising model can
be evaluated for their explanatory adequacy on the basis of relevant empirical
data, for example on the basis of measurements of the activity of an ensemble of
neurons on some relevant memory task or to associate the occurrence of stock
market crashes with the collective interaction between traders (Jhun, Palacios
and Weatherall 2018).

We mentioned the Lotka-Volterra model above. Physicist Vito Volterra used
his dynamical model of predator-prey interactions to fit observations about the
fish catches in the Adriatic Sea. Alan Hodgkin and Andrew Huxley developed
and used their model of the action potential, which consists of a set of non-
linear differential equations, to fit recordings of action potentials in the squid
giant axon. Most relevant here, non-equilibrium models of cellular processes are
developed and used to fit data about the detailed balance within a cell (e.g.,
Fakhri et al. 2014; Battle et al. 2016).

However, if the FEP or the active inference models it grounds make sim-
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plifying, distorting assumptions about the phase space of a target system, the
ergodicity of biological systems and the existence of an attracting set correspond-
ing to homeostatic states for these systems, then these idealizations should earn
their keep. These idealizations should allow life scientists to tractably draw
some explanation and prediction about relevant biological observables in real-
world systems, and assess those predictions against measurements relevant to
understanding some aspect of homeostatic processes in actual biological systems
(cf., Da Costa et al. 2020, Table 1 for a summary of some existing applications
of active inference models). Our contention is that the idealizations made by
free energy theorists do not play these practical and epistemic roles.

At this point, the free energy theorists can reply that we are unfair, or
misinformed. In fact, they may argue that the biological plausibility of the
FEP is much clearer than what we are suggesting. Maximal generality need not
detract from realism. Specifically, they can point out two things to us: first,
many researchers routinely define and manipulate free-energy functionals for
estimating coupling parameters in models of actual biological systems; second,
core assumptions of the FEP, such as the assumption that the phase space of
any biological system has an underlying non-equilibrium steady state density,
are not idealizations but are accurate representations warranted by empirical
evidence from actual biological systems.

Let us consider the first part of this reply. This part alludes to dynamic
causal modelling, which is one possible approach to causal inference from neu-
roimaging data (Marinescu, Lawlor, and Kording 2018). With dynamic causal
modelling, researchers work with idealized, but well-defined models of the prob-
abilistic dependencies between latent state variables in neural systems - like
synaptic activities - and observed measurements - like blood-oxygen-level-dependent
fMRI signals. The relative level of free energy (i.e., relative evidence) of different
models of the target neural variables and their relationships is used to identify
which one within a given set of models is the best supported given observed
BOLD signals. This would demonstrate the epistemic and practical utility of
defining and manipulating free energy functionals for inference and estimation.

However, this reply misses our point. The example of dynamic causal mod-
elling in neuroscience does not demonstrate that the FEP provides life scientists
with a realistic account of the behaviour of real-world biological systems. Suc-
cessful applications of dynamic causal modelling do not give us any reason to
believe that neural systems plausibly minimize free energy, or that they are
(ergodic) active inference systems. After all, we would not conclude, from suc-
cessful applications of structural equation modelling or Granger-causality to
fMRI data, that it is plausible neural systems make causal inferences based on
structural equation modelling or Granger-causality.

Let us now turn to the second part of the reply, which claims that core as-
sumptions of the FEP are warranted by empirical evidence. Ramstead et al.
(2018, 3), for example, say that a conception of a biological system’s “extended
phenotype as the set of attracting states of a coupled dynamical system is sup-
ported by... studies of cancer genesis and progression... and by work on early
myelopoiesis in real biological systems.” Specifically, they refer to two studies
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– one by Yuan et al. (2017) and the other by Su et al. (2017) – which are
aimed at understanding cancer as a dynamic attractor state in an epigenetic
landscape, as providing support to the assumption that all biological systems
have a non-equilibrium steady state density.

There are three things to say here. First, those two studies provide evidence
that cancer can fruitfully be modelled and understood as an attractor in a
dynamical system, as opposed to a breakdown in specific molecular pathways
in a causal mechanism (Gross 2011; Green et al. 2018, Sec. 3.2). Those studies
do not provide us with evidence that all biological systems occupy an attractor
or that attractors can plausibly be associated with homeostatic properties, nor
do those authors claim otherwise.

Second, this reply does not distinguish between attractors that plausibly
correspond to homeostatic states and attractors that have no obvious biological
significance because they are not observed in actual cells. The dynamical mod-
els of molecular endogenous networks described in Yuan et al. (2017) and Su et
al. (2017) yield several “structurally robust states,” but, as the authors note,
their biological significance can be interpreted only in relation to known cellu-
lar phenotypes. For example, those two studies interpret certain states with a
relatively large basin of attraction as cancer, based on empirical evidence indi-
cating that there is high inter-individual variance in the mutations in sequenced
tumours for non-hereditary cancers.

Third and finally, claiming that certain stable cancer cell phenotypes are
attractors, and that all attractors in dynamical models of biological systems
can plausibly be interpreted as homeostatic states risks to conflate two scales of
explanation. At the cellular scale, cancer cells might be considered homeostatic,
functional states, because they contribute positively to the persistence of a tu-
mor. At a higher scale, however, cancer cells cannot be homeostatic states, since
they contribute negatively to the persistence of their host system, and tumors
themselves consist in a homeostatic failure to regulate the balance between cell
growth and cell death.

In summary, some dynamical systems analyses of biological networks play
various epistemically and practically successful roles in systems biology (Green
2018 et al. 2018, Sec. 3). The success of these analyses depends on (i) the
availability of large sets of data that could be used to constrain and empirically
evaluate the dynamical models, (ii) background knowledge about the history of
target biological systems, and (iii) the existence of warranted conceptual bridges
linking abstract state representations and experimentally accessible observables.
In particular, as systems biologist Hiroaki Kitano (2004, 835) put it,“[t]he great-
est challenge [for dynamical systems approaches to biological robustness] will
be to formulate theories that account for thermodynamics in heterogeneous and
structured systems... [and that at such a level of abstraction they can] be prac-
tically applied to biological systems.” The FEP theorists have not handled that
challenge yet and have not given us good reasons to believe that the FEP serves
to explain and predict the behaviour of most biological systems.
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6 Conclusion

In this paper, we have argued that free energy theorists have pursued maxi-
mally general models, by relying on foundational concepts and mathematical
representations from statistical physics and dynamical systems theory. This
pursuit means a sacrifice in biological realism with the risk of minimizing the
explanatory (and predictive) power of free energy theorists’ account of biologi-
cal, homeostatic, far-from-equilibrium persistence.

The FEP can perhaps be better understood as a maximally general definition
of any system that persists, viz. “any system that exists must, on average, have
a stationary (non-changing) free energy, which (by the ergodic assumption)
corresponds to the time integral” (Friston 2019, 184). But, this definition does
not seem to provide us with any new insight into biological systems. To the
extent free energy theorists treat all biological systems, at any scale, as pre-
specified generic objects with fixed (currently unknown) equations of motions,
their account risks missing all features that make biological systems interesting
kinds of thermodynamic systems.
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population: the lattice Lotka-Volterra model. Progress of theoretical Physics,
88(6), 1035-1049.

Matthewson, J. (2011). Trade-offs in model-building: A more target-oriented
approach. Studies in History and Philosophy of Science Part A, 42(2), 324-333.

May, R. (2004). Uses and abuses of mathematics in biology. Science, 303, 790-
794.

McLeish, T. C. (2015). Are there ergodic limits to evolution? Ergodic explo-
ration of genome space and convergence. Interface Focus, 5(6), 20150041.

Nicolis, G. and Prigogine, I. (1977). Self-Organization in Nonequilibrium Sys-
tems. Wiley-Interscience, New York.

Nikolov, S., Yankulova, E., Wolkenhauer, O., Petrov, V. (2007). Principal
difference between stability and structural stability (robustness) as used in sys-
tems biology. Nonlinear Dynamics, Psychology, and Life Sciences, 11(4), 413-33.

Okasha, S. (2012). Emergence, hierarchy and top-down causation in evolution-
ary biology. Interface focus, 2(1), 49-54.

Palacios, P. (2018). Had we but world enough, and time... but we don’t!:
Justifying the thermodynamic and infinite-time limits in statistical mechanics.
Foundations of Physics, 48(5), 526-541.

Parr, T., and Friston, K. J. (2019). Generalised free energy and active inference.
Biological cybernetics, 113(5-6), 495-513.

Potochnik, A. (2017). Idealization and the Aims of Science, Chicago, IL: Uni-
versity of Chicago Press.

Prigogine, I. and Nicolis, I. (1967). On Symmetry-Breaking Instabilities in Dis-
sipative Systems. Journal of Chemical Physics 46, 9, 3542–50.

Ramstead, M. J. D., Badcock, P. B., and Friston, K. (2018). Answering Schrödinger’s
question: A free-energy formulation. Physics of life reviews, 24, 1-16.

Robertson, K. (2020). Asymmetry, abstraction, and autonomy: justifying coarse-
graining in statistical mechanics. The British Journal for the Philosophy of Sci-
ence, 71(2), 547-579.

28



Rubin, S., Parr, T., Da Costa, L., Friston, K. (2020). Future climates: Markov
blankets and active inference in the biosphere. Journal of the Royal Society
Interface, 17(172), 20200503.

Scheutzow M. (2007) Attractors for Ergodic and Monotone Random Dynamical
Systems. In: Dalang R.C., Russo F., Dozzi M. (eds) Seminar on Stochastic
Analysis, Random Fields and Applications V. Progress in Probability, vol 59,
pp. 331-344. Birkhäuser Basel.
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