1 Abstract

Several philosophical accounts of disease are constructed around the idea that disease is a failure of physiological parts or processes to perform their biological function. Determining whether a phenotype—such as obesity—is a disease or determining the level of functioning at which some aspect of physiology—such as response to insulin—becomes pathological throws considerable weight on the concept of biological function. However, there are a number of philosophical theories of biological function, each of which defines function differently. It is not clear which theory, or combination of theories, we should use to explicate the medical conception of function. We have no systematic way to determine how biologists and medical practitioners conceive of, or write about, function in their respective disciplines. To further complicate matters, natural language is replete with ambiguities, and scientific manuscripts often use terms imprecisely. Without a descriptive understanding of how different conceptions of function are used in biology and medicine, we have little hope of bringing insights about biological function to bear on disputes about function and malfunction in medicine. Here we develop a systematic method for analysing references to function by outlining a classification scheme that combines syntactic and semantic analysis in a dependency-grammar framework.
contends that judgements about disease should be primarily based on whether society disvalues the condition in question, whereas the latter holds that our categorisation of disease should be primarily based on whether “something has gone wrong” in a biological system [2]. But what does it mean for “something to go wrong” with a biological system according to the naturalist view?

Before determining what it means for “something to go wrong”, one requires a normative framework that can be used to determine what a biological component (trait) ought to do. To ground normative claims in biology, many naturalist accounts defer to the notion of function. If a trait’s function is what the trait ought to do, then a dysfunctional trait no longer does what the trait ought to do [3]. But herein lies several problems. Function is a word with multiple senses in both its colloquial and discipline-specific uses. Within the discipline of philosophy, there are many theories of biological function, each differing in their claims to normativity (and some with arguably no normative claims whatsoever). In more applied disciplines, such as biology, medical research, and clinical medicine, it can be unclear which concept of function is being employed or how well usage maps onto philosophical conceptions of function.

Experimental philosophy relies, in large part, on extracting meaning from natural language. If we hope to use experimental philosophy to understand a naturalistic account of disease and dysfunction, we must first clarify how the concept of function (and dysfunction) is used in natural language. One must solve two broad problems in order to consistently disambiguate real-world usage of biological function. First, one must develop a classification scheme comprising a set of categories, each of which defines a sense (or concept) of function. The categories within the set should be exhaustive, covering all possible real-world uses of function. Furthermore, the categories should either be exclusive (i.e. each use of function has one and only one sense) or there should be explicit rules for how one is to deal with membership in overlapping categories (e.g. a hierarchy of definitions or allowing of multiple senses for a single usage). Second, one must develop a system that can consistently assign a piece of natural language on biological function (sentence, paragraph, etc.) into its correct category.

The problem of developing a set of categories will typically employ some form of conceptual analysis (and/or leverage earlier conceptual analysis). We cannot, however, simply paste together existing concepts of biological function. For one, this will not necessarily generate a set of function concepts that are exhaustive or exclusive. Moreover, real-world usage of function does not always align with philosophical concepts of function. A classification scheme for experimental

2For an example with respect to exclusivity, consider the two partially overlapping concepts of the causal role [4] and organisational theories [5] of function. We must make some hard decisions when deciding how to incorporate these concepts into a coherent classification scheme. We could choose one category and remove the other, allow both but give one hierarchical precedence over the other when ambiguities arise, allow a single usage to be assigned to both categories, create one category that encompasses both concepts, or create more general categories that do not align perfectly with one or more of the philosophical concepts. (Here we have chosen the latter, as references to organisational theories may be split over Biological Role and Biological Advantage.)
philosophy will thus necessarily be an amalgamation of philosophical conceptual analysis and discipline-specific usage [6].

A study by Keeling et al. has recently attempted this for biological function in the context of de novo gene emergence [7]. The authors chose six categories for their classification scheme: Evolutionary Implications, Physiological Implications, Interactions, Capacities, Expression, and Vague. The authors started broadly with the two most well-known philosophical concepts of function: causal role and selected effects. From this base, they iterated through a small dataset of 42 instances (from 20 abstracts), adding categories and refining the scheme as they encountered new usages that did not fit into the existing scheme. They achieve an exhaustive scheme by implementing a catch-all category of Vague for usage unable to be categorised in one of the other five categories. They did not require that these categories be mutually exclusive, instead allowing a single usage to have membership in multiple categories. To categorise each usage of function using the scheme, the authors started by independently reading a paper’s title and abstract. Next they used a list of definitions to assign at least one meaning of function to the example, which was supplemented by a few general coding rules to guide application of the definitions. One of the most striking findings from this study was the difficulty of obtaining agreement between the different raters: in only 12% of cases did all four raters independently assign an example to the same category! After conferring with one another and employing a consensus-based approach, the raters were still only able to assign 62% of cases to a single category [7]. Despite having a comprehensive and well-reasoned classification scheme in hand, these authors were not able to consistently categorise real-world usages of function into a single category. This is clearly an immensely difficult problem to solve, and there are likely a number of factors that contributed to the difficulty in unambiguously assigning usages of function to a single concept. We suggest, however, that a crucial factor lies in the different ways that individual investigators analyse natural language in order to extract meaning. Without a detailed and standardised framework, the semantic mapping from natural language to a definition of function is bound to be inconsistent among different investigators.

In this manuscript, we ask a similar question to Keeling et al. [7] but adopt a different methodology. Our categories are more closely aligned to philosophical concepts of function than those of Keeling et al. [7] who intentionally developed more specific categories for de novo gene function. Our classification scheme also does not try to semantically map directly from natural language to definitions of function. To assign an example to a definition, one instead follows a step-by-step flowchart, answering questions and identifying important features related to function that are contained within natural language that references function. We unpack each piece of natural language into one of several common forms. For

3In addition, the authors used 17 of the 20 abstracts to develop their classification scheme, meaning that their reported level of agreement—which was based on all 20 abstracts—is almost certainly higher than they would achieve on a novel set of abstracts about de novo gene function (in the parlance of statistics and machine learning, their reported result is “overfit” on account of them using the same data for “training” and “testing”).
example, to be classified as Biological Role (see section 3.1), an investigator must be able to identify each variable in the unpacked form of “The function of ITEM is EFFECT in SYSTEM” (e.g. ITEM could be “The heart”, EFFECT could be “to pump blood through”, and SYSTEM could be “the circulatory system”). By simplifying natural language into simple, common forms, our approach avoids obfuscation of meaning due to variation in syntactic construction and helps standardise the technique for extracting meaning. Moreover, we provide detailed instructions for how to use the dependency grammar framework and modern natural language processing techniques as aids in identifying the variables in the unpacked forms.

3 Classification scheme

Our approach was to analyse real-world uses of biological function extracted from scientific papers. Since our focus was on how function is used in biology, we used examples from a wide variety of biological subfields. We used the Australian Research Council Field of Research codes to identify the following biological subfields: biochemistry and cell biology, ecology, evolutionary biology, genetics, microbiology, physiology, plant biology, and zoology. We matched these subfields to the following fields from Clarivate Analytic’s Web of Science database: biochemistry and molecular biology, ecology, evolutionary biology, genetics and heredity, microbiology, physiology, plant sciences, and zoology. In addition, we considered the general biology category and the general science category. We used Clarivate Analytic’s Journal Impact Factor (JIF) to get a ranking of journals, and for each category, we chose the top five journals by JIF (supplementary material: journal list). We searched within Web of Science using the search string “function*” for journals from the biological subfield categories and “biolog* AND function*” for journals from the general biology and general science categories. We chose the first listed paper from each journal, and we extracted all sentences involving a use of function from the full texts (ignoring abstracts), giving us 1316 usages of function that we used to develop our scheme.

Developing a classification scheme is a difficult proposition, as the process unavoidably involves circularity: in order to create a scheme that can classify examples, we first need a set of classified examples that we can use to test and iteratively develop the scheme. How can we confidently classify examples before we have a scheme to classify examples? We used two main methods to obtain a set of “gold-standard” examples that we could use to help develop our scheme. In the first method, three of the authors (JRC, ZW, SAG) independently analysed a subset of the sentences using definitions and a simple set of classification guidelines (much like the approach taken in Keeling et. al. [7]). We then compared our responses, and if our classifications differed, we used a consensus-based approach to categorise examples. Those examples that all of us were confident about formed a set of gold-standard examples. A disadvantage of using a consensus-based approach is that we can never be sure of the author’s
intentions, even in examples that we confidently and unanimously categorised.

The second method we used was to simplify real sentences that we encountered, using these examples as a base from which to write (and rewrite) our own sentences. Say we have a sentence that we decide (through consensus) is used in the sense of Biological Role. We can simplify the sentence and rewrite it using different syntactic structures (but retaining the sense of Biological Role). Moreover, we can change the sentence such that it now instead expresses Biological Advantage (and again rewrite it multiple times using different syntactic structures). This approach has two main benefits over the consensus-based approach: (i) with these examples we know with certainty the author’s intentions, having purposefully written them ourselves to fit a specific category; and (ii) by exploring different syntactic structures, we help ensure that our classification scheme is robust to alternate phrasings. In addition to obtaining these gold-standard examples, we also set aside interesting cases that were problematic to classify. We iteratively modified our classification scheme so as to handle these problematic cases and other generally problematic patterns that arose repeatedly (altering the flowchart, adding new categories, modifying the natural language analysis, and so on).

3.1 Senses of function

The first step was to choose the categories of our classification scheme. We decided to use the scheme of Wouters (2003) as our starting point [6]. Wouters breaks down function into four categories: (i) Biological Activity; (ii) Biological Role; (iii) Biological Advantage; and (iv) Selected Effect. In Wouters’s scheme, Biological Activity is “what an item does or is capable of doing”, Biological Role describes “how a certain item or activity contributes to the emergence of a complex capacity of an organism”, Biological Advantage refers to the “biological value (utility) of a certain trait in comparison with another”, and Selected Effect is “used in a historical sense to refer to the effects for which a certain trait was selected in the past” [6].

We added a new category of function whenever we encountered instances of usage that reoccurred multiple times and could not be classified in one of our existing categories. To Biological Activity, Biological Role, Biological Advantage, and Selected Effect, we added the following categories: Colloquial, Technical, and To Work. In some instances, the sentence does not contain sufficient information to identify all the variables. We thus added the following additional categories whose purpose is to specify which feature is missing from the sentence: Description Incomplete: ITEM Unspecified, Description Incomplete: EFFECT Unspecified, and Description Incomplete: EFFECT Specified. The classification scheme flowchart is shown in Figure 1 and descriptions of the decision points are in Table 1.
Figure 1: Decision flowchart for identifying sense of function. Red arrows with label “N” indicate that the question is answered “no”; green arrows with label “Y” indicate that the question is answered “yes”. See Table 1 for a description of each decision point.
Table 1: Description of each decision point in the classification flowchart (Figure 1).

<table>
<thead>
<tr>
<th>Decision point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological context?</td>
<td>Are we dealing with a case of biological function or colloquial use (see WordNet 3.1 for colloquial definitions)? Colloquial examples are rare if one restricts the corpus to scientific papers in biology. Notable exceptions are mathematical functions and programming functions, which we place within Colloquial to simplify the flowchart.</td>
</tr>
<tr>
<td>Technical use?</td>
<td>Compound phrases such as “functional ecology”, “functional biology”, “functional connectivity”, and so on. These phrases will be familiar to practitioners within a field. Their meanings are multi-faceted and influenced by a field’s development and cannot be meaningfully unpacked using a flowchart. These phrases will often appear multiple times in a manuscript.</td>
</tr>
<tr>
<td>Identify ITEM</td>
<td>An ITEM is something that can be a character or trait (or produced by one) of a Darwinian individual. Obvious candidates are concrete nouns, which refer to a physical item (e.g. heart), but it also includes abstract nouns if they refer to a concrete concept (e.g. “gene” as used in population genetics, “boldness” as a behavioural phenotype, etc.). Importantly, there must be a grammatical dependency between function and the ITEM—it is not sufficient that a suitable ITEM simply appear in the sentence (e.g. “protein” is the ITEM in “protein function aids muscle development” but “muscle” is the ITEM in “protein aids in muscle function”).</td>
</tr>
<tr>
<td>Identify ITEM’s EFFECT</td>
<td>EFFECT is what the ITEM does (or, less commonly, has done to it). EFFECT is a verb or verb phrase, or it is a word or phrase that can be converted into a verb (e.g. “contribute to transcription” could be converted to the verb “transcribe”). EFFECT must be a mechanistic action or effect of the ITEM (e.g. if ITEM is “gene” then “is transcribed” is acceptable but “benefits health” is not).</td>
</tr>
<tr>
<td>Is function used in the sense of To Work?</td>
<td>A heuristic is whether you can substitute “ITEM function” (or equivalent, depending on the sentence) with “how well ITEM performs”, “a working ITEM”, or similar into the raw sentence without loss of meaning. For example, “Liver function is important for health” might become “A working liver is important for health” without loss of meaning.</td>
</tr>
<tr>
<td>Did doing EFFECT select for ITEM historically?</td>
<td>Can it fit the following form: the function of ITEM is to EFFECT such that doing EFFECT in the past caused ITEM to be selected or maintained in a population (relative to an actual or counterfactual historical alternative to ITEM)? An example would be “zebra stripes are functional because they evolved to reduce insect bites” as reducing insect bites (EFFECT) has selected for zebra stripes (ITEM).</td>
</tr>
<tr>
<td>Identify SYSTEM</td>
<td>A SYSTEM is either a Darwinian individual, or a complex system within an individual, that contains the ITEM. The EFFECT of the ITEM on the SYSTEM contributes to a capacity of the SYSTEM. As a heuristic for identifying the SYSTEM, you can ask “how does ITEM produce EFFECT?” or “for what is ITEM producing EFFECT used?”.</td>
</tr>
<tr>
<td>Is the function of ITEM EFFECT in SYSTEM and EFFECT benefits SYSTEM (or SUPER-SYSTEM)?</td>
<td>Consider “Transcript X functions to regulate expression in the liver, which improves liver performance through regulation of glycogen storage.” We can unpack this as “The function of TRANSSCRIPT X is to REGULATE EXPRESSION in GLYCOGEN STORAGE IN THE LIVER and REGULATING EXPRESSION benefits [improves performance of] THE LIVER”. Note the statement’s contrastive nature: “improves liver performance” indicates that transcript X is being compared to an (unstated) alternative (e.g. transcript Y). Although contrast will often occur, it is not required. For example, we would still classify this example as Biological Advantage if we replaced “improves liver performance” with “aids metabolic control”. Although this alteration removes the contrast, it nevertheless describes a benefit to a supersystem (metabolic system). (A SUPER-SYSTEM is a system that contains SYSTEM up to and including the level of a Darwinian individual.)</td>
</tr>
<tr>
<td>Is the function of ITEM EFFECT in SYSTEM?</td>
<td>Biological Role is not contrastive, and it does not contain language indicating a benefit to a system (or supersystem). An example is “Transcript X functions to regulate expression in the liver, which plays a role in regulation of glycogen storage”. This statement neither contrasts transcript X with an alternative—it simply describes how transcript X contributes to a capacity of the SYSTEM—nor explicitly describes a benefit to the SYSTEM.</td>
</tr>
<tr>
<td>Is the function of ITEM EFFECT?</td>
<td>Biological Activity is Biological Role without a SYSTEM being specified. An example is “Transcript X functions to regulate expression”, which simply describes what transcript X does. We do not know how (or in what system) it is being used.</td>
</tr>
</tbody>
</table>
3.2 Biological Activity, Role, and Advantage

The categories of Biological Activity, Biological Role, and Biological Advantage are conceptually related. The relationship between Biological Activity and Role is straightforward: a Biological Role is a Biological Activity that contributes to the capacity of an organism (or, more generally, to the capacity of a system). The difference between Biological Role and Biological Advantage is summed up, in Wouters’s words, by “a distinction between ‘how it is used’ (role) and ‘how it is useful’ (advantage)” [6]. We can thus think of Biological Advantage as a Biological Role that benefits an organism by virtue of contributing to a capacity of a system (of that organism).

We classify these three categories in a hierarchical manner, such that Advantage > Role > Activity. By this we mean that if an example is classified as Biological Advantage, it has also satisfied the criteria for Role and Activity, and if classified as Role, then it has also satisfied the criteria for Activity. There are three benefits behind our approach: (i) it neatly captures the relation between these categories within the context of our classification process, as each category is associated with identifying additional feature(s) (ITEM and EFFECT for the base category of Biological Activity, SYSTEM for Biological Role, and a benefit of EFFECT toward SYSTEM (or SUPERSYSTEM) for Biological Advantage); (ii) it is an effective method for developing a classification with mutually-exclusive categories (there would be significant overlap without a hierarchical system, e.g. every Biological Role would also be a Biological Activity); and (iii) it allows for categories to be easily combined post hoc if desired (see next section for an example).

3.2.1 Biological Activity

Biological Activity answers the question “what does it do?”. It was first described by Neander as “minimal function” [3]. It deals with biological characters (e.g. a biological item, feature, or behaviour), describing what these characters do (or are capable of doing) [6]. It has received relatively little philosophical attention, likely because a statement of Biological Activity leaves out important information about how the character is used or why it exists. Indeed, Biological Activity is often ignored or subsumed under Biological Role, with the resulting category typically being termed “causal role” function [4]. We have chosen to keep this distinction for two main reasons. We believe that Biological Activity does reflect some actual biological use [6], notably in the ENCODE study whose goal was to map functionality across the human genome [8]. Second, keeping the distinction preserves information. If an investigator believes that the distinction between Biological Activity and Role is spurious, then they can always combine (labelled examples of) the two categories into a single category

4It is often stated that ENCODE used a causal role definition (e.g. [9]), but we believe this to be a conflation of Biological Activity and Biological Role. ENCODE focused on correlates of biological activity (encoding protein or non-coding RNA, or displaying a biological signature such as protein binding or a specific chromatin structure) without trying to establish how this activity is used to generate a complex capacity in the wider system.
during the analysis phase. But one cannot separate these categories post hoc if they were originally classified as a single category.

3.2.2 Biological Role

Biological Role answers the question “how is it used?”. It is closely linked to causal role or mechanistic theories of function (e.g. [4]). Like Activity, it deals with biological characters [6], describing how a character’s effect can contribute to a capacity of a complex system. In addition to causal theories, some real-world uses of organisational theories of function will likely fall under Biological Role. Organisational theories differ from causal theories in that they use the notion of a closed and differentiated self-maintaining organisation as a basis for teleology and normativity [5]. But organisational theories might be classified as Biological Role if the self-maintenance aspect is omitted or downplayed in a particular usage.

3.2.3 Biological Advantage

Biological Advantage answers the question “how does it help?”. This use of function encompasses a range of different philosophical theories and labels (e.g. it is called “fitness-contribution” in [10] and “Biological Advantage” in [6]; it is also closely linked to dispositional theories of function, such as [11]). In Wouters’s characterisation, Biological Advantage deals with traits (specific variants of a character), and it is contrastive in nature, describing how a trait’s effect has benefits relative to an alternative trait [6]. Wouters’s interpretation of advantage is somewhat more general than the aforementioned theories that focus explicitly on fitness benefits for Darwinian individuals. Wouters’s definition requires that an ITEM demonstrate biological value (or utility) over an alternative. While Wouters states that the ultimate benchmark for biological value is fitness, he acknowledges that Biological Advantage statements may simply describe “the efficiency with which a certain biological role is performed”. In these sorts of statements, there is an implicit assumption that improved efficiency of this role benefits the individual, and that it does so in such a way that it correlates with fitness. This approach will thus include false-positives in cases where the benefits identified correlate poorly with fitness. In practice, this means that Wouters’s characterisation of Biological Advantage is quite permissive, being satisfied if an organism can do EFFECT better with ITEM than with an alternative trait [11].

Some have argued, in opposition to Wouters, that Biological Advantage need not be contrastive (or be limited to dealing with traits), instead focusing on how it contributes to survival [10, 12]. There are obvious parallels between a non-contrastive view of Biological Advantage and organisational theories of function, which focus on how an ITEM’s EFFECT contributes to self-maintenance [a non-contrastive benefit] of a SYSTEM. With this in mind, we take a very general view of Biological Advantage, adopting Wouters’s permissive interpretation of biological advantage as improving a biological role’s efficiency, but making it
even more permissive by not requiring that the characterisation be contrastive.
For our purposes, any explicit mention of a benefit to a system of a Darwinian
individual is sufficient for an example to be categorised as Biological Advantage
instead of Biological Role. Usages of organisational theories explicitly mentioning
the benefits of self-maintenance will thus fall under Biological Advantage (as
mentioned previously, those usages of organisational theories that omit explicit
references to the benefits of self-maintenance will likely fall under Biological
Role).

3.3 Function as To Work

We identify another common use of function, namely that of To Work. In our
flowchart, this use of function can only arise when the \textit{EFFECT} of an \textit{ITEM} is
not specified (Figure 1). This use has an analog in one of the colloquial senses
of function, namely “to work as expected”. Function as To Work is primarily
concerned with how an item has developed in individuals, and whether it is
deemed to be functional (in the sense of working as expected) or dysfunctional
(not working as expected). This use of function differs from Biological Activity,
Role, Advantage, and Selected Effect, which are all “type” level designations
dealing with lineages of characters or traits). Function as To Work instead
focuses on token level ascriptions (traits of individuals), and it is concerned
with the development and manifestation of traits or systems in individuals.\footnote{Of course, dysfunctions are also applied to groups of individuals by virtue of being
categorised into diseases or syndromes. But to the degree that diseases or syndromes cluster
traits and systems, they primarily do so based on similarities in how or why “things have
gone wrong” rather than on lineages of characters or traits. (There are, admittedly, some dif-
ficult cases, such as genetic disorders like mitochondrial disease, in which a disease will cluster
traits in a manner more akin to Selected Effect lineages. In these cases, the line between novel
type traits and dysfunctional token traits becomes blurred.)}

An example of this usage is “liver function is important for an individual’s
health”. Here function does not refer to a function of the liver (e.g. “the liver
functions to store glycogen”), but to the functioning of the liver. We could, for
example, express the same meaning in the revised phrase “a liver that works
as expected is important for an individual’s health”. An item that “works as
expected” is one that aligns with the naturalist view of “healthy” or “absence
of disease”. It implies that there exists a normative basis for believing how the
item ought to function. The normative basis might derive from a philosophical
theory, such as selected effects or an organisational theory, but it might have
another basis entirely. Consider a statement such as “The gene is transcribed
and thus is functional”. What is the normative basis behind this statement? It
appears to adopt some form of a Biological Activity definition, namely that for
function it is sufficient that a gene (item) is transcribed (effect) without regard
for how it is used within a system. There might be an explicit set of criteria be-
hind this definition—as in the ENCODE project\cite{ENCODE}—but frequently the appeal
to normativity will be implicit (and its justification may be less than sound).
In the statement above, the author may simply have a vague sense that any
gene that does something is functional, perhaps as a complement to the notion
that a non-functional gene is one that does nothing. Few scientific papers that use “function” explicitly define it, making it difficult to infer a normative basis in short pieces of natural language. For the To Work category, we focus on whether a normative basis is expressed by the author’s language. The reference to function may itself indicate the normative basis, as with “dysfunction”, “malfunction”, “loss of function”, and so on. But oftentimes the appeal to normativity will be more subtle. For practical reasons, we choose to be agnostic as to how the normative basis is constructed.

4 Analysis of natural language

Function has many derivatives (e.g. functional) and can be used in different parts of speech (noun, verb, etc.), which significantly complicates analysis of natural language. If we focus just on the forms of function when used as a noun, we have the singular “function” (“the function of the heart”), and the plural “functions” (“the heart has many functions”), and the derivative “functionality” (“the functionality of the heart”). Grammatical relations also vary. In “the function of the heart” and “the functionality of the heart”, function is the subject, whereas for “the heart has many functions”, function is the direct object. Aside from its use as a noun, “functions” (and “function”) can also be used as a verb (“the heart functions to pump blood”). We also encounter cases such as the gerund form “functioning”, which is the -ing form of the verb “function” that acts as a noun (“functioning is important for hearts”). To further complicate matters, “functioning” might be a present participle instead of a gerund, in which case it either acts as an adjective (“the functioning heart”) or to form verb tense (“the heart was functioning”). Suffice it to say, when dealing with real-world sentences, the sheer variety of syntactical forms present a challenge for semantic interpretation of function. A central component of our approach is to simplify these diverse syntactic constructions into the common forms highlighted in Figure 1 and Table 1.

To simplify comparison of syntactically-diverse constructions, we use word conversion to convert from derivations of function (e.g. functional) to its morpheme form “function”. We will use morphological derivation to convert between parts of speech (e.g. adjective to noun) and inflection to convert between number, tense, and aspect (e.g. the plural “functions” to “function”). During conversion, it is crucial that we retain the syntactic dependencies between the reference to function and other parts of speech, as these form the basis for identifying the variables in the unpacked form (ITEM, EFFECT, etc.). We use a grammatical framework called dependency grammar, which structures grammatical relations as directed links between words [13]. Effectively, these syntactic dependencies constrain the parts of a sentence that can be chosen as ITEM, EFFECT, and so on. To see why this is necessary, consider a statement such as “Protein function aids muscle development”. There is a syntactic dependency between “protein” and “function” (“protein function” is a compound noun). If we were to ignore syntactic dependencies, then “protein” and “mus-
cle” would be equally good candidates for the ITEM, as both are biological items. In this case, “protein” is the correct ITEM due to its dependency with “function”. If we had chosen “muscle” instead, we would have unintentionally altered the meaning of the sentence, rendering our analysis of function incorrect. (In this example, it is trivial to use intuition to see that “protein” should be the ITEM, but in real natural language it is frequently difficult to establish this connection through intuition alone.) Our goal is to use syntactic dependencies (starting from function or its derivative) to unpack a sentence such that the correct semantic relations can be cast into a standard form.

5 Analysis of function sentences

In this section, we work through six examples using our classification scheme and natural language analysis. We use the natural language processing software spaCy to label parts of speech (noun, verb, and so on) and to generate the dependency grammar representation [14]. We focus on short toy sentences to illustrate the framework, giving a general overview of the natural language analysis without providing the explicit rules. To download the software, to read the handbook detailing the rules governing the natural language analysis, or to explore some detailed worked-out examples, see https://github.com/joshuachristie/function-concepts.

Figure 2: Examples of dependency grammar analysis. (A) Biological Activity; (B) Biological Role; and (C) Biological Advantage.
5.1 Biological Activity

Let us work through the flowchart (Figure 1) using the sentence “The transcript functions to regulate expression” (Figure 2A). Here “functions” is used as a verb. There is a dependency—represented by an arrow—between functions and “transcript” (of type nsubj, nominal subject). Given this dependency, and the fact that “transcript” is a product of a trait of a Darwinian individual, we can identify “transcript” as the ITEM. There is also a dependency (via xcomp, a clausal complement) between the verb “functions” and the transitive verb “to regulate” which takes “expression” as its direct object. Since “to regulate expression” is what the ITEM does (and it is a mechanistic action or effect), we can identify it as the EFFECT. There is no language indicating historical selection, and we cannot identify a SYSTEM. Since we have identified the ITEM and EFFECT, by following Figure 1 we get the unpacked form “The function of the TRANSCRIPT [item] is TO REGULATE EXPRESSION [effect]”, which gives a classification of Biological Activity.

5.2 Biological Role

Consider the sentence “The transcript functions to regulate expression in metabolism.” (Figure 2B), which differs from the previous one by the addition of the prepositional phrase “in metabolism” (marked by case). As before, the ITEM is “transcript” and the EFFECT is “to regulate expression”, and there is no language indicating historical selection. Unlike before, there is now a dependency between “expression” (part of the EFFECT) and the noun of the prepositional phrase “metabolism” (via nmod, nominal modifier). (This dependency provides information about the EFFECT and answers the question “how is it used?” with “in the metabolic system”.) Since “metabolism” represents a complex system (metabolic system) in which the transcript plays a role, we can identify SYSTEM as “metabolic system”. There is no language that indicates a benefit to the metabolic system (or a supersystem containing it), and so we unpack it as “The function of the TRANSCRIPT [item] is TO REGULATE EXPRESSION [effect] in the METABOLIC SYSTEM [system]”, which gives a classification of Biological Role.

5.3 Biological Advantage

Now consider the sentence “The transcript functions to regulate expression in metabolism by improving glycogen storage.” (Figure 2C), which differs from the previous one by the addition of the adverbial clause modifier “by improving glycogen storage”. As before, the ITEM is “transcript”, the EFFECT is “to regulate expression”, the SYSTEM is “metabolic system”, and there is no language indicating historical selection. The dependency between “regulate” (part of the EFFECT) and this new clause (via advcl, adverbial clause modifier) indicates that “improving glycogen storage” provides additional information about (modifies) the EFFECT. With this dependency established,
we can ask whether the clause “improving glycogen storage” describes how the EFFECT “to regulate expression” benefits the metabolic system (SYSTEM). The answer is yes, which means that we can unpack the sentence as “The function of the TRANSCRIPT [item] is TO REGULATE EXPRESSION [effect] in the METABOLIC SYSTEM [system] such that REGULATING EXPRESSION benefits the METABOLIC SYSTEM”, which gives a classification of Biological Advantage.

5.4 Selected Effect

Consider the sentence “Zebra stripes are functional as they evolved to reduce insect bites.” (Figure 3A). Here function is an adjective in the form of “functional”. There is a dependency between functional and “stripes” (via nsubj, nominal subject). “Stripes” itself has a dependency with “zebra”, as together they form the compound noun “zebra stripes”. With the dependency established, and given that “zebra stripes” is a biological item, we can determine the ITEM to be “zebra stripes”. Next we need to try and identify the EFFECT. From “are functional” there is an adverbial clause modifier (advcl) connected to the verb “evolved”. We next ask whether “evolved” is a mechanistic action we can ascribe to the ITEM in a biological system, to which we answer no. There is, however, an additional dependency from “evolved” to the transitive verb “reduce” (which takes the compound noun “insect bites” as its direct object). There is thus a dependency between “are functional” and the phrase “reduce insect bites” (via the verb “evolved”). We can now ask whether “reduce insect bites” describes a mechanistic action or effect of the ITEM “zebra stripes”, to which we answer yes and thus ascribe “reduce insect bites” to EFFECT. With the ITEM and EFFECT now established, the next question in Figure 1 is whether doing EFFECT selected for ITEM historically. We answer yes, given the clause “as they evolved”, which gives a classification of Selected Effect.

5.5 To Work

Consider the sentence “Liver function benefits human health.” (Figure 3B). Here “function” is a noun. There is a dependency between “function” and “liver” (together they form a compound noun), and thus we can designate “liver” as the ITEM. Next we must find the EFFECT. There is a dependency between “function” and the verb “benefits” (which takes “human health” as its direct object). We ask whether “benefits human health” is a mechanistic action or effect of the ITEM “liver”, to which we answer no. As there are no other dependencies that we can follow, we are not able to identify the EFFECT. We now ask whether function is being used in the sense of To Work. To test this, we substitute “liver function” with “a working liver” to obtain the sentence “A working liver benefits human health”. As this sentence retains the meaning of the original, we classify this instance as To Work.
Figure 3: Examples of dependency grammar analysis. (A) Selected Effect; (B) To Work; and (C) Description Incomplete: Effect Unspecified.

5.6 Description incomplete

Consider the sentence “The transcript shows evidence of purifying selection, suggesting that it is functional.”6 (Figure 3C). Here function is an adjective in the form of “functional”. There is a dependency between “functional” and the pronoun “it” (via nsubj, nominal subject). The referent of “it” is “transcript” (the subject of the main clause whose finite verb is “shows”), which we can designate as the ITEM. Next we must identify the EFFECT. The ITEM “transcript” has a dependency with the transitive verb “shows”, which itself has a dependency with “evidence of purifying selection” (through its direct object “evidence” and the nominal modification of the latter by “of purifying selection”). We ask whether “shows evidence of purifying selection” is a mechanistic action or effect of the ITEM “transcript”, to which we answer no. There is a further dependency between the verb “suggesting” and the finite verb “shows” (which recall has a dependency with the ITEM “transcript”). We can thus ask whether “suggesting that it is functional” is a mechanistic action or effect of the ITEM “transcript”, to which we also answer no. (We obtain “suggesting that it is functional” from the fact that “suggesting” has a dependency relation with “functional”, the latter of which has dependency relations of its own with “that”, “it”, and “is”.) There are no more dependencies to explore, and as

6This is a simplified version of a sentence analysed by Keeling et. al. [7]. See instance 26 in our analysis of the usages from Keeling et. al.
we are unable to identify the EFFECT, the next question we ask is whether function is used in the sense of To Work. We can substitute “it is functional” with “it works” to obtain “The transcript shows evidence of purifying selection, suggesting that it works.” This modification alters the meaning of the original sentence: in the original sentence, “functional” indicates that the ITEM has a function not that the ITEM works (performs its function) as expected. We thus classify this instance as Description Incomplete: EFFECT Unspecified.

This is a useful example to highlight the difference between utilising syntactic relations over using intuition alone. At first glance, this statement seems to be a clear-cut example of Selected Effect. Our analysis indicates, however, that it is missing an EFFECT and is thus an incomplete (Selected Effect) description, analogous to if the sentence in Figure 3A were the truncated statement “Zebra stripes are functional as [because] they evolved”.

6 Conclusion

We have presented a classification scheme for analysing natural language about biological function. There are two different components to our classification scheme: (i) a decision flowchart and a set of categories for senses of function; and (ii) natural language analysis guidelines to aid in identifying the variables that determine the classification of a use of function (ITEM, EFFECT, etc.). The decision flowchart and function categories are part of a framework that can used as is or it can be modified for more specific purposes (see below for how one might extend it to ecological functions). The natural analysis software and guidelines are tools to help one analyse biological function. In some instances, the natural language analysis may be inadequate—for example, where the software incorrectly parses parts of speech or dependency relations, or where ambiguity arises in complex syntactic constructions—and should be used to supplement the intuition and expertise of an investigator rather than applied blindly.

Our approach is centered around the analysis of individual sentences containing a use of biological function. Since we focused on syntactic dependencies and short-range semantic relations, this approach makes sense, but there are also drawbacks. As the syntactic analysis is limited to sentences, our approach cannot directly leverage information in other parts of a document for the purposes of identifying the unpacked variables (ITEM, EFFECT, etc.). Nevertheless an investigator can use our method to analyse multiple sentences independently or can use a less structured method to identify the variables elsewhere in a manuscript. For example, the instance in Figure 3C, which we classified as Description Incomplete: EFFECT Unspecified, could be classified as Selected Effect if one could infer the transcript’s EFFECT from elsewhere in the manuscript.

Our focus on classifying individual usages of biological function highlights another consideration: the difference between how function is used in a single instance and how function is used in a document overall. Scientific manuscripts
referencing biological function typically have multiple instances of use. If one
wants to make a claim about how an author uses function in a document as a
whole, then one will either have to use an alternative approach to analyse the
document as a whole or will have to develop a (mathematical) function that
maps from the number of individual usages of different function senses to a
measure of overall document meaning.

For simplicity, we have ignored functions above the level of a Darwinian indi-
vidual (ecological functions). We encountered a number of these uses during the
development of our classification scheme (e.g. “ecological functioning”, “func-
tion of biodiversity”, and so on), but ultimately we decided to focus on biological
functions of individuals given the focus on philosophy of medicine. Ecological
functions could be added an as extension to our scheme by (i) widening the
definition of an ITEM (expanding beyond systems of Darwinian individuals to
systems of ecosystems); (ii) expanding the definition of SYSTEM to include
ecosystems; and (iii) including an additional decision point that considers the
level of the ITEM and SYSTEM. For example, an ecological counterpart of
Biological Role could be unpacked to “The function of ITEM is EFFECT in
SYSTEM” where ITEM is a Darwinian individual (or group of Darwinian in-
dividuals) and SYSTEM is an ecosystem containing ITEM.

Our classification scheme could potentially be extended to take advantage
of high-throughput automation of references to function. This is a well-studied
(but extremely difficult) problem in natural language processing (NLP) known
as word-sense disambiguation. Some of the steps in the flowchart could be auto-
mated by rule-based programming that leverages our natural language analysis
pipeline (e.g. identifying ITEM). Other steps, however, would be very difficult
to automate using rules. Consider the decision points for Selected Effect and
Biological Advantage. There are countless specific ways that an author might
indicate that an ITEM has been under selection or that an ITEM’s EFFECT
benefits a SYSTEM, and a pure rule-based system is bound to perform poorly
in these cases. But these steps might still be automated by using a statistical,
rather than a rule-based, approach. For example, recent deep learning NLP
models based on the Transformer architecture can be “pre-trained” on a huge
corpus, allowing them to “learn” how to represent relationships in natural lan-
guage from unlabelled data [15]. Where a rule-based system would need a list
of all the words and phrases associated with “benefitting” a SYSTEM in order
to automate the Biological Advantage decision point (“improve”, “augment”,
and so on), a deep learning NLP model has a high-dimensional representation
of language that can reflect the similarities between these words without hav-
ing necessarily seen a similar sentence before. Some Transformer models have
been trained on a corpus of scientific manuscripts, allowing them to efficiently
represent the particularities of academic language and style. (For example, the
software we use to generate the dependency grammar analysis uses an NLP
Transformer architecture called SciBert [16].) NLP models trained on more
general-purpose text (e.g. Wikipedia) did much worse at representing grammar
relations for our examples.) The downside is that training these models for
specific downstream tasks (e.g. training an NLP model for the decision point
between Biological Role and Biological Advantage) is a supervised learning problem, which requires labelled data (manually categorised sentences). Depending on the difficulty of the problem, it can require a substantial amount of labelled data (possibly thousands of manually categorised sentences), making this a serious undertaking.

One of the main differences between our set of function categories and that of Wouters (2003) [6] is the introduction of a category for To Work. With its focus on whether token traits are “working as expected”, this sense of function is the most relevant for philosophy of medicine and the naturalistic account of health and disease. To Work statements require a normative basis to ground why one should expect a trait to work in a certain way (i.e. perform its function). Some normative bases will be explicit and well-justified; others might implicitly appeal to vague, indefinable notions of why a trait should work in a certain way. Here we have made no distinction between various normative bases behind function in the sense of To Work. Adding these distinctions could be a fruitful way to extend our framework. With such an extended framework in hand, one could tackle some interesting questions in philosophy of medicine. One of many such possibilities would be to analyse uses of To Work function in medical journals to help understand the extent to which physicians and medical researchers use different normative bases as a foundation for dysfunction and disease. More generally, the methodology we have outlined can serve as a framework that may be extended by experimental philosophers to analyse references to other concepts in academic literature.

7 Acknowledgements

We thank Monika Bednarek for her advice on linguistic analysis. We acknowledge the Charles Perkins Centre for funding ZW through its summer research scholarships program. This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number FL170100160).

References

