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Abstract

It is shown that by realizing the isomorphism features of the frequency and geometric interpreta-
tions of probability, Reichenbach comes very close to the idea of identifying mathematical probability
theory with measure theory in his 1949 work on foundations of probability. Some general features of
Reichenbach's axiomatization of probability theory are pointed out as likely obstacles that prevented
him making this conceptual move. The role of isomorphisms of Kolmogorovian probability measure
spaces is speci�ed in what we call the �Maxim of Probabilism�, which states that a necessary condition
for a concept to be probabilistic is its invariance with respect to measure-theoretic isomorphisms. The
functioning of the Maxim of Probabilism is illustrated by the example of conditioning via conditional
expectations.

1 Introductory comments

Probability theory featured prominently in Reichenbach's thinking and work throughout his whole
career, both as a conceptual tool and as a subject of philosophical investigation: Already in his
doctoral thesis (1915) (published in English translation in 2008 [33], see [23] for a compact review of
this translation) probability takes center stage in the form of a �principle of lawful distribution�. This
principle states, roughly, that the empirical relative frequencies of occurrences of events converge to a
true limit to be understood as probability. This principle has a transcendental status in Reichenbach's
theory of knowledge, similar to Kant's principle of causality in Kant's epistemology. The principle is
transcendental because it is not empirically testable � rather it forms the basis of empirical science
[9].

In his subsequent works, Reichenbach both applied probability theory in the analysis of speci�c
philosophical problems and investigated the foundations of probability theory itself. An example of
the former is Reichenbach's concept of common cause used in his The Direction of Time [32]. This
notion has had a lasting impact on the analysis of causality and has been the conceptual predecessor
of the Causal Markov Condition in the modern theory of Bayes nets (see [16] for a review, and [17],
[42] for detailed analyses of Reichenbach's notion and the related principle of the common cause).

Reichenbach's foundational work on probability theory culminated in the substantial, almost 500
page long monograph published in 1949 [31], which is a re-worked version of the one published in
German in 1935 [30]. In his 1949 work, Reichenbach gave both a formal axiomatization of probability
theory and attempted to provide a foundation for it in the sense of the frequency view of probabilities.
Both ideas rely on his earlier work; in particular the axiomatization in [31] is based on the paper
published in 1932 [29].

The general assessment [9], [8] of Reichenbach's axiomatization is that now it only has historical
signi�cance because Kolmogorov's axiomatization published in 1933 [20] overshadowed it and became
the mainstream. This verdict is based in [8] on a detailed critical analysis of Reichenbach's axiom-
atization and of his related concept of probability logic. We agree with this assessment. In Section
2 we recall some general features of Reichenbach's axiomatization and provide some more critical
comments. On the positive side, in Section 2, we also show that Reichenbach's analysis contains an
important idea that in principle opens up the road to an axiomatization in the sense of Kolmogorov:

*Department of Philosophy, Logic and Scienti�c Method, London School of Economics and Political Science, Houghton
Street, London WC2A 2AE, UK, m.redei@lse.ac.uk.

�Department of Logic, Institute of Philosophy, Jagiellonian University, Cracow, Poland

1



The idea is to regard as mathematical probability theory what is isomorphic in di�erent interpre-
tations. But this avenue remains unexplored in Reichenbach's work, which we claim is mainly due
to ambiguities in the Reichenbachian axiomatic system. In Sections 3 and 4 we explore the role of
isomorphism from the perspective of foundations of probability theory. While it is not clear what the
notion of isomorphism in the Reichenbachian axiomatization would be, there are very natural notions
of isomorphism in the Kolmogorovian axiomatization. Kolmogorov himself did not make use of them
in his foundational book, but they became standard. In Section 3 we recall these notions of isomor-
phisms and formulate what we call theMaxim of Probabilism: The idea that a concept, reasoning,
argument is probabilistic only if it is invariant with respect to the isomorphisms of the mathematical
structures that are models of the axioms. In sections 4 and 5 we illustrate the usefulness of the
Maxim of Probabilism by using it to clarify some neuralgic points in connection with conditioning
with respect to probability zero events, in particular in the context of the Borel-Kolmogorov Paradox.

2 Comments on Reichenbach's axiomatization of proba-

bility theory

Reichenbach distinguished three approaches to axiomatization of probability theory: One that aims
at an

�[. . .] interpreted form of axiomatic construction [. . .] which regards probability, from the
very beginning, as a frequency, and derives from this interpretation, by the possible inclu-
sion of additional postulates, the rules of the theory.� [31][p. 121]

The second

�[. . .] formal conception introduces the concept of probability by the method of implicit
de�nitions, and uses no properties of the concept other than those expressed in a set of
formal relations placed as axioms in the beginning of the theory, leaving open various
possibilities for its interpretation.� [31][p. 121]

The third approach

�[. . .] connects the treatment of probability with the methods of symbolic logic. [. . .] con-
structing probability as a relation between statements, which includes logical implication
as a special case.� [31][p. 122]

Reichenbach classi�es both Kolmogorov's approach and his 1932 axiomatization as belonging to the
second group. While this is certainly true for the Kolmogorov approach, it is not unambiguously
true for his 1932 axiomatization: While a formal axiomatization in the sense of the second approach
is given in his 1932 axiomatization, Reichenbach also introduces a �coordinating de�nition α� [p.
591] that relates the formal probabilistic formula to limits of relative frequencies. On this basis he
distinguishes two notions of mathematical probability:

�We call the resulting notion of probability, i.e. the concept that is determined by the
axiom system including the coordinating de�nition α, the contentual mathematical concept
of probability, in contrast to the formal mathematical concept of probability determined
exclusively by the axioms, i.e. without assigning content to it.�1

[29][p. 592] (emphasis in original)

Thus, although a purely formal axiomatization describing the formal mathematical concept of prob-
ability is part of Reichenbach's treatment indeed, Reichenbach's analysis is coupled to a frequency
view even when it comes to a mathematical speci�cation of the concept. There is thus no sharp
separation in the mathematical sphere of the concept of probability from the frequency view in his
1932 axiomatization � in contrast to what he claims about his own axiomatization. This ambiguity
prohibits Reichenbach, we claim below, to develop an idea that potentially leads to an axiomatization
based on measure theory.

Furthermore, in his [29], Reichenbach sees the need for a further axiom to be added to the
mathematical axioms: This is the Axiom of Induction [29][p. 614]. This axiom is precisely the

1Our translation. Original German: �Wir nennen den dabei entstehenden Wahrscheinlichkeitsbegri�, also den durch
das Axiomensystem einschlieÿlich der Zuordnungsde�nition α bestimmten Begri�, den inhaltlichen mathematischen

Wahrscheinlichkeitsbegri�, im Gegensatz zu dem formalen mathematischen Wahrscheinlichkeitsbegri�, der durch das Ax-
iomensystem allein de�niert wird, also ohne eine inhaltliche Belegung.�
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principle of lawful distribution that appeared in his 1915 dissertation � as Reichenbach explicitly
acknowledges, citing his PhD dissertation ([29][p. 614], especially footnote 24 in [31]). This axiom
has a status that is conceptually di�erent from those that specify the mathematical probability
because it is not part of mathematics: it postulates the applicability of probability theory in the
sense of the frequency view.

Coupling probability theory to the frequency interpretation, Reichenbach follows a well-established
tradition, of which he is fully aware:

�In order to develop the frequency interpretation, we de�ne probability as the limit of a
frequency within an in�nite sequence. The de�nition follows a path that was pointed out
by S.D. Poisson in 1837. In 1854 it was used by George Boole, and in recent times it
was brought to fore by Richard von Mises, who defended it successfully against critical
objections.� [31][p. 68] (emphasis in original)

The key di�erence between Reichenbach's frequentism and von Mises' concept of probability as limit of
relative frequency is that Reichenbach abandons von Mises' requirement of randomness of the in�nite
sequence in which relative frequencies are supposed to be calculated. For von Mises it is not enough
that the limits of frequencies in the in�nite sequence exist: The in�nite sequence, the �ensemble�(von
Mises calls it �Kollektiv�) must also be disorderly, �random� [38], [39][p. 23]. Von Mises speci�ed
the content of randomness of an ensemble by requiring invariance of the limits of relative frequencies
in the ensemble with respect to place selections: Selecting an in�nite sub-ensemble of the original
ensemble by a rule, the limits of relative frequencies in the sub-ensemble should be equal to the limits
of the relative frequencies in the original ensemble [39][p. 23]. According to von Mises, this invariance
should hold for any place selection determined by a rule that does not involve the random event whose
frequency one calculates. Given this concept of randomness, the problem of its consistency arises: Do
random ensembles exist at all? Von Mises [39][p. 88-89] recalls the reasoning that consistency cannot
be proved in the strict sense of mathematical proof: An in�nite sequence can only be speci�ed by a
mathematical rule, which can in principle be used to select a sub-ensemble in which the frequencies
di�er from the one in the original sequence. But he rejects the position that one should restrict the
class of place selection to a class for which consistency of the corresponding restricted randomness
concept is provable, saying that for any conceivable sub-class �... it will be possible to indicate place
selections� that are not in the class, and, consequently

�It is not possible to build a theory of probability on the assumption that the limiting
values of the relative frequencies should remain unchanged only for a certain group of
place selections, predetermined once and for all.� [39][p. 90]

Ultimately, in the chapter �Consistency of the randomness axiom� in [39], von Mises seems to be
content with what one could call �pragmatic consistency� of randomness, and which is based on
results (due to Copeland and Wald) stating that for any countable set of place selections there exist
random ensembles:

�[. . .] from what we know so far, it is certain that the probability calculus, founded on the
notion of the collective, will not lead to logical inconsistencies, in any application of the
theory known today.� [39][p. 91] (our emphasis)

In §31 of [31] Reichenbach reviews the main results on the consistency of randomness (especially the
works by Copeland, Wald and Ville), but draws a conclusion from them that is di�erent from von
Mises' pragmatic consistency:

�The signi�cance of the problem of the de�nition of random sequence should not be over-
estimated, however. Within the general calculus of probability, random sequences merely
represent a special type [...] In actual applications, all kinds of probability sequences are
encountered. Some show the features of randomness; others represent intermediate types
between strictly ordered and random sequences. [...] It would constitute a rather nar-
row conception of probability if the name of probability sequences would be reserved for
random sequences.� [31][p. 150-151]

Reichenbach intends to have his theory to be �exible enough to accommodate such �intermediate
types� of in�nite sequences, i.e. sequences which embody di�erent degrees of order, not just the
random ones:

�An essential feature of my theory of order is that it deals with all possible forms of
probability sequences and is not restricted to sequences of one type of order [...]. In
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this respect my probability theory di�ers from others � in particular from that developed
by R. von Mises. Such theories regard randomness as an essential characteristic of the
very concept of probability; and they contend that the meaning of probability cannot be
exhaustively formulated without reference to randomness.� [31][p. 132]

Concerning the classi�cation of his 1949 attempt, Reichenbach writes: �My own presentation
undertakes to unite the axiomatic method with the construction of logico-mathematical calculus. . .�
[31][p. 122]. Indeed Reichenbach's axiomatization is a mixture of formal axiomatization in the
sense of symbolic logic and of informal axiomatization in the sense of semi-formal mathematics � as
axiomatization is done e.g. when groups are de�ned by the group axioms. The problem is that in
Reichenbach's treatment the syntax is not completely speci�ed and no formal semantics is given [8][p.
371-373]; and, viewed as axiomatization in the semi-formal sense of mathematics

�[. . .] these axioms are not su�cient to provide an axiomatization of probability, since they
do not ensure that the space the probabilities are applied to is closed under complemen-
tation and countable union, i.e. that it forms a sigma-�eld.� [8][p. 371].

Hence, because of the lack of an explicit semantics and its clear separation from syntax, for a logician,
Reichenbach's axiomatization was too much informal mathematics; for a practicing mathematician,
the formal logic involved in the axiomatization separated it too much from mainstream mathematics to
be useful; and for a physicist interested in applying probability theory, Reichenbach's axiomatization
was too much logic, mathematics and philosophy altogether. For philosophers the axiomatization
o�ered a target for philosophical criticism, which it received indeed (see section 5 in Eberhardt
and Glymour's paper [8] for a review of the main philosophical criticisms, and [24] for a defense of
Reichenbach against a speci�c objection raised by C.I. Lewis).

But at a certain point Reichenbach comes very close to the idea of identifying mathematical
probability theory with measure theory in the spirit of Kolmogorov: In Chapter 6 of [31], Reichenbach
discusses an �admissible interpretation� [31][p. 203] of the purely mathematical part of the axioms
that is di�erent from the frequency view: The geometrical interpretation. Reichenbach demonstrates
in this chapter that (with one exception ! � see below) his axioms are satis�ed by subsets of the two
dimensional plane with probability identi�ed with the normalized area measure. This idea is present
already in the 1932 paper [29][§ 5], but it is more systematically developed and more explicitly stated
in [31]:

�The possibility of a geometrical representation of probabilities results from the considera-
tions given in § 40. By showing that both the frequency interpretation and the geometrical
interpretation satisfy the axioms of the formal system of probability, that is, are interpreta-
tions of this system, we have demonstrated the isomorphism, or structural identity, of the
two interpretations. Every operation carried out in terms of probability formulas entails
analogous operations in the frequency interpretation and the geometrical interpretation.
Any derived probability relation is, therefore symbolized in the geometrical interpretation
by those geometrical relations that have been speci�ed above for the geometrical interpre-
tation of the probability concept.� [31][p. 207-208] (emphasis in original)

Reichenbach even sees that the isomorphism holds if the two dimensional plane is replaced by a higher
dimensional Euclidean space with its Lebesgue measure: �The foregoing considerations can easily be
generalized for an attribute space of more than two dimensions.� [31][p. 208]

So in his 1949 monograph Reichenbach is just one intellectual step away from saying that what
is common in the frequency and geometrical interpretations is the measure-theoretic structure and
the axioms should express exactly this. But this step is not taken and we see several reasons for this.
One is that, as Reichenbach himself emphasizes [31][p. 205], one group of axioms (called �group v�,
the �Axioms of the theory of order� [31][p. 137]), are not satis�ed by the two-dimensional Lebesgue
measure. This group is precisely the one that connects probability to the frequency view: � . . . the
axioms v, like the previous axioms, are valid for all probability sequences, for they could be derived
from the frequency interpretation� [31][p. 139]. The two axioms that form this group express that
if probabilities are limits of relative frequencies in in�nite sequences then the sequences possess
randomness in a limited sense of place selection. Reichenbach is aware that the presence of these
axioms distinguishes his axiomatization from those � including Kolmogorov's � that �... omit the
development of the theory of the order of the probability sequences.� [31][p. 121] Reichenbach clearly
regards this as a virtue of his axiomatization. But the conceptually not entirely sharp separation in
Reichenbach's axiomatization of the frequency interpretation from the purely formal axiomatization
becomes a conceptual obstacle to draw the consequences of the isomorphism he recognized.
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Another di�culty standing in the way of drawing the consequence of the described isomorphism
concerns the unavoidable measure (hence probability) zero sets in the geometrical interpretation:
Reichenbach thinks that this would need an additional axiom in probability theory [31][p. 207].

More generally, taking the step of isolating measure theory as the isomorphism-invariant structure
presupposes being aware of the development of abstract measure theory, especially of the possibility
of moving from the theory of Lebesgue's measure towards abstract measures. Kolmogorov explicitly
mentions in the introduction of his book this as a prerequisite for the conceptual move:

�[. . .] if probability theory was to be based on the above analogies [involving Lebesgue
measure and integral ] it still was necessary to make the theories of measure and integration
independent of the geometric elements which were in the foreground with Lebesgue� [20][p.
v]

Doob [6] mentions the following crucial steps in the creation of abstract measure theory that were
needed for the Kolmogorovian axiomatization:

� Lebesgue's extension of volume in IRn to the Borel sets in IRn (1902).

� Radon's de�nition of a general measure on the Borel sets in IRn (1913).

� Fréchet's realization that one needs only a σ-algebra of subsets of a set for a meaningful measure
theory with a σ-additive measure (1915).

It is perhaps understandable that a mathematician like Kolmogorov was more familiar with these
developments in measure theory than the physicist-philosopher Reichenbach. Thus the full rami�ca-
tions of the isomorphism seen by Reichenbach remain unexplored by him. But the idea of relating
what is probability theory to what is isomorphism-invariant is a deep thought. The next section
makes this idea explicit in the context of the Kolmogorovian axiomatization.

3 Isomorphism of probability measure spaces and the Maxim

of Probabilism

In the Kolmogorovian speci�cation, mathematical probability theory is a probability measure space
(X,S, p), where S is a Boolean σ-algebra of subsets of the set X (with respect to the standard set
theoretical operations ∩,∪ and complement A⊥), and the probability p is a countably additive map
from S into [0, 1]. Accepting this measure-theoretic speci�cation of probability theory leads naturally
to both the notion of isomorphism of probability measure spaces and the methodological rami�cation
we call below the Maxim of Probabilism.

Since a probability measure space consists of three components, the set of elementary events, a
Boolean algebra of general events and a probability measure, the notion of isomorphism is supposed
to respect all these three components. Moreover, when it comes to de�ning isomorphism of proba-
bility measure spaces, the possible presence of probability zero events has to be taken into account;
accordingly, there are two (inequivalent) notions of isomorphism: (i) strict isomorphism (also called
point isomorphism) and (ii) isomorphism up to probability zero (also called isomorphism mod0 [2];
the terminology almost isomorphism also is used). We de�ne �rst the isomorphism of measurable
spaces:

De�nition 3.1. Given two measurable spaces (X,S) and (Y,Z), a bijection f : X → Y is called an
isomorphism between (X,S) and (Y,Z), if both f and its inverse f−1 are measurable (establishing a
Boolean-algebra isomorphism between S and Z). In this case (X,S) and (Y,Z) are called isomorphic
via f .

De�nition 3.2. Two probability measure spaces (X,S, p) and (Y,Z, q) are called measure-theoretically
strictly isomorphic [2][p. 275], if the measurable spaces (X,S) and (Y,Z) are isomorphic via some
bijection f : X → Y , and the isomorphism between the Boolean σ-algebras S and Z determined by
f preserves the probability measures p and q:

q(B) = p(f−1[B]) for all B ∈ Z (1)

p(A) = q(f [A]) for all A ∈ S (2)
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For the de�nition of isomorphism mod0 of probability spaces, we need the following simple notion
of reduction of probability spaces (X,S, p): Let M ∈ S be such that p(M) = 1. Let SM be de�ned
by

SM
.
= {A ∩M : A ∈ S} (3)

then SM is a Boolean σ-algebra, and one can de�ne p on SM to obtain a probability measure pM :

pM (A ∩M)
.
= p(A ∩M) A ∈ S (4)

(M,SM , pM ) is then a probability measure space.

De�nition 3.3. Two probability measure spaces (X,S, p) and (Y,Z, q) are called measure-theoretically
isomorphic mod0, if there are sets M ∈ S and N ∈ Z with p(M) = q(N) = 1 such that (M,SM , pM )
and (N,ZN , qN ) are strictly isomorphic. We call the strict isomorphism between (M,SM , pM ) and
(N,ZN , qN ) a mod0 isomorphism between (X,S, p) and (Y,Z, q).

Embracing the Kolmogorovian speci�cation of probability theory as a triplet (X,S, p) leads nat-
urally to what we call:
Maxim of Probabilism: A concept/claim/property/reasoning/argument is probabilistic only if it is
invariant with respect to measure-theoretic isomorphisms between probability measure spaces.

To be more precise, one can distinguish two senses of the adjective �probabilistic� in connection
with the Maxim of Probabilism: A weak and a strong, depending on the notion of isomorphism
involved:
A concept/claim/property/reasoning/argument is

� weakly probabilistic only if it is invariant with respect to strict measure-theoretic isomorphisms
between probability measure spaces;

� strongly probabilistic only if it is invariant with respect to mod0 isomorphisms.

The Maxim of Probabilism provides a necessary condition for what probability is. In applications
of probability theory the set of elementary random events are frequently modeled by a set X in
which structures are de�ned in addition to the σ-�eld S (for instance: metric, topological, or order
structures). As a consequence, reasonings in the context of (X,S, p) might involve features of these
� from a measure-theoretic viewpoint �surplus� � structures and thus the probabilistic reasonings
get intertwined with considerations that are not in fact probabilistic. This molding of probabilistic
and non-probabilistic elements in reasonings is potentially misleading because it might make invisible
where precisely the probabilistic content lies. This can, in turn, lead to misguided questions and
puzzles. The Maxim of Probabilism can in such situations be used to disambiguate the prob-
abilistic and non-probabilistic components of reasonings and concepts: This Maxim tells us that
an argument or a concept that is formulated in the context of a probability measure space (X,S, p)
cannot be regarded even as weakly probabilistic if it is such that it cannot be formulated also in a
probability measure space with which (X,S, p) is isomorphic via a strict isomorphism.

We will illustrate the usefulness of the Maxim of Probabilism in the next two sections on the
example of clarifying certain conceptual perplexities concerning conditioning involving probability
zero events; the illustration involves violation of the Maxim of Probabilism. Below we give two
examples of concepts that are invariant with respect to isomorphisms; hence these examples illustrate
how concepts can satisfy theMaxim of Probabilism. The two notions are: the correlation function
and the feature of pure measure-theoretic non-atomicity of probability spaces. In both examples below
it is assumed that (X,S, p) and (Y,Z, q) are probability spaces and f is a mod0 isomorphism between
(X,S, p) and (Y,Z, q), i.e. f is a strict isomorphism between (M,SM , pM ) and (N,ZN , qN ).

Example: correlation function

Each probability space (X,S, p) determines a real-valued function Corr(X,S,p) : S × S → R de�ned
by

Corr(X,S,p)(A,B)
.
= p(A ∩B)− p(A) · p(B) A,B ∈ S

So we also have
Corr(Y,Z,q)(A,B)

.
= q(A ∩B)− q(A) · q(B) A,B ∈ Z

Let (CX , CY ) be a pair of events with CX ∈ S and CY ∈ Z. Call this pair f -related if

f [(CX ∩M)] = CY ∩N (5)
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Then, sinceM⊥ andN⊥ are p-measure (respectively q-measure) zero sets and f is a strict isomorphism
between (M,SM , pM ) and (N,ZN , qN ), we have

p(CX) = p(CX ∩M) (6)

= pM (CX ∩M) = qN (f [CX ∩M ]) = qN (CY ∩N) (7)

= q(CY ) (8)

If (AX , AY ) and (BX , BY ) are both f -related, then applying (6)-(8) to CX = AX , BX , (AX ∩ BX)
and CY = AY , BY , (AY ∩BY ) we obtain

Corr(X,S,p)(AX , BX) = Corr(Y,Z,q)(AY , BY ) (9)

Equation (9) means that the notion of a correlation function is invariant under mod0 isomorphisms;
hence it satis�es the necessary condition to be strongly probabilistic in the spirit of the Maxim of

Probabilism. Note that if f : X → Y is a strict isomorphism between (X,S, p) and (Y,Z, q), then
(9) is simply

Corr(X,S,p)(A,B) = Corr(Y,Z,q)(f [A], f [B]) (10)

for all A,B ∈ S. The content of (10) is that taking the same de�nition of a correlation function in
strictly isomorphic spaces yields the same function, and this means in particular that the notion of a
correlation function is invariant under strict isomorphisms.

Example: measure-theoretic non-atomicity

By de�nition, (X,S, p) is measure-theoretically purely non-atomic if for any A ∈ S with p(A) > 0
there is B ⊂ A such that p(A) > p(B) > 0. We show that if (X,S, p) is measure-theoretically
purely non-atomic, and (X,S, p) and (Y,Z, q) are isomorphic mod0, then (Y,Z, q) is also measure-
theoretically purely non-atomic. The proof relies on the fact that for any event A ∈ S, p(A) =
p(A ∩ M) = pM (A ∩ M) and similarly, for B ∈ Z we have q(B) = qN (B ∩ N). It follows that
(X,S, p) is purely non-atomic if and only if (M,SM , pM ) is purely non-atomic. Suppose (X,S, p)
(and thus (M,SM , pM )) is purely non-atomic. The calculation below shows that the isomorphism
f between (M,SM , pM ) and (N,ZN , qN ) preserves non-atomicity, and therefore (Y,Z, q) is purely
non-atomic as well: Take an A ∈ Z with q(A) > 0. Then qN (A∩N) > 0, hence pM (f−1[A∩N ]) > 0.
Using non-atomicity of (M,SM , pM ) there is B ∩ M ∈ SM such that B ∩ M ⊂ f−1[A ∩ N ] and
pM (f−1[A ∩N ]) > pM (B ∩M) > 0. Now, f being an isomorphism ensures f [B ∩M ] ⊂ A ∩N and
qN (A ∩N) > qN (f [B ∩M ]) > 0, which completes the proof.

Measure theoretically purely non-atomic spaces are not rare: The Lebesgue measure on [0, 1]
de�nes a purely non-atomic probability measure space. Moreover, we have

Proposition 3.4 ([41][p. 55). ] Every probability measure space (X,S, p), where X is a complete
metric space and S is the Borel σ-algebra, is isomorphic mod0 to the probability space [0, 1] with the
Lebesque measure � if (X,S, p) is purely non-atomic.

It is noteworthy that purely non-atomic probability spaces also have philosophically relevant
features: they are common cause complete in the sense that they contain a common cause of every
correlation Corr(X,S,p)(A,B) > 0, see [11], [21], [12], [17]. Thus common cause completeness also
satis�es the strong necessary condition to be probabilistic.

4 Conditioning and the Maxim of Probabilism

The general concept of conditioning in the measure-theoretic formalism is based on the notion of
conditional expectation, which was introduced into probability theory by Kolmogorov in [20] together
with his axiomatization. Given (X,S, p), and a σ-subalgebra A of S, a map

E (· | A) : L1(X,S, p)→ L1(X,S, p) (11)

is an A-conditional expectation on the set of integrable real-valued random variables L1(X,S, p) if
(i) for all f ∈ L1(X,S, p), the function E (f | A) is A-measurable; and (ii) it preserves the integral:∫
Z

E (f | A)dp =
∫
Z
f dp for all Z ∈ A. It is important that the conditional expectation exists

as a consequence of the Radon�Nikodym theorem but it is unique only up to p-probability zero.
Conditional expectations that di�er only on a p-probability zero set are called versions. P(· | A)
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denotes the restriction of E (· | A) to (the characteristic functions of) S. Conditional probabilities of
random events B ∈ S as real numbers are de�ned in this framework of conditioning in the following
manner:

Let qA be a probability measure on the Boolean sub-σ-algebra A that is absolutely continuous
with respect to the restriction of p to A. Then qA yields a density function g (the Radon�Nikodym
derivative), and the conditional probability q(B | A) of B ∈ S on condition that the probabilities of
events in A are given by the probability measure qA is, by de�nition

q(B | A) .=
∫
X

g P(χB | A) dp (12)

where χB is the characteristic (indicator) function of B. It can be shown (see e.g. [13]) that formula
(12) reduces to the Je�rey rule, if A is generated by a countable (measurable) partition of X, and
that the formula (12) yields Bayes' rule, if A is generated by one single event A on which qA takes
value 1, provided qA is absolutely continuous with respect to p. Thus conditionalization using the
notion of conditional expectation is a general form of Bayesian conditionalization.

One also �nds in the literature a somewhat controversial interpretation of this kind of conditioning
however: the value of the function P(χB | A) on x ∈ X is sometimes viewed as the �conditional
probability of B on condition {x}�:

P(χB | A)(x)︸ ︷︷ ︸
conditional probability of B on condition {x}

B ∈ S (13)

Since it can happen that the p-probability of {x} is zero, p({x}) = 0, the formula (13) would yield
then a conditional probability of B on the probability zero event {x}; which is regarded as a major
virtue of this �Kolmogorovian conditioning�.

It has been recognized in the mainstream literature on probability theory that this concept of
conditional probability with respect to probability zero conditioning events is not unproblematic
([27][p. 62]; [35][p. 153, 156]; �Di�culties and Curiosities� in [1][p. 437-439]). All the problems are
related to the fact that, since P(· | A) is the restriction of a version of the A-conditional expectation,
P(· | A) also is only a version: Di�erent versions yield di�erent values for P(χB | A)(x); in fact, if
p({x}) = 0, then for any real number r (in particular any real number r in [0, 1]) there is a version
such that this version yields r as the value of the �conditional probability of A on condition {x}�.
Which values are then the �real� conditional probabilities on condition {x}?

Another problem is that for a �xed x ∈ X the map

S 3 A 7→P(χA | A)(x) ∈ IR (14)

is not a countably additive map on S in general [27][p. 47], [1][p. 438-439]. So for a �xed x the map
(14) is not a probability measure on S; hence the values given by equation (13) are not probabilities
� if one takes seriously the Kolmogorovian speci�cation of what probabilities are: They are given
by a probability measure (which is countably additive). Saying that �. . . conditional probabilities
behave `essentially' like ordinary probabilities� [35][p. 156] is just acknowledging that they are not
probabilities.

One might want to say: The �real� conditional probabilities are the ones that are given by a
version for which the map in equation (14) is countably additive. A conditional probability P(· | A)
is called regular if the map in (14) is countably additive for p-almost all x [27][p. 46]. The problem
is that such a version might not exist: there exist probability spaces for which this happens [1][p.
438-439; 443].

These di�culties are well known. The reactions to the di�culties are mixed. Billingsley disre-
gards the di�culty, saying � . . . it does not matter that conditional probabilities may not, in fact, be
measures.� [1][p.439]. One reason why he sees this dismissal as being justi�ed is that one can show
that P(· | A)(x) is additive for an x that has positive p-measure [1][p. 439]. But this is not helpful
if one wishes to maintain that

�The whole point of this section [on conditional expectations] is the systematic development
of a notion of conditional probability that covers conditioning with respect to events of
probability 0. This is accomplished by conditioning with respect to collections of events �
that is, with respect to σ-�elds. . .� [1][p. 432]
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Rosenthal's assessment [35][p. 153] of this �accomplishment� amounts to acknowledging that the
goal has not been achieved.

Rao's reaction:

�All these studies show that conditioning in the general case is not simple, and the occa-
sional counterexamples served only to deepen the mystery of the subject.� [27][p. 62]

The alleged mystery involved in conditioning via conditional expectations disappears naturally how-
ever if one keeps in mind the Maxim of Probabilism: That a concept is genuinely probabilistic
only if it is invariant with respect to measure-theoretic isomorphisms:

Assume that (X,S, p) and (Y,Z, q) are strictly isomorphic via a strict isomorphism f : X → Y .
Let A be a sub-σ-�eld of S. Then A is taken by f into a sub-σ-�eld f [A] .= {f [A] : A ∈ A}. Consider
versions E (· | A) and E (· | f [A]) of the conditional expectations

E (· | A) : L1(X,S, p)→ L1(X,S, p) (15)

E (· | f [A]) : L1(Y,Z, q)→ L1(Y,Z, q) (16)

Assume that there is x0 ∈ X such that p({x0} = q({f(x0)} = 0. Then for a g ∈ L1(X,S, p) either

E (g | A)(x0) 6= E (f ◦ g | f [A])(x0)

or, if
E (g | A)(x0) = E (f ◦ g | f [A])(x0)

then we can take another version E ′(· | A) such that

E ′(g | A)(x0)
.
= E (g | A)(x0) + r for r 6= 0

and then
E ′(g | A)(x0) 6= E (f ◦ g | f [A])(x0)

This means that the concept of a particular version of the conditional expectation (or rather the
value of a version at a given point) is not invariant with respect to strict isomorphisms.

But de�nition (12) does yield a unique probability value: whichever version of P(· | A) one takes in
(12), since the p-integral is insensitive to p-measure zero di�erences, the conditional probability de�ned
by (12) is the same. This can be expressed formally by stating that the conditional expectation is
unique if considered as a map on the space of equivalence classes of integrable random variables, where
the equivalence relation is �equal except on p-probability zero set�. Consequently, the conditional
probability values provided by the (unique) conditional expectation lacks the ambiguity involved in
versions. And this can also be expressed in terms of the Maxim of Probabilism: Using the fact
that a mod0 isomorphism generates an isomorphism of the spaces of equivalence classes of integrable
random variables, one can show [14] that the conditional expectation is invariant with respect to
mod0 isomorphisms � and so are the conditional probabilities de�ned by it in the manner of (12).

So the situation is the following:

(i) The concept of conditional expectation viewed on the space of equivalence classes of functions
satis�es the necessary condition for a concept to be strongly probabilistic.

(ii) The notion of version of a conditional expectation does not satisfy the necessary condition for
a concept to be even weakly probabilistic.

So the �mystery� Rao mentions is explained by the fact that speci�c versions of conditional expecta-
tions are not determined probabilistically, they are not purely probabilistic. There is no �canonical
version� of a conditional expectation in general, choosing a particular version can only be motivated
by considerations that involve non-probabilistic elements. This consequence of theMaxim of Prob-

abilism also helps in understanding certain features of the Borel-Kolmogorov Paradox. We discuss
this in the next section on the basis of [10].

5 The Maxim of Probabilism and the Borel-Kolmogorov

Paradox

The Borel-Kolmogorov Paradox arises from the question �What is the conditional probability on a great
circle on a sphere in 3 dimension if on the sphere one assumes the uniform probability measure?� One
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might have the intuition that the conditional probability in question is determined and is the uniform
probability. But the usual de�nition of conditional probability by the ratio formula (on which Bayes'
rule is based) does not yield any conditional distribution on the great circle because any great circle
has probability zero in the uniform measure on the sphere. This tension between the intuition and
the de�nition of conditional probability by the ratio formula is the Borel-Kolmogorov Paradox. It
has been extensively discussed both in probability theory proper (see [20][p. 50-51], [1][p. 441], [4],
[5][p. 203], [25], [26], [27][p. 65], [37]), and in the literature on philosophy of probability (see [3][p.
100-104], [7], [15], [19][p. 470], [18], [22], [10]2, [34], [36]).

Kolmogorov [20][p. 50-51] argued that the paradox is resolved if one conditionalizes using the
concept of conditional expectation: He speci�ed a σ-�eld A on the sphere containing the great circle
and calculated a version of the corresponding A-conditional expectation determined by the σ-�eld
A and by the uniform probability on the sphere. This version yields a conditional probability on
the great circle, but this conditional probability is not the uniform probability on the great circle.
Although this is counterintuitive, it is a consequence of how Kolmogorov chose the σ-�eld A; and
one can show [10] that choosing a di�erent σ-�eld B one obtains a version of the corresponding B-
conditional expectation that does yield the uniform conditional probability on the great circle. It
was argued in [10] that obtaining both a non-uniform and the uniform conditional probability on the
great circle is not a contradiction because the respective two σ-�elds A and B are not isomorphic,
hence they represent di�erent conditioning conditions. More importantly: both the uniform and
the non-uniform conditional probability on the great circle are given by speci�c versions of the
respective A- and B-conditional expectations. And since versions of the conditional expectations
are not determined probabilistically (as shown in section 4), neither the Kolmogorovian non-uniform
conditional probability, nor the uniform conditional probability on the great circle are determined
probabilistically by the facts that (i) one has the uniform probability on the sphere and (ii) one �xes
as conditioning σ-�elds A or B.

This undeterminateness of the conditional probability on the great circle, even in the framework
of conditioning via conditional expectations, is concealed by the deceptive determinatness of the
versions of the A- and B-conditional expectations. This seeming determinatness of the versions
is due to the fact that the sphere is a two-dimensional surface, and this allows integrating two-
place functions on the sphere with respect to one variable. It is this particular structure of the
probability space on the sphere that leads to a natural selection of a version of the A-conditional
expectations featuring in Kolmogorov's resolution � and also of the B-conditional expectations yielding
the uniform conditional probability on the great circle (see [10] for details). But linear dimension is not
a property that is invariant with respect to measure-theoretic isomorphisms mod0: The probability
measure space consisting of the two-dimensional sphere with the uniform probability on its Lebesgue
measurable sets is a purely non-atomic probability space, with the sphere being a complete metric
space; hence Proposition 3.4 applies, and so the sphere with its uniform probability is isomorphic
mod0 with the unit interval with the Lebesgue measure on it. In this latter probability space there
is no natural selection of a version of the conditional expectation that corresponds to the version of
the A-conditional expectation Kolmogorov chose, nor is there a natural choice of a version of the
conditional expectation that corresponds to the version of the B-conditional expectation that yields
the uniform conditional probability on the great circle. The Maxim of Probabilism tells us then
that selecting either the version in the Kolmogorov resolution or in the resolution yielding the uniform
conditional probability on the great circle does not satisfy the necessary condition to be even weakly
probabilistic: the selections involve non-probabilistic features of the situation.

The upshot is that the Maxim of Probabilism tells us that the conditional probability on
any given great circle is probabilistically genuinely undetermined by the assumption of the uniform
probability on the sphere. Tacit, non-probabilistic reasonings (e.g. symmetry considerations [10])
play a role in in�uencing our intuition that the conditional probability on a great circle is determined
probabilistically by the uniform probability on the sphere. But the group-theoretic structure of the
sphere on which the symmetry considerations are based is also not invariant with respect to measure-
theoretic isomorphisms.

2The paper [40] points out an important technical error in [10].
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6 Concluding comments

The Maxim of Probabilism only gives a necessary condition to be satis�ed by a concept in order
to qualify as probabilistic. Why not su�cient as well? If one views mathematical concepts as origi-
nating in the attempts to describe natural and social phenomena (as for instance von Neumann saw
mathematics [28]), then no su�cient and necessary conditions are feasible that relate a mathematical
structure exclusively to a speci�c circle of phenomena because typically there is a large variety of
phenomena whose main features are described by the same mathematical structure. This is so with
(bounded) measure theory as well: A lot of diverse phenomena can be described mathematically in
terms of bounded measure theory in addition to those that can be regarded as probabilistic in an
intuitive sense.

Viewed from this empiricist perspective, Reichenbach's attempt at axiomatizing probability theory
aims at specifying a mathematical structure that is richer than measure theory, embodying extra
content, the extra content being the frequency interpretation. This leads to the di�culty that a
�nite frequency interpretation is too constraining and one has to allow that probabilities are limits
of relative frequencies in in�nite ensembles � but this latter view does not have a direct empirical
basis. So Reichenbach creates one arti�cially by formulating the transcendental (non-empirical)
principle of lawful distribution (Axiom of Induction). By assigning a major function to this principle
in foundations of probability theory Reichenbach moves away from empiricism; on the other hand,
insisting on expressing the frequency content in the mathematical axioms of probability theory he
tried to remain very close to an empiricist position. We regard this tension the fundamental reason
for the di�culties in his foundational work on probability, which however is still a rich source of
inspiration � as we hope the idea of utilizing the notion of isomorphism in foundations of probability
shows.
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