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Abstract 
Niche construction theory (NCT) aims to transform and unite evolutionary biology and ecology. 
Much of the debate about NCT has focused on construction. Less attention has been accorded to 
the niche: what is it, exactly, that organisms are constructing? In this paper I compare and 
contrast the definition of the niche used in NCT with ecological niche definitions. NCT’s concept 
of the evolutionary niche is defined as the sum of selection pressures affecting a population. So 
defined, the evolutionary niche is narrower than the ecological niche. Moreover, when 
contrasted with a more restricted ecological niche concept, it has a slightly different extension. I 
point out three kinds of cases in which the evolutionary niche does not coincide with realized 
ecological niches: extreme habitat degradation, commensalism, and non-limiting or super-
abundant resources. These conceptual differences affect the role of NCT in unifying ecology and 
evolutionary biology.  
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Introduction 
The past thirty-odd years have seen the development of a new player in the field of evolutionary 

theory, niche construction theory (NCT). The general principle underlying NCT is that organisms 

can directly influence evolutionary processes by altering their environments. Specifically, niche 

construction is the process by which organisms make changes to the environment, relocate to a 

different environment, or in any other way alter the environment experienced by the focal 

organism, its conspecifics, or members of another species (Odling-Smee, Laland, and Feldman 

2003). Niche construction, it is argued, affects the direction and speed of evolutionary change 

and should therefore be considered alongside natural selection as an important evolutionary 

process.  

Much of the debate about NCT has focused on the evolutionary significance of niche 

construction (Laland and Sterelny 2006; Laland et al. 2014; Scott-Phillips et al. 2014). In 

addition, recent theoretical work has considered what sorts of phenomena can count as niche 

construction and how different sorts of niche construction can be defined (Chiu and Gilbert 

2015; Aaby and Ramsey 2019; Fabry 2021). In contrast, little attention has been accorded to the 

concept of niche used in NCT (though see Stotz 2017). This is despite the fact that the definition 

of niche employed in NCT is at least superficially distinct from standard definitions of the 

ecological niche.  

Ecologists typically define the niche in terms of the environmental factors that are tolerated 

or required by individuals, populations or species (e.g., Begon, Townsend, and Harper 2006, 31). 

In contrast, in NCT the niche is defined as the sum of selection pressures affecting a population 

(Odling-Smee, Laland, and Feldman 2003, 40). Why does NCT not make use of a standard 

ecological niche definition? Is the NCT niche definition really just a simple translation from 

ecological to evolutionary terms, as its proponents suggest? Does the NCT niche definition make 

a difference for how niche construction is defined and understood?  
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One reason to ask these questions stems from an additional claim associated with NCT. 

According to its proponents, NCT will not only transform evolutionary theory, but may also help 

to integrate evolutionary biology and ecology (Odling-Smee, Laland, and Feldman 2003, 26). 

This unifying potential is jeopardized by the use of ecological terms in non-standard ways. If 

there are not only superficial but also substantial differences between the NCT niche and the 

ecological niche, it may be that models, theories and empirical findings in one field cannot be 

directly transferred to the other without adjustments and exceptions. Hence, assessing the 

unificatory potential of NCT requires investigating the niche. 

In this paper I critically examine NCT’s definition of the niche and how it compares to 

standard ecological definitions. I focus on NCT as expounded by John Odling-Smee, Kevin Laland, 

and Marcus Feldman in their book Niche Construction (2003). There have been more recent 

theoretical developments. As I mention later in the paper, it would be an interesting project to 

determine what niche concepts are used in other accounts of niche construction and how they 

compare to both the Niche Construction evolutionary niche and the ecological niche. 

Nevertheless, Niche Construction continues to be regarded and used as a key resource in the field 

and therefore deserves investigation.  

In the section “Niche Construction and the Evolutionary Niche”, I introduce NCT’s 

evolutionary niche and argue that it supports their claim that niche construction is significant 

for evolution. From there, I move in the section “Introducing the Ecological Niche” to develop a 

conception of the ecological niche. In “Contrasting Niches” I compare and contrast the 

evolutionary niche and ecological niche. Once the ecological niche is defined in a restricted way 

as the realized population niche, there is considerable overlap with the evolutionary niche. 

Nevertheless, some areas of non-coincidence remain. In the section “Three Cases of Non-

Coincidence” I identify and provide examples of three sorts of non-coincidence: habitat 

destruction, commensalism, and non-limiting resources. The evolutionary niche is therefore not 

a straightforward translation from ecology to evolution, since the extension shifts in the process 

to include some new instances of niches and exclude many others. I conclude in “Niche 

Construction Across the Conceptual Divide” by assessing what these differences in extension 

mean for niche construction. Any unificatory work between ecology and evolution, whether 

through NCT or another approach, must take into account the differences between the ecological 

and the evolutionary niche.  

Niche Construction and the Evolutionary Niche  
Niche construction includes activities such as those when “organisms […] take energy and 

resources from environments, make micro- and macrohabitat choices with respect to 

environments, construct artifacts, emit detritus and die in environments” (Odling-Smee, Laland, 

and Feldman 2003, 1). Odling-Smee, Laland and Feldman identify two sorts of niche 

construction. First, perturbational niche construction occurs when organisms bring about 

changes in the environment. Second, relocational niche construction occurs when organisms 

change the environment with which they interact by moving to a new location or through 

selective interaction with certain environmental factors. Both perturbational and relocational 

niche construction share the consequence that the organism is exposed to a different 

environment.  

In calling relocation and perturbation niche construction, NCT proponents stress the way 

that organisms alter not only their environment, but their niche. Odling-Smee, Laland and 

Feldman define the niche as such: “We will treat the niche of any population as the sum of all the 

natural selection pressures to which the population is exposed.” (Odling-Smee, Laland, and 

Feldman 2003, 40) They call this the evolutionary niche. 
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Evolutionary Niche. The niche is the sum of the selection pressures affecting a population.  

Alternative names include “selective niche” (Stotz 2017; Uller and Helanterä 2019), or “selective 

environment” (Jablonka 2011). Indeed, NCT’s evolutionary niche is remarkably similar to Robert 

Brandon’s concept of selective environment. Brandon defines the selective environment as an 

area where a population experiences a homogenous selection pressure (Brandon 1990). The 

selective environment is therefore defined in distinction to what Brandon calls an “ecological 

environment” (not to be confused with ecological niche), an area where organisms of a 

particular type have a homogenous absolute fitness even if their relative fitness varies in that 

area. Brandon’s concept of selective environment could be used to add greater precision to the 

evolutionary niche of NCT by clarifying which changes in the external environment count as 

changes in the selection pressures affecting a population. On the other hand, using the term 

“niche” emphasizes the proximity to ecological theories, a point to which I return later.  

The definition of the evolutionary niche is pivotal for NCT. First, it has the consequence that 

not just any changes made to the environment count as niche construction. Only those 

environmental changes that also change the acting selection pressures alter the evolutionary 

niche and hence are instances of niche construction. In addition, environmental modifications 

with wide-scale and long-term effects become especially important (Odling-Smee, Laland, and 

Feldman 2003, 42). Changes in the environment that are inherited by future generations, so-

called ecological inheritance, affect not just a particular individual’s survival and reproduction 

but also that of individuals in generations to come. Niche construction with ecological 

inheritance is therefore more paradigmatic since it involves a noteworthy change in selection 

pressures.  

Second, defining niche construction as a process of altering evolutionary niches is crucial 

for NCT’s claims to evolutionary importance. Selection pressures are factors that lead to fitness 

differences within a population and thereby determine the direction, rate, and likely outcome of 

natural selection. In concert with other evolutionary processes such as drift and migration, 

natural selection determines the evolution of populations. It follows that niche construction, as 

an activity altering selection pressures, can change the direction, rate, and outcome of natural 

selection and hence affect evolution—provided other evolutionary processes aren’t dominating. 

Add to this some empirical information about the prevalence of niche construction, and we can 

readily conclude that it is an important evolutionary process.  

The evolutionary niche is therefore a primary element in the argument for the evolutionary 

significance of niche construction. Indeed, one might suspect that the evolutionary niche has 

been defined precisely to ensure that niche construction is an evolutionary process. This is, of 

course, not what NCT’s proponents claim. They argue that the evolutionary niche is “a simple, 

pragmatic, and minimalist definition” derived by highlighting the evolutionary aspects of 

ecological definitions of the niche (Odling-Smee, Laland, and Feldman 2003, 40). It is to this 

claim that I will turn for the remainder of the paper. First, however, we should briefly consider 

alternative characterizations of niche construction.  

The conception of niche construction due to Odling-Smee, Laland and Feldman is broad, 

covering anything from respiration and digestion to building complex structures in the 

environment and even social and cultural processes. This has generated debate about whether 

all such activities should be labelled “construction” (Okasha 2005; Archetti 2015). Biologists 

often restrict niche construction to activities that cause changes in environmental factors or 

structures, such as building a dam or a nest. These cases are the most intuitive instances of niche 

construction, parallel to “construction” in the literal sense of building houses and roads.  

On the other hand, some authors have argued that the term “niche construction” has an 

even wider scope, including not only perturbation and relocation but also alterations in an 



 4 

organism’s phenotype, since any of these changes ultimately alter the niche (Lewontin 2000; 

Chiu and Gilbert 2015; Aaby and Ramsey 2019). In addition, evolutionary-developmental 

biologists recognize other ways in which an altered environment can affect evolutionary 

processes. For instance, changes in the environment can affect the sorts of variation available to 

be selected. As Karola Stotz (2017) argues, accounting for these elements of evolutionary 

processes requires distinguishing selective and developmental niche construction. 

In this text I concentrate on the niche construction concept from Odling-Smee, Laland and 

Feldman, and thus on perturbation and relocation. This restriction is significant, because other 

accounts that exclude relocation, include phenotypic changes, or distinguish different types of 

niche construction may be working with slightly different concepts of the niche. I return briefly 

to this below (see “Contrasting Niches”). For now, we can work with the evolutionary niche 

defined in terms of selection pressures and proceed to the comparison with the ecological niche. 

Introducing the Ecological Niche 
The ecological niche is itself subject to considerable debate. The concept has undergone a 

number of redefinitions since being coined at the start of the 20th century (Griesemer 1992; 

Pocheville 2015). Discussions continue about how to understand and operationalize the niche, 

and even whether it is a useful concept at all (Mikkelson 2005; Kearney 2006; Holt 2009; 

McInerny and Etienne 2012; Wennekes, Rosindell, and Etienne 2012). There are nevertheless 

some fairly well accepted formulations of the niche which we can use for present purposes. In 

this section I will develop a rough basic definition that can be specified and adjusted to generate 

more specific ecological niche concepts. This will allow us in the following section to begin a 

comparison to the evolutionary niche. 

The simplest place to start is with textbooks. One widely used ecology textbook defines the 

niche as “the conditions and resources needed by an individual or a species in order to practice 

its way of life.” (Begon, Townsend, and Harper 2006, 31) Another states that “the niche 

summarizes the environmental factors that influence the growth, survival, and reproduction of a 

species. In other words, a species’ niche consists of all the factors necessary for its existence—

approximately when, where, and how a species makes its living.” (Molles 2015, 200) Generally, 

then, in textbooks the niche is defined by the requirements for a species, and perhaps also an 

individual, to live the way it typically does. 

The textbook definitions focus on requirements, but other conceptualizations of the 

ecological niche include both conditions that organisms need as well as those they can tolerate. 

This is evident in what has become a theoretical standard for the ecological niche. In his 

“Concluding Remarks,” G. Evelyn Hutchinson defines the niche as “an n-dimensional 

hypervolume […] every point in which corresponds to a state of the environment which would 

permit the species S1 to exist indefinitely.” (Hutchinson 1957, 416) In essence, the niche 

includes the factors in the environment that allow a species to persist, represented as ranges 

along numerically defined niche dimensions. The factors that permit persistence cover 

conditions the species can tolerate, such as a specific temperature range, as well as resources 

they need to consume, such as a particular prey size. So far, this largely agrees with the textbook 

definitions, minus the references to ways of life and to individuals and adding tolerances as well 

as requirements. 

Hutchinson introduced an additional distinction between the fundamental and the realized 

niche, a difference in modality. The fundamental niche is defined by the requirements and 

tolerances of a species regardless of where it actually lives, representing conditions under which 

the species could persist. The realized niche is the portion of the fundamental niche which the 

species actually realizes given interspecific competition and dispersal limitations (Hutchinson 
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1957, 418–419). It therefore represents only the conditions relevant to the species’ actual 

persistence in the community.  

Hutchinson’s niche concept is decidedly complex—it includes any factors that affect where 

a species can or does persist. Its operationalization has required significant simplification. 

Typically, niches are modelled using one or at most a few dimensions at once. For instance, 

species distribution modelling or ecological niche modelling involves correlating the actual 

distribution of a species with values for readily measurable environmental conditions such as 

rainfall, temperature, light, or mineral abundance (Elith and Leathwick 2009). Well-constructed 

models can explain and predict species distributions, but they rarely include biotic interactions 

and hence do not represent the entirety of a species’ niche (Araújo and Guisan 2006; Elith and 

Leathwick 2009; McInerny and Etienne 2012). Observations of resource use are another 

operationalization of the niche concept, this time with attention to biotic rather than abiotic 

factors (Feinsinger, Spears, and Poole 1981; Smith 1982; Schoener 1989). Finally, mechanistic 

niche models use information about organisms’ physiology, morphology, and behavior in order 

to determine requirements and tolerance limits for factors such as temperature and humidity 

(Leibold 1995; Kearney 2006).  

In standard operationalizations of the niche concept, the resource or environmental 

condition is construed as one dimension in the multi-dimensional niche space. If the actual 

resource use or tolerance is studied, for instance by gut content analysis or observation of 

distribution, the resulting graph corresponds to a dimension of the realized niche. In contrast, if 

the tolerances or requirements of the species are determined experimentally, for instance by 

growing a species under many different temperature regimes, this reveals a fundamental niche 

dimension.  

In addition to its simplified operationalizations, there are a number of theoretical variations 

on Hutchinson’s niche concept. For instance, ecologists have modified Hutchinson’s definition to 

accommodate individuals having their own niches, so-called individual or individualized niches 

(Bolnick et al. 2003; Sargeant 2007; Violle et al. 2012; Layman, Newsome, and Gancos Crawford 

2015). This development is reflected in the first textbook definition cited above, which referred 

to the conditions needed by individuals as well as species. Other extensions or modifications 

have also been proposed, such as the establishment niche, representing conditions allowing a 

population to first become established (Holt 2009), the developmental niche, representing 

conditions involved in reproducing the life cycle (Stotz 2017), and the social niche, representing 

only interactions with conspecifics (Saltz et al. 2016).  

We have then a collection of definitions: textbook definitions, a theoretical standard, its 

operationalizations, and several extensions and modifications. To facilitate a comparison 

between ecological and evolutionary niches, I will propose a rough basic definition of an 

ecological niche.  

Ecological Niche. The niche is the environmental conditions, both biotic and abiotic, that 

permit the continued existence of an individual, population or species. 

Importantly, the requirements and tolerances of the individual, population or species determine 

which conditions permit conditions existence. This rough definition can serve as a template for 

other, more specific and more complete, definitions of the ecological niche. For instance, it can 

be specified into realized and fundamental niches by referring to conditions that permit actual 

continued existence or conditions that could permit continued existence, respectively. The 

definition can also be decomposed into individual, population and species niches. Finally, it is 

easy to modify the definition in order to refer just to social niches (where the environmental 

conditions only include interactions with conspecifics), establishment niches (by referring to 

establishment rather than continued existence), or developmental niches (development rather 
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than continued existence). Some of these specifications, decompositions and modifications of the 

ecological niche will prove relevant in the comparison to evolutionary niches.  

Contrasting Niches  
In introducing their definition of the evolutionary niche, Odling-Smee, Laland and Feldman say 

that it is a simple translation of the ecological concept into evolutionary terms. This translation, 

they write, involves taking the standard ecological definition of a niche and replacing the 

ecological factors—the conditions and resources which are tolerated or required—with 

selection pressures. Specifically, they state that their translation of Hutchinson’s niche 

differs only in that the fundamental niche is now treated as a set of “n” natural selection 

pressures relative to its occupant, in addition to being a hypervolume of resources and 

tolerance limits relative to its occupant, the former being merely the evolutionary aspect 

of the latter. (Odling-Smee, Laland, and Feldman 2003, 40) 

In this section I argue that the evolutionary niche is not a simple translation of the ecological 

niche into ecological terms because the ecological niche is significantly broader in scope than the 

evolutionary niche. 

Let us first see the two definitions together, using the basic definition of the ecological niche 

introduced above. 

Evolutionary Niche. The niche is the sum of the selection pressures affecting a population. 

Ecological Niche. The niche is the environmental conditions, both biotic and abiotic, that 

permit the continued existence of an individual, population or species. 

There are some obvious disparities between these definitions. First, the evolutionary niche only 

refers to populations, whereas the ecological niche also allows individuals and species to have 

niches. This is perhaps unsurprising, since only Hutchinson’s standard definition was cited as a 

source for the evolutionary niche, and Hutchinson focused on populations (though his later work 

does acknowledge that individual variation affects niches; Hutchinson 1978, 175-81). It is an 

interesting question whether an individualized evolutionary niche could be defined. I will 

however postpone this consideration and questions about species niches, and instead limit the 

comparison to population ecological niches, thereby removing the first discrepancy. 

The second major difference between the evolutionary and the ecological niche is in 

modality. The former is about the selection pressures actually affecting a population. The latter, 

as we are already aware, can be understood in terms of the realized niche or the fundamental 

niche. While the realized niche is also about actuality, the fundamental niche has a different 

modality: it involves environmental conditions under which a population could but may not 

actually persist. The evolutionary niche is therefore not identical to the fundamental niche, in 

contrast to the quote above from Odling-Smee, Laland and Feldman. Only when we restrict our 

attention to the realized ecological niche, which represents the environmental conditions 

permitting the population’s actual persistence, do we have something closer in modality to the 

evolutionary niche.  

The third divergence between evolutionary and ecological niches is that between selection 

pressures on the one hand and environmental factors permitting continued existence on the 

other. This difference remains even when we focus on the realized population ecological niche.  

Evolutionary Niche. The niche is the sum of the selection pressures affecting a population. 

Realized Population Ecological Niche. The niche is the environmental conditions, both biotic 

and abiotic, that permit the actual continued existence of a population. 

Here we arrive at the crux of the comparison. How do selection pressures relate to 

environmental conditions which permit actual continued existence? Are the former simply the 

“evolutionary aspects” of the latter? 
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There is more similarity between selection pressures and environmental conditions 

permitting persistence than it might initially seem. As introduced earlier, selection pressures are 

factors that bring about fitness differences in a population. Fitness differences in a population 

occur as a result of variation in phenotypic traits in a specific environmental context, as well 

as—depending on one’s definition of fitness—chance events that affect individuals’ reproductive 

success. Yet NCT proponents classically focus only on the way that environmental factors are 

changed, not on how phenotypic changes alter selection pressures (though recall that 

phenotypic change has been included by some authors; Lewontin 2000; Chiu and Gilbert 2015; 

Aaby and Ramsey 2019). This focus on the environment fits with a standard, though contested, 

understanding of natural selection, according to which phenotypic features are selected and the 

factors doing the selecting are environmental. On this view, selection pressures are simplified to 

environmental factors that, given the phenotypes present in a population, lead to fitness 

differences in that population (Wells 2015, 555; Uller and Helanterä 2019, 353).  

The externalist interpretation of the evolutionary niche not only accords with the 

concentration in NCT on environmental rather than phenotypic change, but also allows for a 

more straightforward comparison to the ecological niche. Now we can ask: are the 

environmental conditions which lead to fitness differences in a population the same as the 

environmental conditions which permit population persistence? 

Externalist Evolutionary Niche. The niche is the (sum of the) environmental factors that lead 

to fitness differences in a population. 

Realized Population Ecological Niche. The niche is the environmental conditions, both biotic 

and abiotic, that permit the actual continued existence of a population. 

Certainly, many conditions that lead to fitness differences also permit population 

persistence, and vice versa. From Darwin’s finches in the Galápagos Islands to peppered moths 

in darkening industrial Britain, conditions that induce selection often still permit population 

persistence, albeit with a preference for particular types of individuals in the relevant 

population. Even examples relevant to niche construction usually coincide. The beaver building 

its dam, the earthworm shifting soil, or the bird making its nest: they alter both their selective 

environments and the resources they consume or the conditions they are tolerating. Many 

similar instances of overlap can be found amongst standard cases from evolutionary biology and 

ecology. 

It is also not untoward to talk about fitness when explaining population persistence. 

Population persistence requires that the population does not consistently decline. Assuming no 

migration, population decline occurs when fewer offspring are produced than there are in the 

parental generation. In other words, population decline occurs when, over multiple generations, 

absolute fitness is on average lower than one. Population persistence therefore occurs when the 

average absolute fitness for individuals in the population is greater than or equal to one (Leibold 

1995; Kearney 2019). Yet an average absolute fitness of one or more, the condition defining 

population persistence, is not identical to the existence of fitness differences, the condition 

defining selection pressures. Indeed, as I show below, factors that lead to an average fitness of 

one or more do not necessarily contribute to fitness differences, and vice versa.  

Before moving to contrast the externalist evolutionary niche and the realized population 

ecological niche, we should take stock. We have already discovered some differences between 

the evolutionary and the ecological niche. First, the subjects differ: whereas the evolutionary 

niche is restricted to populations, the ecological niche also includes individuals and species. 

Second, the modality differs: evolutionary niches are actual, whereas ecological niches can refer 

to both actuality and possibility. Hence, the ecological niche is broader than the evolutionary 

niche. An interesting question is how a non-externalist definition of the evolutionary niche might 
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compare to standard ecological niche definitions. There may be greater similarities, especially 

given that both non-externalist selection pressures and ecological requirements and tolerances 

are determined by phenotypic traits. This is an important point for further research. For now, 

we can examine the restricted contrast between the externalist evolutionary niche and the 

realized population ecological niche. 

Three Cases of Non-Coincidence 
In this section I show that there are some instances where the two sorts of conditions—those 

that lead to fitness differences and those that permit population persistence—do not coincide. 

On the one hand, there are environmental conditions that lead to fitness differences but do not 

permit population persistence. The primary example I discuss is habitat degradation. On the 

other hand, there are environmental factors that permit population persistence but do not lead 

to differential fitness. I consider the examples of commensalism and non-limiting resources, but 

it may be that certain dimensions of developmental niches also fit the bill (Stotz 2017). These 

different sorts of non-coincidence are depicted in Figure 1. I will discuss each in detail, 

illustrating them with empirical examples.  

 

 
Figure 1. Contrast between environmental conditions included in evolutionary and ecological niches. Although there is 
considerable overlap between environmental conditions that lead to fitness differences and those that permit 
population persistence, there are some exceptions. Three types of cases are identified here: (i) habitat degradation, 
(ii) commensalism, and (iii) non-limiting resources. 

Case 1. Habitat Degradation 
The first example of non-coincidence involves conditions which lead to population decline. 

Environmental conditions that bring about population decline, especially rapid decline so that 

populations are threatened with extinction, certainly do not count as parts of the realized 

ecological niche. The ecological niche only includes those conditions that permit population 

persistence—conditions which the population requires or can tolerate—not those that threaten 

to end a population’s continued existence. Yet conditions that bring about population decline 

often also bring about fitness differences, that is, they exert selection pressures; such conditions 

count as parts of the evolutionary niche. Organisms that create conditions which threaten their 

own population’s persistence can therefore still be performing niche construction, even if they 

generate environmental conditions that lie outside their ecological niche. A good example of this 

sort of niche construction is habitat destruction. 

Grazers and foragers are known for causing habitat destruction, as an example from a 

population of geese illustrates. Since the 1970s there has been a boom in numbers of lesser 
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snow geese (Chen caerulescens caerulescens), caused primarily by increased availability of food 

in wintering and stopover areas due to agricultural changes (Peterson et al. 2013). This 

population increase has had dramatic effects on arctic salt marshes. Grazing and grubbing 

(digging for roots) by the over-abundant geese led to rapid and long-lasting degradation of the 

habitat driven by vegetation loss and salinification (Srivastava and Jefferies 1996). Most geese 

responded by moving to new areas where vegetation is intact, but habitat degradation has led to 

reduced fitness of geese still breeding in those areas (Aubry et al. 2013). At some point it is likely 

that the geese will exhaust the supply of new vegetated areas, especially given the changes in 

vegetation occurring with climate change (Aubry et al. 2013). At this point, their population 

would be threatened with extinction. Such effects have been witnessed in other systems more 

heavily influenced by humans, such as the aridification of the Sahel following overgrazing by 

livestock (van de Koppel, Rietkerk, and Weissing 1997; Hein and De Ridder 2006).  

Depleted resources in an overgrazed area exert a selection pressure on a population that 

remains there and is hence part of the population’s evolutionary niche. However, it is unlikely 

that a population can persist in the barren regions that were once salt marshes or grasslands. 

Since the environmental conditions in degraded habitats do not permit population persistence 

but rather endanger it, they are not part of the population’s ecological niche. We have an 

example where the environmental and ecological niche do not overlap. In particular, overgrazing 

is a case of evolutionary niche construction that does not construct but rather destroys an 

ecological niche. 

Odling-Smee, Laland and Feldman actually recognize this phenomenon when they speak of 

“negative niche construction” (2003, 47–48). They argue that most niche constructing activities 

can be expected to increase fitness, but that some activities, especially in the long run, might lead 

to an overall decrease in fitness. An example they provide is the buildup of pollution or detritus. 

Negative niche construction is still niche construction since it alters the evolutionary niche. 

However, negative niche construction can shift a population into an environment where it 

cannot persist, that is, shift it out of its ecological niche. 

Case 2. Commensalism 
The remaining examples of non-coincidence concern the other side of the contrast: cases of 

environmental factors which permit population persistence but do not lead to fitness 

differences. One primary example is commensalism. Commensalism is usually defined as a 

relationship between organisms of different species in which one species obtains a benefit from 

the other without causing it any benefit or harm (Casadevall and Pirofski 2000; Leung and 

Poulin 2008). Benefit and harm can be defined and measured in various ways, including tissue 

damage, immune responsivity, metabolic rates, condition, behavior, and fitness (Casadevall and 

Pirofski 2000; Leung and Poulin 2008). For obvious reasons, I will focus on fitness effects.  

The species which obtains the benefit from a commensal relationship represents a neutral 

environmental condition for its host. The commensal relationship does not exert any selective 

pressure on the hosts, since the hosts are neither harmed nor benefitted by the relationship. 

Commensal relationships are therefore not part of the evolutionary niche. Commensalisms also 

tend not to be included in ecological niche models, where tolerances are often restricted to 

abiotic conditions. Yet they do permit population persistence, so they should count as part of the 

ecological niche. Specifically, commensalisms are non-constraining factors (Hurlbert 1981), that 

is, variables that in many cases are neglected in favor of more decisive factors determining 

resource use, species distribution and community composition.  

Identifying whether a relationship is truly commensal is very difficult in practice (Leung 

and Poulin 2008). In particular, isolating fitness effects, or lack thereof, in experiments often 
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does not reflect the complicated interactions between environmental factors that can occur in 

the field. An example from plant-insect interactions highlights the complexity of commensalism, 

chosen because of its clear causal structure.  

Experimental studies have shown that wild tobacco (Nicotiana attenuata) fitness is not 

affected by infestation with the herbivorous Tupiocoris notatus mirid bug (Kessler and Baldwin 

2004). This lack of effect is explained by the upregulation of photosynthesis in non-damaged 

tissue in response to mirid attack, compensating for loss of photosynthetic activity in damaged 

tissue (Halitschke, Hamilton, and Kessler 2011). One might be tempted, as I was, to conclude that 

the presence of T. notatus is part of wild tobacco’s ecological niche without exerting a selective 

pressure. However, the reaction to T. notatus simultaneously confers an increased resistance to 

other, more damaging, herbivorous insects, notably Manduca hornworms. Observed in the field, 

plants affected only by hornworms have a much lower fitness than those affected by both mirids 

and hornworms, due to the plant’s defensive reaction to the mirid bugs (Kessler and Baldwin 

2004). Hence, the presence of mirids together with hornworms exerts a selective pressure on 

wild tobacco, selecting for the traits that allow it to respond to mirids in a way that confers 

resistance to hornworms. Given that both mirids and hornworms are typically co-present (to 

varying degrees), this means the presence of T. notatus is part of both the realized ecological 

niche and the evolutionary niche of wild tobacco. 

Mirid bugs are however not always mutualists. Another study of mirid bug effects on a 

different plant species that lacks wild tobacco’s photosynthesis reaction identifies a commensal 

relationship. It has been shown that T. notatus infestation of the American perennial Datura 

wrightii do not lead to differences in fitness of affected plants (Hare and Elle 2002). In addition, 

no interaction effects were noted between T. notatus and other herbivores present on the 

affected plants. The authors take this as an indication that T. notatus does not exert a selective 

pressure on D. wrightii. This means, for instance, that D. wrightii morphs which are susceptible 

to T. notatus (“sticky” plants with glandular trichomes) are not selected against, at least not 

because of their increased susceptibility. The authors of the study suggest that this surprising 

result may be explained by the greater importance of the size and persistence of leaf canopies 

for fitness, traits which are not negatively affected by the piercing-sucking mirid bugs. Despite 

not leading to fitness differences, mirid bugs are certainly present in the native habitat of D. 

wrightii. Hence, assuming there are no other interactive effects that weren’t measured in the 

study, we seem to have an example of an environmental condition that is part of D. wrightii’s 

realized ecological niche—it is tolerated by D. wrightii populations—but not its evolutionary 

niche 

For D. wrightii, mirid bugs are an example of a naturally occurring commensal. There are 

many more examples of commensal relationships, many of them far less surprising than fitness-

neutral herbivores. The contributions made by host species to commensal relationships—in the 

plant case, giving up sap to mirid bugs—do not count as niche construction because they do not 

alter the host’s evolutionary niche. But such activities can count as the species’ contribution to 

its ecological niche, the conditions which permit its persistence in areas where the commensal 

partner is present.  

Case 3. Non-limiting resources 
Commensalisms are about what environmental conditions a species can tolerate, and it may be 

relatively unsurprising that there are tolerances which do not lead to fitness differences. There 

may also be some requirements which do not lead to fitness differences. An example that is 

theoretically quite suitable and has some empirical support can be found by looking at 

requirements for non-limiting or super-abundant resources.  
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Competition for resources is a well-known source of selective pressure. In competitive 

selection, competition for a resource brings about selection for the use of that resource the most 

efficiently (as long as efficient use does not lead to significant disadvantages in other realms). 

When a resource is non-limiting, organisms that use the resource do not have to compete for it. 

Assuming that there is some other factor limiting population growth, there will be enough of the 

non-limiting resource to go around. Thus, a non-limiting resource does not induce competition 

and therefore does not bring about selection for those organisms that can use that resource 

most efficiently. It is partly for this reason that strains grown in labs are kept under consistent 

favorable conditions with plentiful water and nutrients to avoid competition (e.g., Lomnicki and 

Jasienski 2000; Flynn et al. 2017). 

However, a resource can still bring about fitness differences without competition. For 

example, limited water leads to selection for increased water-use efficiency (Dudley 1996; 

Donovan et al. 2007). When water is not limiting, plants with higher water-use efficiency should 

therefore not have higher fitness and not be selected for. Yet water-use efficiency is a complex 

trait that also affects the amount of photosynthesis a plant undertakes and the quantities of 

resources that can be taken up through the roots. As a result, plentiful water in combination with 

nutrient limitation (via the presence of intraspecific competitors) induces a selection pressure 

away from increased water use-efficiency, because water use-efficiency limits nutrient uptake 

(Campitelli, Des Marais, and Juenger 2016).  

We therefore need an additional assumption, namely that there is no fitness-relevant 

phenotypic variation that responds to the non-limiting resource—at least not at its current 

levels. It’s not easy to find direct evidence for such non-limiting resources that do not induce 

selection pressures. For instance, during mast years of oak and beech trees, rodents that rely on 

these resources for food do not need to compete for access to seeds. In those years, food 

availability does not exert a selection pressure. However, rodent populations may still be under 

selection for traits such as efficiency of gathering or storing seeds due to the regular occurrence 

of non-mast years where food resources are scarce (Stenseth et al. 2002).  

A possible example is that of atmospheric carbon dioxide for plants. CO2 is a necessary 

resource for all land plants, but current atmospheric levels are high enough that it is a non-

limiting resource. Studies of plant respiration show that angiosperms differ from conifers and 

ferns in their response to higher CO2 levels (Brodribb et al. 2009). Specifically, the stomata of 

angiosperms close in response to higher levels of CO2, a response absent in conifers and ferns. 

This CO2 response is not advantageous for angiosperms at current CO2 levels because it’s not 

exercised. But it may prove advantageous or disadvantageous as atmospheric CO2 levels 

increase with climate change: since closing stomata prevents water loss, it is likely to be 

advantageous if the climate is drier, and disadvantageous if the climate is wetter. The same could 

be said if there is variation within a population (rather than between phyla) for the CO2 response 

mechanism: some individuals might have higher or lower fitness depending on how fast or 

efficient their CO2 response mechanism is. But the current level of atmospheric CO2 does not 

exert this selection pressure, since it does not trigger the mechanism. 

Atmospheric CO2 is thus an example of a non-limiting resource that at current levels does 

not affect any variable fitness-relevant traits in plant populations. Atmospheric CO2 is just one 

such resource; it seems likely that in many systems there will be other similar resources, though 

again evidence is difficult to locate. It is also important to recognize that such non-limiting 

factors will still be causally relevant to fitness. If we took the resource away or altered its 

abundance, this would affect the fitness of the organisms relying on the resource and may lead 

to some individuals being fitter than others. Nevertheless, absent such changes, the non-limiting 

resource does not bring about fitness differences in the population.  
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Non-limiting resources do little to help us predict species distribution or resource 

consumption. Nevertheless, Hutchinson’s realized niche concept is defined in terms of which 

resources permit actual population persistence, and it cannot be denied that CO2 levels make a 

positive contribution to the survival and reproduction of plant populations. In addition, CO2 

levels might actually play a role in modeling the effects of climate change on forest or 

agricultural systems, given the realistic expectations of increased CO2 levels in the near future. It 

therefore makes good theoretical and practical sense to include CO2 levels as a dimension of the 

ecological niches of land plants. Similar arguments can be made about other examples of non-

limiting resources for other species, which may become relevant when a population is exposed 

to different environmental conditions due to climate change or when invading new areas. 

If we accept this argument, we have an environmental factor that directly supports 

population persistence—rather than only being tolerated, it positively contributes to survival 

and reproduction of population members—that doesn’t exert a selection pressure. In other 

words, non-limiting resources are another non-coincidence between the evolutionary and 

ecological niche. Moreover, this is an environmental factor that the populations in question, 

various species of land plants, can affect by respiration. Hence, we may be able to speak of a sort 

of niche construction that affects not the evolutionary but the ecological niche.  

Niche Construction Across the Conceptual Divide 
The contrast classes introduced above demonstrate that the evolutionary and ecological niches 

do not have exactly the same extension. Habitat degradation, commensalism, and non-limiting 

resources are points at which the realized ecological niche and the evolutionary niche come 

apart. Sometimes environmental conditions lead to fitness differences but do not permit 

population persistence, and sometimes they permit population persistence (both as tolerances 

and as requirements) but do not lead to fitness differences.  

We might wonder how significant the cases of non-coincidence are. The evolutionary and 

realized population ecological niche still coincide to a large extent. Yet the conceptual 

differences should be taken seriously. First, there will likely be further examples of the contrast 

classes identified, and there may even be whole other kinds of non-coincidence between the 

evolutionary and ecological niche. That said, I do suspect that cases may be hard to identify in 

empirical research due to the practical and epistemological limitations on research into fitness-

neutral or non-selective conditions and the difficulty of conducting large-scale, long-term field 

studies.  

Second, recall the significant restrictions on the ecological niche necessary to even reach a 

sensible comparison. All the environmental conditions that are included in fundamental niches, 

as well as references to individualized and species niches, are excluded from the evolutionary 

niche. For instance, experimental research into environmental tolerances can provide 

information about a species’ fundamental ecological niche but will not necessarily be relevant to 

its evolutionary niche, since the latter depends on how selection pressures play out in reality. To 

take another example, field research into intraspecific variation in resource use of a population, 

for instance through gut content analysis, reflect realized individualized and population 

ecological niches, but do not necessarily tell us anything about the fitness consequences of these 

differences and hence do not directly inform us about the evolutionary niche. Given all of these 

discrepancies, I conclude that the evolutionary niche is not a simple translation of the ecological 

niche: many things are lost in translation, and some things are gained. 

There is also a difference in emphasis between ecological and evolutionary niches that is 

slightly more difficult to pinpoint but worth mentioning. Ecologists usually focus on factors that 

are positive or beneficial for a population, such as the resources or conditions that it needs in 
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order to survive. In contrast, evolutionary biologists often look at factors which negatively affect 

a population, such as predation or resource limitations which select against certain types. This 

distinction between positive and negative influences is by no means hard and fast, and there is 

much overlap. But it does give a sense for differences in what sorts of conditions ecologists and 

evolutionary biologists might tend to focus on when investigating their respective niches, above 

and beyond the definitional discrepancies I have demonstrated in this paper.  

I mentioned in the introduction that a motivation for comparing evolutionary and 

ecological niches is the claim that NCT might unify ecology and evolution. NCT can still perform 

this role despite conceptual divergence. But any cross-disciplinary work has to bear in mind the 

differences between the ecological and the evolutionary niche. Ecological findings about niches 

cannot be directly imported into evolutionary work on NCT, nor vice versa. Changes to the 

ecological niche are not necessarily instances of evolutionary niche construction, but only if they 

involve changes in selection pressures. Hence, the claim that “with niche construction all 

[ecological] links become evolutionarily significant” (Odling-Smee, Laland and Feldman 2003, 

209) must be treated with caution. In the other direction, a new evolutionary niche does not 

imply a new fundamental ecological niche, and perhaps not even a new realized ecological niche, 

depending on the viability of population persistence under those conditions.  

Instead of direct transfer of theory and results between disciplines, cases should be 

assessed for which sort of niche is in focus and whether the example lies in the region of 

coincidence between evolutionary and ecological niches. Specifically, I have shown that the 

following elements must be considered: reference unit (individual, population, or species), 

modality (actual or possible), and relevant effect (population persistence or fitness differences, 

or other effects such as development, population establishment, survival, and so on). Only by 

assessing these aspects can elements from either discipline be considered relevant to and useful 

for the other. Such a considered approach to evolutionary and ecological niches should help to 

promote interdisciplinary work while avoiding and addressing some of the confusions that 

sometimes arise across disciplines. In particular, asking such questions will help to delineate a 

shared set of focal cases at the intersection of evolutionary niches and realized ecological niches. 

Another implication of recognizing the differences between ecological and evolutionary 

niches is that we gain a great number of possible definitions of ecological niche construction.  We 

might choose to talk about the construction of realized population niches, of fundamental 

individualized niches, of social niches, of establishment niches, and so on. All of these different 

concepts would introduce much needed nuance into research into organisms’ interactions with 

the great variety of factors in their environments. For instance, it would make it clear that so-

called negative niche construction, such as habitat destruction, is a way to change evolutionary 

niches but might destroy a realized ecological niche altogether. Or as another example, it would 

become clear that phenotypic change can alter a fundamental ecological niche, and perhaps also 

an evolutionary niche, without necessarily changing the realized ecological niche. In addition, 

defining types of ecological niche construction would make it clear that altering selection 

pressures is just one way in which organisms can change their environment. In particular, the 

study of niche construction would be able to encompass further aspects of organisms’ 

interactions with environmental factors where fitness effects are either absent or unknown, 

such as the shaping of commensal relationships. 

Broadening and subdividing niche construction in this way would therefore require 

revising the claims about the evolutionary significance of niche construction. Rather than a 

direct consequence of the definition of the niche, any evolutionary significance would have to be 

determined based on the observed effects of the changes that organisms make in interaction 

with their environments. This does not mean that niche construction would lose its evolutionary 
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significance altogether. The classic examples from NCT would remain as one sort of niche 

construction, and of course many further instances of niche construction would fall within the 

overlap between evolutionary and ecological niches. But once we accept not just an evolutionary 

but also an ecological niche construction, niche construction’s evolutionary significance would 

not be a given. 
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