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ABSTRACT
Computers are used to make decisions in an increasing number of
domains. There is widespread agreement that some of these uses
are ethically problematic. Far less clear is where ethical problems
arise, and what might be done about them. This paper expands and
defends the Ethical Gravity Thesis: ethical problems that arise at
higher levels of analysis of an automated decision-making system
are inherited by lower levels of analysis. Particular instantiations
of systems can add new problems, but not ameliorate more gen-
eral ones. We defend this thesis by adapting Marr’s famous 1982
framework for understanding information-processing systems. We
show how this framework allows one to situate ethical problems at
the appropriate level of abstraction, which in turn can be used to
target appropriate interventions.

CCS CONCEPTS
• Computing methodologies→Artificial intelligence; Philo-
sophical/theoretical foundations of artificial intelligence; •
Social and professional topics→Governmental regulations;
• Computer systems organization → Embedded systems.
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1 INTRODUCTION
1.1 What would it mean to make ethical AI?
You are a programmer. Your job is to make a system that deter-
mines eligibility for high-interest payday loans. Your employer is
predatory. The customer base is vulnerable. To maximize profit,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIES ’21, May 19–21, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8473-5/21/05.
https://doi.org/10.1145/3461702.3462606

you must identify individuals who will never quite be able to re-
pay their loan—guaranteeing a steady stream of income for your
employer—but for whom that burden will not result in bankruptcy,
suicide, or other drastic ways that the desperate find to discharge
their debt.1 Having been deeply enmeshed in the literature on ethi-
cal algorithms, you decide that you ought to make the system more
ethical. How would you do that?

The ambiguity in that question should be obvious. On the one
hand, you can make sure that you do not introduce any new ethical
problems. You might avail yourself of any number of proposed
metrics for measuring algorithmic fairness [6, 14, 20, 26, 28, 50],
and ensure you optimize one. You might blind your dataset to avoid
information about protected attributes. You might ensure that you
provide a detailed ‘model card’ specifying all of the information
used in building your model [37]. On the other hand, what you
make will lead to substantially immoral outcomes. That is true no
matter how careful you are: the design goals of the system place a
fundamental upper bound on how ethical the result could be.

There is now a considerable literature on the negative ethical
consequences of these automated decision-making systems.2 A
good deal of this literature also contains specific technical recom-
mendations. Yet while many ethical problems have a technological
source, it is not at all clear that they have technological solutions.

More generally, discussions of automated decision-making sys-
tems often contain a wealth of different concerns, with the rela-
tionships between them unclear. Some authors are concerned with
the ethical deployment of technology. Others are concerned with
details of algorithms or other mathematical objects. Still others care
about the details of particular implementations: where datasets
come from, or who gets paid for annotations. The relationship
between these different projects is often obscure, and hence the
effectiveness of particular interventions is difficult to evaluate.

We will argue for a particular thesis about the relationship be-
tween these different ethical projects, what we call the Ethical
Gravity Thesis (EGT). Making EGT precise will take a bit of doing:

1Mayer [32] reviews the ethical case for thinking of payday loans as exploitative across
a variety of theories of exploitation. See Melzer [34] for a good review of the overall
cashflow problems that are worsened by payday lending. If you sympathize with the
neo-liberal view that properly-regulated payday lending provides a valuable source of
liquidity, stipulate that this is one of the problematic ones that gives payday lending a
bad name.
2For useful recent reviews, see Coeckelbergh [8], Kearns and Roth [24], Mittelstadt
et al. [38], Torresen [48], Whittlestone et al. [52]. We use the broad term ‘automated
decision system’ to cover any use of computers to make decisions in ethically relevant
contexts. This is meant to be neutral and inclusive, and so include terms like ‘Artificial
Intelligence’, ‘Machine Intelligence’, ‘Machine Learning’, and ‘Algorithmic decision-
making’, as well as more specific terms of art that refer to particular methods for
implementing decision-making. Different terms carry different connotations; ours is
intended to be as neutral as possible, and in particular not to interfere with the sense
of ‘algorithmic’ detailed below.
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for now, take it as the thesis that ethical problems at higher lev-
els of analysis of an Artificial Intelligence (AI) system cannot be
reliably ameliorated by interventions at a lower level of analysis.
The toy example with which we began is a stark illustration of that
principle. What follows will give a more nuanced model. Before we
spell out the detailed goals, however, some background is in order.

1.2 Background
Automated decision-making has impacted various aspects of pub-
lic and private life almost since the advent of digital computers.
These systems are now prominent in a variety of ethically impor-
tant domains. Judges use algorithms to decide whether defendants
awaiting trial should be detained or released [7, 39]. Health care
providers use commercial AI to guide healthcare decisions [3, 43].
Law enforcement uses facial recognition algorithms embedded in
public spaces to facilitate continuous surveillance [16, 17, 25].

These uses all come with both ethical costs and benefits. Yet
there are also troubling signs of ethical problems that arise and are
specific to automated decision-making systems.

There is growing global concern, in some cases empirically con-
firmed, about the harmful and disruptive impacts of automated
decision systems. Research has shown that some automated job
search advertisements for highly paid positions are more likely
to be presented to men [29], risk scores in recidivism prediction
are interpreted to be biased against Blacks and some other disad-
vantaged groups [2, 15], facial recognition systems perform less
accurately on recognizing faces of women and Black individuals
[5], and algorithms embedded in health care decision-making show
systematic discrimination against Blacks [40].

We ought to care about the ethical considerations of the use of
automated decision systems, and we must anticipate and mitigate
the problematic and unjust effects stemming from their deployment.
Despite that general agreement, different discussants and institu-
tions often formulate such ethical problems at distinct levels of
abstraction, and consequently offer solutions that are not obviously
commensurate.

On the one hand, there are already several dozen national and
international ethical guidelines for the development, deployment,
and governance of AI algorithms using high-level, non-technical
language [23]. These guidelines are often vague and lack detailed
mechanisms for reinforcing ethical principles [19]. On the other
hand, there are technical proposals for how to make algorithms
‘ethical’ [24]; for example, there is a heated debate and a substantial
technical literature about how to make algorithms transparent and
fair [1, 6, 26]. Yet focus on technical solutions can obscure the role
of social and political change in certain realms. It can also invite so-
called ‘ethics washing,’ where companies make minor technological
changes to preserve their public image while continuing business
as usual [4, 51].

It is difficult to make automated decision-making systems ethical
without knowing what that task amounts to. The literature urgently
needs a framework for the systematic treatment and organization of
ethical concerns, including the dependency relationships between
them. The present paper is intended to make steps in that direction.

1.3 The Claims and the Plan
Our contribution to the ongoing debate will be twofold. First, we
begin by adapting Marr’s framework for understanding complex
information-processing systems to discuss different levels of anal-
ysis for automated decision-making [31]. Marr’s framework has
been extremely influential in cognitive science, but remains under-
utilized in work on automated decision systems. The framework is
useful in part because it implies asymmetric dependence relation-
ships between levels: in general, higher levels of analysis provide
strong constraints on lower ones.

Second, we use our framework to claim evidence for the Ethical
Gravity Thesis. The EGT claims that ethical considerations that
appear at a higher Marrian level of analysis cannot be overcome, in
any robust way, by interventions at lower levels. Combined with
a Marrian analysis, the EGT thus provides a groundwork for a
systematic analysis of automated decision-making. In many cases,
this shows that what appear to be distinct problems are merely
symptoms of more basic ethical worries. It also opens the door to
broader considerations about institutional design and algorithmic
fairness, and the ways in which the two interact.

2 LEVELS OF ANALYSIS
The Ethical Gravity Thesis makes a claim about dependence be-
tween different levels of analysis of an automated decision sys-
tem. What are those levels? To answer, we start by giving a quick
overview of Marr’s influential analysis of complex information-
processing systems [31]. Marr identified several levels that are
common to the analysis of any computational system. While his
framework was originally developed to account for different levels
of analysis in cognitive neuroscience, it has had a broad influence
across many fields concerned with computational explanation.

Marr posits four levels of analysis at which any computational
process can be approached. We discuss each, drawing the parallels
between his target and our own.

Two caveats are in order (and will be fleshed out as we go). First,
automated decision-making systems are made by humans, while
Marr was concerned with systems shaped by natural selection. Part
of the power of Marr’s framework is that it is applicable to both
natural and artificial systems. In either case, we take it that the levels
represent a series of distinct ways of analyzing a system, rather
than a guide to the temporal order of discovery or of creation.
Second, the levels of analysis are not meant to be the levels of
blame or responsibility. Higher levels tend to be analyzed in terms of
public or corporate policy, while lower levels in terms of the actions
of individual programmers. But the fact that a moral problem is
introduced by a particular level of analysis does not show that
any particular set of people is responsible for that problem. Blame
often depends on the compounding effects of many distinct factors
(indeed, as we will discuss later, it is possible for ethical problems
to arise completely blamelessly).

2.1 The Functional Level
Marr’s levels were initially offered as a way to understand and
explain early visual processing. The highest level of analysis of
this—or any other complex phenomenon—is the characterization of
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what goals the system aims to achieve. We call this the functional
level of analysis.3

We focus (as is traditional) on Marr’s discussion of edge detec-
tion, one of the robust visual phenomena that early vision must
accomplish.4 For Marr and for his study of vision, these are drawn
from the various phenomena of early vision, revealed by ordinary
experience and simple psychophysics. Marr begins his analysis by
noting phenomena that we are all familiar with—the appearance
of subjective contours, the dominance of pattern and surface in
the perception of shapes, or the ability of lines to ‘pop out’ in vi-
sual experience given all manner of subtle cues [31, Ch 2.1]. These
phenomena are given in experience.

The functional level of analysis of automated decision-making
systems identifies the overall goals that the system is meant to
accomplish. This, as it were, a pre-technical description—the sort
that could be offered to executives, marketing, or sales. This might
be ‘balance the risk of recidivism with the need to parole’, or ‘figure
out who to give loans to in order to maximize profit.’

The functional level of analysis specifies what a system must
do to count as successful. Of course, though we might sketch the
function of a system in a short elevator pitch, the full functional
specification of a system depends quite a bit on context. In the case
of edge detection, not any way of detecting visual edges will do:
edge-detection is in the service of survival, and the world places
very strict limits on what will work. Similarly, nobody gives out
loans in a vaccuum: the practice of loan-giving is made possible by
a host of regulations, expectations, and social practices that shape
and contour it in various ways. We include all of these contextual
effects in the functional level of analysis.

2.2 The Computational Level
Return to Marr’s explanation of early vision. Having decided to
explain edge detection, we make further progress by explaining
the particular computational function that would result in edge
detection. That is, given retinal input, what is the mathematical
characterization of the function that goes from that input to give us
edges in the scene? Marr notes that edge detection can be charac-
terized as the discovery of zero-crossings in the second derivative
of the two-dimensional array of intensities provided by the retinal
image [31, 54]. This function can be calculated by a simple combi-
nation of mathematical functions that work as filters to pick out
the zero-crossings.5

Note that there are many (perhaps indefinitely many) mathemat-
ical functions that could be said to perform edge detection. Marr’s
particular choice of filters is dictated in part by his analyses at
the functional level above. We perform edge detection robustly

3Many discussions of Marr focus on only three levels; what we call the ‘functional’
level is often elided because it is taken as the starting point of cognitive neuroscience.
We think it is clear that a superordinate functional level exists–see especially the top
of figure 6.1 in [31]. The precise content of Marr’s framework presents interpretive
challenges [44]. As with many who write on Marr we claim inspiration, not tight
textual fidelity.
4The details of Marr’s theory of edge detection are historically important, but many
of the details have been superseded. We follow tradition in presenting Marr’s theory,
but for an up-to-date discussion of the functions and constraints of early vision in
mammals, see e.g. [47, Ch 12].
5In Marr’s famous formulation, we can discover these zero-crossings by using the filter
▽2𝐺 , where ▽2 is the Laplacean operator and𝐺 is a two-dimensional Gaussian filter.

across different intensities and spatial scales. That is one of the
phenomenon that the computational story must capture.

Conversely, the computational formulation is still quite abstract.
The function identified could be implemented just as well in silicon
as it could be in neural tissue. Again, Marr was influential in part
because his theory made clear the abstract links between cogni-
tive neuroscience and computer science, providing an important
theoretical foundation for work on artificial intelligence.

Any automated decision-making project can also be understood
as attempting to perform a certain mathematical task. Determining
which loans tomakemight require the simultaneous optimization of
one or more equations. Recognizing objects in pictures is formally
equivalent to untangling manifolds in a very high-dimensional
space [12, 13].

Some computational processes are learning processes: the real
task is finding an appropriate mathematical function from data
to another function that will provide answers in production. In
each case, however, we can view the functionally defined problem
through a mathematical lens—and, indeed, we must do so if we are
to program a computer to find the answer we seek.

2.3 The Algorithmic Level
Mathematical functions are timeless. To get a computer to do some-
thing, we need an algorithm: that is, a “set of rules or directions
for getting a specific output from a specific input” [27]. Algorithms
proscribe a sequence of steps and operations that must use time
and other resources.

The algorithmic level of analysis is constrained by empirical
facts about those resources. One might detect lines (for example) by
building a big set of specific feature detectors, one for each possible
combination of intensities that could fall on the retina. That would
solve the mathematical problem neatly, but would require vast
amounts of storage capacity, far more than is plausible. Algorithms
that iterate over the visual field in a serial fashion would similarly
take too long to be biologically useful. So instead, according to Marr,
early vision evolved to use various tricks that also proved useful
to later computer vision researchers: local pooling of information,
compression of information via the use of adaptive local filtering,
and so on.

Automated decision-making also faces algorithmic choices. The
specific choice of algorithm (a Greedy algorithm or Dijkstra) to op-
timize a given mathematical function can make a drastic difference
to how accurately or quickly the function is computed. It has long
been known, for example, that even poor-quality linear regressions
can often outperform humans on simple decision tasks at trivial
computational cost [11], whereas further improvements in accuracy
require rapidly increasing investment of resources.

An important feature of the algorithmic level, as Marr was well
aware, is the way in which data is represented. The efficiency of
available algorithms depends on the primitive representations upon
which algorithms operate [53]. To take a simple example: if I rep-
resent my loan applicants’ data as points in a high-dimensional
continuous feature space, I will have available manymore, andmore
accurate, classification algorithms than I would if I represented each
applicant as a simple dictionary of categorical properties.
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2.4 The Implementational Level
The first three levels were all hardware-agnostic. Though Marr’s
goal was to analyze how edge detection is done by early visual
cortex, the computational and algorithmic levels did not require
knowing anything at all about neurons or how they work. Even
the time and space constraints on the algorithmic level can simply
be taken as primitive facts for the purposes of algorithmic analysis.

For Marr, the implementational level shows how the algorithmic
level is embodied in particular hardware. It shows, for example, how
the center-surround architecture created by patterns of excitatory
and inhibitory cells can implement the primitive filters identified
at the previous steps. Whereas any of the preceding levels could
have been implemented in silicon, the implementational level for
Marr is firmly tied to biological detail.

For example, there are many algorithms that can learn to rec-
ognize faces and the emotional states they represent (for a survey
see [33]). But to run them for predicting the emotional states of
unobserved faces, one needs to train the algorithms on a dataset
of faces with associated labels representing their emotional states.
How many faces does that dataset contain? Where did it come
from? Are the exemplars appropriately distributed over different
genders? Different races? Different ages? What is the basis of the
emotional groupings? How may different views does each face
have? Are they contrast-balanced? How reliable is the labeling?
And so on and on. By and large, algorithms work with whatever
they are given; the details of the implementation thus determine
how well the algorithm serves its purpose.6

In addition to the implementational details of the task at hand,
one might also include here all of the details that are necessary
for (e.g.) compliance and auditing of the program—details like the
collection of logs, the ability to vary parameters while in production,
and so on. These are features of particular uses of algorithms, and
so features of implementation.

2.5 The Overall Picture
Figure 1 collects up the discussion so far. The boundaries between
the levels are sometimes fuzzy, but in general, we submit, the
schema holds surprisingly well across a variety of analytic tasks.

The center column of figure 1 contains additional structure in the
form of arrows between levels. We have suggested that the levels do
not vary freely; there are relationships of constraint among them.
It is to those arrows that we now turn.

6Some readers of Marr might balk at including details like datasets at the implementa-
tional level. There is a traditional reading of this level of Marr on which it is concerned
solely with bottom-level hardware—neurons for brains, silicon for automated decision-
making. We resist this reading for several reasons. First, we think it is rare that the
pure hardware level represents an interesting level of ethical analysis. Second, there
is an important distinction between algorithms considered in the abstract and the
particularized instances of programs and data upon which algorithms are run. Marr’s
analysis (we claim) clearly applies to the abstract sense of algorithms, which leaves
particular details to the lower level. Third, the natural analog of datasets in the early
visual case is facts about incoming light and its interaction with receptor physiology.
Fourth, discussions of the implementational level, both in Marr and elsewhere, are
not mere catalogs of squishy bits but themselves conducted at a level of abstraction
that brings out their crucial functional characteristics. Hence, we claim, what is im-
portant about the implementation is anything that is relevant to the instantiation of
an algorithm as a token process, not just the hardware.

Marr Level
Algorithmic

Decision-Making

“Everyday experience,
coarse psychophysical

demonstrations”

Functionaly
Overall business or

political goal

“Computational
Problem”

Computationaly
Mathematical

formulation of the
problem

“Specific
representation” and
“Specific algorithm”

Algorithmicy
Specific classification
or learning algorithm

“Specific neural
mechanism”

Implementational Details of programs,
data collection,
auditing, etc

Figure 1: The relationship between Marrian levels of analy-
sis for complex information-processing systems.

3 TWO ARGUMENTS FOR EGT
The Ethical Gravity Thesis can now be stated more precisely. If
an ethical problem arises at one level in the Marrian hierarchy,
one should expect it to persist at all lower levels. Lower levels can
introduce new ethical problems, but one should not expect them to
get rid of problems inherited from higher levels. This is true even
when people responsible for creating or maintaining the lower
levels have a sincere and strong incentive to ameliorate ethical
problems.

Put concretely: insofar as making a payday loan system is ethi-
cally problematic at all, the ethically problematic features do not
go away when you make a particular version of that system. The
lower levels might tack on additional ethical problems, but cannot
avoid the ones inherited from the functional level.

A few clarifications are necessary. First, The EGT is phrased in
terms of reasonable expectations. Theremay be isolated instances in
which lower levels solve ethical problems introduced at higher ones,
either intentionally or accidentally. EGT claims that such instances
are neither frequent nor particularly robust. Second, when we talk
about ‘ethical problems’, those should be understood extensionally.
That is, a decision-making problem is ethically problematic when
it has ethically problematic effects—people are harmed or exploited,
inequality is exacerbated, and so on. We follow most of the current
literature in assuming that bad intentions, either by individuals or
by groups, are not necessary for a process to be ethically prob-
lematic. Bad intentions may play an important role in making bad
effects robust and stable (about which more shortly). But the EGT
is concerned with bad consequences.

In support of EGT, we offer two arguments: the realization ar-
gument and the institutional argument. The realization argument
claims that realization relationships between levels—the arrows
in figure 1—require lower levels to faithfully perform the task as
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specified at higher levels. This means that an ethical problem that
can be identified at one level should be expected to be preserved by
all lower levels. The institutional argument claims that active social
and political forces make even unsuccessful realizations—that is,
realizations that only fulfill some of the conditions set by higher
levels—relatively infrequent and difficult to maintain.

The overall form of the argument is thus a disjunctive syllogism.
Either lower levels successfully realize higher ones or they do not.
If they do, then ethical problems are preserved. If they do not, and
their failure to completely realize a higher level manages to solve
some ethical concern, then there will be strong pressures to correct
that failure. Either way, we should expect that, in the long run,
ethical problems at higher levels will be preserved at the lower
levels. Together this establishes the EGT.

3.1 The Realization Argument
The arrows in figure 1 represent relationships of realization.7 Re-
alization is a relationship of asymmetric necessitation: 𝐵 realizes
𝐴 just in case being 𝐵 is a way of satisfying 𝐴 but 𝐴 does not
necessarily require 𝐵.

To make the notion of realization relation more concrete, con-
sider a simple example. I have a list of books that I need to al-
phabetize. That is a functional-level statement of the problem. To
solve this, I need a function which takes a list of book titles and
returns a lexically sorted list. Doing this is a way of satisfying
the functional-level statement of the problem. The functional-level
problem does not determine the computational-level function, how-
ever, even for such a simple case. Sorting functions might differ
on how they deal with duplicates, or non-Latin characters. Hence
there is a relationship of asymmetric necessitation: performing a
particular sort function is a way of alphabetizing books, but the
requirement to sort does not necessitate any particular function.
Similarly so down the chain: having specified my function, I can
use many different algorithms (Selectionsort or Quicksort or. . . )
to perform the task. And having chosen an algorithm, I still have
flexibility on the programming language and hardware that I use to
implement it. (Indeed, I may decide to implement a useful algorithm
using pen and paper rather than a computer!)

Given this, the realization argument for EGT is straightforward.
Suppose an ethical problem with negative impacts appears at a
higher level of analysis. Then the solution to this problem at a
lower level of analysis is a way of satisfying the ethical demands
appearing at the higher level. The next lower level of analysis must
asymmetrically necessitate the higher level: that is just what it
is to realize the higher level. Part of asymmetric necessitation is
preserving extensional fidelity to the activities at a higher level. But
then the lower level must just have the same effects as the higher

7A note for aficionados: we take the realization relationship to be a ‘flat’ rather than a
‘leveled’ one [18]. That is, the distinct levels of analysis pick out different properties of
the same system, rather than lower levels picking out functional or spatiotemporal
parts of higher-level systems, as they do in mechanistic explanations [9]. Mechanistic
explanation is likely to play a further, important role in explanations of implementation,
but higher levels do not have interesting spatial structure, and the computational level
arguably does not even have temporal structure. For a flat reading of Marr in the
computational domain, see Piccinini [42, 98ff]. See also footnote 8.

level, just in a more specific manner.8 By induction, the problem
will persist not just at the next lowest level but at all lower levels.

Moreover, as the realization relationship is one of asymmetric
dependence, there is considerable flexibility in how any level is real-
ized at a lower level. This means that lower levels can still introduce
new ethical problems. A perfectly reasonable facial recognition
algorithm implementing an ethically anodyne task might still go
astray if trained on a biased dataset. So lower levels preserve the
ethical problems, but can add more besides, which is just what the
EGT says.

3.2 The Institutional Argument
The realization argument establishes that ethical problems percolate
downward when realization is satisfied. Computers make mistakes.
Say that a higher level is partially realized by a lower level when
the activity of a lower level necessitates the prescribed effects of the
higher level across some but not all contexts. Our sorting algorithm,
for example, might realize our sorting function except when Cyrillic
characters appear (in which case it crashes).

Thosewhowork on the development of automated systems know
how common partial realization is. It is particularly common in
complex systems, and morally-laden decision-making systems are
likely to be especially complex. Hence (one might hope) negative
effects that would otherwise occur due to constraints at higher
levels might be partially ameliorated by lower levels. This might
occur by accident. It might occur via the sneaky actions of a clever
and motivated programmer who is determined to undermine the
system. Or it might occur by sheer diffidence and inertia at the
implementational level. However it happens, one might hope that
these ‘mistakes’ could fix some of the otherwise problematic aspects
of a system.

This is a tempting thought, but we think that it is unlikely to
be particularly effective in practice. There are strong institutional
constraints on the creation and maintenance of automated decision-
making systems. An institutional constraint is any set of procedures
or processes that tends to move partial realization to full realization
by (e.g.) correcting errors, weeding out inefficiencies, and so on.

The key point here is that partial realization is a kind of failure:
it occurs only when the putative way of doing some activity does
not completely align with that activity across all relevant contexts.
There are a variety of institutional constraints that exist in order to
catch errors of this sort and reverse them. Institutional constraints
thus provide a natural limit to the effectiveness of interventions at
a lower level.

We consider three sorts of institutional constraints, though these
are meant to be illustrative. The broader point is that the exis-
tence of institutional constraints means that substantial partial
realization—and especially ethically relevant partial realization—
should be relatively rare and fragile.

First, automated decision systems are complex software projects.
Modern software projects, whether commercial, governmental, or
open source, are usually embedded within a fairly complex system
of procedures and practices that are designed to catch and mitigate

8 In other words, we view realization as a kind of determinable-determinate relation-
ship, along the lines of Yablo [54]. Hence lower levels must do everything that higher
levels do, and more besides (because it is done in a particular manner).
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bugs. This includes practices such as widespread unit tests, code re-
views, bug tracking and version control. These practices are meant
to minimize the occurrence of partial realization at the algorithmic
and implementational levels. They are not uniformly successful
(obviously so). Yet their primary purpose is to catch and eliminate
instances of partial realization. Ethically relevant partial realization
is just one of many sorts of bugs that it might weed out.

Second, automated decision systems are complex social and eco-
nomic entities. Most of the people who would be in a position to
effect partial realization also have substantial incentives to avoid it.
There is a rich philosophical tradition on the concept of complic-
ity that analyses the moral obligations of individuals in ethically
problematic organizations. This literature also acknowledges, and
lives alongside, a rich social-psychological tradition demonstrating
how difficult it is for individuals to actually make a meaningful
difference in these situations, especially under conditions of diffuse
responsibility.9

In addition to social constraints (broadly conceived), there are
often substantial economic incentives to avoid partial realization.
Programmerswho do not do their jobs can be fired; firmswho do not
deliver lose contracts.10 Even when these incentives do not prevent
subtle resistance by individuals, they may give other individuals
reasons to detect and undo attempts at partial realization.

Third, automated decision systems, as socio-technical entities,
themselves arise from, are embedded in, and are maintained by
social and political forces. To return to our initial toy case, the exis-
tence of high-interest payday loans does not occur in a vacuum. Nor,
one supposes, are high-interest payday loan businesses generally
run by people with a strong concern for economic justice. So the
problem is not accidental: many people involved in the system do
not want it to be better.

We phrase these processes in an intentional idiom, but in practice
many discriminatory effects can occur through what are known
as structural biases [21]. Structural biases are embodied in norms
and institutional designs, and do not require any individual to
have objectionable attitudes. They provide a kind of inertia that
ensures that institutions and individuals do not, and often cannot,
deviate from that tacit norm. For example, Crawford and Paglen
[10] provide a a realistic picture of how software arises in a social
context. Their focus is on image recognition and the role of appar-
ently neutral datasets in perpetuating certain kinds of disadvantage.
Their analysis shows that even apparently innocuous uses of image
recognition are embedded in a vast social and political landscape,
one that effectively works behind the scenes to stabilize seemingly
arbitrary features of decision-making systems.

These different institutional pressures may have differential ef-
fects at different levels of analysis. Broadly speaking, technical and
procedural institutions work to correct partial realization at the

9For an excellent philosophical review of complicity, see Lepora and Goodin [30]. For
obedience, the locus classicus is of course Milgram [35], though his [1974] considers
a broader set of parameters. Staub [46] gives a good modern review of Milgram and
related work on bystander effects.
10“Before the war the pacifists had more than once explained to us that a country that
has been invaded must refuse to fight and engage in passive resistance. That’s easy to
say: but in order for this resistance to be effective the railroad workers would have
had to refuse to let the trains run and the farmers to work the fields. The victor would
have been inconvenienced but he could have supplied himself from his own country;
however, the occupied country would certainly have perished in short order.” [45, 11]

implementational and algorithmic levels, while economic and social
constraints are more operative at the functional and computational
level. Such institutions do not need to be entirely effective; instead,
they need only to be effective enough that we should not expect par-
tial realization (whether intentional or accidental) to be particularly
robust.

The proof is thus complete. Full realization ensures that ethical
problems are inherited by lower levels. Partial realization does not
last for long. Hence ethical problems are either faithfully preserved
by the lower level, or else the fix is unlikely to last long. That is
just what is claimed by the EGT.

4 ETHICAL GRAVITY: CASES AND
CONSEQUENCES

4.1 Recidivism Prediction
To illustrate the EGT further, we conclude with several examples.

Few automated decision-making systems have been the focus of
as intense a discussion as COMPAS. The recidivism risk-prediction
algorithm at the heart of COMPAS that was the target of a now-
famous 2016 ProPublica analysis of its use in Broward County,
Florida. That analysis showed that COMPAS embodied certain
kinds of racial bias [2]. Although race was not an explicit feature
in the algorithm, it suggested that Black prisoners are substantially
more likely to be classified as high risk. Moreover, Angwin et al. [2]
showed that among defendants who ultimately did not re-offend,
Blacks were more than twice as likely as whites to be labeled as
risky by the algorithm.

COMPAS shows several distinct ways in which problems perpet-
uate downward. First, as subsequent discussion has shown, there is
a difficulty that arises at the computational level. Assuming that
fairness is a desideratum, and that minimizing recidivism is another
desideratum, then there exist distinct tradeoffs between different
fairness metrics [6, 26]. This is a mathematical fact, but it obtains
because of broader societal facts: various intuitively plausible fair-
ness metrics can only be jointly satisfied if populations of offenders
are balanced in various ways that they are not, in fact, actually bal-
anced. The reasons for this imbalance are broader functional-level
injustices.

As such, problems at the functional level assure that intuitively
plausible desiderata at the computational level cannot be jointly
satisfied. So there is a tradeoff at the computational level which,
in turn, perpetuates further ethical problems down the line. Given
that, no algorithm or no implementation could hope to ameliorate
the ethical issues that are ultimately inherited from the functional
level: the constraints at the computational level forbid an effective
solution.

Much of the discussion around COMPAS has focused on these
purely formal considerations. However, we think that this is a case
where institutional facts are also notable, and provide a good il-
lustration of the EGT. The subsequent debate and argument over
COMPAS makes it arguably the most-studied case in discussions
of algorithmic ethics. What is less often mentioned is that North-
point’s (now a marquee of Equivant) COMPAS software is still for
sale, and still appears to be widely used. Their FAQ asks “Is the
COMPAS algorithm racially biased?” and responds “No, COMPAS
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is designed to assess numerous factors, but race is not even con-
sidered when a COMPAS score is developed.”11 That this is the
entirety of the answer says something important about Equivant’s
customers: whoever is in charge of procurement considers this to
be a perfectly adequate response.

This should not be a surprise. Equivant’s customers are criminal
justice agencies. Criminal justice agencies in the US do not, on the
whole, have a reputation for progressive attitudes towards racial
inequality. Rarer still is the criminal justice agency who would
rank undoing racial inequality over (say) avoiding the social and
political consequences of a serious crime committed by a paroled
offender. COMPAS continues to be popular, then, precisely because
it successfully embodies the values of the institutions that use it.
But these institutions are precisely the institutions that perpetuate
and partly constitute the injustices at the functional level.

Hence the problem with COMPAS is not merely formal, though
the formal features prevent an easy fix. Instead, considerable po-
litical will at the functional level ensures that the status quo is
perceived as perfectly acceptable, at least to those with the power
to select and implement risk-management algorithms; conversely,
what might seem like lower-level ‘fixes’ will be seen as flaws, and
be selected against accordingly. That is, recall, just what the insti-
tutional argument for EGT claimed.

4.2 Allocation of Scarce Health Resources
Some algorithms reflect ethical problems at a broad societal level.
Yet the EGT also allows that lower levels might create new ethical
problems, either directly or unwittingly.

Consider Obermeyer et al. [40]’s recent analysis of healthcare
allocation systems. These automated systems attempt to allocate
scarce and costly healthcare resources to those who would benefit
from them the most. This broad goal corresponds to the overall
goal at the functional level as illustrated in figure 1. This is not
(let’s assume) an ethically problematic objective. Obermeyer et. al.
showed that the algorithm in charge of this resource allocation
task was largely driven by translating the problem in terms of
predictions of healthcare costs at the computational level. At first
glance, this is unsurprising: as they note, costs and health needs
are highly correlated.

Yet in the US there is also a background correlation between
race and healthcare costs: on average, Blacks receive less care for a
given level of need than do Whites. As such, the algorithm tends
to dramatically underestimate the need for additional care among
Black patients. Together, these facts mean that Black patients were
thus less likely than Whites to be referred to support programs for
patients with complex medical needs. Only 18% of patients that the
algorithm assigned to receive extra care were Black; the figure for
an algorithm would be closer to 47% if it were unbiased. Back to
the EGT argument, this study shows that the ethical concerns for
the allocation of health care resources persist at the lower levels of
automated decision-making. Yet even this decision-making system
can instantiate the institutional argument as follows.

11From the Equivant FAQ, https://www.equivant.com/faq/, accessed 14 August 2020.
For claims of wide use, see same FAQ, “Also, we have over 100 supervision, inmate
classification, and risk/needs assessment systems that include Department of Correc-
tions in seven states along with numerous implementations in pretrial, probation, and
sheriff/jail offices across the U.S.”

The problem comes from using what seems like a plausible proxy
for healthcare costs that interacts poorly with other background
facts. As they put it, “accurate prediction of costs necessarily means
being racially biased on health.” [40, 450]. The discussion around
this phenomenon, so far as we know (and unlike in the case of
COMPAS), assumes that this bias is straightforwardly bad. There is
a subset of patients for whom the algorithm performs poorly. That
poor performance is bad for the individual patients and bad from
an economic point of view: untreated medical conditions tend to
get worse, and more costly.

The ethical problems thus arise not at the functional level but
at the computational and algorithmic levels. They are a specific
instance of what Passi and Barocas [41] call the issue of problem for-
mulation. Building an automated decision-making system involves
a series of what they call “difficult translations.” These include the
move from policy objectives to specific algorithms, the choice of
objective functions, and the specific, quantitative features used for
problem prediction. One might worry that certain kinds of ethical
properties cannot, in principle, be satisfactorily mathematized [49].
But one might also worry that, even among the properties that can
be satisfactorily mathematized, there are still additional ethically
laden questions that must be answered.

4.3 Facial Recognition
Facial recognition technology has been in use since the 1960s [22],
but technological advancements have led to widespread deploy-
ment. Particularly concerning from an ethical point of view, is
its use by law enforcement. As in the case of COMPAS, there are
obviously biased uses of facial recognition that can arise at the func-
tional level. However, facial recognition is also used for a variety of
apparently innocuous tasks like tagging pictures on social media
or unlocking smartphones.

These more innocuous uses might appear to avoid novel ethi-
cal issues. However, many of the datasets used to train otherwise
innocuous technology themselves have differential representation
of classes, which can lead to poor accuracy on members of racial
minorities [25]. This is obviously problematic when used for crimi-
nal justice purposes [22]. However, such disparities can introduce
novel ethical issues even in otherwise straightforward contexts.

Consider, for example, the finding that some gender prediction
software has the lowest accuracy rate for Black women [5]. This
differential accuracy might be seen as a form of micro-aggression,
or simply lead to lack of uptake of a valuable new technology by
members of a vulnerable group.

Much of the discussion around dataset biases in facial recognition
runs together these possibilities. We think the EGT is useful because
it allows one to partition out different ways in which dataset biases
might matter. They might matter because they are simply part of
the implementation of a fundamentally unjust or biased system. In
that case, worry about particular datasets is important because they
show how ethical problems are exacerbated by implementations.
However, the ethical problems arising at higher Marrian levels
cannot, on their own, be fixed merely by fixing the dataset.

On the other hand, dataset biases might introduce fundamentally
new ethical problems in an otherwise neutral decision-making

https://www.equivant.com/faq/
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system. In this case, it is worth direct intervention on the dataset
itself.

5 CONCLUDING THOUGHTS
In this paper, we have demonstrated how to applyMarr’s framework
for understanding information-processing systems to automated
decision-making systems. Using this framework, we have also ar-
gued for the Ethical Gravity Thesis: that ethical issues that arise at
higher levels of the Marrian hierarchy will necessarily be inherited
by lower levels. To put it in the starkest terms, some automated
decision-making systems thus cannot be made ethical, even in prin-
ciple. One can at best minimize the damage that they cause by not
introducing new problems in their implementation.

The EGT is humbling. Yet it is not meant to be pessimistic. We
conclude on two (comparatively) more optimistic points. First, as
it is possible to introduce ethical dilemmas at lower levels, there
are important design considerations that need to be explored at
each step down the chain. Indeed, one of our goals in writing this
paper was to draw the distinction between ethical problems that
arise in the course of implementation from ethical problems that
arise because an automated system is embedded in, and in service
to, a fundamentally unjust social and political environment. The
latter cannot be solved by technical acumen; such failures should
not lead to pessimism about addressing the former.

Second, we have mostly focused on the realization relationship,
which moves downward in the Marrian hierarchy and which is
the source of the EGT. There is arguably a converse relationship
of constraint that flows upward. Various choices made at higher
levels are made against a background of implicit or explicit resource
constraints introduced at lower levels. Some of these constraints are
insuperable: in terms of computational complexity, for example, if
the most ethical algorithm is NP-hard, we cannot build a practically
useful system.

Yet many constraints are economic, or only contingently tech-
nical. For example, if our financial conditions permit us to only
use freely accessible, publicly-available datasets, and these datasets
are all biased, then the solution is to find more financial budget or
to encourage the development of better freely accessible, publicly-
available datasets. Removing constraints at lower levels cannot
solve ethical problems directly: that is what the EGT shows. But re-
moving constraints can solve ethical problems indirectly, at least in
some cases, by removing constraints on higher levels that give rise
to ethical problems down the line. Examining the dual relationship
between realization and constraint may thus show an additional
pathway for ameliorating ethical problems raised by automated
decision-making.
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