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Abstract

We argue against claims that the classical ~→ 0 limit is “singular” in a way that frustrates
an eliminative reduction of classical to quantum physics. We show one precise sense in which
quantum mechanics and scaling behavior can be used to recover classical mechanics exactly,
without making prior reference to the classical theory. To do so, we use the tools of strict
deformation quantization, which provides a rigorous way to capture the ~ → 0 limit. We then
use the tools of category theory to demonstrate one way that this reduction is explanatory:
it illustrates a sense in which the structure of quantum mechanics determines that of classical
mechanics.
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1 Introduction

One often finds skepticism about the significance of the classical ~→ 0 limit of quantum mechanics
in the foundational literature. For example, Berry (1994), Batterman (2002), and Bokulich (2008)
all claim that the classical limit is “singular” in a way that is supposed to frustrate an attempted
intertheoretic reduction between classical and quantum physics. A central aspect of the issue ap-
pears to be that quantum mechanics (on its own) may not allow for the definition of the structure
of classical physics. These authors seem to identify a barrier to taking an eliminativist attitude
towards classical physics by arguing that any analysis of the recovery of classical from quantum
physics requires prior reference to classical concepts. For example, Batterman (1995, 2002) empha-
sizes the importance of semi-classical approximations, claiming that they require extra information
from classical physics beyond what one can glean from the representation of the system in quantum
theory. In this paper, we argue—contra Berry, Batterman, and Bokulich—that there is a strong
sense in which the ~ → 0 limit defines the structure of classical physics without making prior ref-
erence to it. Classical structure is, indeed, eliminable (although we stop short of advocating for its
elimination!).

Of course, there is much more that may be of philosophical interest in the works of Berry,
Batterman, and Bokulich beyond our point of contention here. All three authors draw attention to
the ways semi-classical approximations may give rise to novel forms of explanation that draw on
classical concepts. We do not wish to dispute those broader issues, and instead we only take up the
specific claim that the ~ → 0 limit is “singular” in some sense that blocks more familiar forms of
explanation of classical behavior. Quite generally, we are happy to take a pluralistic attitude and
enjoy the understanding gleaned by many different kinds of explanation. Our purpose in this paper,
however, is to investigate in more detail the kinds of reductive explanations whose impossibility
Batterman takes to motivate considering the other explanatory forms.

Our argument builds on ideas from Butterfield (2011a), who claims that limiting operations of-
ten allow one to define the formalism of less-fundamental or “top-level” theories from that of more-
fundamental or “bottom-level” ones. In particular, these definitions are often explicit : roughly,
they allow one to eliminate reference to the top-level theory. One way of defining classical struc-
ture in terms of quantum structure is provided by Landsman (2013), who uses previous work in
the framework of strict deformation quantization (e.g., Landsman, 1998a, 2007) to formulate a con-
vergent ~ → 0 limit.1 However, a staunch anti-eliminativist may saliently note that Landsman’s
construction of the limit makes prior reference to the classical theory that it seeks to derive. Our
central contribution in this paper is to use the framework of strict deformation quantization to
prove several results that show that this reference is eliminable. Specifically, we show that classical
kinematics is definable from only the structure of quantum kinematics and the scaling behavior of
physical quantities in quantum theories. We also present some preliminary results for dynamics
but leave a detailed discussion for future work.

1The focus of the discussion in Landsman (2013) is the limiting behavior of symmetry-breaking states, but along
the way he notes that the ~ → 0 limit can be used to recover the kinematics and dynamics of classical theories.
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Our results lay the groundwork for a re-assessment of the explanatory role of the classical limit.
Again, we adopt a pluralist attitude towards this role, one that has room enough for both eliminative
reduction and Berry, Bokulich, and Batterman’s coordination of theoretical structures. That is,
we do not wish to critique these authors’ positive contribution—we just seek to show that they are
tossing out the champagne with the cork. Still, while our explicit definition of classical structure
provides a kind of explanation of that structure (i.e., a deductive-nomological one), an opponent
may reasonably demand a more telling explanation. In particular, it is not immediately clear
whether such definitions determine the structure of classical physics from quantum physics alone.
We argue that this kind of structural determination relation does hold by using the mathematical
tools of category theory, building on previous philosophical applications of these tools to structural
comparisons of theories (Halvorson, 2012; Weatherall, 2016a, 2017; Barrett, 2018; Hudetz, 2019b;
Rosenstock et al., 2015). We use these tools to show how the physically significant structure of
quantum physics determines the physically significant structure of classical mechanics.

The paper proceeds as follows. In §2, we discuss the philosophical debate over singular limits
and pinpoint how we aim to use the ~ → 0 limit to defuse two challenges that they pose to
the eliminativist. In §3, we introduce the tools of strict deformation quantization, which we will
use to analyze the relationship between classical and quantum mechanics in the ~ → 0 limit.
In §4, we summarize existence and uniqueness theorems for the ~ → 0 limit in this framework,
theorems which we argue provide definitions of classical kinematics without making prior reference
to classical concepts. §5 provides a discussion of the corresponding definitions for dynamics. The
interlude in §6 summarizes the results thus far, and the significance of our explicit definitions for
the debate concerning reduction. The remainder of the paper argues further that the classical
limit is explanatory in the sense that it determines the structure of classical physics from that of
quantum physics. In §7, we introduce the tools of category theory to prepare for our remarks on the
explanatory status of the classical limit. In §8, we analyze a functor representing the classical limit
from a category of quantum theories to a corresponding category of classical theories, characterizing
features relevant to the central issue of structural determination. Finally, we conclude in §9 with
further discussion of the philosophical interpretation of the technical results.

2 Inter-theoretic Reduction

This paper addresses whether classical mechanics reduces to quantum mechanics—in particular,
whether quantum theory can recover classical physics without making prior reference to it. Such a
reduction would provide one way to do classical physics using only quantum-mechanical tools. This
project carries philosophical interest for eliminativists, i.e., those who follow Feyerabend (1981) in
advocating that we ought to eliminate reference to less-fundamental theories (at least in some
cases). The sort of eliminativist who interests us takes the terms of classical physics to be vague,
ill-defined, or otherwise unsatisfactory within a quantum paradigm. Nonetheless, they recognize
that the functional role of these terms in physical practice is too fruitful to abandon completely. We
do not argue for eliminativism here—indeed, we remain skeptical of the view’s ultimate tenability.
But the view is a serious and interesting one, and mere skepticism is not an argument against it. So
our aim in this paper is to assess whether two prominent arguments against eliminativism succeed.

These arguments arise from problems with so-called “singular limits” (Berry, 1994; Batterman,
2002; Bokulich, 2008). We isolate two related challenges that one might take such limits to pose.
The first is that singular limits might render it impossible to define classical physics in a particular
way—namely, as describing the behavior of quantum systems in an appropriate limit. The second
is that such a definition (if possible) might never, on its own, impart a proper understanding of the
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physics. We will argue that neither challenge succeeds.

2.1 Definability

To address the first challenge, we follow the familiar Quinean strategy of explication (2013, pp. 239–
240). This strategy aims to give an explicit definition of each classical term using only quantum
terms. Such a definition amounts to an “if and only if” statement with a classical term on one
side and some expression using only quantum terms on the other. In the language of philosophers,
such a definition establishes that the two expressions co-refer.2 As such, the quantum terms fully
recover the functional use of the classical ones. With such a definition in hand, an eliminativist is
free to claim that only quantum concepts have physical meaning; one can recover the usage of the
older theory’s terms while denying their physical significance.

As Butterfield (2011a) notes, such explicit definitions are precisely what we use to establish
Nagelian reductions (Nagel, 1961, 1998). Suppose we have some “top-level” or less-fundamental
theory Tt that we wish to reduce to a “bottom-level” or more-fundamental theory Tb. Recall that
the Nagelian strategy seeks to deduce Tt from Tb in conjunction with bridge laws that link the
terms of the two theories. These laws may be expressed as a set of explicit definitions, D, yielding
the schema (Butterfield, 2011b, p. 1096)

Tb ∧D ⇒ Tt. (E)

Henceforth, we will refer to (E) as the eliminativist’s schema. While we take this schema to provide
a useful and general framework, we do not take it to give the final word on reduction.

In particular, (E) does not make clear how we ought to go about deriving the top-level theory.
One fruitful strategy in mathematical physics aims to obtain the less fundamental theory as an
asymptotic limit of the more fundamental theory. Drawing inspiration from Nickles (1973), we can
view this strategy as an instance of the eliminativist’s schema. Roughly, Nickles substitutes the set
D above with the limit of some parameter ε in the bottom theory to obtain (Batterman, 2002, p.
18) what we call Nickles’ schema:

lim
ε→0

Tb = Tt. (E′)

While Nickles argues that instances of the schemas (E) and (E′) have different philosophical func-
tions, these differences will not matter for what follows since both schemas may be used to capture
explanations of Tt from Tb (Nickles, 1973, fn. 4, p. 185). In our case where Tb is quantum mechan-
ics, Tt is classical mechanics, and ε = ~, Nickles’ schema says that the limit as ~ → 0 of quantum
mechanics is classical mechanics. So long as the limiting procedure does not reference any classical
terms, the schema ought to satisfy the eliminativist.

Batterman, however, argues that Nickles’s schema “fails to hold” for classical and quantum
physics (2002, p. 79). His argument goes roughly as follows. Consider one straightforward way
of defining classical states in terms of quantum states: namely, by taking the ~ → 0 limit of
wavefunctions that solve the Schrödinger equation. As Batterman notes in his motivating example
of the WKB approximation, it turns out that semi-classical physics is often fruitfully approximated
by wavefunctions of the form ψ(x) = aeiS(x)/~ for some real-valued function S on configuration

2Given that we ultimately aim to construct definitions using algebraic objects, the fit with the usual philosophical
vocabulary—formulated in terms of the first-order predicate calculus—will be rough. Nonetheless, we find the notion
of explicit definability instructive enough to make this imperfect fit worth using. Moreover, we take our liberal usage
of logical terminology to mirror that of Butterfield (2011b). For a precise formulation of the notion in the usual
logical language, see Butterfield (2011a, p. 949).
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space (and complex constant a). Such functions strictly diverge in the ~ → 0 limit. So, according
to Batterman, Nickles’ schema fails to hold: for these limits, Batterman claims it is not the case
that limε→0 Tb = Tt. On the contrary, only small-ε solutions (or approximations thereof) matter
for the physics.

Batterman recognizes that, in the absence of convergence, he needs to provide some other
explanation for why “bottom up” constructions like the ~ → 0 limit ought to link up in any
meaningful way with classical physics. He suggests that reference to the classical theory ought to
do the justificatory work—explicitly, via the “top down” construction of wavefunctions of a similar
form directly on the classical phase space (Batterman, 2002, pp. 103–104).3 If the recovery of
classical concepts includes these divergent cases—cases that require reference to classical concepts
for their justification—then it cannot provide the definitions the eliminativist seeks.

We do not wish to criticize this explanatory strategy. We are staunch pluralists about ex-
planation: insofar as the co-ordination of top- and bottom-level structures yields a powerful (and
fruitful) explanatory strategy, we are glad to add it to our toolkit! But when evangelizing the power
of this schema, is Batterman too quick to reject Nickles’ schema? There is good reason to think
so, as the argument above only appeals to one popular limiting procedure. It seems well worth
investigating whether other procedures yield convergent limits. Of course, convergence on its own
is not enough for the eliminativist. We will also have to check whether such procedures succeed in
avoiding reference to the classical theory.

It turns out that it is possible to construct strictly converging ~→ 0 limits, but it is not imme-
diately clear that such constructions satisfy the eliminativist’s needs. We have in mind Landsman’s
(1998a; 2007; 2013) definitions of convergent ~ → 0 limits using the framework of strict deforma-
tion quantization. Landsman interprets these limits as determining the kinematics and dynamics
of classical theories from those of quantum theories.4 But couched in the above dialectic, it is easy
to spot a weakness in his approach that the anti-eliminativist may exploit: Landsman refers to the
classical theory in his construction of the ~→ 0 limit. That is, a strict deformation quantization by
definition (as we shall see next) already explicitly contains a classical algebra of quantities given by
smooth functions on a Poisson manifold. So while Landsman’s reduction seems to satisfy Nickles’
schema (E′), it is not clear that it satisfies the eliminativist’s schema (E), and hence it is not clear
that it provides what is necessary for eliminating reference to classical physics.

Our first contribution in the present work is to show how to modify Landsman’s ~→ 0 reduc-
tion such that it satisfies the eliminativist’s schema (E). Using several results within the strict
deformation quantization framework in Steeger and Feintzeig (2021), we show that reference to the
classical theory is eliminable. Specifically, we show that classical kinematics is explicitly definable
from only the structure of quantum kinematics and the scaling behavior of physical quantities in
the quantum theory. We demonstrate some preliminary results for the recovery of dynamics, but
we leave a more detailed investigation—as well as a discussion of states—for future work.5

3Landsman (2007) notes that this method has connections to an alternative to strict quantization known as
geometric quantization, which we will not treat here. Note, as well, that we have switched Batterman’s labels of
“top down” and “bottom up” to match Butterfield’s “top” and “bottom” theories. After all: “Sometimes down is
up. Sometimes up is down. Sometimes, when you’re lost, you’re found.”

4See especially the discussion of the “two questions” in Landsman (2013, p. 381).
5Indeed, as shown by the WKB solution, states must be understood differently to make sense of convergence in

the ~ → 0 limit. As Landsman (2013) shows, a promising way forward is to understand states algebraically, i.e.,
directly on the dynamical C∗-algebra of interest. His work suggests that convergence results for these states, where
obtainable, will need to be formulated on a case-by-case basis. See also Landsman (2007) for a discussion of the
classical limit of WKB states in terms of strict deformation quantization.
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2.2 Understanding

But our response to the challenges of “singular limits” cannot end here. While Batterman (2002)
does claim that Nickles’ schema fails to hold, he may ultimately be less concerned with the schema’s
technical feasibility than with the understanding that it can provide. This attitude emerges most
clearly in the conclusion of his argument against the schema:

It seems that most investigators maintain a reductionist and even eliminativist attitude
toward classical physics given the many successes of the quantum theory. Of course,
it is just this attitude that I have been at pains to question. [...] Given that the
understanding of various observed and observable universal behaviors “contained in”
the finer theories ([e.g.,] quantum mechanics) requires reference to structures present
only in the coarser theories to which they are related by asymptotic limits, it is indeed
difficult to see how this attitude can coherently be maintained. (Batterman, 2002, p.
111, emphasis ours)

As we emphasize in the quote above, Batterman is chiefly concerned about achieving adequate
understanding of the physics. So even when we find limiting relations and definitions satisfying
the eliminativist’s schema, Batterman would presumably think that it could not engender the right
sort of understanding.

This point is helpfully clarified in a dialogue between Batterman and Belot. Belot (2005)
also notes that the mathematical formalism of the less fundamental theory is often definable from
the formalism of the more fundamental theory (although he focuses on a different example of
Batterman’s: geometrical and wave optics ). Batterman (2005), however, asserts in his response to
Belot that definability is not his central concern. He insists that what is at issue is the explanatory
status of this relationship. The motivation for investigating the relationship in the first place,
he claims, derives from the physical interpretation of extra information (e.g., initial or boundary
conditions) coming essentially from the less fundamental theory. He writes:

Thus, although Belot’s pure mathematician can be given initial conditions and boundary
conditions and be told to investigate the asymptotics of the relevant partial differential
equation, those initial and boundary conditions are not devoid of physical content. They
are ‘theory laden’. And, the theory required to characterize them as appropriate for
[the higher level phenomena] in the first place is the [less fundamental theory]. The so-
called ‘pure’ mathematical theory of partial differential equations is not only motivated
by physical interpretation, but even more, one cannot begin to suggest the appropriate
boundary conditions in a given problem without appeal to a physical interpretation.
In this case, and in others, such suggestions come from an idealized limiting older (or
emeritus) theory. (Batterman, 2005, p. 159)

Batterman emphasizes here that the issue of whether the more fundamental theory yields under-
standing is distinct from the question of whether the less fundamental theory is definable from it.
He insists that one requires a physical interpretation coming from the less fundamental theory in
order to motivate and understand the significance of the appropriate conditions, operations, and
analyses that lead one to the less fundamental theory. He ultimately draws the following moral:

The deeper issue here concerns questions about the nature of applied vs. pure mathe-
matics. I hold that the pure mathematician Belot envisages is mythical. In the context
of partial differential equations, I doubt very much that it is possible to separate the
pure mathematics from the physical interpretation. (Batterman, 2005, p. 163)
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These responses help to identify common ground between Batterman and Belot. Both seek an
answer to the why-question, “Why this top-level behavior?” Batterman demands that a relevant
answer show how the physically interpreted mathematical structure of the bottom-level theory de-
termines that of the top-level theory, and we take Belot to accept this demand (charges of “pure
mathematics” notwithstanding). However, these responses also suggest a sense in which Batterman
and Belot might be interested in different interpretative tasks.

Following Dewar (2017), we take physical interpretation to involve at least two tasks: the
“internal” task of identifying which bits of mathematical structure are physically significant, and
the “external” task of specifying what they are significant for. The external task is so-called because
it requires specifying some connections between the theory and the world, between the theory and
experiments, or between the theory and particular sets of data.

We take the distinction between internal and external aspects of interpretation to be a fuzzy
one. Sometimes, what seems like an external interpretive task can be partly accomplished through
internal means. (We will give an example of this later by encoding the units of physical quantities,
which one might well take to be a part of the external interpretation of a theory, in terms of the
internal structure of a mathematical object, viz., a bundle of C*-algebras.) Nonetheless, this fuzzy
distinction is useful for sharpening the question of whether an eliminative classical-to-quantum
reduction is possible.

There is reason to believe that the internal aspects of interpretation are what are at issue in
Batterman’s opposition to classical-quantum reduction, but we do not wish to make the strong
claim that Batterman only has internal aspects of interpretation in mind. Indeed, one might
plausibly take external tasks to be the root of Batterman’s disagreement with Belot over the case of
geometrical and wave optics. For example, one might couple the idea that observations are “theory
laden” to a causal theory of reference, thereby rendering reference to the classical theory an analytic
consequence of terms at play. Very roughly, a reader with this view might note that the “spherical
boundary conditions” imposed on raindrops originated in the classical theory and conclude that
that theory is an ineliminable part of term’s reference. These philosophical commitments squarely
concern what the mathematical structures of the relevant theories are physically significant for. We
do not wish not to challenge such commitments. We merely wish to note that they are substantial
and largely separable from internal tasks.6 By focusing on internal aspects of interpretation, we
ask whether reduction is possible while avoiding one way of ruling it out from the start—namely,
with philosophical views that are (plausibly) relegated to external aspects.

At the very least, we hope that this sharpening of the question pinpoints a part of Batterman’s
view that needs further elaboration: precisely which aspects of the interpretation of classical physics
he thinks are necessary for the explanation of interest. Regardless of how that view shakes out,
it at least motivates the question of whether the internal aspects of the interpretation of classical
physics can be determined by the internal aspects of the interpretation of quantum physics. That
question is where our present interest lies.

Note well that on our pluralist approach, an affirmative answer to this question would afford
one good explanation of classical behavior among many. On our approach, the reader is free both to
view quantum theory as fundamental and to accept that classical theory offers explanatory value.
We are thus sympathetic to a view that Bokulich articulates in response to criticisms from Belot
and Jansson (2010) (that are similar to the ones that Belot levies against Batterman, above):

Even though classical mechanics is not the true fundamental theory, there are impor-

6Another example of an external commitment that might obscure the internal question is provided by a (broadly)
Bohrian approach measurement—i.e., one that requires macroscopic observables to be rendered in classical terms.
For a modern discussion of such an approach, see Landsman (2007, 2017).
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tant respects in which it gets things right, and hence reasoning with fictional classical
structures within the well-established confines of semiclassical mechanics, can yield ex-
planatory insight and deepen our understanding. (Bokulich, 2017, p. 206)

We agree that classical structures can yield unique explanatory insight. But we are omnivorous
(and gluttonous). We would be loathe to leave a good reduction on the table. So if Bokulich
endorses the claim that Nickels’s schema cannot provide an adequate understanding of the classical
limit (as one might read her (2008) as doing), then our views diverge.

To show that it can, we make the internal aspects of interpretation explicit with the language
of category theory. As Dewar (2017) notes, internal tasks can be aided, if not accomplished, by
specifying when apparently mathematically distinct models encode the same physically significant
information (in an appropriate sense). The choice of category theory for this task is inspired by
fruitful recent work applying the tool to a host of questions in philosophy of science. Halvorson
(2012) and Weatherall (2017), for example, have argued that we should often understand physical
theories not as mere collections of mathematical models, but rather as coming with further informa-
tion encoded in relations between models. Their proposal amounts to representing physical theories
by categories, which include information about the embedding and equivalence relationships among
models.7

Category theoretic tools for encoding interpretations of physical theories also provide the in-
formation needed to settle questions concerning definability relations and structural comparisons
between theories (Barrett, 2018). As such, they offer a precise and general framework in which to
pursue the questions raised by the Batterman–Belot debate. However, there has not yet been ex-
tensive work applying these mathematical tools to questions concerning intertheoretic reduction.8

In what follows, we hope to provide just a start to this project of bringing the literature on reduc-
tion together with that on the structure and interpretation of theories using the tools of category
theory.

We wish to offer two caveats before proceeding to our contributions. First, it will suffice for our
purposes to note that “explicit definitions” in the language of propositional logic and “structural
determination” in the language of category theory are somehow similar but have different strengths.
Namely, the former makes clear how our Quinean substitutions work, and the latter makes clear a
precise sense in which these substitutions amount to removing structure from the quantum theory.
However, the precise relationship between these approaches is fascinating in its own right, and it has
been explored thoroughly elsewhere (e.g., by Barrett (2018) and Hudetz (2019a)). For example, our
notion of “structural determination” fits rather closely with Hudetz’s (2019a) notion of a definable
functor (although we will not put our results in these terms). As Hudetz shows (2019a, Theorems
1-3), in some cases, explicit definability of one theory from another either implies or is implied by
a functorial relation between the theories’ categories of models. In our case of the ~ → 0 limit, it
is likewise true that all of the structural and functorial comparisons we make between classical and
quantum physics follow from our explicit definitions of classical concepts from quantum concepts.
Rather than exploring this relationship, however, we instead want to highlight that the language
of category theory helps address a substantive further philosophical question: namely, whether the

7For further general discussion, see Halvorson and Tsementzis (2017) and Halvorson (2019). We also mention two
specific applications of category-theoretic tools for internal aspects of interpretation. First, these tools have been
used in specifying the representational capacities of models (Weatherall, 2018; Fletcher, 2020). Second, and relatedly,
such interpretive information helps us settle questions concerning when two formulations of a theory are equivalent
(Rosenstock et al., 2015; Weatherall, 2016a; Rosenstock and Weatherall, 2016; Barrett, 2019). These investigations
have now given rise to an entire segment of the literature discussing proposed analyses of theoretical equivalence when
using categories to represent scientific theories (Barrett and Halvorson, 2016; Hudetz, 2019b; Weatherall, 2020).

8Notable recent exceptions include List (2019); Dewar et al. (2019); Feintzeig (2019).

8



definitions of classical concepts are somehow unnatural. One might worry that the definitions might
somehow depend implicitly on structure beyond that of quantum theory in a way that is hidden
in their syntactic presentation. Categorical language helps to emphasize that, on the contrary, the
internal task of specifying which classical structures are physically significant need only depend on
the structure of the quantum theory—and so this worry is unfounded.

Second, while we will show that the general structure corresponding to the interpretation of
classical physics can be determined by the structure of quantum physics, we will make no effort
to connect this general classical structure to the features of chaotic quantum systems that Batter-
man is primarily concerned with. Specifically, Batterman suggests that what is needed to explain
semiclassical trace formulae for such systems is knowledge of the periodic solutions to the classical
equations of motion (Belot, 2005, §4 and online Appendix). Recall, however, that we do not seek
to invalidate Batterman’s explanatory strategy, but rather to identify one place where his negative
argument against reduction fails. We hope that a reductive explanation can also be found for
chaotic systems, but it would require a significant digression to a very different technical setting.
In the spirit of biting off an amount that can be reasonably chewed, we restrict our attention to the
general question about the structural relation between classical and quantum physics—a question
which is still at play in Batterman’s work and which is interesting in its own right. We believe it
is worthwhile to treat this general structural relation, even without knowing its precise bearing on
the chaotic systems Batterman cares most about.

Those caveats out of the way, we turn to the mathematical preliminaries needed to state our
contributions precisely.

3 Mathematical Preliminaries

To respond to Batterman’s claims about the classical limit, we must look in detail at its mathe-
matical formulation. Our approach to the ~→ 0 limit uses the modern mathematical tools of strict
deformation quantization. Before defining this concept, we recall that the background for strict
deformation quantization is the algebraic formulation of physical theories. On this approach, we
represent the physical quantities of a system with elements of a C*-algebra.9 A C*-algebra A is an
associative, involutive, complete normed algebra satisfying the C*-identity: ‖A∗A‖ = ‖A‖2 for all
A ∈ A. The canonical examples of C*-algebras are commutative algebras of bounded functions on
a locally compact topological space and possibly non-commutative algebras of bounded operators
on a Hilbert space. We employ commutative algebras of functions on a classical phase space in
classical physics and non-commutative algebras of operators satisfying a version of the canonical
(anti-) commutation relations in quantum theories. Thus, using C*-algebras provides a unified
framework for investigating the relationship between classical and quantum theories. With this
background in place, we can use C*-algebras to analyze the classical limit.

3.1 Strict Deformation Quantization

A strict quantization provides extra structure to “glue together” a family of C*-algebras indexed
by the parameter ~, as follows.

Definition 1 (Landsman, 1998a). A strict quantization of a Poisson algebra (P, {·, ·}) consists in a
locally compact topological space I ⊆ R containing 0, a family of C*-algebras (A~)~∈I and a family

9We will not review the basic theory of C*-algebras here. Instead, we refer the reader to Sakai (1971), Dixmier
(1977), Kadison and Ringrose (1997), and Landsman (2017). See Bratteli and Robinson (1987, 1996) and Haag
(1992) for the C*-algebraic approach to quantum physics. See also Clifton and Halvorson (2001), Halvorson (2007),
and Ruetsche (2011) for introductions intended for a philosophical audience.
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of linear quantization maps (Q~ : P → A~)~∈I . We require that P ⊆ A0, Q0 is the inclusion map,
and for each ~ ∈ I, Q~[P] is norm dense in A~. Further, we require that the following conditions
hold for all A,B ∈ P:

(i) Von Neumann’s condition. lim~→0‖Q~(A)Q~(B)−Q~(AB)‖~ = 0;

(ii) Dirac’s condition. lim~→0‖ i~ [Q~(A),Q~(B)]−Q~({A,B})‖~ = 0;

(iii) Rieffel’s condition. the map ~ 7→ ‖Q~(A)‖~ is continuous.

A strict deformation quantization is a strict quantization that satisfies the additional requirement
that for each ~, Q~[P] is closed under multiplication and is nondegenerate, i.e., Q~(A) = 0 if and
only if A = 0.10

We can use a strict deformation quantization to represent the classical limit of a quantum
theory whose kinematics is represented by A~ for some ~ > 0. In many of the examples of physical
interest, A~ is *-isomorphic to A~′ for any ~, ~′ > 0 and so one could take any of the algebras away
from ~ = 0 to represent the kinematics of the quantum theory. Feintzeig (2020) argues that given a
classical quantity A ∈ P, we can understand Q~(A) and Q~′(A) for ~ 6= ~′ > 0 to represent the same
physical quantity in the quantum theory in different systems of units, namely units in which Planck’s
constant takes on either the value ~ or ~′, respectively. It is in this sense that a strict deformation
quantization carries not only the structure of the quantum kinematics (encoded in the algebra A~),
but also information about what we call the scaling behavior of the quantum system. One can
understand this scaling behavior as arising from a partial interpretation of the abstract elements
of a C*-algebra that assigns them to unitful physical quantities. A strict deformation quantization
provides substantive and physically significant relationships between algebras at different values of
~—information encoded in the quantization maps, which “glue” the algebras together.

This interpretation motivates us to understand the classical limit of a quantity Q~(A) in A~
in the quantum theory to be the classical quantity A ∈ P. Similarly, we can take classical limits
of states by defining a continuous field of states as a family of states ω~ ∈ S(A~) for each ~ ∈ I
such that the map ~ 7→ ω~(Q~(A)) is continuous for each A ∈ P. In this case, the classical limit
of such a continuous field of states is understood to be the classical state ω0 ∈ S(A0). Thus, a
strict deformation quantization provides enough structure to represent the classical limits of states
and quantities in quantum theories. In the present paper, we will mostly ignore classical limits
of states and restrict our focus to constructing explicit definitions of kinematical observables and
their associated dynamics. We leave a more thorough treatment of states for future work.11

In general, there may be different strict deformation quantizations of the same Poisson manifold.
If two strict quantizations Q~ and Q′~ of a given Poisson algebra P employ the same family of C*-
algebras, but possibly differ in their quantization maps, then the quantizations are called equivalent
just in case

lim
~→0

∥∥Q~(A)−Q′~(A)
∥∥
~ = 0 (1)

10Rieffel (1989, 1993) uses this approach to define a “deformed” product on the classical algebra, which he uses in
turn to specify the quantization conditions. Our goal is to work in the opposite direction, defining the elements of
the classical algebra using information away from ~ = 0. We will mostly ignore the deformation condition, but still
refer to strict deformation quantizations to distinguish them from other approaches like geometric quantization.

11Note, however, that there is a close connection between the satisfaction of Rieffel’s condition in a strict quanti-
zation and the existence of a continuous field of states converging to each classical state. See the proof of Thm. 4 in
Landsman (1993, p. 33)
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for all A ∈ P. Equivalent quantizations share the same behavior in the limit as ~ → 0. One can
encode this common behavior in a further object, variously called a continuous bundle or field of
C*-algebras, which itself has enough structure to understand the classical limits of quantities and
states. We will work with a recent treatment of bundles of C*-algebras due to Steeger and Feintzeig
(2021), designed to analyze the cases of interest in this paper.

3.2 Bundles of C*-Algebras

The maps [~ 7→ Q~(A)] for each A ∈ P are clearly significant in the structure of a strict defor-
mation quantization. However, for many purposes it suffices to deal with any map from values of
~ ∈ I to observables in algebras A~ that is suitably continuous. A bundle of C*-algebras takes
these continuous maps as primary (themselves forming a C*-algebra) and forgets the particular
quantization map that generates them. We define these bundles now. In what follows, UCb(I)
denotes the collection of uniformly continuous and bounded functions on a metric space I.

Definition 2 (Steeger and Feintzeig (2021)). A uniformly continuous bundle of C*-algebras12

over a metric space (I, d) is a family of C*-algebras (A~)~∈I , a C*-algebra A called the collection
of uniformly continuous sections, and a family of *-homomorphisms (φ~ : A → A~)~∈I called
evaluation maps, which we require to satisfy the following conditions:

(i) Fullness. Each evaluation map φ~ is surjective and the norm of each a ∈ A is given by
‖a‖ = sup~∈I‖φ~(a)‖~.

(ii) Uniform completeness. For each f ∈ UC b(I) and a ∈ A, there is an element fa ∈ A such that
φ~(fa) = f(~)φ~(a).

(iii) Uniform continuity. For each a ∈ A, the function Na : ~ 7→ ‖φ~(a)‖~ is in UC b(I).

In general, we will restrict our attention to uniformly continuous bundles of C*-algebras whose
base space is a locally compact metric space. We will often think of the C*-algebras A~ as fibers
above the values ~ ∈ I, hence forming a bundle structure over I. A uniformly continuous bundle
of C*-algebras determines the continuity structure of the bundle by specifying the collection A of
uniformly continuous sections through the bundle.

It follows from a result of Landsman (1998a, Theorem 1.2.4, p. 111) that, given a strict
quantization, there is a unique uniformly continuous bundle of C*-algebras containing among its
sections the curves traced out by the quantization maps as ~ varies. More formally: given a
strict quantization ((A~,Q~)~∈I ,P), there is a unique uniformly continuous bundle of C*-algebras
((A~, φ~)~∈I ,A) such that for eachA ∈ P, there is a continuous section a ∈ A with φ~(a) = Q~(A) for
all ~ ∈ I. We can thus speak of the uniformly continuous bundle generated by a strict quantization.
Moreover, Landsman’s theorem shows equivalent quantizations generate the same bundle. In this
sense, the bundles encode an invariant structure among different quantization maps capturing the
same behavior in the ~→ 0 limit.13

The association of a C*-algebra of uniformly continuous sections in this definition allows one to
use many familiar tools to analyze such bundles. In the next section, we will formulate our central

12Steeger and Feintzeig (2021) establishes an equivalence between a category of uniformly continuous bundles
of C*-algebras and categories of models specified by other related definitions of bundles of C*-algebras, including
continuous fields of C*-algebras (Dixmier, 1977) and (vanishingly) continuous bundles of C*-algebras (Kirchberg and
Wasserman, 1995).

13See also Steeger and Feintzeig (2021) for more detail on the functorial determination of a bundle of C*-algebras
from a strict deformation quantization.
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question about quantum mechanics recovering its classical limit as follows. Suppose one knows
the quantum kinematics for ~ > 0 but has no knowledge of the corresponding classical kinematics,
i.e., suppose one has a bundle of C*-algebras ((A~, φ~)~∈(0,1],A) over the base space consisting
only of parameter values ~ > 0. Under what conditions is there a unique algebra A0 that, when
appropriately glued to the given bundle of algebras, provides an extended continuous bundle?

Before proceeding to make this question precise and provide an answer, we mention one more
definition we will use. In what follows, we will also need to use a notion of morphism, or structure-
preserving map, between uniformly continuous bundles of C*-algebras, which we define as follows.
First, recall that a metric map α : I → J is one satisfying dJ(α(x), α(y)) ≤ dI(x, y) for all x, y ∈ I,
where dI and dJ are the metrics on I and J , respectively. A homomorphism σ : AI → BJ between
uniformly continuous bundles of C*-algebras AI = ((A~, φ

I
~)~∈I),A) and BJ = ((B~, φ

J
~ )~∈J),B) is

a pair of maps
σ = (α, β), (2)

where α : I → J is a metric map, β : A → B is a *-homomorphism, and the following condition
of compatibility is satisfied: for all a1, a2 ∈ A and ~ ∈ I, if φI~(a1) = φI~(a2), then φJα(~)(β(a1)) =

φJα(~)(β(a2)). The condition of compatibility between α and β ensures that β preserves fibers

in the sense that it defines, for each ~ ∈ I, a *-homomorphism from the fiber A~ to the fiber
Bα(~). A homomorphism of bundles σ = (α, β) is an isomorphism if α is an isometry and β is a
*-isomorphism.

In the next section, we will use uniformly continuous bundles of C*-algebras to analyze the
existence and uniqueness of limits of families of C*-algebras, of which the classical limit is one
example.

4 Existence and Uniqueness of the Classical Limit

Recall from §2.1 that one aspect of the question of whether classical mechanics reduces to quantum
mechanics concerns whether classical physics is explicitly definable from quantum physics. One way
to formulate this issue mathematically is to ask after the existence and uniqueness of a classical
limit given only a quantum theory for ~ > 0.

We formulate the problem of the existence and uniqueness of the classical limit as follows.
Suppose one has a strict deformation quantization of a Poisson manifold over the base space given
by the closed interval I = [0, 1]. This structure, and its associated uniformly continuous bundle of
C*-algebras A[0,1], can be used to represent the ~→ 0 limit of the quantum theory whose kinematics
is represented by the algebra A~ at the fiber ~ = 1 of A[0,1]. But we seek to answer Batterman’s
challenge (or one aspect of it) to provide a formulation of the classical limit that does not make
prior reference to the classical theory. As such, we want to consider the case where we begin with
only information about the quantum theory and no information about the corresponding classical
limit. In other words, suppose we are given only the restriction of our uniformly continuous bundle
of C*-algebras to a bundle over the base space given by the half-open interval (0, 1]. One can
always canonically restrict a bundle of C*-algebras over the base space J to a base space I if one
is given a metric embedding α : I → J . The restriction simply removes the fibers outside of α[I]
and truncates continuous sections from J to α[I] ⊆ J . (See Steeger and Feintzeig (2021) for more
details.) In particular, one can use the natural inclusion map α : (0, 1]→ [0, 1] to define a restricted
bundle A(0,1] over the base space (0, 1] resulting from a strict deformation quantization as above.
Such a restricted bundle represents only the information in the quantum theory for ~ > 0 with no
reference to the corresponding classical theory at ~ = 0.
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Given such a restriction, our questions are: can one reconstruct the C*-algebra of classical
quantities A0 from this restricted continuous bundle? And can one continuously glue A0 to the
restricted bundle in a way that recovers the original information about the ~→ 0 limit? We answer
both questions in the affirmative. The result is a two-step procedure for constructing explicit
definitions of classical concepts from quantum ones, which we call “extension-and-restriction”.
Starting with a bundle representing only quantum theory and scaling information for ~ > 0, we
(uniquely) extend the bundle to one containing information at the privileged accumulation point
~ = 0; then we (uniquely) restrict this new bundle to the fiber algebra ~ = 0 to exactly recover the
classical theory.

We pause here to respond to a potential objection to the philosophical relevance of this extension-
and-restriction procedure for intertheoretic reduction. A supporter of the anti-reductionist view
might object that understanding a quantum theory to come with the structure of a uniformly con-
tinuous bundle of C*-algebras already smuggles in the structure of classical physics. After all, as
discussed in §3, the algebra of uniformly continuous sections is typically determined by a quanti-
zation map, whose definition itself relies on prior knowledge of a classical theory and its algebraic
structure.

We concede that the algebra of continuous sections, and hence the continuity structure of the
associated bundle, are typically defined via a quantization map, and that if the continuity structure
relied on the quantization map, then this would pose a problem for our view of the reductive
classical limit. However, we believe this objection fails because the continuity structure does not
rely on a quantization map. Another way of putting the point is to recall our earlier remarks that
we are focused on recovering internal aspects of the interpretation of classical physics from internal
aspects of the interpretation of quantum physics. To accomplish this task, we are free to stipulate
that the continuity structure of the bundle is physically significant straightaway.

Nonetheless, we would like to motivate this choice, and we would like to do so without refer-
encing the classical theory. At the very least, we can motivate it by noting that the particular
quantization map (out of a family of equivalent quantization maps) used to take the classical limit
is not physically significant as long as one has the continuity structure of a bundle of C*-algebras.
But, ideally, we would prefer to avoid reference to quantization maps altogether. Thus, we now
argue for one sense in which the invariant bundle structure is physically significant within quantum
theory itself. Specifically, we show that the continuity structure of a bundle of C*-algebras over
(0, 1] representing quantum theories for ~ > 0 can be physically motivated (externally) and defined
(internally) with no reference to or dependence on a classical theory or quantization map.

The basic point comes from the interpretation provided by Feintzeig (2020) of the classical
limit. As such, we will use the example employed in that paper of the classical limit of the Weyl
algebra14 for a system with classical phase space R2n. We start with an external task: following
Feintzeig, we interpret different numerical values ~ 6= ~′ ∈ (0, 1] as the values of Planck’s constant
in different systems of units. On this interpretation, the numerical values of quantities like position
Q and momentum P are likewise rescaled in different systems of units. The Weyl algebra has a
basis constituted by elements W (a, b) for a, b ∈ R2n understood (at least in regular representations)
as related to position and momentum by

W (a, b) ∼ ei(a·Q+b·P ).

This relationship motivates the commutation relations for the Weyl algebra from the canonical
commutation relations forQ and P . And more importantly for our purposes, this relationship allows

14See, e.g., Clifton and Halvorson (2001) or Petz (1990) for background on the Weyl algebra, which is one particular
C*-algebra used to represent quantum theories.
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us to understand how the quantities W (a, b) are rescaled in different systems of units. Feintzeig
(2020) argues from dimensional analysis that changing from units in which Planck’s constant takes
on the value ~′ ∈ (0, 1] to units in which Planck’s constant takes on the value ~ ∈ (0, 1] yields the
change

ei(a·Q+b·P ) 7→ ei(a
√

~/~′·Q+b
√

~/~′·P ),

which can be represented in the Weyl algebra as the change

W (a, b) 7→W (
√

~/~′ · a,
√
~/~′ · b).

On the interpretation of different values of Planck’s constant as corresponding to different systems
of units, then, for each a, b ∈ R2n, we should understand the one-parameter family generated
from ~′ = 1 and varying ~ ∈ (0, 1] to be a continuous section of a corresponding bundle of Weyl
algebras. In other words, this interpretation motivates our choice for an internal task—namely,
our specification of a particular continuity structure as a physically significant one. Explicitly, one
should stipulate that the maps

~ ∈ (0, 1] 7→W (
√
~ · a,

√
~ · b)

are continuous sections and use them to generate a C*-algebra of continuous sections. In fact,
Feintzeig (2020) proves that this gives rise to the same continuity structure for a bundle of Weyl
algebras as the standard Weyl or Berezin quantization maps, which employ a classical, commutative
algebra (Binz et al., 2004). However, since the motivation and construction just outlined do not
employ the classical Weyl algebra or a quantization map, this shows that thinking about rescalings
of values of quantities with changes of units is enough to motivate and determine the continuity
structure of a bundle over (0, 1] from only the physical information encoded in a quantum theory
and its unitful scaling behavior. Of course, the scaling behavior encoded in the continuity structure
of the bundle is extra information not contained in the Weyl algebra itself; however, we take the
scaling behavior to be well-motivated by the physical interpretation of the Weyl algebra as it
represents quantities in a quantum theory alone, without any consideration of its corresponding
classical limit.15

As flagged in §2.2, what we have done here is take what one might view as an external aspect
of the interpretation of quantum physics—the units of physical quantities—and encoded at least
a part of this interpretation—namely, how quantities with related units rescale—internally in the
mathematical structure of bundles of C*-algebras, which we use to represent a quantum theory.
We think that this interpretation and mathematical structure are appropriately treated as part
of quantum theory alone, with no reference to classical physics. We hope this small digression
also serves to clarify just what physical interpretation we are presupposing when we begin with a
uniformly continuous bundle of C*-algebras.

Thus, we believe that one can understand bundles of C*-algebras over (0, 1] to represent the
structure of quantum theories alone. And so, the question of the existence and uniqueness of
extensions to the larger base space [0, 1] takes on immediate philosophical relevance. The existence
and uniqueness results that we now summarize for such bundle extensions obtain in full generality
for the case where the base space I is an arbitrary locally compact metric space. Such general results
then apply immediately to the case where the base space is either I = (0, 1] or I = {1/N |N ∈ N},
which are the most typical base spaces used in analyzing limits of quantum theories. As such, we
define a general notion of extension.

15We have only here dealt with one example of a bundle of C*-algebras using the Weyl algebra. We believe this
reasoning about rescaling units of physical quantities should generalize, not to arbitrary bundles of C*-algebras, but
to those bundles that can be used to represent quantum systems.
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Definition 3. Let AI = ((A~, φ
I
~)~∈I ,A) and BJ = ((B~, φ

J
~ )~∈J ,B) be uniformly continuous

bundles of C*-algebras over a locally compact metric spaces I and J , respectively.

• BJ is an extension of AI if there is a monomorphism of uniformly continuous bundles of
C*-algebras σ : AI → BJ , i.e. a homomorphism σ = (α, β), where α and β are both injective.

• BJ is a minimal extension of AI if, moreover, α and β are both dense embeddings.16

In either case, we say that the extension BJ is associated with α via σ.

We are especially interested in minimal extensions, since these encompass the extension from
the base space (0, 1] to [0, 1], thus containing ~ = 0. Thankfully, one can show that a minimal
extension is guaranteed to exist for any accumulation point of interest.

Theorem 1 (Steeger and Feintzeig (2021)). Let AI = ((A~, φ
I
~)~∈I ,A) be a uniformly continuous

bundle of C*-algebras over a locally compact metric space I. Suppose α : I → J is a dense,
isometric embedding. Then there exists a minimal extension ÃJ of AI associated with α.

We provide a summary of the construction here for use in our conceptual discussion. The idea of
the construction of ÃJ is to define a C*-algebra Aj for each j ∈ (J \ α[I]) and then glue these
algebras to the original fibers, as follows.

• Definition of fibers. For each j ∈ (J \ α[I]), consider a Cauchy net (iδ) in I such that α(iδ)
converges to j in J . Define Kj as the collection of continuous sections a ∈ A such that
limiδ→j‖φIiδ(a)‖iδ = 0. It turns out that Kj is a closed two-sided ideal in A, which allows us
to define the fiber C*-algebra by Aj := A/Kj .

• Gluing new fibers to the bundle. One can keep the same collection of sections A (and so β
is dense, as it is the identity map). Define new maps φJj , which are the same as φIj when
j ∈ α[I] and give the appropriate limits when j ∈ (J \α[I]). The appropriate limit turns out
to be φJj (a) = [a]Kj , where [a]Kj ∈ A/Kj is the equivalence class corresponding to a ∈ A.

The result is a uniformly continuous bundle of C*-algebras ÃJ as desired. Hence, a minimal
extension exists for any given “completion” of the parameter space with an accumulation point of
interest.

However, in order to use this minimal extension to talk of the classical theory defined by
quantum theory, we require something further: a clear sense in which this extension is unique.
It turns out that all minimal extensions associated with a dense embedding α are isomorphic to
each other—and so it makes good sense to talk of both the minimal extension of a bundle and the
classical theory that it defines.

Theorem 2 (Steeger and Feintzeig (2021)). Let AI be a uniformly continuous bundle of C*-algebras
over a locally compact metric space I. Suppose that BJ and CJ are two minimal extensions of AI
associated with a given dense, isometric embedding α : I → J . Then BJ and CJ are isomorphic as
uniformly continuous bundles of C*-algebras.

16We use the term “dense embedding” above to mean something slightly different for α and for β. For α to be
a dense embedding, it must be an isometric isomorphism between its domain and its image (equipped with the
subspace topology) and its image must be dense in J (equipped with the metric topology). Sometimes we will call
α a “dense, isometric embedding” for emphasis; although, note that we do not require α to be bijective. For β to
be a dense embedding, nothing more is required other than that its image must be dense in B (according to the
algebra’s norm)—this condition, in conjunction with injectivity, makes β a *-isomorphism (Kadison and Ringrose
1997, p. 243).
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Theorems 1 and 2 together allow us to refer to ÃJ as the minimal extension of a uniformly con-
tinuous bundle of C*-algebras AI associated with a given dense embedding α : I → J . Moreover,
Theorem 2 allows us to refer to the algebra Aj as the algebra at the accumulation point j ∈ (J\α[I]).
We will do so for the remainder of the paper. In particular, to represent the classical limit of a
quantum theory we can set I = (0, 1], J = [0, 1], and look at the minimal extension associated with
the inclusion map α : (0, 1]→ [0, 1].

5 Explicit Definitions

5.1 Kinematics

The construction underlying the existence and uniqueness of bundle extensions leads immediately
to explicit definitions of classical kinematic concepts in terms of quantum kinematics through the
classical limit. The recipe for building these definitions is present in our sketch of the proof of
Theorem 1, but it is instructive to fill it in. To keep things general, suppose that ÃJ is the minimal
extension of AI for α with the privileged point 0 ∈ J \α[I]. Given quantities in the quantum theory
whose scaling behavior is described by sections a, b ∈ A, we explicitly define the classical limits of
a and b as elements A,B of A0 with definitions and algebraic operations given by

A := [a]K0 B := [b]K0

A+B := [a+ b]K0

A ·B := [a · b]K0

c ·A := [c · a]K0

A∗ := [a∗]K0

(D1)

for c ∈ C. The limit construction shows that physical information at ~ > 0 contains enough
information to uniquely fix kinematical quantities and their algebraic relations at ~ = 0—and such
a construction is precisely what one needs to give explicit definitions like the ones above.

In addition to defining the algebraic structure of observables at ~ = 0, our setup can also be
used to define the classical Poisson bracket. Consider any pair of sections a, b ∈ A and suppose
that there exists a section {a, b} ∈ A such that

lim
~→0

∥∥∥∥ i

|~|
[φ~(a), φ~(b)]− φ~({a, b})

∥∥∥∥
~

= 0, (3)

where we define |~| as the distance between ~ and 0 using the metric of J . Note, in particular, that
if the minimal extension is generated by a strict quantization, then {a, b} is guaranteed to exist
for each pair A,B in the domain P ⊆ A0 of the quantization maps. We may now define a partial
binary operation on A0 using just the information in AI by

{A,B} :=

{
[{a, b}]K0 if an {a, b} ∈ A satisfying (3) exists,

undefined otherwise.
(D2)

Note that the operation {·, ·} is a Poisson bracket where it is defined—it is anticommutative and
bilinear, and it satisfies both Leibniz’s rule and the Jacobi identity (all properties that it inherits
from the commutator on the algebra of uniformly continuous sections). Clearly, in the case that
the minimal extension is generated by a strict quantization, {A,B} recovers the usual Poisson
bracket structure of the Poisson algebra P. Thus, the information encoded in the commutator of
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the quantum theory allows us to explicitly define the Poisson bracket on the algebra of classical
observables.

So far, we have shown that one can use the information encoded in a quantum theory along
with its scaling behavior for ~—formalized using uniformly continuous bundles of C*-algebras—to
explicitly define the classical kinematics—formalized in the algebraic structure of a commutative C*-
algebra and a Poisson bracket. Next, we show that under suitable conditions, one can furthermore
explicitly define the classical dynamics from a given quantum dynamics without prior reference to
the classical theory.

5.2 Dynamics

Our general strategy for constructing explicit definitions of classical dynamics mirrors that for
kinematics. We start with dynamics on all quantum systems in a uniformly continuous bundle
satisfying the minimal requirement that these dynamics scale continuously with ~. Then we repeat
our two-step extension-and-restriction procedure from before. That is, we first extend the dynamics
on the entire bundle to a dynamics on the unique extended bundle with a privileged accumulation
point guaranteed by Theorems 1 and 2. Then we restrict the dynamics on the extended bundle to
the fiber algebra at that privileged point. Although this construction is abstract and general, we will
show that for a relatively broad class of systems, it reproduces the standard classical Hamiltonian
dynamics.

To start, we treat dynamics as maps taking observables at an initial time to observables at some
later time t while preserving their algebraic relations—that is, we view dynamics as (at the very
least) encoded in a one-parameter automorphism group (τt : C → C)t∈R for an algebra of interest
C. These automorphisms may be generated by some classical or quantum Hamiltonian, but we
will not demand that they be so for the moment. Suppose again that AI = ((A~, φ

I
~)~∈I ,A) is a

uniformly continuous bundle of C*-algebras and allow (τt;~)t∈R to denote the dynamics on each
fiber algebra A~. To enforce that these dynamics scale continuously with ~, we require that they
lift to an automorphism group on the algebra of sections. That is, we require the existence of a
one-parameter automorphism group (τt)t∈R on A satisfying

τt;~ ◦ φI~ = φI~ ◦ τt for all ~ ∈ I, t ∈ R. (4)

This is just the requirement that we are considering (in some sense) the “same” quantum dynamics
at different scales.

Now we turn to the extension-and-restriction procedure. Let J be a locally compact metric
space with dense metric embedding α : I → J , and let ÃJ again be the minimal extension of
AI associated with α. Recall that we can choose the minimal extension to have the same algebra
of sections A, without loss of generality (by Theorem 2). The lifting to automorphisms (τt)t∈R
on A by (4) then immediately defines dynamical automorphisms on the algebra of sections of the
extended bundle ÃJ . Moreover, this naturally defines an extended dynamics on any other minimal
extension of AI because Theorem 2 guarantees all such extensions are bundle isomorphic. All that
remains is to restrict these dynamics to the algebra at the privileged point, which we again denote
by 0 ∈ (J \ α[I]). Given dynamics τt on the sections, we define a one-parameter automorphism
group (τt;0)t∈R representing the dynamics for the observables in A0 by

τt;0(A) := [τt(a)]K0 for all t ∈ R, (D3)

where a ∈ A and A ∈ A0 are associated via (D1). In other words, we define the classical dynamics
by enforcing the analog of (4), given by the condition

τt;~ ◦ φJ~ = φJ~ ◦ τt for all ~ ∈ J, t ∈ R (5)
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now on the extended bundle over J . This completes our two-step explicit definition. Moreover,
the extended dynamics and its restriction to any given fiber are unique up to dynamics-preserving
bundle isomorphism, which justifies us in referring to the dynamics defined through the bundle
extension. Notice that in the particular case where I = (0, 1] and J = [0, 1], this defines a classical
dynamics at ~ = 0 from only the information encoded in the quantum theory, now including
dynamics, at ~ > 0.

One might still worry about whether our abstract definition of the classical dynamics agrees
with the usual notion of the dynamics of a classical mechanical system. We now proceed to show
that for a class of classical Hamiltonian dynamics, our definition does indeed recover the standard
form.

To show this, we now restrict attention to the case of interest where ~ takes values in I = (0, 1]
or its extension J = [0, 1]. First, we use the extra structure of a quantization map to prove
a convergence result for arbitrary automorphism groups that do not need to be generated by
a particular Hamiltonian. Our conclusion then follows by a similar convergence result due by
Landsman, which we state in the Appendix. Landsman’s result holds when a Hamiltonian vanishing
at infinity generates both the quantum and the classical dynamics (and we discuss generalizations to
broader classes of Hamiltonians below). So if such a Hamiltonian generates the quantum dynamics
τt;~, then the classical dynamics τt defined by (D3) agrees with the standard classical Hamiltonian
dynamics.17

Proposition 1. Suppose the maps (Q~ : P → A~)~∈[0,1] form a strict deformation quantization

generating the bundle A[0,1] = ((A~, φ
[0,1]
~ )~∈[0,1],A). Suppose further we have a one-parameter au-

tomorphism group (τt)t∈R on A, and that for each ~ ∈ [0, 1], we have one-parameter automorphism
groups (τt;~) on A~ satisfying (5). Then for any A ∈ P,

lim
~→0
‖Q~(τt;0(A))− τt;~(Q~(A))‖~ = 0. (6)

Proposition 1 implies that our definition of classical dynamics in (8) recovers standard Hamil-
tonian dynamics for the class of quantum theories on a Hilbert space L2(Rn), with corresponding
classical limit formulated on the phase space T ∗Rn, as follows.

Theorem 3. Suppose the maps (Q~ : P → A~)~∈[0,1] form a strict deformation quantization with

P ⊆ C0(T
∗Rn) and A~ ⊆ B(L2(Rn)) for ~ > 0, generating the bundle ÃJ = ((A~, φ

J
~ )~∈J ,A).

Suppose further we have a one-parameter automorphism group (τt)t∈R on A, and that for each
~ ∈ [0, 1], we have one-parameter automorphism groups (τt;~) on A~ satisfying (5) with J=[0,1]. If
there is an H ∈ P such that for each ~ > 0 and B ∈ A~

τt;~(B) = e−iQ~(H)tBeiQ~(H)t, (7)

then for any A ∈ P, if τt;0(A) ∈ P for all t ∈ R, then

d

dt
τt;0(A) = {H,A}. (8)

We emphasize that our general convergence result (6) in Proposition 1 holds for any dynamics,
regardless of whether it is generated by a Hamiltonian. When, in addition, the quantum dynamics
are generated by the quantization of a Hamiltonian vanishing at infinity, Landsman’s convergence
result implies that the ~ → 0 limit recovers the classical dynamics defined by that Hamiltonian.

17We provide proofs in the Appendix for all propositions that are not proved in references.
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Landsman (1998a, 2007) proves a number of further propositions providing variations on the conver-
gence result. Notably, one result (Landsman, 1998a, Cor. 2.5.2, p. 141) implies that the conclusion
of Theorem 3 holds as well for any quantization equivalent to Weyl quantization when H is an
unbounded polynomial at most quadratic in momentum p and configuration q. This means that
the dynamics of free particles and harmonic oscillators are both in the purview of the result. He
also proves slightly weaker convergence results for other Hamiltonians (Landsman, 1998a, §II.2.7).
However, it is still unclear whether any convergence result of this sort is general enough to cover
the kinds of dynamics that are Batterman’s focus, i.e., those of chaotic systems. Thus, a staunch
opponent to eliminativism may justly demand more. Nonetheless, our result already shows how a
large class of classical dynamics is definable from quantum dynamics without prior reference to the
classical theory, making great headway on filling in the eliminativist’s schema. We leave further
investigation of unbounded Hamiltonians and chaotic systems for future work.

6 Interlude

We now pause to summarize the philosophical significance of our first contribution concerning ex-
plicit definability before moving on to the issue of the understanding such definitions engender.
Recall that our goal is to argue against the claims of Batterman, Berry, and Bokulich that the
classical ~ → 0 limit of quantum mechanics is “singular” in a way that prevents an eliminativist
reduction of classical to quantum mechanics. By paying close attention to mechanisms of Lands-
man’s ~ → 0 limit, we have shown that the eliminativist’s case is more robust than previously
understood. On one pass, this case relies on the construction of explicit definitions to justify the
elimination of reference to the classical theory—and we have shown how to extract such definitions
from a modification of Landsman’s methods.

As flagged in §2.1, this modification enables us to align two schemas of reduction: the elimina-
tivist’s schema, on the one hand, and Nickles’s schema, on the other. With uniformly continuous
bundles of C*-algebras, we have shown how our top-level theory Tt (classical mechanics) is, at least
partially, both explicitly defined by and recovered in the strict ~ → 0 limit of our bottom-level
theory Tb (quantum mechanics). The sense in which our limit satisfies Nickles’s schema (E′) is
clear enough from the above work and Landsman’s work. However, it is worth taking a moment to
spell out how our limit satisfies the eliminativist’s schema (E), as characterized by Butterfield.

Recall that the eliminativist’s schema (E) takes the bottom-level theory Tb in conjunction with
a set of explicit definitions D to derive the top-level theory Tt. In our case, we take the bottom-
level theory to be quantum mechanics with instructions on how quantities scale with ~—that is, a
uniformly continuous bundle of C*-algebras AI defined over the base space I = (0, 1]. Our theory
includes two further bits of structure: the commutator [ · , · ]~ on each fiber (itself definable from
the C*-algebraic structure) and the continuously-scaling dynamics τt on the algebra of sections A.
All in all, we can define

Tb := (AI , [ · , · ]I , τt) , (9)

where [ · , · ]I denotes the family of all the commutators. Our top-level theory is classical mechanics
on algebraic approach. So we have a commutative C*-algebra A0 with a densely defined18 Poisson
bracket { · , · } and dynamics τt;0 generated by the bracket and some Hamiltonian H via (8), yielding

Tt := (A0, { · , · }, τt;0) . (10)

18Note that we do not include a particular dense Poisson subalgebra of A0 in the structure of the classical theory,
to reflect that the choice of such a Poisson subalgebra (e.g., the compactly supported smooth functions, or the
Paley-Wiener functions) does not make a substantive difference to the physics.
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Finally, we let D denote the conjunction of our three explicit definitions,

D := D1 ∧D2 ∧D3. (11)

Now we can construct a partial explicit definition of a classical theory in terms of the quantum
theory. To ensure that this definition recovers the desired classical theory in the Hamiltonian frame-
work, the eliminativist needs to check a number of conditions. First, suppose we explicitly define
the algebra A0 via (D1) and equip it with the Poisson bracket defined by (D2). Our eliminativist
can check whether there exists a dense Poisson subalgebra P ⊆ A0, closed under the operations
defined in (D1) and (D2) satisfying the following. The first condition is that the minimal extension
of our bundle to J = [0, 1] is generated by a strict quantization. That is to say, the eliminativist
can confirm:

There is a family of quantization maps (Q~ : P → A~)~∈J satisfying Von Neumann’s,

Dirac’s, and Rieffel’s conditions such that ÃJ is generated by Q~.
(C1)

The second condition is that the dynamics defined by (D3) on the P in (C1) preserves that algebra,
i.e., the eliminativist can check whether:

For all A ∈ P, τt;0(A) ∈ P for all t ∈ R. (C2)

Finally, the third condition needed is that the quantum dynamics are generated by an element of
the P in (C1) of the appropriately vanishing sort, i.e., the eliminativist can assess the following
claim:

There exist faithful representations (π~)~∈J of the Poisson algebra at ~ = 0 and of the
C*-algebras at ~ > 0 such that

π0[P] ⊆ C0(T
∗Rn), π~[A~] ⊆ B(L2(Rn)) for all ~ > 0,

and there is some H ∈ P for which (7) holds for each ~ > 0 and B ∈ A~.

(C3)

We denote the conjunction of these “explicit definition conditions” by C, i.e.,19

C := C1 ∧ C2 ∧ C3. (C)

This yields the following partial instantiation of the eliminativist’s schema:

If C, then Tb ∧D ⇒ Tt. (12)

But what about the cases where C fails to hold? In this case, our construction still defines a theory
at ~ = 0, but it is unclear precisely how it links up with classical concepts. Specifically, we obtain
in general

Tb ∧D ⇒ T ∗t , where T ∗t :=
(
A∗0, { · , · }∗, τ∗t;0

)
, (13)

where the C*-algebra A∗0 is defined by (D1), the binary operation { · , · }∗ is some (possibly partial)
Poisson bracket defined by (D2), and τ∗t;0 is the family of automorphisms defined by (D3). At this
juncture, the eliminativist is free to view T ∗t as the proper description of classical physics, given
their commitment to Tb as the proper description of the quantum theory and its scaling structure.
But it may or may not be the case that this theory relates in an interesting way to the usual

19Note that we are somewhat loose in our notation here: the Poisson algebra referenced in (C1)-(C3) must be the
same, i.e., an existential quantifier over P must enclose the entire conjunction.
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classical concepts in some cases where C fails to hold. We wager that T ∗t recovers standard classical
Hamiltonian mechanics with more generality,20 but we leave the evaluation of this conjecture for
future work.

So the eliminativist’s work is far from finished! We are not yet able to provide explicit definitions
of all classical terms on the algebraic approach. Nonetheless, we take our work to dismantle a
possible objection to the eliminativist’s project that draws inspiration from Batterman’s criticisms.
Namely, as discussed in §2.1, Batterman’s comments might be taken to imply that any attempt to
fulfill the eliminativist’s schema is doomed to failure. But as shown above, there is at least a partial
fulfillment of the schema, and the eliminativist is free to reject using the instances of classical terms
not covered by it.

Now we move on to the further issue introduced in §2.2 concerning whether the explicit def-
initions we have provided of classical concepts are enough to provide understanding of classical
physics. Equation (12) already provides an explanation of a sort—namely, a deductive-nomological
one, where the law-like explananda are the quantum kinematic and dynamical structures encoded
in Tb and the explanans is the classical kinematic and dynamical structure encoded in Tt. But as
discussed in §2.2, one might reasonably demand a more telling explanation, or at least a clarification
of which bits of quantum structure are relevant for fixing which bits of classical structure. We will
address this question with category-theoretic tools. The end result will show how the physically
interpreted mathematical structure of quantum mechanics determines the corresponding structure
of classical physics—and we take this determination to impart one useful way of understanding
classical behavior.

7 Category-Theoretic Preliminaries

Recall from §2.2 that our strategy is to mathematically encode at least parts of the physical inter-
pretations of the structure of classical and quantum physics, and show that the latter structurally
determines the former. Following Dewar (2017), we believe that certain aspects of interpretation,
which we are calling internal, can be encoded mathematically using the tools of category theory.
Specifically, category theory provides a setting for reasoning about structure-preserving maps, and
the internal task of saying which mathematical features of a theory are physically significant (sep-
arate from the external task of saying what in the world they represent) is often accomplished
by restricting attention to those mathematical features invariant under the structure-preserving
maps. In other words, one can specify physically significant structures by specifying the collection
of maps between objects that preserve them. We will use these tools to show that internal aspects of
the interpretation of quantum physics, encoded in a category of mathematical objects representing
quantum theories, structurally determines internal aspects of the interpretation of classical physics,
encoded in a category of mathematical objects representing classical theories. In this section, we
introduce the necessary category-theoretic tools21 as well as the categories encompassing quantum
and classical theories that we work with.

A category C consists in a collection of objects and a collection of arrows or morphisms, each
with a source and target. We denote a morphism by f : A → B for source A and target B. We
will sometimes denote the collection of morphisms with source A and target B by HomC(A,B).
Moreover, a category contains an operation of morphism composition, denoted ◦, which is total in
the sense that for each f : A → B and g : B → C, there is an h : A → C such that h = g ◦ f .
The composition operation is required to be associative, and moreover, each object A has a unique

20In particular, we conjecture that one can loosen the requirements on the Hamiltonian H in (C3).
21For more background on category theory, see, e.g., Awodey (2010).
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identity morphism 1A whose composition with other morphisms leaves them unchanged. We call
a morphism f : A → B an isomorphism if there exists a morphism f−1 : B → A such that
f−1 ◦ f = 1A and f ◦ f−1 = 1B. It is instructive to think of morphisms as maps preserving relevant
structure for the objects in the category and of isomorphisms as maps identifying when two objects
have the “same” structure, relative to the kind of structure encoded in the category.

The primary example of a category we are concerned with is the category of uniformly continuous
bundles of C*-algebras, which we define now.

Definition 4. The category UBunC∗Alg consists in:

• objects: uniformly continuous bundles of C*-algebras whose base space is a locally compact
metric space,

AI =
((

A~, φ
I
~
)
~∈I ,A

)
;

• morphisms: bundle homomorphisms σ : AI → BJ .

The category UBunC∗Alg encodes the structure picked out by the definition of uniformly contin-
uous bundles of C*-algebras. One can use objects in this category to represent quantum theories
with information about the scaling behavior of physical quantities.

One other example of a category that we will use is the category of C*-algebras, defined as
follows.

Definition 5. The category C∗Alg consists in:

• objects: C*-algebras;

• morphisms: *-homomorphisms.

The category C∗Alg encodes the structures picked out by the axioms for C*-algebras. We will
think of certain objects in this category—in particular, the commutative C*-algebras, which form
a subcategory—as representing classical theories.

We are now concerned with whether the explicit definitions (D1)-(D3), which amount to the
construction of an object in C∗Alg from an object in UBunC∗Alg, preserve the structure encoded
in these different categories. In other words, we are interested in structure-preserving maps between
categories. Such maps are given by the notion of a functor. A functor F between two categories
C and D consists in two maps: one map between the objects of C and the objects of D, and
another map between the morphisms of C and the morphisms of D. We denote both maps by
F and require that if f : A → B is a morphism in C, then F (f) : F (A) → F (B) in D (i.e., if
f ∈ HomC(A,B)), then F (f) ∈ HomD(F (A), F (B))). Moreover, we require that F preserves the
composition of arrows in the sense that if f : A → B and g : B → C are morphisms in C, then
F (f ◦ g) = F (f) ◦ F (g).

We will use functors to compare the structure represented in different categories encoding
partial interpretations of classical and quantum physics—in general, we can do this by analyzing
the information that a functor “forgets.” A useful schema for identifying precisely what a functor
forgets is to consider each category as a collection of stuff equipped with structure* that has some
properties22—for example, the category of groups consists of sets of elements (stuff) equipped with

22In what follows, we employ the terminology of Nguyen et al. (2020) by reserving the term “structure” for the pre-
theoretical notion meaning (roughly) “information encoded in a mathematical tool” and using the term “structure*”
to refer to the technical notion due to Baez et al. (2004). Note that stuff, structure*, and properties are all special
sorts of structure, as we use the term.
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a group operation (structure*) satisfying the usual axioms (properties). Intuitively, the natural
embedding of the category of abelian groups in the category of all groups ought to preserve the stuff
and the structure* (the set and group operation, respectively) but forget a property (abelianness).
Following Baez et al. (2004), we make this intuition precise with the following scheme.

Suppose we have a functor F : C → D. We call F full if for each pair of objects A,B in C,
the map F : HomC(A,B) → HomD(F (A), F (B)) is surjective. We call F faithful if for each pair
of objects A,B in C, the map F : HomC(A,B) → HomD(F (A), F (B)) is injective. We call F
essentially surjective if for each object A′ in D, there is some object A in C such that F (A) is
isomorphic to A′ in D. We employ the following rough interpretations of these technical features
of functors. We say that a functor forgets only stuff when it is not faithful, but it is essentially
surjective and full. We say that a functor forgets only structure* if it is not full, but it is essentially
surjective and faithful. We say that a functor forgets only properties if it is not essentially surjective,
but it is faithful and full. Note that the natural embedding of the category of abelian groups in the
category of all groups is faithful and full, but not essentially surjective—so this schema characterizes
it as preserving stuff and structure* and forgetting just a property, as desired. If a functor is full,
faithful, and essentially surjective, then we say that it forgets nothing and call it a categorical
equivalence. Categorical equivalence provides a relevant standard for when two categories share
the same structure.23 Later on, we will establish that the classical limit can be interpreted as a
functor that forgets stuff and structure*. We will provide additional discussion of these notions of
forgetfulness in §9, but we note here that interpretations of these notions of forgetfulness have been
discussed extensively already in the literature (Weatherall, 2017; Bradley and Weatherall, 2020).
We encourage the reader to review those discussions for further introduction.

We now proceed to summarize how, when our bundles are understood to form a category, the
~→ 0 limit can be represented as a functor from (a subcategory of) UBunC∗Alg to C∗Alg. We
analyze what this functor forgets and argue for a sense in which the structure of quantum physics
determines the structure of classical physics.

8 Functoriality of the Classical Limit

In §4, we analyzed the classical limit in terms of extensions of uniformly continuous bundles to
larger base spaces. Recall that we supposed our quantum theories to come with at least enough
interpretation to make sense of the scaling behavior of quantities in different systems of units.
That information in the quantum theory can be modeled as a bundle over the base space (0, 1]—
representing values of ~ > 0. The extension of this bundle to the larger base space [0, 1] would
encompass the corresponding classical theory—including the limit at ~ = 0. Recall that Theorems
1 and 2 established the existence and uniqueness of exactly this kind of bundle extension under
quite general conditions. The result was the explicit definition (D1) of an algebra of observable
quantities at ~ = 0, i.e., the fiber algebra representing the classical limit.

In this section, we argue that the construction yielding (D1) moreover determines the structure
of the classical theory at the limit. In service of this goal, we will understand the classical limit
as the composition of two functors. First, there is a functor F implementing the extension of a
uniformly continuous bundle of C*-algebras as in Theorems 1 and 2. Second, there is a functor
G representing the restriction from a bundle to the C*-algebra of the classical theory in the fiber
over ~ = 0. We understand the classical limit to be the functor L obtained from the composition
G ◦ F . We show in the Appendix that F forgets nothing, but G forgets structure* and stuff; it
then follows immediately that L forgets structure* and stuff. We interpret this result to establish

23For more on applications of this classification scheme in philosophy of physics, see Weatherall (2016b, 2017).
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a sense in which the structure of a classical theory is determined by that of its corresponding
quantum theory. Due to constraints of space, this section gives only an informal summary of the
construction of these functors provided in Steeger and Feintzeig (2021). We focus on discussing the
philosophical significance of these functors and what they forget.

8.1 Extension Functor

Recall that an extension of a bundle of C*-algebras from some base space I to a larger base space
J by the construction in §4 always proceeds relative to a dense isometric embedding α : I → J .
The extension from the base space I = (0, 1] for values of ~ > 0 to the space J = [0, 1] with
~ = 0 included can be naturally understood to proceed with respect to the standard inclusion
mapping (0, 1]→ [0, 1]. But to represent bundle extensions functorially, we need a common way of
extending all bundles in a category, or a corresponding common way of providing a dense isometric
embedding of every base space in a larger metric space. To that end, we think of the extension
from (0, 1] to [0, 1] as an instance of the more general construction of the one-point compactification
(see, e.g., Engelking, 1989, p. 169, Theorem 3.5.11), which can be applied to a broad class of base
spaces. We summarize the construction of a functor representing bundle extensions associated with
the one-point compactification, following the more detailed presentation in Steeger and Feintzeig
(2021).

To use the one-point compactification for our purposes, we must impose some conditions on
the base spaces of our bundles and the morphisms between them we consider. First, we consider
only morphisms between bundles that act as proper maps between base spaces because only these
maps are guaranteed to have continuous extensions to the one-point compactification. Second,
we consider only those base spaces that are locally compact, non-compact metric spaces with
metrizable one-point compactifications, and whose embedding in their one-point compactification
is an isometric map. This class of base spaces includes I = (0, 1], but rules out I = R since the
embedding of the latter in its one-point compactification (the circle S1) is not an isometric map.
We denote the collection of such base spaces by I. We will work with the subcategory of uniformly
continuous bundles of C*-algebras whose base spaces belong to I, and where morphisms act as
proper maps between base spaces, which we denote by UBunC∗AlgI . This category forms the
domain of our extension functor.

Next, we need to specify the codomain category for our extension functor. We again impose
some conditions on the base spaces of our bundles and the morphisms between them. First, we focus
only on those base spaces that are obtained as the one-point compactification of some base space
in I, a collection we denote C(I). Second, we consider only morphisms between bundles whose
actions on base spaces preserve the way a base space is embedded in its one-point compactification.
We call the category of uniformly continuous bundles satisfying these conditions UBunC∗AlgC(I),
which will form the codomain of our extension functor. The additional condition on morphisms
in this category means only that such bundles have enough structure to distinguish the original
base space from the added limit point obtained in the one-point compactification. For example, we
understand such bundles to come with enough structure to pick out (0, 1] as a privileged subspace
of [0, 1]. The physical motivation for this condition is that there is a physically significant difference
between the quantum theories at ~ > 0 and the corresponding classical theory at ~ = 0. We have
thus endowed our bundles with enough structure to reflect this physical distinction.

The extension functor F : UBunC∗AlgI → UBunC∗AlgC(I) is defined as follows. First,
F acts on objects by taking any bundle to its unique extension associated with the one-point
compactification guaranteed by Theorems 1 and 2. Second, F acts on arrows by taking the unique
continuous extension of any proper isometric map between base spaces to a map between their one-
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point compactifications and leaving the *-homomorphisms between algebras of continuous sections
unchanged. Notice that the condition on *-homomorphisms between algebras of sections makes
sense because in the construction of the extended bundle, we employ the same algebra of sections
and only define new evaluation maps to extend those sections continuously to new points in the base
space. Steeger and Feintzeig (2021) establish that this assignment F of objects and morphisms is
indeed a functor. Here, we note that the functor F representing bundle extensions forgets nothing.

Proposition 2. The extension functor F is a categorical equivalence.

Thus, relative to the conditions specified above, or in other words relative to the structure encoded
in the categories UBunC∗AlgI and UBunC∗AlgC(I), any uniformly continuous bundle of C*-
algebras over a base space I completely determines the structure of its extension associated with
the one-point compactification of I. Since the functor realizing this extension is an equivalence,
there is a sense in which these objects have precisely the same structure.

8.2 Restriction Functor

We now aim to encode the remainder of the classical limit in the restriction from the base space
[0, 1] to the structure of classical physics at ~ = 0. Since we are representing the extension from
(0, 1] to [0, 1] as an instance of an extension associated with the one-point compactification, we will
treat one-point compactifications more generally and generically denote the added point to a base
space I by 0I . The restriction functor G we now describe has the category of extended bundles
UBunC∗AlgC(I) as its domain, which is the codomain of the extension functor F . The codomain
category of the restriction functor G is the category C∗Alg of C*-algebras.

The restriction functor G : UBunC∗AlgC(I) → C∗Alg is defined as follows. First, G acts on
objects by taking any extended bundle over I ∪ {0I} to the fiber C*-algebra over 0I . Second, G
acts on morphisms by constructing from any bundle morphism between bundles over base spaces I
and J a *-homomorphism between the fibers at 0I and 0J by factoring through the corresponding
evaluation maps. As remarked already, a bundle morphism (α, β) always determines morphisms
between the fiber algebras over ~ ∈ I and α(~) ∈ J . To see that this gives rise to a morphism
between the fibers over 0I and 0J , one only needs to note that if α is the extension of a proper
map between base spaces I, J ∈ I, then α(0I) = 0J . Hence, it follows that there is a unique *-
homomorphism between the fiber algebras at 0I and 0J determined by a bundle morphism. Steeger
and Feintzeig (2021) establish that this assignment G of objects and morphisms is indeed a functor.
Here, we note that the functor G representing bundle restrictions forgets structure* and stuff.

Proposition 3. The restriction functor G is essentially surjective but neither full nor faithful.

We note briefly that the proof that G is essentially surjective relies only on constructing a
trivial bundle whose fibers all are isomorphic to whatever limit algebra one wants to reproduce
(see Appendix). This somewhat artificial construction does not suffice to show that every classical
theory is the classical limit of some quantum theory as one might hope.

But given Proposition 3, we can interpret G as forgetting stuff and structure*. It should be
unsurprising that G forgets stuff. After all, a uniformly continuous bundle is much larger than
the algebra over 0I ; as such, we can understand the stuff that G forgets to be the fibers A~ above
all other points ~ 6= 0I . We return in §9 to the physical interpretation of the stuff that G forgets
and how it bears on our central philosophical questions concerning structural determination and
intertheoretic reduction.

It is a bit more difficult to characterize the structure* that G forgets. To understand this struc-
ture*, consider our initial motivation for employing continuous bundles of C*-algebras—namely,
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that they arise in a natural way from strict deformation quantizations. Recall that a strict de-
formation quantization relies for its definition on the further structure of a Poisson bracket in the
classical theory. However, objects in C∗Alg do not contain the structure of a Poisson bracket and
morphisms in this category need not preserve a Poisson bracket when one exists. As such, if we
are given two continuous bundles of C*-algebras AI and BI over the base space I = [0, 1], and AI
is determined from a strict deformation quantization, then there will, in general, be morphisms
in C∗Alg between the fibers A0 and B0 at ~ = 0 that do not preserve the Poisson bracket on
A0. However, morphisms between continuous bundles determined by a strict deformation quanti-
zation are generally constrained to preserve the Poisson bracket in a classical theory. The proof
that G is not full in Proposition 3 proceeds, roughly, by showing that there are *-homorphisms σ0
between the fibers A0 and B0 that cannot be mapped to by G because they fail to preserve the
induced Poisson bracket in the classical limit. One way to understand this fact is that morphisms
in UBunC∗AlgC(I) encode not only the structure of the symmetric Jordan product on the fibers,
but also the structure of the anti-symmetric Lie bracket determined by the commutator on the
fibers, which corresponds in the classical limit with Poisson structure. Morphisms in C∗Alg that
do not preserve the Poisson structures of classical theories (of which there are many) will not in
general lie in the range of the functor G. So we can understand G to forget the structure* of the
Lie brackets determined by the commutators on fibers in UBunC∗AlgC(I), and thus to forget the
structure* that encodes the classical Poisson bracket in the classical limit.

8.3 Limit Functor

We are now in a position to describe a single functor from quantum theories to classical theories.
Recall that so far, we have an extension functor associated with the one point compactification
F : UBunC∗AlgI → UBunC∗AlgC(I), which forgets nothing, and a restriction functor G :
UBunC∗AlgC(I) → C∗Alg, which forgets stuff and structure*. We now define the classical limit
L := G ◦ F as the composition of the two. It follows immediately that L is a functor, which is
characterized by the following proposition.

Proposition 4. The functor L is essentially surjective but neither full nor faithful.

Now we have characterized the classical limit with the functor L. This functor takes any
quantum theory defined only for the values ~ > 0 by a bundle of C*-algebras, extends this structure
to a bundle whose base space includes the value ~ = 0, and then restricts attention to the unique
fiber C*-algebra glued on at ~ = 0. The functor L forgets stuff and structure*. We take this fact
to show that classical theories have less structure than quantum theories, demonstrating a sense in
which the structure of the latter determines that of the former.

However, one should be careful in explicating the sense in which this claim is true. First,
quantum mechanics determines its classical limit only when quantum mechanics is given a physical
interpretation strong enough to motivate the use of the category UBunC∗AlgI . It is not the
mathematical structure of quantum mechanics that determines the structure of classical physics
on its own, but rather the structure we understand quantum theories to possess when they are
interpreted in a way that can be represented by the category UBunC∗AlgI . Since we represent
quantum theories not by the fiber C*-algebras at a fixed value of ~, but rather by an entire bundle
of C*-algebras, we are understanding quantum theories to come with enough of an interpretation
that we understand their scaling behavior as ~ varies. The choice of morphisms in UBunC∗AlgI
is motivated by our focus on maps that preserve the scaling behavior of quantum theories as we
vary ~.

26



Further, the sense in which classical physics has less structure than quantum physics holds
only relative to the functor L and so only when classical physics is given a physical interpretation
weak enough to motivate the use of the category C∗Alg. This assumption is actually somewhat
unnatural. The use of C*-algebras in classical physics provides only enough information to recover
the topological structure of a phase space—it does not provide enough information to recover the
Poisson or even the differentiable structure of a phase space as a manifold. If one thinks that this
structure is essential to classical kinematics, then our results so far will not be satisfying. Further,
none of these results so far relate classical dynamics to quantum physics.

However, we now summarize briefly some further technical results that show a sense in which
both Poisson and dynamical structure in classical theories is determined from that in quantum
theories. Steeger and Feintzeig (2021) show that the assignment defined by L sends (under mild
conditions) any morphism of bundles defined by strict quantizations to a classical morphism that
preserves the Poisson structure. And further, the assignment defined by L sends any morphism
that preserves quantum dynamics to a classical morphism that preserves dynamics. This means
that one can define adapted functors LP and LD capturing the classical limit on adapted categories
of bundles that encode Poisson and dynamical structure, respectively. One can then analyze what
these functors forget.

First, we discuss the functor LP preserving Poisson structure.

• LP is not faithful for precisely the same reason L is not faithful. One can interpret this to
just show LP forgets the same stuff that L does.

• As far as we can tell, the question of whether LP is essentially surjective is open. Recall
that this is the question of whether every classical theory is (isomorphic to) the classical limit
under LP of some quantum theory. In other words, this is just the question of how broad
a collection of classical theories we can quantize with strict deformation quantization. It is
known that one can construct Weyl-type quantizations for the almost periodic functions on
a phase space that is the dual space to a symplectic topological vector space (Binz et al.,
2004). It is also known that when one does not have a phase space with the linear structure
of a vector space, one can still construct a Weyl-type quantization for a C*-algebra with an
isometric action of Rd (Rieffel, 1993); for some generalizations, see Landsman (1998b) and
Bieliavsky and Gayral (2015). Each of these constructions induces a bundle whose classical
limit is the associated structure. These examples may provide enough generality to encompass
many of the models of physical systems used in classical physics. But we do not know whether
there is a construction general enough to quantize arbitrary classical theories.

• Similarly, it is an open question (as far as we can tell) whether LP is full. We know only
for particular kinds of morphisms σ0 in the category of classical theories that there is some
morphism σ in the category of quantum theories with LP (σ) = σ0. For example, if σ0 is an
automorphism of a classical Weyl algebra given by some combination of Bogoliubov transfor-
mations and gauge transformations (i.e., determined by an element of the affine symplectic
group of the underlying symplectic vector space), then this holds (Binz et al., 2004, §5.3).
But these are only very special cases of morphisms in the category of classical theories. The
results of Proposition 5.15 (p. 74) and Proposition 8.40 (p. 142) of Bieliavsky and Gayral
(2015) are closely related and provide significantly more generality, but further scrutiny is
needed to determine whether they settle the question about the fullness of LP .

Finally, we briefly discuss the functor LD preserving dynamical structure.

• LD is not faithful for precisely the same reason L is not faithful. One can again interpret this
to just show LD forgets the same stuff that L does.
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• LD is essentially surjective for precisely the same reason L is: one can always define a trivial
bundle whose fibers all look like the limit theory one wants to reproduce, which gets mapped
by L or LD to the desired object.

• LD also fails to be full for precisely the same reason as L. There are morphisms of classical
theories that preserve dynamics, but not Poisson structure, that cannot be recovered as the
classical limit of any morphism of quantum theories.

It is also worth noting that LD factors into an extension and restriction functor in just the same
way as L. In this case, the extension of the dynamics also gives rise to a categorical equivalence
while the restriction of the dynamics to ~ = 0 is represented by a functor that forgets stuff and
structure*.

This discussion of Poisson structure and dynamics only briefly summarizes the constructions in
Steeger and Feintzeig (2021), where more details can be found. The next and concluding section
of this paper returns to the interpretation of these functors and argues that they provide a sense
in which the structure of quantum physics determines the structure of classical physics. This, we
claim, suffices to show that internal aspects of the interpretation of quantum physics determine
internal aspects of the interpretation of classical physics.24

9 Discussion

In this paper, we have argued against the claims of Batterman, Berry, and Bokulich that the
classical ~ → 0 limit of quantum mechanics is “singular” in a way that frustrates intertheoretic
reduction. We took on two tasks. First, §1-6 provided (partial) explicit definitions of classical
structure in terms of quantum structure. We summarized the results of those sections in §6. But
one may still rightly worry about whether this definability entails understanding. We took on this
task in §7-8, which we now discuss.

We have argued that if the issue is whether the structure of quantum physics determines that
of classical physics, then the issue can be resolved: structural determination does, indeed, hold,
in a precise sense, for kinematics, Poisson structure, and dynamical structure. We have argued
for this claim by formulating the classical limit as a functor from a relevant category capturing
the (partially) physically interpreted mathematical structure of quantum mechanics to a category
capturing the (partially) physically interpreted mathematical structure of classical mechanics. In
the remainder of the discussion, we focus on the functor L determining the kinematics, and ignore
the extra technical and interpretive complications that arise in the consideration of Poisson and
dynamical structure. We showed in §8 that this functor L can be interpreted as forgetting stuff
and structure*.

It is worth returning once again to the question of the interpretation of our results, since
here stuff and structure* are themselves technical notions. What is the philosophical significance
of L forgetting stuff and structure*? Specifically, what is the sense in which this forgetfulness
demonstrates structural determination?

First, we remark that the existence of the classical limit as a functor already provides a sense
in which quantum kinematics determines classical kinematics in a natural way. The naturalness of

24We have taken the internal interpretation as given, although it is often motivated by external factors, as in the
discussion of changes of units in the Weyl algebra in §4. We leave open whether the internal structure of bundles
of C*-algebras can be justified in the same way for all cases. But what we have now shown is that if bundles of
C*-algebras encode the internal interpretation of quantum physics, then they determine the internal interpretation of
classical physics, as long as that interpretation is encoded by commutative C*-algebras (possibly with extra structure).
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the construction is captured by the functor acting in what we interpret as “the same way” on all
models of quantum kinematics and all morphisms between them. The functor provides a way of
matching the structure-preserving maps in the category capturing quantum kinematics to structure-
preserving maps in the category capturing classical kinematics. Moreover, the morphisms in the
category of quantum theories naturally determine a subset of the classical ones; this is just what it
means for L to fail to be full. As a general heuristic, fewer structure-preserving maps suggests more
structure* (see, e.g., Barrett, 2015, p. 814). In at least this sense, quantum kinematics determines
possibly even more structure* than that captured by our category representing classical kinematics.

The fact that L forgets structure* shows that its domain, the category of quantum theories,
contains strictly more relevant physical information than its codomain, the category of classical
theories. This approach to forgetting structure* has been offered already in the literature (e.g.,
Weatherall, 2016b); philosophers often describe a theory represented by one category as possessing
“surplus structure” relative to another. We can justify the applicability of this talk to our case
by comparing with the alternative functor LP . The classical limit determines at least the Poisson
structure of classical kinematics in addition to C*-algebraic structure, and so the functor L can be
thought of as forgetting Poisson structure in virtue of the choice of category representing classical
kinematics. In sum, the stuff (fiber algebras away from ~ = 0) and structure* (Poisson bracket)
forgotten by L each have a natural physical interpretation—and these interpretations provide the
sense in which L witnesses structural determination.

There is a subtlety worth discussing regarding the significance of L forgetting stuff: although
this forgetfulness witnesses a clear case of structural determination in our case, it need not do so
in general. As Bradley and Weatherall (2020) note in a response to Nguyen et al. (2020), there
are cases of functors forgetting stuff where the codomain seems to have more structure than the
domain. Their paradigm example is a functor from a category of two-dimensional vector spaces to
a category of two-dimensional vector spaces with a fixed ordered basis. The functor they provide is
essentially surjective and full, but not faithful—so it forgets only stuff. What stuff? The freedom to
choose a basis—a freedom that, Bradley and Weatherall argue, intuitively denotes more structure in
vector spaces with ordered bases than in vector spaces simpliciter. Thus, there are some examples
where a functor forgetting stuff signifies that the codomain category has more structure than the
domain category.

Bradley and Weatherall’s diagnosis is of interest, but we believe it is not applicable to the
cases studied in this paper. Bradley and Weatherall aim to establish a sense in which surplus
structure and representational redundancy pull in opposite directions: the more redundancy in
representational tools, the more freedom in choosing which tools to use—and hence the more
structure. But in our case, neither the stuff nor the structure* that L forgets is representationally
redundant: the codomain loses its capacity to represent both the observables in algebras at ~ > 0
(quantum stuff) and their Poisson or commutator structures (quantum structure*). So our L does
not fit with Bradley and Weatherall’s discussion.

There is another way of arguing for this point from our construction of the functor L. We
showed that L is the composition of two functors, i.e. L = G ◦ F . The functor F extends a
quantum theory from values of ~ in (0, 1] to values of ~ in [0, 1], and the functor G then restricts
to the value ~ = 0. F is an equivalence, so all of L’s forgetfulness comes from G’s forgetfulness.
But surely the extension of values of ~ to [0, 1] already provides enough structure to represent the
classical theory at ~ = 0. In other words, the fact that F is an equivalence shows that the structure
encoded in the “frame theory” containing values of ~ in [0, 1]—of which the classical kinematics
at ~ = 0 is a part—is equivalent to the structure of the quantum theory for values of ~ in (0, 1].
Since the structure of classical kinematics at ~ = 0 is part of the structure of the “frame theory”
and since the latter is equivalent to the structure of the quantum theory, this shows the classical
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kinematics can be captured as part of the structure of the quantum theory. We interpret the fact
that the extension functor F forgets nothing, but the restriction functor G forgets structure* and
stuff, as showing a sense in which classical kinematics has strictly less structure than quantum
kinematics—structure determined from quantum kinematics through the classical limit.

Lastly, we make one caveat about the essential surjectivity of the functor L. As it is stated in
this paper, the essential surjectivity of L does not have the philosophical significance one would
like: it does not show that all desired classical theories can be obtained as the ~→ 0 limit of desired
quantum theories via a strict quantization. The proof given in the Appendix constructs, for any
C*-algebra, a trivial uniformly continuous bundle of C*-algebras containing the initial algebra as
its limit. But the bundle constructed will not contain anything that looks like a familiar quantum
algebra of observables in its fibers. The specific question of how broad a class of classical theories
can be subject to strict deformation quantization, thus leading to their own recovery in the ~→ 0
limit, is an open question, as the domain of applicability of strict quantization continues to be
extended in the literature (Rieffel, 1993; Landsman, 1998a; Bieliavsky and Gayral, 2015). We
believe this open question clearly has philosophical significance for the extent to which quantum
mechanics determines the structure of classical physics. We take our comments in §8 to make a
small contribution to this literature by framing the philosophical significance of this question. But
note well that the functor L simply does not address this question.

In sum, we have shown a precise sense in which the structure of quantum kinematics determines
the structure of classical kinematics though the classical ~ → 0 limit. This sense of structural
determination should be amenable to the view, shared by Batterman and Belot, that appropriate
intertheoretic reductions should explain the physically-interpreted structures—rather than just the
mathematical formalisms alone—of less fundamental theories from more fundamental theories. We
have mathematically encoded internal aspects of the interpretation of classical and quantum physics
in a category-theoretic framework. Along the way, we have shown that applying category theoretic
tools to questions concerning structural determination imparts a fruitful way of understanding
classical behavior, at least in part by producing interesting results bearing on philosophical questions
about intertheoretic reduction. There is much further work to be done in this direction.
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Appendix

This appendix includes proofs of all new propositions stated in the body of the paper.

Proof of Proposition 1. For ease of notation, we define the global quantization map Q : P → A by

Q(A) := [~ 7→ Q~(A)]
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for each A ∈ P (cf. continuous quantization in Landsman, 1998a, p. 112). Notice that Q~ = φJ~ ◦Q,
and also recall that (5) yields

τt;0 ◦ φJ0 = φJ0 ◦ τt.

Moreover, since φJ0 ◦ Q = Q0 = idP , the above immediately implies

φJ0 ◦ Q(τt;0(A)) = τt;0(φ
J
0 (Q(A))) = φJ0 (τt(Q(A)))

for all A ∈ P. Then we have for any A ∈ P that

lim
~→0
‖Q~(τt;0(A))− τt;~(Q~(A))‖~ = lim

~→0

∥∥φJ~ ◦ Q(τt;0(A))− τt;~(φJ~ ◦ Q(A))
∥∥
~

= lim
~→0

∥∥φJ~ ◦ Q(τt;0(A))− φJ~ (τt ◦ Q(A))
∥∥
~

= 0

by the previous equation, since both Q(τt;0(A)) and τt ◦ Q(A) are uniformly continuous sections
(belonging to A) that agree at ~ = 0.

Theorem 3 then follows immediately from a convergence result of Landsman (1998a), which we
now state. The upshot is that if we take (7) and (8) to define the dynamics, rather than using the
dynamics defined by (D3), then one gets convergence in the limit ~→ 0 in precisely the same sense
as in Proposition 1.

Lemma 1 (Landsman 1998a, Proposition 2.7.1, p. 148). Suppose the maps {Q~ : P → A~}~∈[0,1]
form a strict deformation quantization with P ⊆ C0(T

∗Rn) and A~ ⊆ B(L2(Rn)) for ~ > 0. Suppose
further that dynamics τt;~ are defined from a given Hamiltonian H ∈ P by (7) for each ~ > 0 and
(8) for ~ = 0. Then for each A ∈ P, if τt;0(A) ∈ P for all t ∈ R, then (6) holds.

Proof of Theorem 3. Every continuous section has a unique limit; thus, the theorem follows from
the fact that (6) holds for both the dynamics defined for Lemma 1 and the dynamics defined by
(D3) for Proposition 1.

We now characterize what the functors F , G, and L of §8 forget. For more detailed definitions
and preliminaries, see Steeger and Feintzeig (2021). Note that we have two changes of notation
from Steeger and Feintzeig (2021). First, we denote the one-point compactification by C rather
than C1 since it is the only extension of base spaces we consider. Second, we here denote by
UBunC∗AlgC(I) a subcategory of what Steeger and Feintzeig (2021) call UBunC∗AlgC(I) in
which all morphisms preserve the embeddings of base spaces in their one-point compactifications
(i.e., for a morphism α : C(I)→ C(J) between base spaces C(I) and C(J), we require α ◦ αI [I] ⊆
αJ [J ]). All other notation is the same as in that reference.

Proof of Proposition 2. We consider faithfulness, essential surjectivity, and fullness in turn.

1. Faithfulness. Suppose that for two morphisms (α1, β1) and (α2, β2) between F (AI) = ÃC(I)

and F (BJ) = B̃C(J), we have F (α1, β1) = F (α2, β2). Then it immediately follows that
β1 = β2 from the definition of F . Moreover, we have C(α1) = C(α2), which implies αJ ◦α1 =
C(α1) ◦ αI = C(α2) ◦ αI = αJ ◦ α2, which implies α1 = α2 because αJ is injective.

2. Essential surjectivity. Consider an arbitrary bundle AC(I) in UBunC∗AlgC(I). The canoni-
cal restriction AC(I)|I along αI is a bundle in UBunC∗AlgI , and since AC(I) is an extension
of AC(I)|I associated with αI , it follows from Theorem 2 of Part I that AC(I) is isomorphic

in UBunC∗AlgC(I) to F0(AC(I)|I) = ÃC(I).
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3. Fullness If σ = (α, β) is a morphism in UBunC∗AlgC(I), then σ = F (σ′) for the morphism
σ′ = (α ◦ αI , β) in UBunC∗AlgI .

Proof of Proposition 3. We consider faithfulness, fullness, and essential surjectivity in turn.

1. Faithfulness. Let I = (0, 1] so that C(I) = [0, 1]. Suppose AJ and BI are objects in
UBunC∗Alg′C(I) and σ = (α, β) : AJ → BI is a morphism in UBunC∗Alg′C(I). Then

so is the morphism σ′ = (12α, β) : AJ → BI . But G(σ) = G(σ′). Hence, G fails to be faithful.

2. Fullness. We consider two particular objects AI and BJ in UBunC∗Alg′C(I). First, fix
I = J = [0, 1], and consider some Riemannian manifold M . AI will be the trivial bundle, each
of whose fibers is isomorphic to the abelian C*-algebra C0(T

∗M). BJ will be the nontrivial
bundle determined by the Weyl quantization Q~ of T ∗M . Explicitly,

AI :=
((

A~, φ
I
~
)
~∈I ,A

)
; BJ :=

((
B~, ψ

J
~
)
~∈J ,B

)
;

A0 := C0(T
∗M); B0 := C0(T

∗M);

A~ := C0(T
∗M) for all ~ ∈ (0, 1]; B~ := K(L2(M)) for all ~ ∈ (0, 1];

A := {fa | f ∈ C([0, 1]), a ∈ C0(T
∗M)} ; B :=

{
a ∈

∏
~∈J

B~

∣∣∣∣∣ a ∈ C∗(Q)

}
;

φI~(fa) := f(~)a for each fa ∈ A; ψJ~ (a) := a(~) for each a ∈ B.

Now consider the identity map idC0(T ∗M) on the fiber C0(T
∗M) at ~ = 0 in C∗Alg. We will

show that there is no morphism σ : BJ → AI in UBunC∗Alg′C(I) with G(σ) = idC0(T ∗M).

Suppose σ = (α, β) : BJ → AI is a morphism in UBunC∗Alg′C(I). Fix any A,B ∈ C∞c (T ∗M)
with {A,B} 6= 0. We will show that G(σ)({A,B}) = 0, thus establishing that G(σ) is not
injective. It then follows that G(σ) 6= idC0(T ∗M).

Denote the corresponding continuous sections by a = [~ 7→ Q~(A)] and b = [~ 7→ Q~(B)] in
B. Further, let c be the continuous section given by c = [~ 7→ Q~({A,B})] in B.

We know from Dirac’s condition in a strict deformation quantization that

lim
~→0

∥∥∥∥ψJ~ (c)− i

~
[
ψJ~ (a), ψJ~ (b)

]∥∥∥∥
~

= 0.

Moreover, let c′ ∈ B be the continuous section defined by

ψJ~ (c′) =
i

~
[
ψJ~ (a), ψJ~ (b)

]
for each ~ ∈ [0, 1]. Now we have lim~→0‖ψJ~ (c − c′)‖~ = 0. Further, by Lemma 3 in the
Appendix to Part I, the map ψJ~ (d) 7→ φI~(β(d)) for d ∈ B is a *-homomorphism, so it follows
that

φI~(β(c′)) =
i

~
[
φI~(β(a)), φI~(β(b))

]
= 0

for each ~ ∈ [0, 1] because A is abelian. Now, we have

lim
~→0

∥∥φI~(β(c))
∥∥
~ = lim

~→0

∥∥φI~(β(c− c′))
∥∥
~ ≤ lim

~→0

∥∥ψJ~ (c− c′)
∥∥
~ = 0,
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which implies φI0(β(c)) = 0.

It follows that G(σ)({A,B}) = φI0(β(c)) = 0, so G(σ) is not injective and hence G(σ) 6=
idC0(T ∗M). Therefore, G fails to be full.

3. Essential surjectivity. Consider an arbitrary C*-algebra A and I ∈ I. Define a trivial bundle

by AC(I) = ((A~, φ
C(I)
~ )~∈C(I), Â), where

A~ := A for all ~ ∈ C(I);

Â := {fa | f ∈ C0(C(I)), a ∈ A} ;

φ
C(I)
~ (fa) := f(~)a for each ~ ∈ C(I).

Then AC(I) is an object in UBunC∗Alg′C(I) and G(AC(I)) ∼= A. Hence, G is essentially
surjective.

Proof of Proposition 4. Immediate from Propositions 2 and 3.
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