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Abstract

This paper criticizes the traditional philosophical account of the quan-
tization of gauge theories and offers an alternative. On the received view,
gauge theories resist quantization because they feature distinct mathemat-
ical representatives of the same physical state of affairs. This resistance
is overcome by a sequence of ad hoc modifications, justified in part by
reference to semiclassical electrodynamics. Among other things, these
modifications introduce “ghosts”: particles with unphysical properties
which do not appear in asymptotic states and which are said to be purely
a notational convenience. I argue that this sequence of modifications is
unjustified and inadequate, making it a poor basis for the interpretation
of ghosts. I then argue that gauge theories can be quantized by the same
method as any other theory. On this account, ghosts are not purely no-
tation: they are coordinates on the classical configuration space of the
theory—specifically, on its gauge structure. This interpretation does not
fall prey to the standard philosophical arguments against the significance
of ghosts, due to Weingard. Weingard’s argumentative strategy, properly
applied, in fact tells in favor of ghosts’ physical significance.

1 Introduction

Our current best theories of high-energy particle physics model most particle
interactions with gauge theories, so it’s no surprise that the interpretation of
gauge theories is a matter of major concern to philosophers of physics. More
surprising is the philosophical literature’s emphasis on the interpretation of
classical gauge theories: whether their symmetries are observable (Brading and
Brown, 2004; Greaves and Wallace, 2014), whether and how they’re deterministic
(Belot, 1998; Earman, 2003), how most perspicuously to formulate them (Healey,
2007; Rosenstock and Weatherall, 2016), whether they prompt deep revisions
of our background metaphysics (Gilton, 2020; Maudlin, 2007), and so on. This
emphasis is surprising because high-energy physics uses quantum field theory,
not classical field theory. But quantum theories are often obtained by quantizing
classical ones, and the quantum has interpretational challenges of its own. So we
can justify interpretive work on classical gauge theories with the thought that it
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will help us to understand quantum ones, at least if our work in the classical
case is appropriately informed by quantization. In this paper I argue that our
work in the classical case has not been appropriately informed by quantization,
because the philosophical literature’s account of quantizing gauge theories is
deficient.

The particular deficiency that will be my focus is the treatment of “ghosts”
in the perturbative quantization of gauge theories. I have three aims: to criticize
the received view on ghosts in the philosophical literature, to offer a better story,
and to argue that ghost fields are an indispensable—indeed, constitutive—feature
of gauge theories. According to the received view, we cannot apply standard
quantization procedures to classical gauge theories because these theories contain
distinct mathematical representatives of the same physical state of affairs. The
remedy for this problem is to “fix the gauge” by eliminating the redundancy.
Further ad hoc manipulations introduce ghost fields, and at this point we can
quantize. It’s often said that this last preparatory step is mere convenience: for
example, Weingard argues that ghost fields are “just an artefact of our notation”
that we may dispense with in principle (1988, 57).1

In Section 2 I argue that this story is inadequate for philosophical purposes;
it fails to informatively justify the use of ghost fields in quantization. From
the start, it’s too vague about the alleged problems with applying standard
quantization procedures to a theory with mathematical redundancy. Sometimes
the problem is taken to be conceptual: it would be “naive” to try to quantize
the classical gauge theory directly, and so we must modify the quantization
procedure to “make physical sense of the theory” (Redhead, 2003, 135). Others
take the problem to be mathematical, claiming that the predictions of the
unmodified theory diverge due to the “massive ‘over-counting’” induced by
the redundancy (Healey, 2007, 145). Neither of these diagnoses can be quite
right. The received view must allow for theories with mathematical redundancy,
because it takes classical gauge theories to be of this sort. And while you can
cook up a mathematical problem with certain ingredients, this problem is only
connected to the multiplicity of representations under a sequence of controversial
background assumptions. Spelling this all out in more detail shows that the
received view’s treatments of classical and quantum gauge theories are at odds
with one another. These problems mean that the received view cannot give a
satisfying account of the origin of ghost fields.

I think the problems with the received view can be rectified without too
much revision to our classical interpretive projects, and in Section 3 I give an
alternative account of ghosts meant to do this. Ghost fields do not arise in
the process of quantization; they are a feature of the classical theory, wherein
they coordinatize the gauge structure of that theory. The standard quantization
procedure applies straightforwardly to theories with gauge structure, though
injudicious conventions can lead to a coordinate singularity. The received view
misses this because it is committed to the superfluity of gauge structure. That
is, on the received view gauge structure is mathematical excess to be avoided or
eliminated when interpreting the theory. This means that when gauge structure
is physically relevant, the received view must introduce ad hoc replacements to
compensate for the structure it has eliminated. Ghost fields were first introduced

1This story is a synthesis of philosophical sources including Guay (2008), Healey (2007),
Redhead (2003), Rickles (2008), and Weingard (1988). Something like it also appears in many
quantum field theory textbooks.

2



as one of these ad hoc replacements. This alternative story explains the problems
encountered by the received view while avoiding them. It’s also more compatible
with the received view’s treatment of classical gauge theories than the received
view itself.

The last part of this paper replies to two arguments for the claim that
ghost fields are dispensable in principle. Weingard notes that a clever choice of
coordinates can simplify computations involving ghost fields and argues from this
that ghost fields are “purely a result of our notation” (1988, 58). In Section 4 I
argue that Weingard’s premises cannot secure his conclusion. Weingard gives
an explicit criterion to identify some mathematical feature as purely a result
of our notation: roughly, we can suppose it to have any value we like with
no consequence. I argue that this criterion does not classify ghost fields as
purely notation. Indeed, some violations of Weingard’s criterion have empirical
interpretations; for example, it follows from one that the electric charge of the
electron must be exactly thrice the electric charge of the down quark.

2 The received view

The received view claims that the standard quantization procedure is inapplicable
to gauge theories because such theories contain multiple representatives for
the same physical state of affairs. In this section I reconstruct and criticize
this claim. Two variants appear in the literature. According to the first,
the existence of multiple representations is itself a problem that makes the
standard quantization procedure inappropriate for some theories; according
to the second, the multiplicity of representations produces divergences in the
standard quantization procedure. In this section I argue that a plausible version
of the first claim relies on the truth of the second and that the second claim
is too quick to identify the multiple representations as the cause of divergence.
Both claims rely on a particular conception of the classical field theories at issue,
and this is what I dispute in the rest of the paper.

2.1 The received view’s problem

On the standard philosophical account, ghosts arise during a modification of
the standard quantization procedure, and this modification is prompted by
mathematical redundancy. On one reading, the modification is required by the
mere fact of multiplicity, and this fact follows from an antecedent interpretation
of the classical theory. But this reasoning is self-defeating. A theory that multiply
represents physical states of affairs can’t be incoherent, since the received view
takes a classical gauge theory to have just this feature. And the justification for
this interpretation of the classical theory relies on the in-principle applicability
of the unmodified quantization procedure to any classical theory. So if there is a
problem with quantizing gauge theories then it must be a problem in practice,
rather than principle.

The standard quantization procedure expresses a quantum theory of some
system using integrals built from the data of a classical theory of that system.2

2I will restrict attention to path integral quantization. Nothing hangs on this choice;
my main claims apply to constrained Hamiltonian quantization as well. See Henneaux and
Teitelboim (1992, §18.4) for a discussion of how the formalism below relates to constrained
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For example, given some classical configuration space X with coordinate φ, some
action S(φ) on X, and some classical observable O(φ) on X, the time-ordered
quantum expectation value of O is given by

〈O〉 =
1

Z

∫
X

Dφ e i~S(φ)O(φ) Z =

∫
X

Dφ e i~S(φ)

So for the purposes of quantization, a classical theory mathematically consists
of a configuration space X and a real-valued function S on X. The space X
can be any space that supports the appropriate notion of integration and S
any function on it; in practice we’re interested in particular infinite-dimensional
supermanifolds that provide the configuration space for classical field theories
and classical actions for these theories given by integrating a Lagrangian density
over a spacetime manifold.

The usual philosophical story claims that this quantization procedure does
not apply to gauge theories. This claim has three parts: first, that the natural
configuration space of a gauge theory has a certain form; second, that two
elements of this configuration space represent the same physical state of affairs if
they are related by one of a distinguished set of “gauge transformations”; third,
that the existence of nontrivial gauge transformations poses a problem for the
standard quantization procedure. For example, Redhead has it that

a naive approach would involve integrating over paths which are
connected by gauge transformations. To make physical sense of the
theory, the obvious move is to ‘fix the gauge’, so that each path
intersects each gauge orbit in just one point. (2003, 135)

The naive approach to quantizing a gauge theory would take the domain of
integration to be a classical configuration space containing distinct elements
related by gauge transformations, but integrating over this space wouldn’t “make
physical sense”. Redhead doesn’t elaborate on the senselessness here, but this
passage does suggest that it would be eliminated by choosing a different classical
configuration space—one in which each physical state of affairs has exactly one
mathematical representative. It also suggests that we somehow know we ought
to fix the gauge before we’ve tried to quantize the theory. Guay echoes this
sentiment, claiming that “[a]t least formally we know that the right way to
quantize” is to apply the standard quantization procedure to the theory whose
configuration space is the set of gauge-equivalence classes (2008, 361).

The argument for the first two parts of this claim undermines the third part,
at least on the reading I’ve given of Redhead and Guay. The desire to fix the
gauge comes from studying the results of quantization, so it can’t conceptually
precede the quantization of the field theory. The argument for fixing the gauge
takes Yang–Mills theory as a paradigm gauge theory, and it takes the Yang–
Mills model of electromagnetism as a paradigm Yang–Mills theory. The full
mathematical characterization of Yang–Mills theory is part of my disagreement
with the received view, but some features are uncontested. Any Yang–Mills
theory has an associated Lie algebra g.3 In local coordinates, some portion of

Hamiltonian quantization.
3Some conventions: Roman indices are Lie algebra components, raised and lowered freely;

Greek indices are spacetime components, raised and lowered with the Minkowski metric. For
the one-dimensional Lie algebra we drop the Roman indices. Repeated indices are implicitly
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the Yang–Mills configuration space is coordinatized by a family of real scalar
functions Aaµ on spacetime, which assemble into a g-valued one-form. That is,
any g-valued one-form determines a local configuration of the Yang–Mills field,
but distinct g-valued one-forms might coordinatize the same point of the local
configuration space. In these coordinates, the theory’s Lagrangian is

LYM(A) = −1

4
(F aµν)2 F aµν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν

where g is a coupling constant and fabc are the structure constants of g.
The desire to fix the gauge arises from a particular analysis of classical

electromagnetism.4 The only classical particle phenomenon aptly described by
Yang–Mills theory is the electromagnetic interaction of Newtonian matter. The
worldline x of a particle moving in an electromagnetic field satisfies the Lorentz
force law

qFµν ẋ
ν = mẍµ

with m and q the mass and charge of the particle, respectively, and Fµν a closed
two-form. That is, the force some particle experiences is proportional to the
parallel component of a Lorentz-covariant electromagnetic configuration Fµν that
is the same for all particles. The motion of Newtonian matter is fully determined
by the forces to which it’s subject, so if we can only probe the electromagnetic
configuration using such matter then the accessible electromagnetic facts are
fully captured by the tensor Fµν . Moreover, the dynamics of the electromagnetic
configuration in the presence of a current jν are classically described by Maxwell’s
equation

∂µF
µν = jν

So the electromagnetic facts accessible to Newtonian matter are encoded by Fµν ,
and the dynamics of these facts are expressed in terms of Fµν as well. Therefore
we plausibly ought to take the configuration space of Maxwell electrodynamics
to be the space of closed two-forms.

We can also use Yang–Mills theory to model the electromagnetic interaction,
and this suggests a first-pass interpretation of Yang–Mills theories in general.
For the Yang–Mills theory associated with the Lie algebra u(1), the configuration
space is coordinatized by an ordinary one-form Aµ, and because the structure
constants vanish the corresponding field strength

Fµν = ∂µAν − ∂νAµ

is a closed two-form. Conversely, for any closed two-form Fµν over a contractible
manifold there is some one-form Aµ whose field strength is Fµν . Moreover, the
Euler–Lagrange equation of the Yang–Mills action is Maxwell’s equation in vac-
uum. So we can use the Newtonian interpretation of Maxwell electromagnetism

summed over after raising and lowering to give one upper and one lower index of each pair.
We assume that g is reductive. Decorated actions are given by integrating the corresponding
decorated Lagrangian over R4—so that, for example, we have SYM =

∫
R4 d

4xLYM—with
the exception of the action SAB in the Aharonov–Bohm experiment, which is obtained by
integrating the Lagrangian LAB over the topologically nontrivial exterior of the apparatus.

4The following four paragraphs are modelled most closely on Healey (2007, Ch. 2), but the
essentials of this analysis also appear in Belot (1998, §4), Guay (2008, §3.1), Redhead (2003,
§6), Rickles (2008, Ch. 3), and Weingard (1988, §III), as well as most other philosophical
discussions of the Aharonov–Bohm effect.
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to interpret Yang–Mills theories as well: the configuration space of the theory is
the space of closed g-valued two-forms, and a g-valued one-form Aaµ coordinatizes
the point

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν

of the configuration space.
This first-pass interpretation is generally thought untenable, even for electro-

magnetism. But the arguments against it and for a replacement have the same
logic as the initial argument for it. If we probe the electromagnetic configuration
with quantum particulate matter then we can distinguish two one-forms with
the same field strength tensor. The wavefunction ψ(t, x) of a quantum particle
moving in an electromagnetic field satisfies

ψ(t1, x1) =

∫
dx0

∫
Dx e i~SAB(A,x) ψ(t0, x0)

where the domain of the inner integral is the collection of all paths x such that
x(t0) = x0 and x(t1) = x1 and

LAB(A, x) =
1

2
mẋ2 + qẋµAµ

with Aµ a one-form describing the electromagnetic configuration. As in the
classical case, we can interpret Aµ as the coordinate on the configuration space
of a u(1) Yang–Mills theory. However, unlike the classical case, there are
experimental setups in which two Yang–Mills potentials Aµ and Bµ give rise to
distinct dynamics and thus distinct actions, even though they induce the same
two-form (Aharonov and Bohm, 1959). Since the action is a function on the
Yang–Mills configuration space, the one-forms Aµ and Bµ must coordinatize
different points. So the Yang–Mills configuration space is not the space of closed
two-forms.

Applying the logic of the Newtonian first pass leads to the interpretation of
Yang–Mills theory behind Redhead’s and Guay’s claims. In the first pass, we took
the configuration space of Yang–Mills theory to be the space of closed g-valued
two-forms because it’s impossible in principle for Newtonian particulate matter
to distinguish electromagnetic potentials with the same field strength. Quantum
particulate matter discriminates more finely, but as a second pass we can take
two one-forms to coordinatize the same point of configuration space if they are
in principle indistinguishable to this matter, as well. This leads to the standard
story’s interest in gauge transformations. An infinitesimal gauge transformation
is determined by a g-valued function on spacetime—in coordinates, a family ca

of scalar fields. This transformation acts on the space of g-valued one-forms as

Aaµ 7→ Aaµ +Dµc
a Dµc

a = ∂µc
a + gfabcA

b
µc
c

Exponentiating this transformation gives a gauge transformation. Since the
action is invariant under all gauge transformations, any two potentials related by
a gauge transformation will produce the same dynamics for a quantum particle.
According to the received view, applying the interpretive principle from the
classical case means taking the configuration space of Yang–Mills theory to be the
space of equivalence classes of g-valued one-forms, where two potentials belong
to the same equivalence class if they are related by a gauge transformation.
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This reasoning supports the first two parts of the received view, but not the
third—at least if we understand it as claiming that we have reason to fix the
gauge before even trying to quantize. The first part of the story is that the
naive configuration space of Yang–Mills theory is the space of g-valued one-forms.
All hands agree that this space is a candidate for the configuration space of
Yang–Mills theory, though few think it’s the correct one: Guay claims above that
we ought to move to a quotient space; methods of “gauge fixing” are meant to
choose a particular model of this quotient; I give a third alternative in Section 3.
The second part of the story claims that gauge-equivalent one-forms represent
the same physical state of affairs, and in this section I’ve briefly reconstructed
the reasoning for this claim. But this reasoning is incompatible with the version
of the standard story that claims gauge fixing as the “obvious move”, or that we
know gauge fixing to be the “right way” to quantize. In the cases of Newtonian
or quantum particulate matter, it was a live possibility that distinct one-forms
could generate distinct matter dynamics. As Weingard puts it, “while in classical
electrodynamics [Aµ] can be regarded as a calculational device, it is able to take
a physical significance when a new theory like quantum mechanics comes along”
(1988, 58). In both cases, we gave a positive argument for interpreting two one-
forms as corresponding to the same point of the Yang–Mills configuration space:
differences between them are invisible in principle to matter. Maintaining this
interpretive principle in the field-theoretic case means giving a positive argument
that gauge-equivalent one-forms must produce the same matter dynamics in
quantum field theory. And this means looking at the results of quantization.5

If the standard story is right, there must be some technical obstruction
to quantizing the naive Yang–Mills configuration space, not some conceptual
obstruction. It certainly seems that there could be a theory whose configurations
correspond to g-valued one-forms, and the standard reasoning reviewed in this
section treats this as an open possibility to be dealt with by positively arguing
that some differences are undetectable. And indeed, some presentations of the
standard story take the problem to be technical. As Healey puts it,

path-integral quantization of gauge fields [involves] a difficulty as-
sociated with gauge invariance. The path integrals are functional
integrals over the space of potentials Aaµ, and since many such po-
tentials are gauge equivalent to one another, this involves massive
‘over-counting.’ Not surprisingly, the resulting functional integrals
diverge! (2007, 145).

Healey briefly reviews textbook techniques for dealing with this divergence, but
says nothing more about its character or how it comes about due to over-counting.
More is needed for two reasons. First, quantum field theory is traditionally
full of divergences, so we need some reason to think that there are divergences
specifically associated with gauge theories. Second, some justification is needed

5I intend to leave unspecified the precise content and justification of the interpretive
principle at play here. There are really two worries: how can the semiclassical Aharonov–
Bohm effect teach us something about classical electromagnetism, and why does the in-
principle indistinguishability of gauge-equivalent potentials give us reason to interpret them
as representing the same physical state of affairs? On the former, see Belot (1998); on the
latter, Dasgupta (2018). I won’t address either. My argument is only that if you think that
the results of quantization can inform our interpretation of the classical theory, as in the case
of the Aharonov–Bohm effect, then by parity of reasoning you ought to think that quantizing
the electromagnetic field might lead us to distinguish gauge-equivalent one-forms.
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for the claim that over-counting leads to divergence. I will take these in order,
indicating a divergence that’s distinctive of gauge theories and then trying to
connect it to over-counting.

2.2 Three sources of divergence in quantization

Quantization takes as input a classical theory in the form of a classical con-
figuration space and an action on that configuration space. It gives as output
perturbative expressions for the quantum expectation value of observables on the
classical configuration space. The inner workings of this quantization machine
notoriously fall short of most standards of rigor, and the perturbative expansions
it produces pose interpretive difficulties that compound the usual interpretive
problems of quantum theory—in part because they are plagued by divergences.
But we can still seek local justification for particular steps in the quantization
process and fend off specific divergences. I take the received view’s technical
problem with gauge theories to be concerned with a particular divergence and
the justification for getting around it. This divergence is associated with the
quadratic part of the action and should be distinguished from other divergences
that have recently interested philosophers.

The quantum expectation value 〈O〉 of some classical observable O is given by
an integral over the classical configuration space, weighted by a phase depending
on the action of the classical theory. In certain nice contexts the path integral
can be interpreted as a measure-theoretic integral (Johnson and Lapidus, 2000).
But in general the equation defining 〈O〉 above indicates that the left hand side
is to be assigned the power series in ~ that (loosely speaking) would describe
the small-~ limit of the integral on the right, if only it existed. It’s not obvious
what it means, conceptually speaking, to say that the expectation value of an
observable is a power series, especially since the series describing the small-~
asymptotics of these integrals often diverge.6 But it’s clear enough what it means
numerically: just replace ~ with 10−34 J s and sum up the first couple terms in
the series to obtain predictions that agree with experiment to extreme precision.

We can usually overlook a series’ divergence by simply ignoring large powers
of ~. But if we’re careless about quantizing a gauge theory then every term in
the series will itself diverge. These terms are produced by formally generalizing
the asymptotic description of analogous finite-dimensional integrals. In the
finite-dimensional case, this description is an algebraic expression with the
same asymptotic behavior as a computationally intractable analytic integral
expression.7 For example, consider an integral of the form

I(~) =

∫
dnx dmθ e−

1
~S(x,θ) f(x, θ)

where the domain of integration is a supermanifold with n even (commuting)
coordinates xi and m odd (anticommuting) coordinates θi, and where f and S

6Fraser (2020) suggests that we understand these series as approximations with no underlying
exact model, while Miller (2021) develops a novel semantics for theories that assign divergent
perturbative expansions to observables.

7My exposition of the finite-dimensional model follows Mnev (2019). Under appropriate
conditions this approach can even reproduce the exact value of the integral (Johnson-Freyd,
2015).
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are supersmooth functions. Suppose that S is even, so that it’s of the form

S(x, θ) = S0(x) +
1

2

∑
i,j

Sij(x) θiθj + · · ·

where S0 and Sij are smooth functions of x with Sij skew-symmetric. We
approximate I(~) with an algebraic combination of Gaussian integrals, giving a
series with the same small-~ behavior. This reduces the transcendental content
of the integral to the volumes of finitely many Gaussian integrals, which are
computable. We obtain the terms of the series assigned to 〈O〉 by mimicking
the algebra of the finite-dimensional case.

The approximation of I(~) by a series in Gaussians requires the action S to
be appropriately non-degenerate. One use of this non-degeneracy pulls out an
overall volume factor from the asymptotic series in two steps. The first step
uses the Morse lemma to massage the action S(x, θ) into quadratic terms plus
higher-order perturbations. Using partitions of unity, we can write I(~) as a
linear combination of integrals with the same form as I(~) and in which S0 has
a single critical point at the coordinate origin, where it also vanishes. Supposing
that S satisfies these conditions, we can Taylor expand it to write

I(~) '
∫
dnx dmθ e−

1
2~Qe(x,x)e−

1
2~Qo(θ,θ)e

1
~p(x,θ)f(x, θ)

where

Qe(x, x) =
∑
i,j

∂2S0

∂xi ∂xj

∣∣∣∣
x=0

xixj Qo(θ, θ) =
∑
i,j

Sij(0) θiθj

The zeroth-order term in the Taylor expansion of S vanishes by our hypothesis on
S0, and the first-order term vanishes because we are expanding around a critical
point. The second step uses the fact that a Gaussian is sharply peaked around
its center to replace the first two terms in the integrand with their volumes and
the rest of the integrand with its value near the coordinate origin. This results
in the following perturbative expression for I(~):

I(~) '
√

(2π~)n

~m
pf(Qo)√
|detQe|

⟪e 1
~p(x,θ)f(x, θ)⟫

where pf and det are the Pfaffian and determinant, respectively, and ⟪–⟫ is the
expectation value with respect to the Gaussian. This is not an equality; rather,
the two sides of this expression have the same asymptotics: in the small-~ limit
their difference is smaller than any power of ~. And when these integrals appear
in physics—in optics, for example—it’s this asymptotic behavior that meets
experiment (Batterman, 2002; Miller, 2021).

We’ll see in Section 2.3 that the determinant of Qe vanishes in naive treat-
ments of gauge theories, making the volume term diverge—or, if pf(Qo) also
vanishes, making the volume term a 0/0 indeterminate form. This also causes
problems for the expectation value ⟪–⟫. The expectation value of two coordinate
functions—the “propagator” for these coordinates—is a matrix element

⟪xixj⟫ = (Q−1
e )ij ⟪θiθj⟫ = (Q−1

o )ij
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The expectation value of four even coordinate functions is

⟪xixjxkx`⟫ = ⟪xixj⟫⟪xkx`⟫+ ⟪xixk⟫⟪xjx`⟫+ ⟪xix`⟫⟪xjxk⟫

and so is determined by the propagators. This is also true for odd coordinates
after inserting appropriate signs, and this fact generalizes: the expectation
value of any polynomial in x and θ is a polynomial in propagators. If detQe
vanishes then Qe isn’t invertible, and so any expectation value involving an even
coordinate is ill-defined.

The mathematical issues with gauge theories arise already in the finite-
dimensional case, but the physically relevant examples are field-theoretic. The
infinite-dimensional generalization of this process mimics the algebraic features of
the asymptotic approximation. For simple theories the generalization is relatively
direct. For example, consider a theory containing a real scalar field φ and a
spinor field ψ, interacting via a Yukawa coupling:

LY(φ, ψ) = −1

2
(∂µφ)2 − ψ∂/ψ − gψφψ

In the finite-dimensional case the propagator ⟪xixj⟫ is the inverse of the quadratic
form in the even sector. The field-theoretic analogue of this statement says that
the propagator ⟪φ(x)φ(y)⟫ is the inverse of −i∂µ∂µ, which is to say that it’s
the unique solution to

−i ∂

∂xµ

∂

∂xµ
⟪φ(x)φ(y)⟫ = δ(x− y)

Likewise, the propagators in the odd sector are the inverses of the corresponding
blocks of the quadratic form in the odd sector: the unique solutions to

⟪ψ(x)ψ(y)⟫ = ⟪ψ(x)ψ(y)⟫ = 0 iγµ
∂

∂xµ
⟪ψ(x)ψ(y)⟫ = δ(x− y)

For any observable O, every term in the expectation value 〈O〉 is built from
these propagators and the coupling g. So, at least in principle, predicting any
expectation value in the quantum theory of these fields reduces to solving these
two equations for ⟪φ(x)φ(y)⟫ and ⟪ψ(x)ψ(y)⟫.

The transition to infinite-dimensional linear algebra invites new divergences,
but we will assume these are taken care of since they arise in every quantum field
theory, not just gauge theories. For example, we need a determinant for operators
on infinite-dimensional vector spaces to make sense of the overall volume factor
in the perturbative expansion of I(~). Any definition should reproduce the basic
algebraic properties of the finite-dimensional determinant; most importantly
for our purposes, the determinant detQ should vanish if and only if Q is not
invertible. A second problem concerns products of propagators. A solution
for the above equation for ⟪φ(x)φ(y)⟫ will be a distribution singular at x = y.
This prevents us from defining the expectation value ⟪φ(w)φ(x)φ(y)φ(z)⟫ as
a product of propagators, since the product of distributions with overlapping
singular support is indeterminate. Traditionally this problem is solved in two
steps: the indeterminate product of distributions is replaced with a determinate
but divergent expression, then this divergence is eliminated by some normalization
procedure. For example, the divergence in the propagator can be removed by
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ignoring its Fourier modes above some large cutoff Λ, allowing us to define
products of propagators and thus expectation values 〈O〉Λ that depend on the
cutoff. The expectation value 〈O〉Λ diverges in the large-Λ limit, but we can
compensate for this divergence by introducing Λ-dependence to the couplings in
the action.8

Philosophers have recently discussed some divergences of perturbative quan-
tum field theories, but the divergences due to a degenerate action haven’t been
among them. Much of the literature on perturbative quantum field theory has
been concerned with divergences that arise in regularization and renormalization
and whether they undercut the coherence of the quantization process (Fraser,
2009, 2011; Halvorson, 2006; Hancox-Li, 2015; Wallace, 2011). The divergences
at issue in this literature arise even for very well-behaved quadratic terms, as
in the Yukawa theory above. And poorly-behaved quadratic terms can lead to
problems even in the finite-dimensional case, where issues of renormalization
don’t arise. So the divergences related to renormalization are distinct from those
related to the quadratic terms. More recent work attends to the interpretation
of the divergent series produced by the quantization procedure (Fraser, 2020;
Miller, 2021). These divergences do arise in the finite-dimensional case; indeed,
the special character of such divergent series was first identified by Poincaré
(1892) in the context of celestial mechanics. But they are also distinct from the
divergences associated with singular quadratic terms: we can avoid the diver-
gence of asymptotic series by truncation, or attempt to cure it with resummation,
but if Qe has vanishing determinant then the series diverges at every order.

In sum, there is a distinctive divergence associated with gauge theories due
to the singularity of the quadratic terms Qe and Qo. These quadratic terms
arise in the perturbative expansion of Gaussian integrals like I(~), contributing
an overall factor to each order of the series through their scalar invariants
and to expectation values through their inverses. They produce divergences
or indeterminacies when their scalar invariants vanish, which are distinct from
those usually addressed by the philosophical literature. This divergence at every
order is characteristic of an incautious treatment of gauge theories.

2.3 Over-counting and indeterminism

The divergence isolated in Section 2.2 can be connected to over-counting, but
only through certain controversial assumptions about counting and determinism.
On the naive approach, the quadratic part of the Yang–Mills Lagrangian is
not invertible, so its determinant vanishes and integrals weighted by it have
divergent asymptotics. Physically speaking, you might say that the problem
is one of determinism: since gauge transformations are spacetime-dependent
there are many futures for any initial datum, each pair of which are related
by a gauge transformation that leaves the initial datum alone, and this spoils
the invertibility of the free dynamics. And if you suppose that determinism is
a matter of possibility-counting, then you can blame the divergence on over-
counting. But the ways to avoid the divergence offered by the received view
aren’t related to over-counting. Nor do they adequately deal with the divergence
problem.

8See Butterfield and Bouatta (2015) and Hancox-Li (2015) for more detailed philosophical
discussions of this method, and Duch et al. (2021) for discussion of one alternative.
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The gauge invariance of the Yang–Mills action makes it degenerate, causing
the asymptotics of gauge-theoretic path integrals to diverge and expectation
values to be ill-defined. Consider the u(1) case. Naively, the Yang–Mills con-
figuration space is the space of u(1)-valued one-forms, and the action is the
Yang–Mills action above. An inverse for the quadratic part of the action would
produce the unique solution to the equation

−i(ηµν∂λ∂λ − ∂µ∂ν)Aµ = jν

for any current jν . But if Aµ is a solution to this equation then so is Aµ +
∂µc for any u(1)-valued function c. Interpreted electromagnetically, this is
Maxwell’s equation, and its singularity amounts to the fact that any gauge
transformation of a solution is also a solution. In the nonabelian case this
interpretation is complicated by the non-linearity of the Yang–Mills equation,
but the mathematical point is the same: the quadratic part of the action cannot
be inverted, so the propagator ⟪Aaµ(x)Abν(y)⟫ is ill-defined and the determinant
of the quadratic part vanishes, making each term in the asymptotic expansion
of any integral diverge.

This mathematical glitch has a natural interpretation as a failure of determin-
ism. The spacetime-dependence of gauge transformations makes them “spoilers”
in the sense of Belot (2008). That is, for any solution Aaµ to the equations of
motion and any initial data surface Σ we can choose some g-valued function ca

with compact support to the future of Σ, giving two solutions Aaµ and Aaµ+Dµc
a

that coincide on Σ. In yet other words, there can be no Cauchy surface for the
Yang–Mills equation for g-valued one-forms—no surface Σ such that restriction
to Σ exhibits an equivalence between instantaneous states on Σ and solutions to
the Yang–Mills equation, even with boundary conditions in place. This amounts
to a certain kind of indeterminism: any instantaneous state has infinitely many
possible futures. In the philosophical literature, this failure of determinism is
often taken as a mark against the idea that the configuration space of Yang–Mills
theory is the space of g-valued one-forms (Belot, 2003, 2008; Healey, 2007; Lyre,
2004).

But our divergence’s connection to determinism and possibility-counting
relies on substantial accounts of the latter, and regaining determinism won’t
necessarily resolve the divergence. As Belot puts it, the connection between
Cauchy surfaces and determinism “obtains only if we assume that distinct
solutions of our theory always represent physically distinct situations” (2008,
200). And as Section 2.1 reviewed, the received view of Yang–Mills theories
denies this assumption. There has been extensive philosophical work on how
one ought to count physical possibilities in this context—and about whether
possibility-counting is relevant to determinism at all—and on these accounts
Yang–Mills theory counts as deterministic if we take gauge-equivalent one-forms
to represent the same physical state of affairs (Belot, 1995, 2008; Brighouse, 1997;
Butterfield, 1989; Dasgupta, 2011; Melia, 1999). But none of this makes the
quadratic part of the action invertible. So while there may be some connection
between over-counting and divergent asymptotics, any such connection must go
through some principles connecting determinism and possibility-counting with
the non-degeneracy of the action.

Setting aside the interpretation of the divergence, the philosophical literature’s
mathematical response to the problem is to “fix the gauge”, as Redhead suggests
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above. This is accomplished in one of two ways; in both approaches, ghost fields
appear as a mathematical trick. Because the Yang–Mills action is degenerate on
the one-form interpretation, that theory has no perturbative quantization by the
standard route. A quantum version of Yang–Mills theory must therefore have a
different configuration space, a different action, or be produced by a different
quantization procedure. Philosophical discussions tend to avoid the details at
this point, but allude to replacing the action or modifying the quantization
procedure.

The action approach attempts to fix the gauge by adding a Lagrange multiplier
to the action. For example, consider the Lagrangian

Lξ(A) = −1

4
(F aµν)2 − 1

2ξ
(∂µAaµ)2

with Lagrange multiplier 1/ξ. Classically, the effect of this modification is to add
the condition ∂µAaµ = 0 to the equations of motion. The critical surface of Sξ is
therefore a strict subset of the critical surface of the Yang–Mills action, so there
are fewer classical solutions over which we must integrate when computing the
asymptotic expansion of an integral weighted by Sξ. Moreover, the quadratic
part of Sξ is invertible: in the case ξ = 1 its inverse is

⟪Aaµ(x)Abν(y)⟫ =

∫
d4k

(2π)4

−iδabηµν
k2

eik·(x−y)

So the quadratic part of Sξ is invertible, its determinant doesn’t vanish, and the
divergence is avoided. The resulting predictions are even empirically adequate
in some cases.9

This approach to gauge fixing requires ever more modifications to the action;
one of these is the addition of ghost fields. The action Sξ allows for perturba-
tive quantization, but in the nonabelian case the resulting quantum theory is
pathological. As Feynman (1963) first realized, quantizing Sξ for nonabelian g
gives a non-unitary theory. The problem comes from the Yang–Mills potential’s
self-interaction. For example, the term gfabc(∂

µAaν)AbµA
c
ν in the action allows

one quantum of the Aaµ field to decay into two, and the outgoing quanta might
have disallowed polarizations.10 Feynman’s solution to this problem was to add
an “artificial, dopey particle” (1963, 710) to give the Lagrangian11

LFP(A, c, c) = −1

4
(F aµν)2 − 1

2ξ
(∂µAaµ)2 − ca ∂µDµc

a

Here ca is an anticommuting g-valued scalar field, and ca is its conjugate, an
anticommuting g∗-valued scalar field. This new field is a “ghost” in the technical
sense that its kinetic term has the wrong sign. Its spin–statistics relation is also
dopey: it’s anticommuting, but has integer spin.12 The practical effect of these
new terms is to compensate for the timelike- and longitudinally-polarized modes

9For example, this propagator is good enough for much of quantum electrodynamics; for
textbook treatments see Peskin and Schroeder (1995, Ch. 5), Schwartz (2014, Part II), or
Weinberg (1995, §8.7).

10See Peskin and Schroeder (1995, §16.3) for a pedagogical discussion of this problem.
11More precisely, Feynman devised appropriate rules for the one-loop level, and DeWitt

(1967) for every level of perturbation theory, which ensure that the optical theorem holds.
These are the rules obtained from LFP by the method discussed in Section 4.1.

12Since the connection between integer spin and Bose–Einstein statistics is a theorem in
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created by the Yang–Mills potential’s self-interaction. The last term in LFP is
dictated by the requirement that it have this effect.

The action-modification approach has both conceptual and computational
shortcomings. The addition of ghost fields is facially ad hoc, meant to formally
patch a failure of unitarity. This makes it difficult to say anything at all about
their conceptual role—though, as I’ll return to in Section 4.1, you can try to
argue that they’re a coordinate artifact if you can find a gauge-fixed action
that doesn’t require them. There’s also conceptual problems with the first step.
Adding a “gauge-fixing term” doesn’t change of the domain of integration, as
Redhead’s and Healey’s glosses suggest. It does eliminate some of the action’s
critical points, but reducing the number of classical solutions does nothing to
avoid our divergence, because the asymptotic expansion around each critical
point diverges. The “gauge-fixing term” repairs the divergence by changing
the quadratic part of the action; the domain of the integral is still the space
of g-valued one-forms. The action-modification approach has little to do with
“over-counting”. So it’s hard to see how this approach can get off the ground,
conceptually speaking. Practically speaking, this method will always work—as
ad hoc modifications are wont to do—but it gives no systematic recipe for
identifying and fixing failures of unitarity or renormalization.

The second approach to gauge fixing modifies the quantization procedure
by inserting two forms of the identity and formally applying Fubini’s theorem.
Following ’t Hooft (1971), preface the SYM path integral with the identity

1 =
1

N (ξ)

∫
Dωa exp

(
− iξ

2~
ωaω

a

)
where ωa is a g-valued scalar field and N (ξ) a (divergent) constant defined to
make this equality hold. To fix the ∂µAaµ = 0 gauge, follow Faddeev and Popov
(1967) by inserting the scaling property of the δ distribution

1 =

∫
Dαa δ

(
∂µ(Aaµ +Dµα

a)− ωa
)

det(∂µDµ)

into the integrand, where the domain of integration is all g-valued scalar fields.
Integrating over ωa and shifting Aaµ while holding the determinant constant gives

1

N (ξ)

∫
DαaDAaµ e

i
~Sξ det(∂µDµ)

The final trick, also due to Popov and Faddeev (1967), writes the determinant
as a Gaussian integral over odd coordinates, leaving us with

1

N (ξ)

∫
DαaDAaµDcaDca e

i
~SFP

These three tricks reproduce the gauge–ghost action of the ad hoc method, so
they avoid the loss of unitary that Feynman identified. Moreover, they give a

structural analyses of relativistic quantum field theory, ghosts must violate some plausible
assumption. And they do: they are states of negative norm, so the space of quantum states
isn’t a Hilbert space. However, the subspace of in and out states is; see Section 3.2 for more
on this.
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systematic method for avoiding this loss, applicable to more—but not all—choices
of gauge-fixing conditions.13

The Faddeev–Popov method has clear advantages over the ad hoc addition
of ghost fields and interaction terms, but it’s ultimately still inadequate for both
conceptual and practical purposes. The meaning of the new volume

∫
Dαa/N (ξ)

is opaque, and it diverges even for the finite-dimensional model reviewed in
Section 2.2, preventing any interpretation by analogy. But if we can set this
problem aside then there are at least two remarks we can make. First, as
Redhead puts it, the introduction of the ghost field ca is “a purely mathematical
manoeuvre” (2003, 135). The Faddeev–Popov method introduces ghosts for the
purposes of computing the determinant det(∂µDµ), but any other method of
computation would work just as well. So we can bypass ghost fields entirely,
at least in principle, by computing the determinant using some other method.
Second, the Faddeev–Popov method has no obvious relation to “over-counting”.
Two insertions of the identity and a re-writing don’t make a difference to which
configurations we integrate over. Indeed, up to the ∞/∞ indeterminacy in front,
this integral is (by design) precisely the same as the one produced by the ad
hoc insertion of ghosts, and as we’ve already seen this integral doesn’t fit the
“gauge fixing” gloss. I don’t think we can set aside the new volume term, even for
qualitative purposes. But even if we follow the traditional philosophical account
in doing so, its interpretive claims do not follow.

In addition to its conceptual issues, the Faddeev–Popov method is inadequate
for practical purposes. There are problems of at least two kinds, illustrated by
the following two examples:

1. Because the ghost fields are introduced when writing a determinant of a
Yang–Mills-dependent operator as a Gaussian, any Lagrangian produced
by the Faddeev–Popov method will be at most quadratic in the ghost
fields.14 But some gauge-fixing conditions require ghost self-interactions,
even in Yang–Mills theory (Zinn-Justin, 1975, §4). For example, a maximal
abelian gauge condition writes the gauge algebra g as g = h⊕ a for some
maximal abelian subalgebra a of g, then fixes the h-components of Aaµ with
a maximality condition and treats the a-components like electromagnetic
potentials. If the Faddeev–Popov procedure worked, then applying it to
this gauge-fixing condition would produce the same integral as it did when
applied to the ∂µAaµ = 0 condition. But it doesn’t: the action SFP is
perturbatively renormalizable, while the Faddeev–Popov procedure applied
to maximal abelian gauge produces a ccAA term that generates a cccc
counterterm at the first loop level. So the Faddeev–Popov method does
not correctly implement maximal abelian gauge.

2. A second source of ghost interactions appears in higher gauge theories,
which include gauge transformations between gauge transformations (Hen-
neaux and Teitelboim, 1992, Ch. 10; Weinberg, 1995, §§8.8, 15.8). For

13For a more detailed treatment of this procedure, see Peskin and Schroeder (1995, §9.4),
Schwartz (2014, §25.4), or Weinberg (1995, §15.5).

14This is also true of Guay’s (2008) treatment of BRST quantization, which follows DeWitt
(2005). As such, I take Guay’s analysis to ultimately apply only to Faddeev–Popov quantization,
which happens to compute the BRST quantization in special cases.
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example, consider a two-form potential Bµν with Lagrangian

L(B) = −1

6
HλµνH

λµν Hλµν = ∂λBµν + ∂νBλµ + ∂µBνλ

Any one-form Aµ gives a transformation

Bµν 7→ Bµν + ∂µAν − ∂νAµ

that preserves the Lagrangian, and any scalar field c gives a transformation
Aµ 7→ Aµ + ∂µc that preserves the action of Aµ on Bµν . On the ad hoc
approach, gauge fixing leads to a loss of unitarity in processes involving the
Bµν field, which are patched up by coupling it to an anticommuting vector
field cµ. Fixing the gauge of the new vector field again breaks unitarity,
which is fixed by coupling cµ to a commuting scalar c. More generally, the
p-form gauge fields appearing throughout supergravity and string theory
lead to (p−1)-form ghost fields whose non-unitarity is fixed by (p−2)-form
ghost fields, and so forth.

These cases indicate that the Faddeev–Popov procedure can’t be whole story. It
works when it works, but it doesn’t generally resolve the characteristic divergence
of gauge theories. So we should avoid drawing any conclusions about ghosts
from the Faddeev–Popov procedure without some account of how it is a special
case of a more general picture. A more general story isn’t on offer in the extant
philosophical literature, so in the next section I provide one.

The standard philosophical story has it that ghosts are introduced as a
technical convenience in the process of gauge fixing—a process by which we
restrict the domain of the path integral—which we ought to do for conceptual
or mathematical reasons. In this section I’ve disputed each part of this story.
Most philosophical treatments of gauge theory are set against an account of
gauge equivalence that focuses on classical electromagnetism: first we interpret
Yang–Mills theory as a model of Maxwell electromagnetism, then the Aharonov–
Bohm effect prompts us to revise our interpretation, taking the potential Aµ
to coordinatize its gauge-equivalence class rather than its field strength Fµν .
We have reason to doubt that a quantum Yang–Mills theory distinguishes
gauge-equivalent one-forms, but we don’t have dispositive reason to think that
it won’t. Investigating this possibility brings us to a mathematical problem:
gauge theories exhibit a characteristic divergence in perturbative quantization,
identified in Section 2.2. This divergence can be connected to over-counting
under a sufficiently simplistic conception of determinism, but the techniques used
to circumvent the divergence that were mooted in this section don’t change which
potentials get counted. They also don’t give any reliable information about how
we ought to interpret ghost fields. Feynman’s ad hoc approach is a good guide to
when ghosts and their interactions are necessary for a well-behaved theory with
a modified Yang–Mills action, but it gives no theory to guide interpretation of
these interactions. The Faddeev–Popov procedure gives an account of ghosts on
which they are a calculational device, but this account doesn’t cover every gauge
theory or even every part of Yang–Mills theory. The philosophical literature’s
gloss on the technical facts doesn’t hold up, so we aren’t warranted in drawing
any conclusions about ghosts from that gloss.
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3 An alternative story

The philosophical literature is wrong about ghosts, but it’s right that the one-
form interpretation of Yang–Mills theory has no perturbative quantization. As
I’ll argue in this section, it’s even right to say that identifying gauge-equivalent
one-forms gives a good quantum theory. But in this new theory ghost fields
are more than a mere calculational device: they are used to identify gauge-
equivalent one-forms and there are coordinate-invariant facts about them. On
this alternative interpretation, the apparent divergence of Section 2.2 is merely
a coordinate singularity born of neglecting part of the classical configuration
space. A change of coordinates resolves the singularity and explicitly introduces
ghost dependence to the action. This approach avoids the two kinds of problems
faced by the Faddeev–Popov method. It’s also compatible with the logic behind
the usual philosophical approach to gauge theories in Section 2 and the work on
classical gauge theories referenced in this paper’s introduction.

3.1 Stacky Yang–Mills

We cannot perturbatively quantize one-form Yang–Mills theory, so we need
an alternative classical theory. One alternative is suggested by the work of
Becchi et al. (1976) and Tyutin (1975). Becchi–Rouet–Stora–Tyutin (BRST)
quantization can be understood as standard perturbative quantization applied to
a classical configuration space that contains gauge structure—that is, nontrivial
equivalences between its points. Because the Yang–Mills action doesn’t depend
on the (odd) gauge dimensions, the integral over this configuration space has
a 0/0 indeterminacy. We can see this as a coordinate singularity: the gauge
structure of the configuration space means that there are many gauge-equivalent
representations of the action, and choosing one that explicitly depends on the
gauge coordinates results in a well-defined perturbative quantization. These
gauge coordinates are precisely the ghost fields.

In Section 2.3 I argued that reconceiving possibility-counting and determin-
ism doesn’t directly solve the divergence problem, since it need not make the
quadratic part of the action invertible. But meditation on these concepts can
suggest alternative choices for the Yang–Mills configuration space. For example,
philosophers often want to take a set-theoretic quotient, making the configura-
tion space the set of gauge-equivalence classes of one-forms.15 This choice of
configuration space is interesting and pursuit-worthy, but I think it’s implausible.
Taking the set-theoretic quotient restores determinism in the naive sense, and it
gets the possibility-counting right, but it destroys important information about
the gauge structure of the theory. Among other things, the set-theoretic quotient
erases the fact that the possible future of an initial datum is not just unique
up to gauge equivalence, but up to unique gauge equivalence (Benini et al.,
2018). This implies that the set-theoretic quotient satisfies the naive definition
of determinism, but it’s a strictly stronger condition that’s inexpressible in the
quotiented theory.

A less destructive approach with similar motivations takes the homotopy
quotient of the space of g-valued one-forms by the action of gauge transformations.
The result is the category in which an object is a g-valued one-form and an

15This popular desire is made explicit—though not necessarily endorsed—by Belot (2001,
2003), Butterfield (2006), Caulton (2015), and Dewar (2019).
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arrow from Aaµ to Baµ is a gauge transformation that sends Aaµ to Baµ. Because
gauge transformations are invertible this category is a groupoid, meaning that
every arrow is an isomorphism. And because everything in sight is smooth,
this groupoid is also smooth; in other words, Lie groupoids are good finite-
dimensional analogues for our spaces of interest.16 This construction is a type of
quotient because it identifies gauge-equivalent one-forms—treating this groupoid
category-theoretically means treating isomorphic objects as the same—but it
doesn’t eliminate the gauge structure as the set-theoretic quotient would. A
real-valued function on the space of g-valued one-forms descends to a map on the
quotient groupoid just in case it’s gauge invariant; in particular, the Yang–Mills
action gives such a map. For brevity, call this configuration space and action
the “stacky interpretation” of Yang–Mills theory.17

The stacky interpretation of Yang–Mills theory has a good perturbative
quantization, up to a 0/0 indeterminacy. Perturbative integrals depend only on
an infinitesimal neighborhood of the action’s critical points. For a Lie groupoid,
this means the integral depends on the Lie algebroid obtained by differenti-
ating the Lie groupoid. And Lie algebroids can be modelled by structured
supermanifolds, to which we can apply the perturbative integration theory of
Section 2.2. Differentiating the configuration space of stacky Yang–Mills theory
gives the Lie algebroid coordinatized by a pair (Aaµ, c

a), where Aaµ is a family of
even coordinates that assemble into a g-valued one-form and ca a family of odd
coordinates that assemble into a g-valued function. The first entry coordinatizes
the collection of objects of the stacky Yang–Mills configuration space, while the
second entry coordinatizes the “infinitesimal arrows” with domain Aaµ. Since the
Yang–Mills action doesn’t explicitly dependent on the arrow coordinates, the
quadratic part of the odd sector vanishes. And since it isn’t invertible in the
configuration coordinates, the quadratic part of the even sector has vanishing
determinant. Each term in the perturbative expansion of an integral over this
supermanifold therefore includes a volume term

pf(0)√
|det(Qe)|

=
0

0

Though this indeterminacy is a problem, it’s more tractable than a divergence:
an indeterminacy can be fixed by a change in coordinates, while a divergence
can only be fixed by a change in definition.

To resolve the indeterminacy due to the quadratic part of the Yang–Mills
action we can change coordinates; permissible coordinate changes are controlled
by the structure of the Lie algebroid. Indeterminate forms can often be resolved
by rewriting; for example, the function x/x is of the form 0/0 in the small-x
limit, but simplifying the division shows that its limit is 1. We have a lot of
freedom when rewriting functions on a Lie groupoid, since these functions are

16See Crainic and Fernandes (2011) for an overview of Lie groupoids, Lie algebroids, and their
relation. For the purposes of perturbative quantization we use Văıntrob’s (1997) formulation
of Lie algebroids as differential graded manifolds; see also Mnev (2019, 4.2.28–29).

17The name refers to the fact that on this interpretation, configurations of the Yang–Mills
field are given by sections of a stack, or homotopy sheaf of groupoids, in contrast with the
space of states in many other fields theories, which is given by a section of a sheaf of sets. For
a more detailed treatment, see Benini et al. (2018). What follows is an interpretation of BRST
quantization that combines the cohomological interpretation of BRST quantization with the
higher-categorical interpretation of cohomology; I learned these interpretations from Schreiber
(2017).
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only defined up to isomorphism. Differentiating the isomorphism structure of a
Lie groupoid gives a vector field on its Lie algebroid in the form of a derivation
δ on the space of real-valued supersmooth functions; because this vector field
comes from differentiating a Lie groupoid, it satisfies δ2 = 0. A function f on the
Lie algebroid is infinitesimally gauge invariant if δf vanishes, and two functions
are infinitesimally gauge equivalent if their difference is δh for some h. So to
remove the 0/0 indeterminacy in the perturbative expansion of the path integral,
we can try to replace the Yang–Mills Lagrangian LYM with a gauge-equivalent
Lagrangian LYM + δh whose quadratic part is invertible.

In the case of stacky Yang–Mills there’s a hiccup in this strategy. The
distinguished vector field on the Yang–Mills algebroid acts as

δAaµ = Dµc
a δca = −1

2
gfabcc

bcc

The action of δ on the configuration coordinates is given by differentiating the
action of gauge transformations on these coordinates, while the action on the
gauge transformation coordinates is given by differentiating the adjoint action of
gauge transformations on infinitesimal gauge transformations. These expressions
show that δ introduces one new gauge coordinate when applied to any monomial.
In physicists’ terminology, any monomial function on the Lie algebroid has a
“ghost number”, which the vector field δ increments. This blocks the action-
replacement strategy: to replace LYM with another Lagrangian LYM + δh of
ghost number zero, the function h must have ghost number −1. Since our only
coordinates have ghost number zero (Aaµ) or one (ca), there are no candidates
for h.

Though the stacky Yang–Mills configuration space has no coordinates with
ghost number −1, it’s equivalent to one that does. An equivalence of Lie
algebroids is a supersmooth map that induces a bijection on gauge-equivalence
classes of gauge-invariant functions. For example, consider the Lie algebroid
with coordinates (Aaµ, c

a, ca, ba) and whose distinguished vector field acts as

δAaµ = Dµc
a δca = ba

δca = −1

2
gfabcc

bcc δba = 0

Here Aaµ and ca are the same as the coordinates on the stacky Yang–Mills
configuration space. The new coordinate ca, which we’ll call the “antighost”
coordinate, is an odd g∗-valued scalar field with ghost number −1, while the
Nakanishi–Lautrup field ba is an even g∗-valued scalar field of ghost number
0. Since δba vanishes, the auxiliary coordinate ba is a gauge-invariant function,
but because ba = δca, the function ba is gauge equivalent to the constant zero
function. So the new coordinate ba adds no gauge-invariant functions. The
antighost coordinate ca isn’t gauge invariant, since δca is nonzero, and it adds no
gauge-invariant functions either. In other words, the Lie algebroid coordinatized
by (Aaµ, c

a, ca, ba) carries the same gauge-equivalence classes of gauge-invariant
functions as the stacky Yang–Mills configuration space, despite the different
coordinate functions. That is, these Lie algebroids are equivalent and hence have
the same perturbative quantization.18

18More precisely, a map of Lie algebroids is an equivalence, or quasi-isomorphism, if it
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With these rewritings out of the way, we can quantize stacky Yang–Mills
theory by choosing an appropriate gauge-equivalent replacement of the Yang–
Mills action. For example, consider the function

hF = ca

(
1

2
ba + ∂µAaµ

)
The Yang–Mills Lagrangian LYM is gauge equivalent to the Lagrangian LF =
LYM + δhF, which is

LF(A, c, c, b) = −1

4
(F aµν)2 − 1

2
(∂µAaµ)2 − ca∂µDµc

a +
1

2

(
ba + ∂µAaµ

)2
This Lagrangian reproduces the results of the Faddeev–Popov procedure while
also providing an interpretation of the ∞/∞ indeterminacy of that theory: it’s
the volume of the Gaussian in ba. This indeterminacy will therefore be taken
care of by whatever regularization method we use for functional determinants.

Stacky Yang–Mills avoids the two technical shortcomings of the Faddeev–
Popov procedure. Because the stacky Yang–Mills configuration space has gauge
structure from the start, there’s no limitation on the number or kind of ghost
coordinates or their self-interactions. This gives it two kinds of flexibility:

1. We can add any term of the form δh to the Yang–Mills Lagrangian to give
a different representative, as long as h has ghost number −1. As such, we
can have interaction terms of arbitrarily high degree. For example, we can
add a term of the form

h = fabcc
acbcc

Then δh includes a term quartic in the (anti)ghost fields, which cannot be
generated by the Faddeev–Popov procedure. Faddeev–Popov quantization
works in those cases that h is of the form caG(A) for some function G
that’s linear in Aaµ and its derivatives, but generally fails for non-linear
gauge-fixing conditions.

2. Higher gauge theories may be quantized along exactly the same lines,
taking the homotopy quotient to produce a higher Lie groupoid and then
differentiating to produce a higher Lie algebroid. For the two-form theory
in Section 2.3, this is the Lie algebroid with coordinates (Bµν , cµ, c), where
cµ has ghost number 1 and c has ghost number 2, and the distinguished
vector field acts as

δBµν = ∂µcν − ∂νcµ δcµ = ∂µc δc = 0

Quantization of this theory proceeds as in the one-form case, adding terms
of the form δh to the action as needed to give an invertible quadratic part.

Because the ghost coordinates are part of the stacky Yang–Mills configuration
space itself, rather than a tool for computing a particular determinant, we have

induces an isomorphism on the cohomology of δ—that is, on the gauge-equivalence classes
of gauge-invariant functions. If the Berezinian of the integral is gauge invariant, then the
integral depends only on the cohomology class of the integrand (Mnev, 2019, §4.3.2). On the
stacky interpretation of Yang–Mills the Berezinian must be gauge invariant, so equivalent Lie
algebroids are interchangeable domains of integration.
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the kind of direct control required to explain why the Faddeev–Popov procedure
works when it does and to quantize those theories for which it does not.

The perspective on BRST quantization sketched in this section gives a general,
unitary, renormalizable quantization procedure for classical gauge theories that’s
empirically adequate when applied to Yang–Mills theory and has an appropriate
classical limit. Interest in the stacky Yang–Mills configuration space is not only
motivated by the same reasoning as the ad hoc or Faddeev–Popov quantization
methods, but executes that reasoning more faithfully: the stacky Yang–Mills
configuration space actually identifies gauge-equivalent one-forms, unlike pro-
cedures that simply add gauge-fixing terms to the action. Differentiating the
resulting Lie groupoid gives a Lie algebroid to which we can apply the standard
perturbative quantization procedure. Applying this procedure to the Yang–Mills
action produces a 0/0 indeterminacy, since SYM is independent of the gauge
coordinates, and this can be resolved by a change of coordinates. The results of
this coordinate change can include terms of arbitrarily high degree in ca and ca,
and for higher gauge theories they can also include higher ghosts. The ad hoc
and Faddeev–Popov quantization procedures work insofar as they compute the
results of BRST quantization.

3.2 The stacky story’s virtues

The conception of BRST quantization described in Section 3.1 is technically
superior to the quantization methods usually discussed in the philosophical
literature. It also has philosophical advantages; I will mention two. First, ad hoc
treatments of ghosts can make them look like surplus mathematical structure that
plays “a mysterious, even mystical, Platonist–Pythagorean role” (Redhead, 2003,
138). But according to the stacky interpretation, ghost fields are coordinates
on a configuration space obtained by eliminating structure, not adding it, and
they’re not surplus. Second, stacky Yang–Mills theory is compatible with the
logic of the philosophical literature on the interpretation of classical Yang–Mills
theory in a way the received view is not.

Most philosophical discussions of BRST quantization treat it as a novel type
of symmetry that is either mysterious or a technical convenience. This is a
natural consequence of the received view. As I outlined in Section 2.3, the
received view responds to a gauge theory’s characteristic divergence by adding
some terms to the action to give it an invertible quadratic part. This theory is
generally non-unitary and perturbatively non-renormalizable, but can be repaired
with the further ad hoc addition of ghost terms. On the received view, the role
of the auxiliary field ba is to gives the action “BRST symmetry” in the form of
the equation δS = 0, which can be used to show that scattering will not produce
disallowed polarizations and perturbative renormalization will generate no new
counterterms. Because this new symmetry arises from a sequence of ad hoc
modifications, it has no obvious physical interpretation; it’s merely “chosen in
such a way as to ease quantization” (Rickles, 2008, 178).

Redhead interprets this sequence of modifications as a successive increase
in surplus structure, or mathematical structure with no physical correlate. On
Redhead’s account, gauge theories are rife with surplus structure. In classical
Yang–Mills theory, gauge-equivalent one-forms represent the same physical state
of affairs, so Redhead takes the gauge-variant differences to be surplus in this
sense. But when we quantize this theory by ad hoc methods, we seem to appeal
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to just those gauge-variant features when adding a gauge-fixing term to the
action. And after we’ve removed the classical surplus by gauge fixing, we add
entirely new surplus in the form of (anti)ghost and auxiliary fields. Redhead
describes this situation as “mysterious”. I take it that the mystery is about
how purely mathematical structure like ad hoc ghost fields can have physical
consequences, like unitarity.

If we adopt the approach to quantization in Section 3.1 then the mystery
dissipates. We might indeed say that the space of g-valued one forms has surplus
mathematical structure with respect to the stacky Yang–Mills configuration
space. After all, the latter is obtained by identifying gauge-equivalent one-forms,
so it has less structure, and it is also adequate for quantization purposes, so the
structure that was eliminated was surplus. But the (anti)ghost and auxiliary
fields aren’t surplus. The ghost field is a coordinate function on the stacky
configuration space; it represents the gauge structure of the theory, and this
structure has physical content. Because the ghost field implements the homotopy
quotient that eliminates the surplus structure from the space of g-valued one-
forms, it represents a subtraction of structure, not a surplus. The antighost and
auxiliary fields don’t add any structure, either. Indeed, they are chosen precisely
so that the Lie algebroid coordinatized by (Aaµ, c

a, ca, ba) has the same structure
as the one coordinatized by (Aaµ, c

a)—that is, so that these Lie algebroids are
equivalent. On the picture of quantization I offered in Section 3.1 there’s no
mystery of surplus structure; all of the structure is accounted for.19

To be clear: ghost fields aren’t surplus on the stacky interpretation, but this
doesn’t mean that we should go hunting for them in particle colliders. Redhead
provides a particular formal account of surplus structure, but I claim—and
argue, in future work—that stacky Yang–Mills theory violates the assumptions
of his account. So we must fall back on the ordinary language meaning of
“surplus”: “eliminable”, “excess”, “superfluous”, “unnecessary”, and so on. The
odd dimensions of the classical configuration space aren’t surplus in this sense,
because they can’t be removed. But we shouldn’t expect to find ghost quanta in
incoming and outgoing states any more than we should expect to find quanta
of the equally indispensable path integral measure (whatever that could mean).
Ghosts coordinatize gauge transformations, not configurations, so it would make
no physical sense for them to appear in asymptotic states. Of course, unitarity
prevents us from simply throwing out states we don’t like; we bumped up against
this constraint in Section 2.3, where one-form Yang–Mills theory with the
Lagrangian Lξ gave nonzero amplitude to produce timelike- and longitudinally-
polarized quanta of the Yang–Mills field. So the stacky interpretation of Yang–
Mills theory is only consistent with unitarity if there is no amplitude to create
ghost quanta in scattering. If we assume that the matter charges cooperate,

19Redhead identifies three kinds of surplus structure in the quantization of gauge theories:
ghost fields, ghost-of-ghost fields, and the antifields of the Batalin–Vilkovisky formalism (2003,
137). On the stacky interpretation of gauge theories, ghost fields coordinatize gauge dimensions
of the classical configuration space, while ghost-of-ghost fields coordinatize gauge-of-gauge
dimensions. In both cases these stacky features implement the homotopy quotient by gauge
transformations, which plays the conceptual role of the quotient for actions that aren’t free
(and agrees with the set-theoretic quotient for actions that are). Antifields, on the other
hand, implement the derived intersection of the graph of dS with the zero section, which plays
the conceptual role of the intersection for submanifolds that aren’t transverse—in physics
terminology, when the gauge algebra doesn’t close off-shell. See Calaque (2015) for more on
this distinction.
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then the quartet mechanism identified by Kugo and Ojima (1978) ensures a
vanishing amplitude for ghost creation. And it is generally assumed that the
matter charges do cooperate. This leads to predictions discussed in Section 4.2.

Stacky Yang–Mills theory is able to avoid the mystery of surplus structure
in part because it conforms to the logic of Section 2.1, unlike approaches that
modify the quantization procedure. Recall that the analyses of Yang–Mills
models of classical and semiclassical electromagnetism had the same form: we
take two g-valued one-forms to coordinatize the same point of configuration
space if we can argue that they are empirically indistinguishable in principle.
The ad hoc approach to quantization inverts this logic, presupposing that the
correct configuration space is the set of gauge-equivalence classes of g-valued
one-forms and asking how quantum Yang–Mills theory may be interpreted so as
to make this true. This inversion generates a mystery when faced with the fact
that neither the space of one-forms nor the space of gauge-equivalence classes
can be perturbatively quantized in general; the new goal is to explain why the
modifications needed for quantization aren’t needed or aren’t modifications. The
stacky Yang–Mills interpretation doesn’t have these problems. It treats classical
theories uniformly and lets the quantum chips fall as they may. One-form
Yang–Mills theory with the action SYM is not the same theory as one-form Yang–
Mills with the action Sξ, and neither has a physically adequate quantization.
Stacky Yang–Mills with the action represented by SYM gives a well-defined and
empirically adequate theory, and we can give positive arguments to show that
gauge-equivalent one-forms represent the same element of the stacky configuration
space and that gauge-equivalent actions on the stacky configuration space give
the same quantum expectation values.

In Section 2 I argued that philosophical discussions of gauge theories rely on
a picture of quantization with technical and conceptual problems. According
to this picture, a gauge theory must be modified before it can be quantized:
terms must be added to the action and determinants must be introduced and
expanded in terms of odd coordinates. These manipulations can sometimes
produce a good quantum theory. But justifications involving gauge fixing aren’t
borne out by the details, and also do not suffice in general. In this section I’ve
offered an alternative account that avoids these problems. The same quantization
procedure applies just as well to gauge theories and non-gauge theories, as long
as we use the appropriate classical configuration spaces. It’s also more satisfying
philosophically—indeed, it even realizes the conceptual motivations of the usual
philosophical story better than the ad hoc or Faddeev–Popov approaches do.

4 Ghosts can’t be busted

In the previous two sections I’ve argued that the received philosophical view has
shortcomings that the stacky view avoids. But setting aside the contrastive claim,
you might think that the stacky view just takes ghosts too seriously. Following
Weingard, it is often said in the philosophical literature that ghost fields are “just
an artefact of our notation” and can be “transformed away” (Weingard, 1988, 57).
This argument has a specific and a general form. The specific version attends
to the computation of quantum expectation values. For appropriate choices of
h, we can neglect ghost terms when doing computations involving LYM + δh;
Weingard concludes from this that ghosts are an artefact of a convenient choice
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of h. More generally, Weingard argues that ghost fields are eliminable in a way
that the Yang–Mills potential is not because the former can be “gauged away”.
Neither of these arguments succeeds. The specific argument does show that
certain features of ghost fields can be ignored in certain contexts, but it does
not show that ghosts are wholly dispensable in the case Weingard considers.
And the criterion Weingard offers in the general argument in fact tells in favor
of the ghost field’s significance, not against it. In particular, the violation of
Weingard’s criterion has physical consequences for the charges of particles.

4.1 Feynman diagrams

In Section 2.2 I outlined the procedure for computing perturbative integrals
over a supermanifold. The computation was reduced to an expectation ⟪–⟫,
which itself reduces to a polynomial in propagators like ⟪xixj⟫. Feynman first
identified the need for ghosts in the last step of this computation, where they are
needed to go beyond leading order in the Yang–Mills self-coupling while retaining
unitarity. But this need only arises in certain coordinates: for an appropriate
choice of h, the ghost terms produced by the Lagrangian LYM + δh drop out of
the calculation. Weingard argues that this makes ghosts dispensable, but this
is too fast. Ghosts aren’t just needed for unitarity, we also need them to avoid
the divergent volume factor at each order and to make sense of the propagator
⟪Aaµ(x)Abν(y)⟫.

Weingard is primarily concerned with the interpretation of Feynman diagrams,
which are used in the quantization procedure of Section 2.2 when computing
Gaussian expectation values.20 Recall that a Gaussian integral is asymptotically
proportional to an expectation value of the form ⟪f(x, θ) ep(x,θ)/~⟫. Taylor
expanding the argument and using the linearity of ⟪–⟫ reduces this expression
to a polynomial in expectation values of monomials, and each of these expec-
tation values reduces to a product of propagators, which are matrix elements
of the inverse of the quadratic part of the action. The combinatorics of this
expansion are conveniently organized by a graphical calculus due to Feynman.
The asymptotic expansion of a Gaussian expectation value can be expressed by
a sum indexed by decorated graphs, where each edge of the graph is assigned a
type of field and contributes a propagator for that field and each internal vertex
of the graph is assigned a term of p(x, θ) and contributes the coefficient of that
term.

As an example, consider the Lagrangian LF for some nonabelian Yang–Mills
theory, and call the quanta of the Yang–Mills field “gluons”. Applying Feynman’s
graphical calculus to the amplitude for two gluons to scatter to two gluons means
summing over diagrams like those in Fig. 1. Each internal curly edge in these
diagrams contributes a gluon propagator ⟪Aaµ(x)Abν(y)⟫. The two kinds of
vertices correspond to the two gluon self-interaction terms,

−gfabc(∂µAaν)AbµAcν − 1

4
g2fabcf

a
deA

b
µA

c
νA

dµAeν

20In a 1982 paper, Weingard considers the role of Feynman diagrams in a Fock space
formalism, arguing that we should not interpret ladder operators as creating and annihilating
virtual particles. His 1988 paper adopts the perturbative integration framework of Section 2.2,
arguing that Feynman diagram edges represent propagators, which do not represent virtual
particles.
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Figure 1: Gluon–gluon scattering diagrams

Figure 2: A ghost loop diagram

A trivalent vertex, corresponding to the term on the left, contributes an an-
tisymmetrized product of gfabc, the metric, and the momenta of each of the
three edges. A quadrivalent vertex corresponds to the term on the right and
contributes an antisymmetrized product of −ig2fabcf

a
de with two copies of the

metric. Summing over all appropriate graphs and all possible decorations gives
the full amplitude for gluon–gluon scattering, with each graph’s contribution
suppressed by the number of vertices.

Weingard’s main aim is to warn us off from a too-literal interpretation of
Feynman diagrams. It can be tempting to think that Feynman diagrams depict
the interactions of “virtual” particles, so that the center diagram in Fig. 1 depicts
two gluons annihilating into a virtual gluon which then decays into two non-
virtual gluons. This temptation is bolstered by comparison with a Fock space
formulation of quantum field theory, where a Feynman diagram corresponds
to a sequence of operators that create and annihilate modes of the gluon field.
But as Weingard argues, and as the majority of commentators agree, talk of
virtual particles doesn’t really hold up. Feynman diagrams are a bookkeeping
device useful for keeping track of all the factors accrued in the reduction to
a polynomial of propagators.21 In particular, the amplitude assigned to each
diagram can vary with our conventions. The physically significant fact is the
total asymptotic behavior of the integral.

The convention-dependence of each diagram’s amplitude undercuts one ar-
gument for the necessity of ghost fields. Ghosts originated as an ad hoc fix
for non-unitarity, but we can avoid this problem by other means. The source
of non-unitary is neglect of Feynman diagrams with nonzero amplitude. For
example, at higher order in perturbation theory, the gluon–gluon scattering
amplitude computed by the Lagrangian LF includes diagrams like the one in
Fig. 2, which includes a ghost–antighost loop. Each dotted edge contributes a
propagator

⟪ca(x) cb(y)⟫ =

∫
d4k

(2π)4

iδab
k2
eik·(x−y)

while the ghost–gluon vertex

−gfabc(∂µca)cbAcµ

21For a review of the arguments for this position, see Passon (2019) and Bacelar Valente
(2011), the latter dissenting.
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contributes a product of −gfabc with the momentum of the antighost. Neglecting
this diagram leads to a loss of unitarity. From the perspective of stacky Yang–
Mills theory this is obvious: by leaving out diagrams that include ghosts we’re
leaving out some of the terms in the asymptotic expansion of our integral. But
you can also demonstrate the problem directly. For without the ghost diagrams,
there is a nonzero amplitude for gluon scattering to produce states with negative
norm. So ghost diagrams are necessary, either from first principles or from
reflection on Feynman diagrammatics.

The argument from Feynman diagrammatics doesn’t go through if we can
find conventions in which the amplitude of every ghostly diagram vanishes. As
Weingard points out, we can. Instead of adding δhF to LYM we can choose some
fixed vector nµ and modify LYM with

hA = ca

(
1

2
ba + nµAaµ

)
giving the Lagrangian

LA(A, c, c, b) = −1

4
(F aµν)2 − 1

2
(nµAaµ)2 − canµDµc

a +
1

2

(
ba + nµAaµ

)2
with gluon propagator

⟪Aaµ(x)Abν(y)⟫ = −
∫

d4k

(2π)4

iδab

k2

[
ηµν −

nµkν + nνkµ
n · k

+
n2 + k2

(n · k)2
kµkν

]
eik·(x−y)

and ghost propagator

⟪ca(x) cb(y)⟫ =

∫
d4k

(2π)4

δab
n · k

eik·(x−y)

Because ghosts can’t appear in incoming or outgoing states and the only vertex
involving a ghost corresponds to the cubic term

−gnµfabccaAbµcc

any ghost edge must appear as an arc in a loop consisting of ` ghost edges
connecting ` trivalent vertices. The amplitude of such a loop is proportional to∫
d4k (n ·k)−`, which dimensional regularization sets to zero. So with a particular

choice of Lagrangian and regulation prescription any diagram that contains a
ghost will have zero amplitude. And this removes the need for ghosts as a fix for
non-unitarity.

I agree with Weingard that this result suggests the physical insignificance
of ghost fields, at least on something like the received view. The physically
significant quantities are expectation values of operators (and partition functions,
and things like this), which can be expressed as integrals. The expansion in
terms of Feynman diagrams is physically contentful insofar as it computes the
asymptotics of these integrals. Choices about how to count diagrams, say, or
a choice of renormalization prescription, are purely conventional unless they
make a difference to the total sum describing the integral’s asymptotic behavior.
The received view uses an informal appeal to gauge invariance and unitarity
to claim that LF and LA give the same integral, so any physically significant
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structures must appear in the Feynman expansions of both Lagrangians. Virtual
particles don’t exist, but edges in a Feynman diagram do track something—
namely, propagators appearing in the asymptotic approximation of a perturbed
Gaussian integral. The Lagrangian LF simplifies the expression for the Yang–
Mills propagator by splitting some of it off into a new particle. But LA shows
that ghosts needn’t appear in the Feynman diagrammatics at all, so they “are
just an artefact of our notation in a way that the other virtual ‘processes’ are
not” (Weingard, 1988, 57).

However, this argument fails as an objection to the stacky interpretation of
Yang–Mills theory. On the stacky interpretation, ghost fields are in the first
place coordinates on the classical configuration space, and the appearance of
ghost vertices in some nonzero diagrams is only one of their downstream effects.
We don’t need to survey different Feynman expansions to determine whether
ghost fields should be introduced into our integrals, because there are ghost
dimensions in the domain of integration from the start. Even when the action
doesn’t explicitly depend on the ghost coordinates it’s a function on the stacky
configuration space; this is what explains the 0/0 indeterminacy for such actions.
So a strategy like Weingard’s, which takes the value of the integral as primary,
can’t show that ghost fields are mere notation in the stacky interpretation. And
even if we focus on Feynman diagrams, we can detect ghosts in the expansion of
LA. Ghost fields are important because they allow us to choose a nondegenerate
representative of the Yang–Mills action. If it weren’t for the ghost fields, the
gluon propagator would be ill-defined. So ghost fields reveal themselves even in
the Feynman diagrams produced by LA, because these can include gluon edges
without diverging.

The fact that ghostly diagrams vanish for certain choices of Lagrangian shows
that we can ignore them yet still live a unitary life of calculating Feynman
diagrams. On the received view, Weingard is therefore right to say that ghosts
are “purely a result of our notation” (1988, 58), for they are only introduced to
patch a failure of unitarity. But this isn’t why they’re introduced on the stacky
interpretation, and showing that ghostly diagrams vanish doesn’t show that
ghosts make no difference to the integrals that compute expectation values. This
is because ghosts do make a difference to these integrals, and even to Feynman
diagrams, on the stacky interpretation.

4.2 Weingard’s general criterion

Though Weingard’s argument from Feynman diagrams doesn’t pose a problem
for stacky Yang–Mills theory, the general principle behind his argument remains
plausible. If it were the case that ghost fields could always be “gauged away”, as
Weingard puts it, then we would have some reason to think that the set of gauge-
equivalence classes is an adequate configuration space for Yang–Mills theory.
But it’s not the case. Given Weingard’s framing, the question is essentially
mathematical: is there a nontrivial gauge-invariant function with nonzero ghost
number? In the case of Yang–Mills theory—and many other gauge theories—the
answer is “yes”. Indeed, one such function is used to constrain the charges of
the matter appearing in the Standard Model. Weingard’s criteria in fact speak
against his conclusion that ghosts are mere notation.

Generalizing his argument from Feynman diagrams, Weingard articulates
a criterion for identifying pure notation using an analogy with the Yang–Mills
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model of the Aharonov–Bohm effect. As recounted in Section 2.1, the Aharonov–
Bohm effect shows that two potentials with the same field strength can induce
distinct dynamics even if they have the same field strength tensor, and this shows
that we cannot take the set of field strength tensors to be the configuration
space of Yang–Mills theory. Generalizing this case, Weingard extracts a test for
determining that some mathematical structure is pure notation

while an arbitrary [Aµ] can always be transformed to zero at any
given point, it cannot, as we have seen, be transformed to zero along
an arbitrary closed curve (or finite area). Thus, some of the degrees
of freedom of [Aµ] depend on our notation—on our choice of gauge,
but not all do. (1988, 58).

If we could always choose some conventions that made the potential vanish then
we could write it off as a computational convenience, but we can’t always choose
such conventions. Weingard goes on to claim that this criterion shows ghost
fields to be purely notation in a way that the potential isn’t, because ghostly
Feynman diagrams can always be gauged away.

Mathematically speaking, Weingard’s criterion takes the same form for both
the Yang–Mills potential and the ghost fields; in both cases the criterion formally
reduces to classifying antiderivatives. Weingard expresses the violation for the
Yang–Mills case as follows:

we cannot make the connection [Aµ] zero throughout a non-simply-
connected region R, even if the curvature [Fµν ] is zero throughout R.
(1988, fn. 3)

The exterior derivative dµ over the region R sends any p-form over R to its
antisymmetrized derivative, a (p + 1)-form. In p-form electromagnetism, two
p-forms are gauge equivalent if their difference is the exterior derivative of a
(p− 1)-form. In particular, the exterior derivative sends any one-form Aµ to its
field strength Fµν = dµAν , and a gauge transformation between one-forms Aµ
and A′µ is a smooth function c such that A′µ−Aµ = dµc. The gauge-invariance of
the electromagnetic field strength then follows from the fact that dµdν vanishes:

F ′µν − Fµν = dµ(A′ν −Aν) = dµdνc = 0

According to Weingard’s criterion, the potential Aµ is more than mere notation
for Fµν because there are gauge-inequivalent potentials with the same field
strength. By linearity, this amounts to the existence of a potential Aµ such that
dµAν = 0 but Aµ 6= dµc for all smooth functions c, which is just a rephrasing
of Weingard’s geometric gloss in coordinates. There are some R for which such
one-forms exist, as in the Aharonov–Bohm effect, so the potential is more than
pure notation.

The vector field δ in stacky Yang–Mills is formally analogous to the exterior
derivative, and the analogue of Weingard’s criterion in this context classifies
the ghost coordinates as more than mere notation. The vector field δ sends any
function on the stacky configuration space with ghost number p to a function with
ghost number p+ 1. Two functions with ghost number p are gauge equivalent if
their difference is δh for some function h with ghost number p − 1. Applying
Weingard’s criterion, ghost fields are more than mere notation if there is some
function f with nonzero ghost number such that δf = 0 but f 6= δh for all h.
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And in general there are such functions. For example, on the configuration space
of stacky su(n) Yang–Mills theory there is the function

A = − g3

24π2
dabc

∫
d4x εµναβca∂µ

(
Abν ∂αA

c
β +

g

4
f cdeA

b
νA

d
αA

e
β

)
where dabc is the symmetrized trace of hermitian basis elements in the defining
representation of su(n). A computation shows that δA = 0, meaning that A
is gauge invariant, and because it’s linear in ca it’s a function of ghost number
1. We also have A 6= δh for all functions h on the configuration space.22 So
by Weingard’s criterion, the ghost field is more than pure notation. We can
gauge away some quantities on the stacky configuration space, like the function
assigning an amplitude to the diagram in Fig. 2. But we can’t gauge away all of
them.

The ghost field and the Yang–Mills potential are mathematically analogous
with respect to Weingard’s criterion, but the criterion also has a physical as-
pect. The mathematical fact that connections aren’t uniquely determined by
their curvature over topologically nontrivial regions is only physically relevant
insofar as we use connections to model the electromagnetic configuration and
use topologically nontrivial regions to model aspects of some electromagnetic
experimental setups. For Weingard’s criterion to ratify the ghost field as more
than mere notation, we need a nonzero gauge-invariant function with nonzero
ghost number that also has some physical relevance.

The nonvanishing of A constrains the charges of matter coupled to Yang–
Mills fields, so it also satisfies the physicality condition of Weingard’s criterion.
Consider a family ψ of left-handed fermions charged under an su(n) Yang–Mills
field. The Lagrangian for this theory is

LχYM(A,ψ, ψ) = −1

4
(F aµν)2 − ψD/ψ Dµψ = ∂µψ − iQgAaµτaψ

where Q is the charge of the fermions and τa the hermitian basis elements of the
defining representation of su(n). Variations on this Lagrangian are found many
times in the Standard Model, where they describe families of quarks or leptons
charged under the electroweak and strong forces. As with any integral over a
supermanifold, the path integral for this theory is evaluated by first integrating
over the odd coordinates, giving a theory of the Yang–Mills field with action

Seff(A) = −1

4

∫
d4x (F aµν)2 +W (A) e

i
~W (A) =

∫
DψDψ e− i

~ψD/ ψ

where W (A) is defined by the equation on the right. Physically speaking, the
function W (A) encodes the integral over the fermions into an effective source
for the Yang–Mills field, and the total path integral reduces to the path integral
for a gauge theory. For this theory to be well-defined, the function Seff must
descend to a function on the stacky Yang–Mills configuration space—that is, it
must be gauge invariant. The pure Yang–Mills term is gauge invariant, but we
have

W (Aaµ +Dµc
a) = W (Aaµ) +Q3A

22More precisely, the integrand defining A represents a nontrivial first cohomology class of
δ modulo the exterior derivative; see Weinberg (1995, §22.6) or Bertlmann (1996, §8.3) for
textbook treatments.
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So this action only gives a well-defined quantum gauge theory if Q vanishes and
the fermions decouple from the Yang–Mills field.23

Physicists often take it to be a prediction of the theory that the fermion
charges cooperate to make the effective action gauge invariant. Replacing the
left-handed fermions in the previous paragraph with right-handed fermions gives
an effective action such that

W (Aaµ +Dµc
a) = W (Aaµ)−Q3A

and if more than one family of fermions couples to the Yang–Mills field then
the gauge variation of the effective action is the sum of the contributions of
each family. For example, the effective action for the hypercharge sector of the
Standard Model satisfies

W (Aaµ +Dµc
a) = W (Aaµ) +

(
6Y 3

Q + 2Y 3
L − Y 3

e − Y 3
ν − 3Y 3

u − 3Y 3
d

)
A

where the Y s are the hypercharges of left-handed quarks and leptons and the
right-handed electrons, neutrinos, and up- and down-type quarks. The observed
values of these charges are consistent with the gauge invariance of the effective
action. And if the demand for gauge invariance is justified then the vanishing of
this linear combination of cubed charges is in fact a prediction of the Standard
Model. Similar reasoning implies

2YQ − Yu − Yd = 0 YL + 3YQ = 0

the latter implying the relation between the electron and down quark mentioned
in the introduction (Schwartz, 2014, 633). These predictions rely on the fact
that A doesn’t vanish, so by Weingard’s criterion applied to A, ghosts are more
than mere notation.

The justification for this prediction deserves further attention from philoso-
phers, but its status isn’t important for my argument in this paper. The effective
action isn’t a well-defined function on the stacky Yang–Mills configuration space,
but it could perhaps be well-defined on another configuration space. The usual
claim is that a theory with a gauge-variant effective action isn’t “coherent”
(Dawid, 2013, 12) or “consistent” (Schwartz, 2014, 627). This is either because
gauge variance is a threat to unitarity or because it will “destroy the renormaliz-
ability, and thus the consistency, of the gauge theory” (Bertlmann, 1996, 245).
This kind of appeal to consistency is common in high-energy theory, but the
meaning of “consistent” in this sense isn’t obvious. Non-renormalizable theories
certainly exist and can be useful, like the chiral perturbation theory describing
low-energy hadron physics. And Preskill (1991) argues that we can obtain such
a non-renormalizable quantum gauge theory for nonvanishing Q3A as well. But
even if the demand for a gauge-invariant effective action can’t be justified and
any charges are possible, the nonvanishing of A has less dramatic consequences
as well. It appears in the anomalous Ward–Takahashi identity, for example. So
regardless of how we sort out these issues, the function A shows that ghost fields
are more than mere notation.

Weingard’s general argument against the physical significance of ghost fields
appeals to a plausible principle: if there is some obstruction to eliminating

23As noted in Section 3.2, BRST invariance of the action is also required for the Kugo–Ojima
quartet mechanism to ensure unitarity.
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a mathematical structure by an appropriate choice of conventions, then that
structure is more than purely notation. The formal incarnation of this principle
in the case of ghost fields is the same as in Weingard’s motivating example of
the Aharonov–Bohm effect. And, as in that case, there is an obstruction to
transforming away dependence on ghost fields. This obstruction has good physical
credentials: it is used to constrain the charges of quarks and leptons through its
modification of the Ward–Takahashi identities. So Weingard’s criterion, properly
applied, does not say that ghosts are purely notation.

5 Conclusion

The goal of this paper was to tell a story about ghost fields that’s better than the
story currently found in the philosophical literature. On the story I’m offering,
quantum gauge theories are built like most other quantum field theories: by
asymptotically approximating a perturbed Gaussian integral over the classical
configuration space. Different interpretations of the classical theory—that is,
different choices of configuration spaces and actions thereon—will lead to different
quantum theories. In Section 3 I described one interpretation of Yang–Mills
theory and its quantization. One notable feature of this interpretation is that
it has gauge structure: odd dimensions related to the even dimensions so as to
mathematically implement the informal idea that configurations related by a
gauge transformation are “the same”. Ghost fields are coordinates on this gauge
structure. Another notable feature is the empirical success of its quantization as
one ingredient in the Standard Model.

The account of ghosts in Section 3 both avoids and explains problems with
the received view. Classical theories aren’t just the raw materials for quantum
theories; they can themselves model some phenomena. But it’s generally agreed
that classical and semiclassical models ought to be interpreted so that they give
the correct quantum theory upon quantization. This is why the Aharonov–Bohm
effect is taken to be evidence against the two-form interpretation of Maxwell
electromagnetism. As I argued in Section 2, the received view inverts this
reasoning, insisting that quantum Yang–Mills theory be interpreted such that it’s
obtained by quantizing the Yang–Mills action on the space of g-valued one-forms.
And this leads to trouble, because that classical theory has a degenerate action
and thus no perturbative quantization. The received view tries to get around this
problem with a sequence of ad hoc modifications to the quantization process and
takes ghosts to be one feature of these modifications. But these modifications
aren’t adequate in general, nor do they comport with the conceptual gloss that’s
usually offered as justification.

The stacky interpretation of Yang–Mills theory also accounts for the data
that the received view is meant to capture—indeed, the stacky interpretation fits
this data better. Both views agree that the divergence of the naive perturbative
quantization of Yang–Mills theory can be avoided by replacing the Lagrangian
with one of many equivalent substitutes, such as LF or LA. On the received view,
the equivalence of these replacements is a conjecture supported by an informal
notion of gauge equivalence and case-by-case checks, while on the stacky view
the equivalence of these substitutes follows from their construction over the
stacky configuration space.24 Weingard has used this equivalence between LF

24It is sometimes even claimed that these case-by-case checks fail. For example, in the recent
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and LA to argue that ghosts are an artefact of our notation: on the received view
they are introduced to patch a failure of unitarity, and LA doesn’t fail in this
way, so ghosts are not a feature of the convention-independent integral they may
be used to calculate. But on the stacky interpretation, ghosts aren’t a fix for
non-unitarity; they coordinatize dimensions of the configuration space that are
relevant no matter which gauge-equivalent action we choose. More generally, the
existence of nontrivial gauge-invariant functions of the ghost coordinates makes
a difference to the predictions of the quantum theory, so the general criterion
Weingard proposes does not show ghosts to be purely notational.

Finally, what are the consequences of this better understanding of quanti-
zation for the interpretation of classical gauge theories? Thankfully, nothing
too radical. Indeed, the account of quantization in Section 3 enables a uniform
continuation of reasoning from the semiclassical to the quantum case. If the
Aharonov–Bohm effect bears on the interpretation of classical Yang–Mills theory,
then so do ghosts, and for the same reason. The one-form interpretation has
an inadequate quantization and so should be rejected, just as the two-form
interpretation should be rejected in light of the quantum dynamics it produces.
We can also conclude as usual that gauge-equivalent one-forms coordinatize the
same point of configuration space, but now the logic points in the right direction:
we don’t appeal to the semiclassical description to make ad hoc modifications
to the quantization process, but instead argue from the empirically successful
quantization of the stacky configuration space to a conclusion about the classical
theory.

However, the results of quantization do show that we must be more careful
about what it means to say that gauge-equivalent one-forms are “the same”.
Quantization shows that we should reject the one-form interpretation in favor
of the stacky interpretation, in which gauge-equivalent one-forms represent
the same point of configuration space. But a parallel argument shows that
we should also reject an interpretation in terms of gauge-equivalence classes,
since this also has no perturbative quantization. Moreover, a configuration
space without gauge structure—and thus without ghost coordinates—will ipso
facto have no functions of nonzero ghost number. In particular, a Yang–Mills
configuration space without gauge structure will lack the function A of Section 4.2
and the empirical constraints it provides. So gauge structure isn’t surplus,
eliminable, excess, redundant, superfluous, unnecessary, or whatever. At the
level of mathematics there’s no ambiguity: the stacky configuration space and
the collection of gauge-equivalence classes have the same set of isomorphism
classes of objects, but disagree about the arrows between them. There’s more to
a category than its isomorphism classes of objects, so two categories can agree
that two objects are the same without agreeing on everything. Some recent
philosophical work has been attuned to this further structure (Dougherty, 2017;
Nguyen et al., 2020; Weatherall, 2016), but for the most part debates over the
interpretation of gauge theories have restricted themselves to classical theories
whose configuration spaces lack it. In this paper I’ve argued that this restriction

controversy over diphotonic Higgs decay, Wu and Wu (2017) argue that the Rξ and unitary
gauges give different amplitudes for a Higgs to decay to two photons via a W boson loop. As
many have pointed out, this discrepancy is an artefact of subtleties surrounding regularization
of the loop (Duch et al., 2021). But this example shows that dissatisfaction with the received
view’s informal conjecture is more than a fetish for rigor: the received view makes gauge
non-invariance an open question with practical consequences.
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is harmful.
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Duch, P., Dütsch, M., and Gracia-Bond́ıa, J. M. (2021). Diphoton decay of the
higgs from the Epstein–Glaser viewpoint. The European Physical Journal C,
81(2):131.

Earman, J. (2003). Tracking down gauge: an ode to the constrained Hamiltonian
formalism. In Brading and Castellani (2003), pages 140–162.

Faddeev, L. D. and Popov, V. N. (1967). Feynman diagrams for the Yang–Mills
field. Physics Letters B, 25:29–30.

Feynman, R. P. (1963). Quantum theory of gravitation. Acta Physica Polonica,
24:697–722.

Fraser, D. (2009). Quantum field theory: Underdetermination, inconsistency,
and idealization. Philosophy of Science, 76:536–567.

Fraser, D. (2011). How to take particle physics seriously: A further defence of
axiomatic quantum field theory. Studies in History and Philosophy of Modern
Physics, 42(2):126–135.

Fraser, J. D. (2020). The real problem with perturbative quantum field theory.
The British Journal for the Philosophy of Science, 71(2):391–413.

34



Gilton, M. J. R. (2020). Could charge and mass be universals? Philosophy and
Phenomenological Research, 00:1–21.

Greaves, H. and Wallace, D. (2014). Empirical consequences of symmetries. The
British Journal for the Philosophy of Science, 65(1):59–89.

Guay, A. (2008). A partial elucidation of the gauge principle. Studies in History
and Philosophy of Modern Physics, 39(2):346–363.

Halvorson, H. (2006). Algebraic quantum field theory. In Butterfield, J. and
Earman, J., editors, Handbook of Philosophy of Science: Philosophy of Physics,
pages 731–922. Elsevier.

Hancox-Li, L. (2015). Coarse-graining as a route to microscopic physics: the renor-
malization group in quantum field theory. Philosophy of Science, 82(5):1211–
1223.

Healey, R. (2007). Gauging What’s Real. Oxford University Press.

Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge Systems.
Princeton University Press.

Johnson, G. W. and Lapidus, M. L. (2000). The Feynman Integral and Feynman’s
Operational Calculus. Clarendon Press.

Johnson-Freyd, T. (2015). Homological perturbation theory for nonperturbative
integrals. Letters in Mathematical Physics, 105(11):1605–1632.

Kugo, T. and Ojima, I. (1978). Manifestly covariant canonical formulation of the
Yang–Mills field theories. I: —general formalism—. Progress of Theoretical
Physics, 60(6):1869–1889.

Lyre, H. (2004). Holism and structuralism in U(1) gauge theory. Studies in
History and Philosophy of Modern Physics, 35:643–670.

Maudlin, T. (2007). Suggestions from physics for deep metaphysics. In The
Metaphysics Within Physics, pages 78–103. Oxford University Press.

Melia, J. (1999). Holes, haecceitism and two conceptions of determinism. The
British Journal for the Philosophy of Science, 50(4):639–664.

Miller, M. (2021). Mathematical structure and empirical content. Forthcoming
in The British Journal for the Philosophy of Science.

Mnev, P. (2019). Quantum Field Theory: Batalin–Vilkovisky Formalism and Its
Applications. American Mathematical Society.

Nguyen, J., Teh, N. J., and Wells, L. (2020). Why surplus structure is not
superfluous. The British Journal for the Philosophy of Science, 71(2):665–695.

Passon, O. (2019). On the interpretation of Feynman diagrams, or, did the LHC
experiments observe H → γγ? European Journal for Philosophy of Science,
9(2):20.

Peskin, M. E. and Schroeder, D. (1995). An Introduction to Quantum Field
Theory. Addison-Wesley.

35
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Gauthier-Villars.

Popov, V. N. and Faddeev, L. D. (1967). Perturbation theory for gauge-invariant
fields. Technical Report ITP-67-36, Institute for Theoretical Physics, Kiev,
UkrSSR. Translated into English by Benjamin W. Lee and David Gordon
as Technical Report NAL-THY-57, National Accelerator Laboratory, USA
(1972). English translation reprinted in ’t Hooft (2005), pages 40–60.

Preskill, J. (1991). Gauge anomalies in an effective field theory. Annals of
Physics, 210(2):323–379.

Redhead, M. (2003). The interpretation of gauge symmetry. In Brading and
Castellani (2003), pages 124–139.

Rickles, D. (2008). Symmetry, Structure, and Spacetime. Elsevier.

Rosenstock, S. and Weatherall, J. O. (2016). A categorical equivalence between
generalized holonomy maps on a connected manifold and principal connections
on bundles over that manifold. Journal of Mathematical Physics, 57:102902.

Schreiber, U. (2017). Mathematical quantum field theory. https:

//ncatlab.org/nlab/show/geometry+of+physics+--+perturbative+

quantum+field+theory.

Schwartz, M. D. (2014). Quantum Field Theory and the Standard Model. Cam-
bridge University Press.

’t Hooft, G. (1971). Renormalization of massless Yang–Mills fields. Nuclear
Physics B, 33(1):173–199.

’t Hooft, G., editor (2005). 50 Years of Yang–Mills Theory. World Scientific.

Tyutin, I. V. (1975). Gauge invariance in field theory and statistical physics in
operator formalism. Technical Report LEBEDEV-75-39, Lebedev Physical
Institute.
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