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Abstract

The presence of symmetries in physical theories implies a perni-
cious form of underdetermination. In order to avoid this theoretical
vice, philosophers often espouse a principle called Leibniz Equivalence,
which states that symmetry-related models represent the same state
of affairs. Moreover, philosophers have claimed that the existence of
non-trivial symmetries motivates us to accept the Invariance Princi-
ple, which states that quantities that vary under a theory’s symme-
tries aren’t physically real. Leibniz Equivalence and the Invariance
Principle are often seen as part of the same package. I argue that
this is a mistake: Leibniz Equivalence and the Invariance Principle
are orthogonal to each other. This means that it is possible to hold
that symmetry-related models represent the same state of affairs whilst
having a realist attitude towards variant quantities. Various arguments
have been presented in favour of the Invariance Principle: a rejection of
the Invariance Principle is inter alia supposed to cause indeterminism,
undetectability or failure of reference. I respond that these arguments
at best support Leibniz Equivalence.
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1 Introduction

The presence of symmetries in physical theories implies a pernicious form
of underdetermination. It is widely agreed that at least in some cases
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§1 Introduction

symmetry-related models are empirically equivalent: the possibilities they
represent are observationally indiscernible.1 For example, models related
by ‘shifts’—uniform translations of all the universe’s matter content—are
empirically equivalent because they agree on all observable facts about dis-
tances, relative velocities and accelerations. In addition to underdetermina-
tion, local symmetries also seem to imply a particularly problematic form of
indeterminism. Theories with local symmetries possess pairs of models that
agree on all facts up until some time t, but diverge thereafter. The Hole
Argument in General Relativity is a famous example of this.2

In order to avoid these theoretical vices, philosophers often espouse a
principle called Leibniz Equivalence, which states that symmetry-related
models (invariably) represent the same state of affairs. With Leibniz Equiv-
alence, there simply is no underdetermination: symmetry-related models are
just different ways of describing the same possibility. In the case of shifts,
this means that shift-related models really represent the same state of af-
fairs: shifts are ‘distinctions without a difference’. Moreover, philosophers
have claimed that the existence of non-trivial symmetries motivates us to
accept the Invariance Principle, which states that quantities that vary un-
der a theory’s symmetries are physically unreal. The Invariance Principal
codifies so-called ‘symmetry-to-(un)reality inferences’: inferences from the
variance of some quantity to its non-reality.3 For example, (absolute) posi-
tions vary under shifts, and hence the Invariance Principle rejects them as
unphysical.

Leibniz Equivalence and the Invariance Principle are often seen as part
of the same package (§3). I believe that this is a mistake: Leibniz Equiva-
lence and the Invariance Principle are orthogonal. But it is no surprise that
this fact has gone unnoticed, for the principles are equivalent if one assumes
that a quantity’s values always represent the same magnitude. I understand
‘values’ here as mathematical entities that represent physical properties (§4).
Call this claim the Value-Magnitude Link. If we accept the Value-Magnitude
Link, Leibniz Equivalence does entail the Invariance Principle. We are then
naturally led to reductionism, which aims to formulate ‘reduced’ theories
in terms of these invariant quantities. However, it is also possible to reject

1 See Roberts (2008); Wallace (2019). It is controversial whether this is true for all symme-
tries; for dissent, see Belot (2013); Dasgupta (2016). Middleton and Murgueitio Ramı́rez
(2020) have argued that variant quantities are detectable, but see Jacobs (2020) for a
response.
2 See Earman and Norton (1987); Wallace (2002).
3 For more on the symmetry-to-reality inference, see Dasgupta (2016); Read and Møller-

Nielsen (2020).

2



§2 Two Principles

the Value-Magnitude Link. Indeed, a popular position in the philosophy of
spacetime called sophisticated substantivalism does just that. If we reject
this link, Leibniz Equivalence does not entail the Invariance Principle. This
means that it is possible to take symmetry-related models to represent the
same state of affairs whilst having a realist attitude towards variant quanti-
ties. In other words, there is a position between Leibniz Equivalence and the
Invariance Principle. Sophistication, of which sophisticated substantivalism
is an instance, aims to fill this space.4 In §5, I explain the nature of so-
phistication in terms of a method of supervaluation over symmetry-related
states.5

This means that those who accept Leibniz Equivalence as a solution to
the problems of underdetermination and indeterminism face a choice: reject
the Value-Magnitude Link, or accept it and hence commit to the Invari-
ance Principle? Various arguments have been presented in favour of the
Invariance Principle: a rejection of the principle is supposed to cause in-
determinism (Earman and Norton, 1987), undetectability (Dasgupta, 2016)
and failure of unique reference (Healey, 2009; Caulton, 2015). As I will argue
in §6, however, those arguments at best support Leibniz Equivalence. The
inference to the Invariance Principle is unwarranted since this additionally
requires that one assumes the Value-Magnitude Link, which proponents of
sophistication reject. Therefore, these arguments cannot offer support for
reductionism, contrary to the intentions of their authors.

2 Two Principles

In this section, I discuss Leibniz Equivalence and the Invariance Principle
in turn. Throughout the paper, I will adopt a loose definition of symmetries
as transformations that in some sense ‘preserve the dynamics’. In order to
explain this notion, it is useful to distinguish between two types of models.
The kinematically possible models (KPMs) of a theory are those that are
of the correct ‘form’, or contain the right sort of mathematical objects.

4 For more on the reduction/sophistication distinction, see Dewar (2019); Martens and
Read (2020).
5 This naturally raises the question: is there also a coherent position that denies Leibniz

Equivalence yet affirms Invariance Principle? It has been suggested to me in conversation
by Noel Swanson that Belot’s (2011) ‘modal relationism’ might fulfil this role. As a rela-
tionist, Belot accepts the Invariance Principle: only the invariant distances are physically
real. But Belot’s relational facts are endowed with rich modal structures that allow for
more possibilities than standard relationism, contra the collapse of possibilities entailed
by Leibniz Equivalence.
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§2.1 Leibniz Equivalence

The dynamically possible models (DPMs) are those KPMs that in addition
satisfy a set of equations of motion. The DPMs represent ways the world
could be if the theory were true. Symmetries are maps from the space of
KPMs onto itself that preserve the space of DPMs. Since Belot (2013), it
has been well-known that not all symmetries of this type relate empirically—
let alone physically—equivalent states. For this reason I restrict discussion
to just those symmetries that in addition satisfy a condition of empirical
equivalence. The main symmetries of philosophical interest, from ‘shifts’
in Newtonian Mechanics and diffeomorphisms in General Relativity to the
gauge symmetries of electrodynamics, satisfy this requirement.

2.1 Leibniz Equivalence

Leibniz Equivalence was first suggested by Earman and Norton (1987) as a
response to the Hole Argument, which states that General Relativity con-
tains pairs of models related by diffeomorphisms that agree on all physical
fact up until some time t but diverge thereafter. Because of this fact, it
seems that substantivalist interpretations of General Relativity are indeter-
ministic. Earman and Norton (1987, 522) phrase Leibniz Equivalence as
the claim that diffeomorphic models represent the same physical situation.
With this assumption, General Relativity is not indeterministic, since the
symmetry-related models that seem to represent distinct futures are in fact
merely distinct representations of the same future. Since then, the term has
been used more broadly to refer to the view that any symmetry (subject
to the proviso of empirical equivalence) relates physically equivalent mod-
els, whether or not the symmetry in question is a diffeomorphisms. I will
understand Leibniz Equivalence in this broader sense:

Leibniz Equivalence: Symmetry-related models are physically
equivalent.

The aforementioned shifts are a paradigmatic example: shifts preserve all
distances between bodies and so relate empirically equivalent states of af-
fairs. From Leibniz Equivalence, it follows that shift-related models are also
physically equivalent: they merely represent the same state of affairs in dif-
ferent ways. Proponents of Leibniz Equivalence include Saunders (2003b),
Baker (2010), Weatherall (2018) and Greaves and Wallace (2014). The lat-
ter, for example, write:

There is a widespread consensus that ‘two states of affairs related
by a symmetry transformation are really just the same state of af-
fairs differently described’. That is, if two mathematical models
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§2.2 The Invariance Principle

of a physical theory are related by a symmetry transformation,
then those models represent one and the same physical state of
affairs.

This is not to say that there is no dissent; see, for instance, Roberts (2020).
But it seems clear that Leibniz Equivalence is the orthodoxy with respect
to symmetry-related models.

Rynasiewicz (1994) calls the negation of Leibniz Equivalence model lit-
eralism. According to model literalism (or literalism, for short), distinct
models represent distinct states of affairs, whether or not they are symmetry-
related. In other words, there is a one-to-one relation between models and
possibilities. As we will see below (§6), in the presence of non-trivial sym-
metries literalism implies exactly those vices that Leibniz Equivalence is
supposed to solve. I will argue that the denial of literalism, and hence ac-
ceptance of Leibniz Equivalence, suffices to avoid these: the further posit of
the Invariance Principle is unnecessary.

2.2 The Invariance Principle

The Invariance Principle is the claim that “only quantities that are invariant
under the symmetries of our theories are physically real” (Møller-Nielsen,
2017, 1253). In other words, only those quantities that have the same value
across equivalence classes of symmetry-related states represent a feature of
physical reality. Put differently:

Invariance Principle. A quantity is physically real only if it is
invariant under the symmetries of our theories.

Examples of variant quantities include absolute position under shifts, but
also the values of the electrostatic potential in electromagnetism under gauge
transformations, and (arguably) intrinsic mass under mass scalings.6 Ex-
amples of invariant quantities are distances and relative velocities, so-called
‘loop holonomies’ of the potential field, and mass ratios. The Invariance
Principle suggests that the latter set of quantities is more fundamental than
the former.

The Invariance Principle has gathered assent from a broad range of physi-
cists and philosophers throughout the 20th and 21st century. Here is a col-
lection of representative quotes:

6 The latter issue is controversial: see Dasgupta (2013) for the case for comparativism,
and Baker (2014); Martens (2019) for responses.
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§3 One Principle?

“Physically real quantities are invariant under exact symmetries—
this is the general lesson.” (Saunders, 2003b, 300)

“[O]nce we possess the covariant representation under which the
equations stay the same for all coordinate systems, the quanti-
ties in the (covariant) equations are the real and objective quan-
tities.” (Nozick, 2001, 82)

“[T]he important things in the world appear as the invariants
[...] of these transformations.” (Dirac, 1930, vii)

Endorsements of the Invariance Principle can also be found in Saunders
(2007), Baker (2010), Dewar (2015), Caulton (2015) and Dasgupta (2016),
among others. The Invariance Principle is perhaps even more orthodox than
Leibniz Equivalence.

The Invariance Principle encodes the idea of so-called symmetry-to-reality
inferences: the inference from the variance of a quantity under the theory’s
symmetries to its physical unreality. Dasgupta (2016) justifies such infer-
ences on the basis that variant quantities are undetectable. It then follows
from an application of Occam’s razor that theories that excise these quan-
tities are preferable, all else being equal. But as I will argue below (§6),
realism about such quantities does not entail empirical underdetermination.
Therefore, Occam’s razor does not justify the Invariance Principle, pace
Dasgupta.

3 One Principle?

Leibniz Equivalence and the Invariance Principle are closely related. Nev-
ertheless the two principles are distinct, a fact which has often gone unno-
ticed.7 For example, Saunders (2007, 453) equivocates between them in the
following passage:

[Relationalism] says that only quantities invariant under exact
symmetries are real—thus relative directions, relative distances,
and so on, under rotations and translations, etc. [...]. Call [this
principle] the invariance principle. The distinctions among rep-
resentations then correspond to nothing physically real. Equiva-
lently, such models, as goes their physical content, can be simply
identified. (emphasis mine)

7 Read and Møller-Nielsen (2020, §6) are an exception: they rightly point out that these
principles are not logically equivalent.

6



§3 One Principle?

The first italicised part of this passage is a canonical statement of the Invari-
ance Principle. But towards the end of the quote Saunders equates this with
Leibniz Equivalence, the claim that symmetry-related models are physically
equivalent. Similarly, Baker (2010) writes:

[I]f changes in surplus structure are generally (as in geometry)
mere descriptive changes, it follows that physical situations re-
lated by symmetries must be qualitatively identical [Leibniz Equiv-
alence]. And if this is right, then physical quantities that change
under symmetry transformations (i.e. that are not invariant)
must not be fundamental quantities [Invariance Principle].

In this passage Baker, like Saunders, moves freely from Leibniz Equivalence
to the Invariance Principle.

As far as I am aware, however, there is no explicit argument for the claim
that Leibniz Equivalence implies the Invariance Principle to be found in the
literature. It seems plausible that the following line of reasoning is implicitly
assumed. Let m and m′ denote symmetry-related models of a theory T , such
that there is a variant quantity Q which takes on different values across
these models. For instance, m and m′ could denote shift-related models of
Newtonian Gravitation, with Q the (variant) position of the Earth. Then:

(1) The models m and m′ represent the same physical possibility (Leibniz
Equivalence);

(2) Distinct models represent the same physical possibility iff they agree
on all physical features;

(3) Therefore, m and m′ agree on all physical features (from (1) and (2));

(4) The models m and m′ disagree on the value of Q;

(5) Therefore, if Q is physically real then m and m′ disagree on some
physical feature (from (3) and (4));

(C) Conclusion: Q is not physically real (Invariance Principle).

This argument seems valid, but in fact it is not: (5) does not follow from (3)
and (4). The reason is that a quantity’s values are representative devices,
rather than physical features. Therefore, the fact that two models disagree
on those values does not imply that they disagree on any physical fact.
For it is possible that the values of Q represent different magnitudes across
models. In particular, it is possible that Q’s distinct values in m and m′
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§4 The Value-Magnitude Link

denote the same property. In that case, the two models are in agreement
on all physical features after all, so the Invariance Principle does not follow.

In order to turn the above into a valid argument, an assumption that
connects a quantity’s values with the magnitudes they are supposed to rep-
resent is required. I will discuss such a principle in the next section.

4 The Value-Magnitude Link

The above argument is valid if we assume the following principle, which I
call the Value-Magnitude Link :

Value-Magnitude Link. The values of a quantity invariably rep-
resent the same magnitude across models.

I am not aware of any explicit statement of the Value-Magnitude Link in the
literature, let alone a defence. But in light of the quotes above, I contend
that the Value-Magnitude Link is a widely-shared implicit assumption in
the symmetries literature.

It is important to be clear on what is meant by values here. In the first
instance, it is tempting to think of values as numbers. For example, the mass
value of a 5 kg object is ‘5’. But on this definition the Value-Magnitude Link
is obviously false, since the same magnitude may be represented by differ-
ent numbers in different unit systems. For example, we can also represent
‘5 kg’ as ‘5000 g’. In other words, the Value-Magnitude Link clearly fails
for passive transformations. When I write ‘value’, then, I don’t mean the
numerical value of a quantity in a certain system of units. Rather, I mean a
mathematical element of the theory’s models: a particular point of a differ-
entiable manifold, or an element of an internal ‘value space’. For example,
a model of Newtonian Gravitation consists of an assignment of massive par-
ticle trajectories to a manifold M , over which some spacetime structure is
defined. We can endow the manifold M with coordinates: a passive trans-
formation then is simply a change in these coordinates. But we can also
leave the coordinates fixed, and assign the particle trajectories to different
points of the manifold itself. This is an active transformation.8 The values
in this case are the point of the manifold M , and the Value-Magnitude Link
asserts that the same point of M represents the same point of spacetime in
all of the theory’s models. We can present a similar set-up for quantities

8 Note that on this definition an active transformation need not correspond to any physical
transformation: if shift-related models of Newtonian Gravitation are physically equivalent,
then an active transformation relates models that represent the same state of affairs.
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§4 The Value-Magnitude Link

such as mass. Here, quantities are functions from the theory’s domain—
say, particles—into a value space: a mathematical structure whose elements
represent determinate magnitudes of said quantity. For instance, mass is a
function from particles into a mass value space, whose elements represent
determinate mass magnitudes such as ‘5 kg’. As with spacetime, we can
‘coordinatise’ a value space via an assignment of numbers to its elements.
This amounts to a choice of unit. But we can also leave the units fixed, and
consider a different mapping from the domain into value space. For instance,
an (active) mass scaling maps each particle onto a different element of mass
value space. In this case, values are simply elements of a value space, and
the Value-Magnitude Link asserts that these elements represent the same
magnitudes across the theory’s models. Finally, I embrace realism about
values: they represent real aspects of the physical world, such as positions
or masses (in the case of position, this entails substantivalism).9

With this clarification in mind, let’s consider the Value-Magnitude Link
in more detail. In the previous section, I said that Leibniz Equivalence
implies the Invariance Principle if we assume the Value-Magnitude Link.
In fact, these two principles are equivalent on that assumption, as I will now
show.

Proof. Left to right. Consider a variant quantity Q. Suppose that in some
model m1, the values of Q for x and y are Q(x) = a and Q(y) = b. Now, con-
sider a symmetry-related model m2 in which Q(x) = b and Q(y) = c.10 By
Leibniz Equivalence, m1 and m2 are physically equivalent, so Q(x) and Q(y)
each represent the same magnitude in both models. But since Q(y) = b in
m1 while Q(x) = b in m2, this means that the value b represents distinct mag-
nitudes across those models. This contradicts the Value-Magnitude Link,
so Q cannot represent a physically real quantity. Since Q is an arbitrary
variant quantity, it follows that only invariant quantities are physically real.

For an example, consider again the static shift. Since static shifts are
symmetries of Newtonian Gravitation, Leibniz Equivalence implies that
shift-related models are physically equivalent. In that case, the Invariance
Principle implies that position, which varies under shifts, is not a physically
real quantity. For consider the following two shift-related models, where xA
and xB denote the locations of particles A and B respectively:

9 For more on the metaphysics of value spaces, see Arntzenius and Dorr (2012); Eddon
(2013); Wolff (2020) and references therein.
10 This relies on the assumption that there exists some symmetry-related model in which
Q(x) = b; see the shift example below.
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§4 The Value-Magnitude Link

M1 :

{
xA = (1, 0, 0)

xB = (2, 0, 0)
M2 :

{
xA = (2, 0, 0)

xB = (3, 0, 0)

If these models are physically equivalent, then (1, 0, 0) and (2, 0, 0) both
represent the same spacetime point: A’s location. Similarly, (2, 0, 0) and
(3, 0, 0) both represent B’s location. And this means that the same value,
(2, 0, 0), represents A’s location in m1, and B’s location in m2. But both
models represent those bodies as occupying distinct locations. It follows
that the same values of xA and xB must denote different spatial locations
across models. This contradicts the Value-Magnitude Link, and so variant
location is not physically real.

Right to left. Consider any pair of symmetry-related models. By def-
inition, the invariant quantities have the same values across these models.
The Invariance Principle implies that only those quantities are physically
real. From the Value-Magnitude Link, it follows that their values denote the
same magnitudes across models. Therefore, these models agree on all phys-
ical features. Symmetry-related models are thus physically equivalent, and
so Leibniz Equivalence holds. For example, consider once more two shift-
related models. From Invariance Principle, it follows that only the invariant
quantities—distances, relative velocities and accelerations—are physically
real. By definition, those quantities have the same value in both models.
From the Value-Magnitude Link, it follows that those values represent the
same magnitude. Therefore, both models represent the same state of af-
fairs.

On the assumption of the Value-Magnitude Link, then, Leibniz Equiva-
lence and the Invariance Principle are equivalent. If that is the case, then
“symmetry-to-reality” inferences have a clear structure: symmetry-related
models are physically equivalent, and hence variant quantities are unphysi-
cal. This naturally leads to the view that we ought to formulate new theo-
ries that are solely expressed in terms of the invariant quantities, so-called
reduced theories. On the other hand, if one were to insist that variant quan-
tities are physically real, then under the assumption of the Value-Magnitude
Link this entails the denial of Leibniz Equivalence, or literalism. So, on the
assumption of the Value-Magnitude Link the interpretation of symmetry-
related models leads to a dilemma: either variant quantities are physically
real and symmetry-related models represent distinct states of affairs (liter-
alism), or only invariant quantities are real and so symmetry-related models
are physically equivalent. In the latter case, a new theoretical formalism is
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appropriate (reduction). There is no room for an intermediate view. But
as we will see in the next section, there is no need to accept the Value-
Magnitude Link. If we do not, another option becomes available.

5 Conventional Values and Supervaluation

The Value-Magnitude Link seems unassailable, but is in fact denied by one
of the most common views on symmetries: sophistication. In this section,
I will first illustrate sophistication with a couple of examples: sophisticated
spacetime substantivalism, and sophistication for the electrostatic potential.
The fact that the latter example concerns an internal symmetry shows that
the failure of the Value-Magnitude Link is not merely a particularity of
spacetime. After the examples, I will undertake a more general discussion
of the relation between sophistication, reduction and literalism.

The most well-known example of sophistication is sophisticated substan-
tivalism.11 According to sophisticated substantivalism, spacetime is a real
substance in which bodies are located; hence, there is a sense in which (vari-
ant) positions are physically real.12 Contrast this with relationism, which
says that only distances between bodies are real. Despite the fact that so-
phisticated substantivalism is realist about position, it affirms the physical
equivalence of symmetry-related models. It does so via an appeal to anti-
haecceitism regarding spacetime points. Rather than possessing primitive
identities, spacetime points are individuated via their qualitative relations to
each other and to the universe’s matter content. Since spacetime symmetries
relate qualitatively identical models, symmetry-related models represent the
exact same points in the same configurations. As a result, such models have
identical physical content.

Therefore, sophisticated substantivalism accepts Leibniz Equivalence and
rejects the Invariance Principle. It follows from the previous section that so-
phistication must also reject the Value-Magnitude Link. This is indeed the
case. Here is a simple example. Suppose as before that models related by
shifts are physically equivalent. The following three diagrams then represent
the same state of affairs:

11 See Pooley (2013, §7) for an overview.
12 The claim that sophisticated substantivalism is realist about (variant) position assumes
a particular form of that view, namely what Saunders (2003a) calls non-reductive re-
lationism. On the other hand, an eliminative relationist may understand positions as
non-fundamental quantities. To confuse matters, both types of view have sometimes been
called ‘structuralism’; cf. Greaves (2011). I will eschew the latter term in what follows.
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Figure 1: Examples of shift-related models.

Here, the dots represent the locations of three bodies labelled ‘a’, ‘b’ and ‘c’
in two-dimensional position space. The location value of the dots is different
in each diagram (the dots are shifted on the x-axis). On the assumption of
the Value-Magnitude Link, this means that spatial location itself is not a
physically real quantity, since it varies across the theory’s shift-symmetries.
But according to sophistication there are physically meaningful statements
about spatial position. Consider the claim that particle b has some location
in space (i.e. b is assigned some value in two-dimensional position space).
This statement is invariant under shifts: b is assigned a location on all three
diagrams in Fig. 1. Robert Stalnaker has summarised the point as follows:
“in the relational theory of space, spelled out in this way, no intrinsic spatial
properties would be real (except the property of being located somewhere in
space)” (Stalnaker, 1979, 353-4, emphasis mine). This, of course, is a direct
consequence of the sophisticated substantivalist’s commitment to space as
a real substance in which particles are located.

Furthermore, sophistication is not just applicable to spacetime symme-
tries. Dewar (2019) has recently argued that sophistication can be seen as a
general approach to the interpretation of symmetries. He mentions the ex-
ample of the electrostatic potential, φ. The empirical consequences of φ are
due to its gradient E := ∇φ. Therefore, uniform shifts of φ are symmetries
of electrostatics. According to Leibniz Equivalence, then, models related
by shifts in the potential are physically equivalent. It simply makes no dif-
ference if we increase φ everywhere by the same amount. The Invariance
Principle in turn implies that the electrostatic potential is not physically
real, since it is variant under the symmetries of electrostatics. Instead, the
electric field E, which is invariant, represents the theory’s fundamental field.
This motivates the demand for a reduced theory formulated in terms of E
alone. But as Dewar points out, such a reduced theory cannot explain the
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fact that E is a conservative force, i.e. that ∇×E = 0. On the other hand,
if E is defined as the gradient of φ then this conservativeness rolls out as
a mathematical theorem, since ∇ × (∇φ) = 0 for any φ. For this reason,
Dewar argues that it is better to affirm the physical reality of φ, contrary
to the Invariance Principle. This implies a rejection of the Value-Magnitude
Link. For consider two symmetry-related models, one in which φ(x) = a
and one in which φ(x) = b. When a 6= b, the value of φ at x differs across
these models. But since symmetry-related models are physically equivalent,
both models must represent the same physical magnitude of the electrostatic
potential at x. Hence, it is not the case that values invariably represent the
same magnitude across models. Dewar’s sophistication achieves this balance
via an appeal to anti-quidditism, the analogue of anti-haecceitism for prop-
erties: physical properties are individuated via their position in a structure
of qualitative relations. Since the distinct values a and b occupy the same
structural role across symmetry-related models, they also represent the same
magnitude.13

These examples illustrate how sophistication steers a course between
equivalence and invariance. But in order to obtain a more general character-
isation of the difference between sophistication and reduction, it is necessary
to provide a more specific criterion for the physical content of a sophisti-
cated theory. In other words, what we need is a statement of the semantics
of a sophisticated theory.14 I propose the following criterion:

Sophistication. A theoretical statement is physically meaningful
if and only if it is invariant across physically equivalent models.15

From left to right, this says that a statement is physically meaningful only if
it is invariant across physically equivalent models. This is uncontroversial:
physically equivalent models agree on all physical facts, so whatever varies
across such models cannot have a consistent meaningful interpretation. But
read from right to left, this claim is non-trivial: it states that any invariant
statement is physically meaningful, even if such a statement involves vari-
ant quantities. In other words, sophistication locates physical meaning in
the full sentence, rather than in its terms. For an example, borrowed from

13 For more on anti-quidditism in the context of symmetries, see Martens and Read (2020).
14 This is different from the formalism of a sophisticated theory, which is what Dewar
(2019) is chiefly concerned with. As Dewar argues, sophistication requires that a theory’s
symmetry-related models are isomorphic. On the ‘internal’ approach to sophistication,
this usually requires a reformulation of the theory’s models.
15 Cf. Mundy (1986). See also Barrett’s (2017) proof that any piece of symmetry-invariant
structure is implicitly definable from the theory’s models.
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Van Fraassen (1989, 284), consider the statement “total momentum is con-
served”. In Newtonian Gravitation, total momentum is a variant quantity:
it varies under boosts of our reference frame. But it is true in any frame
that the total momentum of all particles is conserved, and hence the state-
ment “total momentum is conserved” is still physically meaningful under a
sophisticated semantics.

We can also understand this semantic criterion in terms of the logic
of supervaluation. This will provide us with another, more formal way of
understanding the space between literalism and reduction. In formal seman-
tics, the idea of supervaluation is to consider the truth-value of a sentence
with respect to a class of interpretations, rather than within any particular
interpretation. In the present context, the equivalent idea is to evaluate the
truth-value of a sentence of the theory with respect to an equivalence class of
symmetry-related models, rather than within any particular model. Thus,
we call a statement supertrue (respectively superfalse) iff it is true (respec-
tively false) in all models within a class of symmetry-related models.16 Im-
portantly, supervaluation does not commute with logical composition. This
means that the truth-value of a composite statement under supervaluation
is not a function of the truth-values of its components under supervaluation.
We can use this fact to explain the difference between reduction and sophis-
tication: the former first supervaluates over ‘atomic’ theoretical statements
and then composes complex ones, whereas the latterslatter first composes
complex sentences and then supervaluates. Let [φ(m)]S denote the truth
value of a sentence φ in a model m when we supervaluate it with respect to
a group of symmetries S (compare the role of interpretations in logic). The
truth conditions of [φ(m)]S are:

[φ(m)]S =


T iff φ(s(m)) = T for all s ∈ S
F iff φ(s(m)) = F for all s ∈ S
# otherwise

(1)

where s(m) denotes the model obtained from an application of s to m. In
simple terms, this says that φ is true (false) in m iff it is true (false) in
all models related to m by one of the symmetry transformations in S. If
neither situation obtains—if φ is true in some model, but false in another—
then the statement is meaningless. For instance, the claim that a certain
body is at absolute rest is true in some models of Newtonian Gravitation,
but false in any model related to the first by a uniform boost. Therefore,

16 Cf. Dewar’s (2019) supervaluationist semantics for sophistication. See also Russell’s
(2018) discussion of determinacy.
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on a supervaluationist semantics it is physically meaningless. But the claim
that total momentum is conserved is true in all models of the theory, so
comes out as true under the supervaluationist semantics.

For an example of a statement that is (super)true for sophistication but
false for reduction, consider the claim that a quantity Q has some value in
m: ∃x(Q(m) = x). For example, Q can stand for the Earth’s position, so
the claim is that the Earth is located somewhere in space. We can write
this claim as a disjunction:17

Q(m) = x1 ∨ ... ∨ Q(m) = xn (2)

The crucial insight here is that there is a difference in truth value between
the supervaluation of this sentence as a whole, and the composition of its
individually supervaluated disjuncts. In other words,

[Q(m) = x1 ∨ ... ∨ Q(m) = xn]S 6⇔ [Q(m) = x1]S ∨ ... ∨ [Q(m) = xn]S (3)

Proof. Since Q varies under S, for any x the claim [Q(m) = x]S is nei-
ther true nor false. Under standard trivalent semantics (such as Kleene),
the disjunction of sentences with truth-value # itself has truth-value #.
Therefore, the rhs of (3) is neither true nor false. On the other hand,
[Q(m) = x1 ∨ ... ∨ Q(m) = xn]S does have a truth-value, since in any model
Q has some value between x1 and xn. Therefore, the lhs of (3) is true. This
completes the proof.

It is because of this fact that sophistication is different in terms of its
physical content from both literalism and reduction. Using the example
of the Earth’s location, the difference is as follows. Reduction says that
no statement of the form “The Earth is located at position x” is mean-
ingful, since no such statement has the same truth-value within a class of
shifted models. Therefore, the reductionist argues, composites of such state-
ments are also meaningless. In particular, the sentence “The Earth has some
location”—which we have interpreted as a disjunction of ascriptions of par-
ticular locations—has no physical relevance. But sophistication evaluates
the truth-value of sentences as a whole. And as we have seen, the sentence
“The earth has some location” is true across shift-related models. There-
fore, the semantics of supervaluation offers a formal way of understanding
the sense in which sophistication has more physical content than reduction.

17 I will gloss over any issues arising from the fact that for most quantities, this disjunction
is infinitary
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§6 Against Invariance

Although it is outside of the scope of this paper, let me briefly say some-
thing about the benefits of this additional content. The rough idea is that
the theory’s variant quantities contribute towards its explanatory strength.
Consider, for example, the fact that the electric force is conservative, i.e.
that ∇ × E = 0. On a sophisticated semantics, the definition E := ∇φ
is invariant across symmetry-related models, hence physically meaningful.
Therefore, we can use it to explain the conservativeness of E as a result of
the fact that ∇×∇φ = 0 for any scalar field φ. On a reductionist semantics,
on the other hand, any statement that involves φ is physically meaningless
as a result of the fact that φ itself varies under the theory’s symmetries.
Therefore, reductionism cannot appeal to φ to explain the conservativeness
of E. For reductionism, it is a brute fact that E is conservative. Generally,
what this means is that sophistication but not reduction allows for expla-
nations of physical phenomena in terms of variant quantities. In fact, such
explanations abound in physics. For just one example, we can explain the
Twin Paradox in Special Relativity in terms of the phenomenon of time
dilation.18 But this is a frame-dependent (hence symmetry-variant) phe-
nomenon, and so reductionism accords it less reality than sophistication.
Here, too, it seems that sophistication increases the explanatory strength of
the theory. I’ll briefly return to these ideas in the conclusion.

6 Against Invariance

If one accepts the Value-Magnitude Link, one faces a stark binary choice be-
tween literalism and reduction. On the first view, symmetry-related models
represent distinct possibilities: the consequence is underdetermination and
possibly indeterminism. On the second view, symmetry-related models are
physically equivalent. With the Value-Magnitude Link in place, this then
implies the Invariance Principle: only invariant quantities are physically real.
It is this principle that motivates the search for a reduced theory formulated
solely in terms of these invariant quantities. Clearly, reduction is preferable
over literalism. But if we reject the Value-Magnitude Link a third option
becomes available: sophistication. Sophistication accepts Leibniz Equiva-
lence, but not the Invariance Principle. As I illustrated above, this means
that it remains committed to the physical reality of variant quantities. The
possibility of sophistication shows that Leibniz Equivalence in itself cannot
motivate the Invariance Principle.

18 See, for instance, Rindler (1977, §2.14). But note that Debs and Redhead (1996) argue
that such explanations are invalid exactly because they appeal to frame-dependent facts.
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However, there are many other arguments in the literature in favour of
the Invariance Principle. Earman and Norton (1987) argue that the Invari-
ance Principle is necessary to avoid indeterminism; Dasgupta (2016) claims
that variant quantities are undetectable; and according to Caulton (2015),
such quantities fail to refer uniquely. These arguments, if successful, a for-
tiori support reduction over sophistication. But I will argue that they fail.
Specifically, I claim that all three arguments only support Leibniz Equiv-
alence, rather than the Invariance Principle. It is only when one tacitly
assumes the Value-Magnitude Link that the latter follows. But that as-
sumption begs the question against sophistication, which explicitly rejects
it. Therefore, I conclude that these purported arguments for the Invariance
Principle cannot support reduction over sophistication, contrary to their
author’s explicit claims.

I will now discuss the arguments in favour of the Invariance Principle
one by one.

6.1 Determinism

The claim that symmetries lead to indeterminism of our theories is well-
known. Earman and Norton (1987) argue that this happens in General
Relativity due to the Hole Argument, and Belot (1998) applies a similar line
of reasoning to electromagnetism. Wallace (2002) generalises the argument
to any time-dependent local symmetry (for our purposes, a local symmetry
is one that can act non-trivially over a some finite period of time). The
thrust of these arguments is that there are distinct models that agree on all
physical facts before some time t, but which differ by a non-trivial symmetry
transformation after t. If these models represent distinct physical possibili-
ties, then this implies a failure of determinism: the history of the universe
up to time t does not determine its state at later times.

Earman and Norton (1987) argue that we should avoid this sort of rad-
ical indeterminism not because indeterminism is in principle unacceptable,
but because “[determinism] should fail for a reason of physics, not because
of a commitment to substantival properties which can be eradicated without
affecting the empirical consequences of the theory” (524). In a spacetime
context, the ‘substantival properties’ to which Earman and Norton refer
here are variant positions in spacetime. Their claim is that it is necessary to
accept Leibniz Equivalence in order to avoid indeterminism, and that there-
fore the fundamental spatio-temporal quantities are relational rather than
intrinsic. In other words, Earman and Norton advocate a form of reduction.
Indeed, Earman (1989) went on to try to formulate such a reduced theory
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in terms of Einstein algebras, but Rynasiewicz (1992) showed that this was
unsuccessful.

I agree with Earman and Norton that Leibniz Equivalence is necessary
to avoid this sort of indeterminism. However, it does not follow that we have
to ‘eradicate’ substantival properties, or variant quantities more generally.
This is only a valid inference on the assumption of the Value-Magnitude
Link. If the Value-Magnitude Link is denied, on the other hand, Leibniz
Equivalence implies that we can remain realist about variant properties. In
the case of spacetime, for example, sophisticated substantivalism accepts
that symmetry-related models are physically equivalent, but nevertheless
gives a realist interpretation of spacetime. Moreover, Dewar (2019) suggests
that one can use the same strategy for non-spatio-temporal, or ‘internal’
symmetries, such as the gauge symmetry of electrodynamics. There, too,
we can simply interpret gauge-related models as distinct representations of
the same physical fields, rather than representations of distinct possible
evolutions of those fields for a given initial condition. This suffices to avoid
indeterminism, since the symmetry-related models that were supposed to
represent distinct possible futures now considered as distinct representations
of the same future. We need not accept the Invariance Principle in order to
avoid radical indeterminism.

6.2 Detectability

The second argument for the Invariance Principle is epistemic. According
to Dasgupta (2016), we should renounce variant quantities because they are
in principle undetectable. On his account, the symmetry-to-reality inference
goes as follows (Dasgupta, 2016, 843):

(i) Laws L are the complete laws of motion governing our world.

(ii) Feature X is variant under the symmetries of L.

(iii) Therefore, X is undetectable (from (i) and (ii)).

(C) Therefore, X is not real (from (3) and an Occamist norm that we
dispense with undetectable structure).

Like Earman and Norton, Dasgupta claims that such reasoning motivates
the search for an alternative theory that solely trades in the invariant quan-
tities.

Again, I will argue that we can avoid the undetectability of variant quan-
tities by assuming Leibniz Equivalence, which only implies the Invariance
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Principle if we also accept the Value-Magnitude Link. First, however, let
me comment on the ‘Occamist norm’ to which Dasgupta refers. This norm
states that all else being equal we ought to dispense with undetectable struc-
ture. The ‘all else equal’ clause is important here: Dasgupta believes that
there may be good reasons to posit undetectable structure. For example,
such structure may yield a simpler theory, or one with greater explanatory
strength. “In that case, we would have empirical evidence of sorts that the
feature is real, in the sense that our all-things-considered best empirically
confirmed theory implies that it is real” (Dasgupta, 2016, 854). Dasgupta
thus believes it is possible that variant quantities are physically real, con-
trary to the Invariance Principle. Nevertheless, the spirit of Dasgupta’s
argument is clearly against variant quantities. It is therefore worthwhile to
show that there is a sense in which such quantities are not undetectable on
a sophisticated view.

Here is how Dasgupta initially defines undetectability:

[S]omething is undetectable in my sense if, roughly speaking, it
is physically impossible for it to have an impact on our senses.
(Dasgupta, 2016, 854)

This definition of detectability is rather weak: even absolute velocities are
detectable on this definition. After all, in Newtonian mechanics relative
velocities supervene on absolute velocities, and since the former impact our
senses, so do the latter. For instance, suppose that we increase the absolute
velocity of a ship at sea. Since this also increases the relative velocity of the
ship with respect to the shore, the difference is clearly visible. Therefore, the
absolute velocity of the ship has an impact on our senses. On this definition,
then, the symmetry-to-reality inference is inconsequential.

However, Dasgupta quickly revises his initial definition in favour of some-
thing stronger:

It then follows [...] that the feature is undetectable [if] there is
no physically possible process by which we might discover which
determinate values are actually instantiated.

This is a stronger criterion, since it demands that we can measure the partic-
ular value of a quantity (presumably up to some degree of accuracy), rather
than just its effect. Let us call this notion measurability (cf. Ismael and
Van Fraassen’s (2003) distinction between the observable and the measur-
able). For instance, absolute velocity is unmeasurable in the sense that there
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is no unique numerical value we can assign to the motion of any particular
object: we can only express velocities relative to some other object. What is
undetectable here are not the variant quantities themselves, but their par-
ticular values. Suppose, for example, that the current mass of the Eiffel
Tower is 7 million kilograms. And suppose that there exists a physically
possible world qualitatively identical to ours, but in which the masses of all
bodies are doubled—hence the mass of the Eiffel tower is 14 million kilo-
grams in that world. Since these two worlds are (by stipulation) empirically
equivalent, there is no experiment that could reveal the actual mass of the
Eiffel Tower. For such an experiment, if it were an accurate measurement
of the Eiffel Tower’s mass, would have to have different outcomes in these
worlds.19 Therefore, we cannot know, even in principle, whether the Eiffel
Tower has the mass denoted by ‘7 million kilograms’ rather than the mass
denoted by ‘14 million kilograms’.

If we follow Dasgupta’s Occamist advice and reject the physical reality
of intrinsic mass, there simply are no mass values to measure. However, such
a solution to the problem of undetectability is unnecessarily strong. For as
we have seen, the problem arises when our theories imply the existence of
symmetry-related worlds that are empirically equivalent yet physically dis-
tinct. This means that the issue is a failure of Leibniz Equivalence, rather
than the Invariance Principle. If symmetry-related models represent the
same possible worlds, then there are no differences between them, so a for-
tiori no undetectable differences. As I explained in §5, Leibniz Equivalence
is consistent with the rejection of the Invariance Principle once we reject the
Value-Magnitude Link. On such a view, the value ‘7 million kilograms’ does
not denote the same mass across models. Instead, sophistication adopts an
anti-quidditist picture on which physical mass magnitudes are qualitatively
identified. Since the values ‘7 million kilograms’ in the first model and ‘14
million kilograms’ in the second instantiate the same qualitative profile (for
example, the same mass ratios to external bodies), the Eiffel Tower is repre-
sented as having the same mass in both models. Sophistication implies that
the Eiffel Tower has some mass, whereas reduction renounces intrinsic mass
quantities altogether. Nevertheless, it may seem as if there is still a further
question: which mass does the Eiffel Tower have? Now, if this is a question
about the primitive identities of mass values, there simply are none on the
sophisticated account—so the question is void. If, on the other hand, this
is a question about the qualitative features of the Eiffel Tower’s mass, the

19 This, in a nutshell, is Roberts’ (2008) argument for the claim that variant quantities
are unmeasurable.

20



§6.3 Reference

answer is the same for both models: the Eiffel Tower’s mass is 100 000 times
my mass, a mere fraction of the Sun’s mass, and so on. On this view, then,
we can measure which mass the Eiffel Tower (or any other object) has, since
we can measure a mass value’s qualitative features.

Therefore, sophistication avoids undetectable properties without the In-
variance Principle; Leibniz Equivalence is all that’s necessary. Dasgupta’s
epistemic argument does not justify the latter once we recognise the Value-
Magnitude Link as a tacit but unwarranted assumption.

6.3 Reference

The previous section was concerned with an epistemic argument. The final
argument, found in Healey (2006) and Caulton (2015), is semantic in nature.
The claim I will contest is that variant quantities cannot be given a realist
interpretation because they have no unique referent.

Suppose we are trying to interpret a physical theory. Part of the aim
of interpretation is to assign referents to the terms that occur in the the-
ory in question. Some of these terms will obviously correspond to physical
quantities with which we are directly acquainted, such as colour or distance.
We call these observables. Since we already know what the observables are,
we can simply stipulate which theoretical quantities denote them. Caulton
(2015) calls this the first phase of interpretation. However, theories usually
also introduce novel terms for unobservable quantities, such as ‘electric field’.
We have no grasp on what these unobservables are apart from what the the-
ory says about them. It seems that we cannot know what these theoretical
terms refer to, unless we have already interpreted the theories in which they
occur. This raises the worry that the interpretation of theoretical terms is
an impossible mission.

Fortunately, the situation is not hopeless. Following Lewis (1970), we
can construct implicit definitions of the theory’s theoretical terms once we
have interpreted the observable terms by stipulation; this is Caulton’s (2015)
second phase of interpretation. Instead of directly connecting a theoretical
term to its referent, we declare that the term refers to whatever it is that
is related to the observables in the manner described by the theory. For
example, the electric field is just whatever is generated by and exerts a force
on charged particles in accordance with Maxwell’s laws. For this approach
to work, our theories must be uniquely realised. That is, there must exist in
nature a unique set of unobservable quantities that the theoretical terms of
our theories refer to. If this condition fails to hold, then either the theory
is not realised at all (i.e. it is false), or it is multiply realised. In the latter
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case it is indeterminate what its theoretical terms refer to.
Now, both Healey and Caulton argue that if we interpret variant quan-

tities as physically real, theories with non-trivial symmetries are multiply
realised. Therefore, in order to avoid indeterminacy of reference we ought to
embrace the Invariance Principle. But as with the two previous arguments,
I believe that Leibniz Equivalence is enough to avoid a failure of reference.
The further step from Leibniz Equivalence to the Invariance Principle is un-
warranted. I will borrow an example from Healey (2006) to illustrate this
claim. Suppose that we have a toy theory according to which sub-atomic par-
ticles called ‘quarks’ cluster together to form protons and neutrons. Quarks
can have one of three colours: red, green and blue. Colour is a dynamically
efficacious property which couples to various other quantities in the laws.
However, the theory has a colour permutation symmetry, such that if one
changes (for example) all red quarks to green, all green quarks to blue, and
all blue quarks to red, the difference is empirically indiscernible. Finally,
the dynamics of our toy theory are such that quarks are strongly confined
in colour-neutral combinations of red, green and blue.

Healey argues that in this set-up the terms ‘green’, ‘red’ and ‘blue’ are
referentially indeterminate. For simplicity, let’s label these properties R,
G and B. The toy theory has a partially interpreted model of the form
m(r, g, b), where r, g and b are variables that stand for the colour proper-
ties of certain quarks. Suppose that we want to implicitly define r, g and
b as whatever triple of properties jointly satisfies m. Furthermore, suppose
that m is satisfied if r denotes R, g denotes G, and b denotes B. In other
words, m(R,G,B) is a dynamically possible model. It then seems that the
implicit definition of r picks out R as its unique referent, and similarly for
the other terms. However, since our theory is colour permutation invari-
ant, m(G,B,R) is also a dynamically possible model. And this means that
m(r, g, b) is also satisfied if r refers to G, and g refers to B, and b refers to R.
Therefore, an implicit definition in terms of m(r, g, b) leaves it indeterminate
whether r refers to R or G (or even B!), and likewise for g and b. This is a
consequence of the theory’s colour permutation symmetry.

Healey concludes from this that variant quantities such as quark colour
are not physically real. Similarly, Caulton (2015, 161) writes that this
“prompts appropriate reform towards a new formalism, in which the physi-
cal properties and relations—including the unobservable ones—are transpar-
ently represented without redundancy”. In other words, Caulton advocates
reduction. However, the demand for a reduced theory is too strong: as-
suming Leibniz Equivalence is enough to avoid non-unique reference. Recall
that the problem that causes the indeterminacy of reference of the terms
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r, g and b is that m(r, g, b) is realised multiply by m(R,G,B), m(G,B,R)
and m(B,R,G). But if we accept Leibniz Equivalence, symmetry-related
models are distinct representations of the same state of affairs, and hence
the differences between these permuted models are merely representational.
If this is the case, m(r, g, b) is not multiply realised: it only has one physi-
cal realisation, which is redundantly represented by an equivalence class of
symmetry-related models.20 In other words, Leibniz Equivalence alone suf-
fices to avoid multiple realisation, of which the indeterminacy of theoretical
terms is a consequence.

On this picture, what do the terms r, b and g refer to? Note that these
terms are values of the colour quantity, rather than quantities themselves.
According to sophistication, then, their referent is not fixed across models:
there is no unique colour property to which we can consistently refer across
theoretical models with r, b or g. Rather, whether we call a colour property
‘red’, ‘green’ or ‘blue’ is a conventional choice that may vary across models.
Nevertheless, it is possible to identify theoretical terms qualitatively. For
example, we can (arbitrarily) stipulate that r refers to the colour of the quark
which is located at the centre of mass of a particular proton. This is entirely
analogous to the stipulation that we will use the term ‘kilogram’ to refer to
the mass of the standard kilogram in Paris. On this account, there is no
sense in which ‘r’ refers to the same magnitude across models. Instead, each
class of symmetry-related models requires a distinct convention on how the
terms ‘r’, ‘g’ and ‘b’ are used. But in each case, these terms have a unique
referent.

7 Conclusion

I have analysed three arguments in favour of the Invariance Principle. These
arguments all start from the claim that without the Invariance Principle, sev-
eral woes will befall us: indeterminism, undetectability or a failure of refer-
ence. But as I hope to have shown, all that is necessary to avoid these woes
is Leibniz Equivalence. Leibniz Equivalence and the Invariance Principle
are closely related, but they are not equivalent. In particular, sophistication
is a view which simultaneously accepts Leibniz Equivalence and rejects the
Invariance Principle. Reduction, on the other hand, accepts both Leibniz

20 The advocate of reduction may respond that its aim is exactly to avoid such representa-
tional redundancy. I agree that that is a legitimate motivation for a reduced formalism—
but note that in many cases, finding such a formalism has proved difficult if not impossible.
For further discussion, see Dewar (2019, §2).
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Equivalence and the Invariance Principle. But since arguments in favour
of the Invariance Principle fail, the latter cannot support reduction over so-
phistication. Of course, this does not mean that reduction is for some reason
undesirable: as far as the theoretical vices of indeterminism, undetectabil-
ity and failure of reference are concerned, reduction and sophistication are
exactly on a par.

What, then, could decide in favour of one or the other strategy for in-
terpreting symmetry-related models? This is a significant question that I
cannot fully answer here. But the clue lies in the ‘gap’ between reduction
and sophistication. As I argued, sophistication is committed to the existence
of variant quantities, even though it does not entail that such quantities have
determinate values. For example, the claim “the Eiffel Tower has an intrin-
sic mass” is (super)true in Newtonian Gravitation, despite the fact that
intrinsic mass might be a variant quantity. The benefit of sophistication is
that such quantities may serve an explanatory purpose. For example, I men-
tioned earlier that the electrostatic potential φ can explain why the electric
force E is conservative. Similarly, Martens and Read (2020) argue that the
existence of intrinsic mass can explain the ‘transitivity of mass ratios’, that
is, the fact that the mass ratio between two bodies a and c is equal to the
product of the mass ratios between a and b and b and c, for any body b.

We can put the point differently. As we saw at the end of the pre-
vious section, theories with symmetries exhibit a certain representational
redundancy: different models represent the same state of affairs.21 This
redundancy provides one motivation for reduction, which eliminates the of-
fending symmetries from the theory. But if the above is correct, then there
is a sense in which this additional structure is not redundant. Instead, vari-
ant quantities such as the electrostatic potential provide the theory with
explanatory resources. Far from ‘fluff’, then, such quantities are necessary
for theories to discharge their explanatory duties. But in order to ‘access’
these quantities, we require the semantics of supervaluation as discussed in
§5. So, sophistication offers a different way of semantically evaluating our
theories which allows its ‘redundant’ structures to play an explanatory role.

For this reason, I contend that sophistication may strike the perfect
balance between literalism’s excess of physical content, which leads to un-
derdetermination, and reduction’s metaphysical sparseness, which hinders
its explanatory aspirations. We ought to accept Leibniz Equivalence but

21 Ismael and Van Fraassen (2003) argue that symmetries are “a guide to superfluous the-
oretical structure”; Earman (2004) calls it ‘descriptive fluff’. But Bradley and Weatherall
(2020) challenge this view, arguing that theories whose symmetry-related models are iso-
morphic possess no surplus structure.
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reject the Invariance Principle.
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