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Abstract
Landauer’s principle is, roughly, the principle that logically irreversible operations can-

not be performed without dissipation of energy, with a specified lower bound on that dis-
sipation. Though widely accepted in the literature on the thermodynamics of computation,
it has been the subject of considerable dispute in the philosophical literature. Proofs of
the principle have been questioned on the grounds of insufficient generality and on the
grounds of the assumption, used in the proofs, of the availability of reversible processes at
the microscale. The relevance of the principle, should it be true, has also been questioned,
as it has been argued that microscale fluctuations entail dissipation that always greatly ex-
ceeds the Landauer bound. In this article Landauer’s principle is treated within statistical
mechanics, and a proof of the principle is given that neither relies on neglect of fluctua-
tions nor assumes the availability of thermodynamically reversible processes. In addition,
it is argued that microscale fluctuations are no obstacle to approximating thermodynamic
reversibility, in the appropriate sense, as closely as one would like.
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1 Introduction

The statement that has come to be known as Landauer’s principle is, roughly, that there are
specifiable bounds on how far one can reduce the dissipation of energy associated with imple-
mentation of a logically irreversible operation, that is, an operation whose input state cannot
be recovered from its output state. See section 2 for a precise statement of the principle. It
is widely accepted in the literature on the thermodynamics of computation; see Leff and Rex
([2003]) for a sampling of the relevant literature and an extensive bibliography. Nonetheless,
it has been the subject of considerable controversy in the philosophical literature (Earman and
Norton [1999]; Norton [2005]; Ladyman, Presnell, Short, and Groisman [2007]; Ladyman,
Presnell, and Short [2008]; Norton [2011]; Hemmo and Shenker [2012, 2013, 2019]; Lady-
man and Robertson [2013]; Norton [2013a, 2013b, 2013c]; Ladyman and Robertson [2014];
Ladyman [2018]; Norton [2018]).

Ladyman, Presnell, Short, and Groisman ([2007]), hereinafter referred to as LPSG, presented
a proof of Landauer’s principle. The proof, like any proof, rests on assumptions. The operative
assumptions of the proof are that a probabilistic version of the second law of thermodynam-
ics holds, and that certain processes can be performed reversibly. These processes include,
crucially, expansion of a single-molecule gas. Norton ([2011, 2013b, 2013c]) has argued that
inevitable fluctuations at the molecular level invalidate the assumption of even approximate
thermodynamic reversibility of processes at the microscale, and also that any process involves
dissipation in excess of the bounds required by Landauer’s principle, rendering the principle
moot. This is regarded by Norton as a ‘no-go’ result, invalidating the basic framework within
which most of the work on the thermodynamics of computation has been carried out.

Ladyman and Robertson ([2014]) addressed the purported no-go result, arguing that the
conclusion has not been established. They acknowledged, however, a concern about the as-
sumption, ubiquitous in the literature on thermodynamics of computation, of molecular-scale
processes carried out with negligible dissipation.

In this article, the subject of Landauer’s principle is addressed from the point of view of
statistical mechanics, and a derivation within statistical mechanics of the Landauer principle
is given that neither relies on neglect of fluctuations nor assumes the availability of thermody-
namically reversible processes. In this context, one cannot expect the second law of thermo-
dynamics, as originally conceived, to hold. Because of statistical fluctuations, a heat engine
operating between two reservoirs might on occasion extract more work than the Carnot bound
on efficiencies allows. The version of the second law relevant to this context is a probabilistic
one, which we will call the statistical second law, involving expectation values of energy ex-
changes. It is provable within statistical mechanics, in two versions, classical and quantum. It
is therefore not required as an independent assumption. The basic terminology and concepts
needed for the proof are presented in section 2, and the proof itself in section 3. As Norton has
rightly emphasized, a theorem of this sort is moot if the processes involved depart sufficiently
far from thermodynamic reversibility. This is explicit in the theorem we prove. Unless there
are processes available that approximate reversibility sufficiently closely, the theorem places
no bounds on extra dissipation associated with logical irreversibility. This point is addressed in
section 4, where it is argued that, given the notion of thermodynamic reversibility relevant to
the context at hand, fluctuations, even ones that are large on the scale at which the processes are
taking place, pose no threat to the assumption that processes can take place that approximate
thermodynamic reversibility as closely as one would like. In section 5 these considerations are
applied to the stock example of a one-particle gas. With this in place, one can show that worries
about the LPSG proof that stem from the assumption that a one-particle gas can be expanded
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reversibly can be put to rest (section 6).
It has been claimed that Landauer’s principle can be shown to be false, and that explicit

counterexamples can be given. These supposed counterexamples have to do, not with the
theorem proven in this paper, but with a different claim, which has to do with Boltzmann
entropy. This matter will be discussed in section 7.

2 The set-up

As is usual in thermodynamics, the thermodynamic state of a system A is defined with respect
to some set of manipulable variables λ = {λ1, λ2, . . . , λn}, which may represent, for example,
the positions of the walls of a container the system is constrained to be in, or the value of
applied fields. We thus consider a family of Hamiltonians {Hλ}. The variables λ are treated
as exogenous, meaning that we do not include in our physical description the systems that are
the sources of these applied fields, and we do not consider the influence of the system A on
those systems. They may also be freely specified, independently of the state of the system.
We consider some set M of manipulations of the system, where each manipulation consists
of some specification of λ(t) through some interval t0 ≤ t ≤ t1. In addition, when needed it
is assumed that there are available one or more heat reservoirs {Bi} at temperatures Ti, with
which the system can exchange heat. The system A may be coupled and decoupled from these
heat reservoirs during the course of its evolution. That is, the interaction terms in the total
Hamiltonian consisting of the system A and the reservoirs {Bi} are also treated as manipulable
variables.

Since the time of Maxwell ([1871, 1878]), it has been recognized that the kinetic theory
of heat entails that the second law of thermodynamics, as originally formulated, cannot hold
strictly. When compressing a gas with a piston, we might find on some occasion that, due to
a fluctuation in the force exerted by the gas on the piston, less work is needed to compress the
gas than one would expect on average, and so in a given cycle of a heat engine we might obtain
more net work than allowed by the second law from a given quantity of heat extracted. By the
same token we might obtain less net work than expected. We do not, however, expect that we
will be able to consistently and reliably violate the Carnot limit on efficiency of a heat engine.
The original version of the second law should be replaced by a probabilistic one. The second
law will then be, to employ Szilard’s vivid analogy, like a theorem about the impossibility of a
gambling system intended to beat the odds set by a casino.

Consider somebody playing a thermodynamical gamble with the help of cyclic
processes and with the intention of decreasing the entropy of the heat reservoirs.
Nature will deal with him like a well established casino, in which it is possible
to make an occasional win but for which no system exists ensuring the gambler a
profit (Szilard [1972], p. 73, from Szilard [1925], p. 757).

On a macroscopic scale, we expect fluctuations to be negligible. At the microscale on which
in-principle limitations on the thermal cost of computation are investigated, fluctuations are far
from negligible. Accordingly, we will invoke probabilistic considerations, and treat of the evo-
lution of probability distributions over the state of a system subjected to various manipulations.
In connection with the amount of work needed to perform an operation or the amount of heat
exchanged in the course of the evolution of the system, the quantities we will consider are the
expectation values of work and heat exchanges, calculated with respect to those probability
distributions.
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We assume it makes sense to associate a probability distribution with a preparation proce-
dure, and to compute on its basis probabilities for outcomes of subsequent manipulations. We
need not enquire into the status of these probabilities, so long as they serve this purpose.

A caveat is in order, however. We will be considering probabilistic mixtures of preparations.
A probabilistic mixture of preparations involves choosing from some set of preparations, with
specified probabilities as to which preparation is performed. The probability distribution asso-
ciated with a mixture of preparations is a weighted average of the distributions corresponding
to the component preparations. This means that we are not identifying the probability assigned
to a given region of state space with the long-run fraction of time spent by the system in that
region. We may consider, for example, a set-up in which a particle is confined either to the left
or to the right of a partition dividing a container, with equal probability for each. Then, for each
side of the container, the probability that the particle is on that side is one-half, even though,
for each outcome of the preparation, all of the particle’s time is spent on one side or the other.

We will treat of “states” a = (ρa,Ha), consisting, in the classical context, of a probability
distribution over the phase space of the system A, represented by a density function ρa, and a
Hamiltonian Ha, which, as already noted, may depend on exogenous, manipulable variables.
In the quantum context, the density function is replaced by a density operator on the system’s
Hilbert space. We consider the effects on those states of manipulations in some class M of
manipulations.

As is usual in statistical mechanics, the distributions associated with the heat reservoirs Bi

will be canonical distributions, uncorrelated with the system A (see Maroney ([2007]) for dis-
cussion of the justification for this use of canonical distributions). In the classical context, a
canonical distribution is a distribution that has density, with respect to Liouville measure,

ρβ = Z−1e−βH, (2.1)

where β is the inverse temperature 1/kT , and Z is the normalization constant required to make
the integral of this density over all phase space unity. This depends both on the Hamiltonian
H and on β, and is called the partition function. In the quantum context, a canonical state is
represented by density operator

ρ̂β = Z−1e−βĤ, (2.2)

where, again, Z is the constant required to normalize the state.
The manipulations of a system A we will be considering will be ones of the following form:

• At time t0, the system has some probability distribution ρa, and the Hamiltonian of the
system A is Ha.

• At time t0, the heat reservoirs Bi have canonical distributions at temperatures Ti, uncor-
related with A, and are not interacting with A.

• During the time interval [t0, t1], the composite system consisting of A and the reservoirs
{Bi} undergoes Hamiltonian evolution, governed by a time-dependent Hamiltonian H(t),
which may include successive couplings between A and the heat reservoirs {Bi}.

• The internal Hamiltonians of the reservoirs {Bi} do not change.

• At time t1, the Hamiltonian of the system A is Hb, and, as a result of Hamiltonian evolu-
tion of the composite system, the marginal probability distribution of A is ρb.
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This is a manipulation that takes a state a = (ρa,Ha) to state b = (ρb,Hb).
It should be noted that we are not considering manipulations that consist of a measure-

ment performed on the system A followed by a manipulation of the exogenous variables whose
choice depends on the outcome of the measurement. Controlled operations are allowed, but
the control mechanism must be internalized, that is, included in the system under study. The
system A could consist of two parts A1 and A2, which interact in such a way that the state of
A1 affects what happens to A2, which subsequently affects what happens to A1. But all of this
must be encoded in the Hamiltonian H(t), which may be time-varying but which undergoes a
preprogrammed evolution that is not dependent on the state of the system A. Otherwise, there
may be dissipation associated with the operation of the control mechanism that gets left out of
the analysis.

We count energy exchanges with the reservoirs as heat (to be counted as positive if A gains
energy from the reservoir, negative if A loses energy), and energy changes to A due to changes
in the external potentials as work (again, counted as positive if A gains energy, negative if it
loses energy).

There is no restriction whatsoever on the Hamiltonian H(t), as the only fact about Hamilto-
nian evolution that will be invoked is conservation of Liouville measure (in the classical con-
text), or conservation of inner product (in the quantum context). Thus, the theorems we will
prove will apply even to hypothetical cases involving more fine-grained control of the system’s
evolution than would be feasible in practice. It is also not assumed that the heat reservoirs have
a canonical distribution or any other equilibrium distribution after they have interacted with
the system A, though it is assumed that, if the system A is to interact again with a reservoir
after having once interacted with it, enough time has elapsed for thermalization to occur in the
reservoir, so that it may be treated as canonically distributed. We are taking this condition as a
necessary condition for exchanges of energy between A and the reservoir to count as exchanges
of heat. (Without some distinction between heat exchange and work, neither the second law
nor any other law of thermodynamics can be formulated.)

Dropping the assumption of the availability of reversible processes requires revision of the
familiar framework of thermodynamics, as it means dropping the assumption of the availability
of an entropy function. In its place we will define quantities SM(a → b), defined relative to a
class of available manipulations M, to be thought of as analogues, in the current context, of
entropy differences between states a and b. These will be representable as differences in the
values of some state function only in the limiting case in which all states can be connected
reversibly.

For any manipulation M that takes a state a to a state b, we define ⟨Qi(a → b)⟩M as the
expectation value of the heat obtained by A from reservoir Bi. We use these to define,

σM(a→ b) =
∑

i

⟨Qi(a→ b)⟩M
Ti

. (2.3)

LetM(a → b) be the set of manipulations inM that take a to b, and define, as an analogue of
the entropy difference between a and b,1

SM(a→ b) = l.u.b.{σM(a→ b), M ∈ M(a→ b) }. (2.4)

Via the obvious extension of this definition we also define quantities such as SM(a → b → c)
for processes with any number of intermediate steps. It is assumed that manipulations can be
composed, that is, that any manipulation that takes a to b can be followed by one that takes b

1Here, “l.u.b” means least upper bound, and, in eq. (2.10), “g.l.b.” means greatest lower bound.
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to c to form a manipulation that takes a to b and then to c. It follows from this composition
assumption and the definition of the entropies that

SM(a→ b→ c) = SM(a→ b) + SM(b→ c), (2.5)

and similarly for processes consisting of longer chains of intermediate states.
One version of the second law of thermodynamics says that, for any cyclic process, the sum

of Qi/Ti over all heat exchanges cannot be positive. Since we’re working in the context of
statistical mechanics and we do not want to ignore fluctuations, the appropriate revision of the
second law involves expectation values of heat exchanges. A cyclic process will be one that
restores the marginal probability distribution of the system A to the one it started out with. The
revised second law that we will prove in the next section states that, for any cyclic process, the
sum of ⟨Qi⟩/Ti over all heat exchanges cannot be positive. In the notation we have introduced,
this is:

The statistical second law. For any state a, SM(a→ a) ≤ 0.

It follows from this that, for any states a, b,

SM(a→ b→ a) = SM(a→ b) + SM(b→ a) ≤ 0, (2.6)

and similarly for processes involving longer chains of intermediate states.
In any process M that takes a state a to a state b, some of the work done, or heat discarded

into a reservoir, might be recoverable by some process that takes b back to a. If the process
can be reversed with the signs of all ⟨Qi⟩ reversed, then full recovery (on average) is possible.
If full recovery is not possible, and cannot even be approached arbitrarily closely, we will say
that the process is dissipatory.

From the statistical second law it follows that, for any manipulations M, M′,

σM(a→ b) + σM′(b→ a) ≤ 0. (2.7)

Given a manipulation M that takes a to b, a manipulation M′ that recovers, on average, work
done and heat discarded in the course of manipulation M would be one that saturates this upper
bound; that is, it would be one such that

σM(a→ b) + σM′(b→ a) = 0. (2.8)

For a given manipulation M, there might be a bound on how closely we can approximate
complete recovery. This would mean that there is an upper bound less than zero to σM(a →
b) + σM′(b→ a), taken over all M′ inM(b→ a). Define the dissipation δM(a→ b) associated
with M as the absolute value of this bound. That is, for all M′ ∈ M(b→ a),

σM(a→ b) + σM′(b→ a) ≤ −δM(a→ b), (2.9)

and δM(a→ b) is the largest quantity for which this is true. More compactly,

δM(a→ b) = g.l.b.{ |σM(a→ b) + σM′(b→ a) | , M′ ∈ M(b→ a) }
= − (σM(a→ b) + SM(b→ a)) . (2.10)

The dissipation δM(a → b) is an indicator of the extent of departure from reversibility of the
process of going from a to b via manipulation M. Define

DM(a→ b) = g.l.b.{ δM(a→ b), M ∈ M(a→ b) } = −SM(a→ b→ a). (2.11)
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This is the minimal dissipation incurred in any manipulation that takes a to b.
Recall that, from the statistical second law, SM(a → b → a) ≤ 0. The quantity DM(a → b)

is, therefore, always nonnegative. If we have

DM(a→ b) = 0, (2.12)

this means that there is no limit to how much the dissipation associated with processes that
connect a to b can be diminished. When this holds, it is traditional to say that a and b can be
connected reversibly, and to imagine a fictitious process that can proceed in either direction,
reversing the signs of all heat exchanges. There is no harm in doing so, as long as this is not
taken too literally.2 Following convention, we will say, for any a, b for which (2.12) is satisfied,
that a and b can be connected reversibly. When this locution is used, bear in mind that it is
shorthand for (2.12), and does not presume the existence of an actual reversible process.

From the statistical second law it follows that, if all states can be connected reversibly —
that is, if, for all a, b, DM(a→ b) = 0 — then there exists a state function SM, defined up to an
additive constant, such that

SM(a→ b) = SM(b) − SM(a). (2.13)

This is the familiar entropy function. The reason we have been expressing things in an unfa-
miliar way is that we don’t want to assume reversibility as a general rule.

Any manipulation that takes a to b must have dissipation of at least DM(a → b). Define
the inefficiency associated with a manipulation that takes a to b as the amount by which its
dissipation exceeds this minimal value.

ηM(a→ b) = δM(a→ b) − DM(a→ b)
= SM(a→ b) − σM(a→ b). (2.14)

If a and b can be connected reversibly, the distinction between dissipation and inefficiency van-
ishes, and the inefficiency associated with a process that takes a to b is equal to the dissipation
associated with it.

It might happen that a probability distribution encodes details about the state that are irrele-
vant to the results of subsequent manipulations. As an example, consider a gas that is initially
confined to one side of a container by a partition. The partition is removed, and the gas allowed
to diffuse throughout the container while remaining isolated from its environment. Two proba-
bility distributions over initial conditions with disjoint supports, corresponding to the gas being
in different sides of the container initially, evolve into distributions with disjoint supports. The
usual sorts of manipulations, however, will be insufficient to distinguish them, and hence the
sort of detailed knowledge of the state that stems from knowledge about the initial state will be
irrelevant to possibilities of extracting work from the gas.

With these considerations in mind, we say that two statistical mechanical states b = (ρ,H),
b′ = (ρ′,H), with the same values of manipulable variables but differing probability distribu-
tions, are thermodynamically equivalent with respect to a classM of manipulations if and only
if, for any manipulation M inM, the expectation values for work, ⟨W⟩M, and heat exchanges
⟨Qi⟩M are the same for both states. It follows from this definition that, if two states b, b′ are ther-
modynamically equivalent with respect toM, then, for any state a, SM(b→ a) = SM(b′ → a).

For a device to implement a logical operation L, which maps inputs {αi} to outputs {βi =

L(αi)}, there must be a conventional association of logical states with sets of physical states.
Distinct logical states are to be represented by distinguishable states, which in the classical

2As Norton ([2016]) has argued, taking talk of irreversible processes too literally can lead to contradictions.
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context means probability distributions with non-overlapping support, and in the quantum-
mechanical context, orthogonal density operators. For any logical state γ, let [γ] be the corre-
sponding set of physical states. An implementation of a logical operation L that maps inputs
{αi} to outputs {βi = L(αi)} is a manipulation ML that maps each physical state ai in the class
[αi] to a physical state in [βi]. A logically irreversible operation maps two or more inputs {αi}
to the same output β. For such inputs, an implementation of L must map each state ai in [αi] to
a state bi in [β].

We ask: can the manipulation ML do this without dissipation? That is, can we have δML(ai →
bi) equal to zero, for every ai? Failing that, can we, by appropriate choice of manipulation,
make every element of the set {δML(ai → bi)} arbitrarily small?

The question is a bit subtle. The concept of dissipation is defined with respect to a class
M of manipulations. The concept of implementation of a logical operation is defined with
respect to a conventional association of logical states with sets of physical states. Landauer’s
principle says that there is dissipation associated with loss of distinguishability. The sense of
distinguishability relevant to this context is distinguishability by operations within the setM
of manipulations used to defined thermodynamic concepts. The reason that the question is a
bit subtle is that the operation of a computing device might lump together into a single logical
state physical states that are counted as thermodynamically distinct with respect to the set of
manipulations one is using to define thermodynamic concepts.

We will say that a manipulation M is logically irreversible with respect to a class M of
manipulations if there are two or more thermodynamically distinct states {ai} that get mapped
into states {bi} that are thermodynamically equivalent with respect toM. On this definition, it
can be proven that there is dissipation associated with logical irreversibility. In the next section
we will prove the following.

Landauer bound on dissipations Suppose a manipulation M takes a distinguish-
able set of states {ai, i = 1, . . . , n} to a set of states {bi, i = 1, . . . , n}, which are
thermodynamically equivalent with respect to a setM of manipulations. Then

n∑
i=1

e−δM(ai→bi)/k ≤ 1.

The Landauer bound on dissipations entails that every member of the set {δM(ai → bi)} is
greater than zero. As proven in Appendix B, it also entails a formulation that is often presented
as a gloss of Landauer’s principle, that the mean of the set is not smaller than k log n.3

1
n

n∑
i=1

δM(ai → bi) ≥ k log n. (2.15)

That is, there is an average dissipation, taken over members of the set {ai}, of at least k log n.
The Landauer bound means that, though we might be able to reduce the dissipation associated
with any particular member of the set as much as we like, we cannot simultaneously make
all of the dissipations arbitrarily small. For the case of n = 2, the most commonly discussed
case, the constraint is graphed in Figure 1. The shaded region is the set of permitted pairs
(δ1, δ2) = (δM(a1 → b1)/k, δM(a2 → b2)/k).

The dissipations and the relation of thermodynamic equivalence that are invoked in the Lan-
dauer bound are defined with respect to a class of manipulations. If a computing device employs

3In this article, all logarithms are natural logarithms, that is, logarithms to the base e.
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Figure 1: Values of (δ1, δ2) permitted by Landauer’s principle.

a classM of manipulations in its operation, which do not distinguish between physical states
{bi} lumped together into a single logical state of the device, there might be a wider classM+
of manipulations that do distinguish the output states {bi}. We might then have logically irre-
versibility with respect toM without dissipation with respect toM+. What we cannot have is
logical irreversibility with respect toM without dissipation with respect to the same classM
of manipulations. This is an illustration of the dependence of the concept of dissipation on the
class of manipulations considered; see Myrvold ([2020], §7) for further discussion.

If, as is usually assumed in these discussions, the states {ai} can be connected reversibly to
the output states {bi}, then any dissipation is inefficiency, and bounds on dissipations are bounds
on inefficiencies. If reversibility is not assumed, there may be unavoidable levels of dissipation
associated with some state transitions; if this is the case, not every dissipation represents an
inefficiency. We can re-state the Landauer principle in terms of inefficiencies.

Landauer bound on inefficiencies. If manipulation M takes a distinguishable set
of states {ai, i = 1, . . . , n} to thermodynamically equivalent states {bi}, then

n∑
i=1

e−(ηi+DM(ai→bi))/k ≤ 1,

where ηi is the inefficiency ηM(ai → bi).

If we have reversibility, the Landauer bound entails that all of the inefficiencies ηM(ai → bi)
must be positive, and that they cannot all be made arbitrarily small in the same process. Far
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enough from reversibility, it places no constraint on inefficiencies at all. The condition for the
Landauer bound to place a constraint on inefficiencies is,

n∑
i=1

e−DM(ai→bi)/k > 1. (2.16)

A necessary condition for (2.16) to be satisfied, and thus for the Landauer principle to have
teeth, is the condition that, for some ai,

DM(ai → bi) < k log n. (2.17)

If there is a sufficiently large in-principle bound on the minimum dissipation required for carry-
ing out processes at the molecular level, then (2.17) is not satisfiable. Any process would then
depart from reversibility by an amount that exceeds the Landauer bound. In section 4 it will be
argued that this is not correct, and the Landauer principle does have teeth.

The Landauer bound we have stated involves a distinguishable set of states. Distinguisha-
bility, like reversibility, is something that we should not expect to hold perfectly; in actual
implementations it will be approximate at best. For this reason, the theorem that we will prove
in the next section will not require perfect distinguishability, and will entail the version of the
Landauer bound we have stated in this section as a special case.

3 Proving the statistical second law, and Landauer’s principle

The theorems we will be concerned with come in two versions, classical and quantum, each
proven in pretty much the same way. To avoid saying everything twice, we adopt a systemati-
cally ambiguous notation, and state each theorem in such a way that it can be read either as a
theorem of classical statistical mechanics, or as a theorem of quantum statistical mechanics.

In what follows, ρ will be used either for a density function, with respect to Liouville mea-
sure, on a classical phase space, or, in the quantum context, a density operator on a Hilbert
space. S [ρ] is the Gibbs entropy (classical), or the von Neumann entropy (quantum).

S [ρ] = −k ⟨log ρ⟩ρ. (3.1)

We also define the relative entropy of two distributions.

S [ρ ∥σ] = −k
(
⟨logσ⟩ρ − ⟨log ρ⟩ρ

)
. (3.2)

S [ρ ∥σ] is one way to measure how much the distribution represented by σ departs from that
represented by ρ. It is equal to zero if σ and ρ represent the same distribution, and is positive
otherwise.

Suppose ā is a probabilistic mixture of states {ai}.

ρā =

n∑
i=1

pi ρai , (3.3)

where {pi} are positive numbers that add up to one. Then the Gibbs/von Neumann entropy of ā
is related to that of the ai’s via,

S [ρā] =
n∑

i=1

pi S [ρai] +
n∑

i=1

pi S [ρai ∥ ρā]. (3.4)
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If the states {ai} are distinguishable, then S [ρai ∥ ρā] = −k log pi, and so

S [ρā] =
n∑

i=1

pi S [ρai] − k
n∑

i=1

pi log pi. (3.5)

As outlined in the previous section, we are concerned with a system A evolving between
times t0 and t1 according to a time-varying Hamiltonian, and interacting successively with one
or more heat reservoirs {Bi}, which initially have canonical distributions at temperatures Ti.
The Hamiltonians of the heat reservoirs remain fixed throughout the evolution. We define

⟨Qi⟩ = −∆⟨HBi⟩ = −
(
⟨HBi⟩ρBi (t1) − ⟨HBi⟩ρBi (t0)

)
. (3.6)

This is the expectation value of the heat energy obtained by A from Bi.
Our first theorem relates the entropies as defined in the previous section to the Gibbs/von

Neumann entropies. Though a simple one, it is of fundamental importance in the foundations
of statistical mechanics, and deserves to be called the fundamental theorem of statistical ther-
modynamics.4

Proposition 1 (Fundamental theorem of statistical thermodynamics)
IfM is a class of manipulations of the sort outlined in section 2, then, for any states a, b,

SM(a→ b) ≤ S [ρb] − S [ρa].

Proof is given in Appendix A. The following are immediate corollaries of this.

Corollary 1.1 (Statistical second law of thermodynamics)
For any state a,

SM(a→ a) ≤ 0.

Corollary 1.2
If a and b can be connected reversibly—that is, if

SM(a→ b→ a) = 0,

then
SM(a→ b) = S [ρb] − S [ρa].

Thus, the Gibbs/von Neumann entropy is the state function whose existence is guaranteed
by the second law plus reversibility.

Now, to the Landauer principle. Suppose a manipulation M takes a sets of states {ai, i =
1, . . . , n} to states {bi}. Let ā be a probabilistic mixture of the states {ai} with weights {pi}, and
let b̄ be a mixture of the states {bi}, with the same weights. Since the manipulation M takes
each ai to bi, it takes ā to b̄. The expectation value of heat exchanges when M is applied to this
mixture is a weighted average of exchanges associated with the states {ai}, and so

σM(ā→ b̄) =
n∑

i=1

pi σM(ai → bi). (3.7)

4This is not a new theorem. The classical version of it is found in Gibbs ([1902], pp. 160–164), and the quan-
tum version, in Tolman ([1938], §128–130). Nonetheless, it is not as well-known in the philosophical literature on
statistical mechanics and thermodynamics as it should be. Maroney ([2009]) refers to it as a generalized Landauer
principle.
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We must have, of course,
σM(ā→ b̄) ≤ SM(ā→ b̄). (3.8)

This gives us,
n∑

i=1

pi σM(ai → bi) ≤ SM(ā→ b̄). (3.9)

Adding
∑

i pi SM(bi → ai) to both sides yields,
n∑

i=1

pi (σM(ai → bi) + SM(bi → ai)) ≤ SM(ā→ b̄) +
n∑

i=1

pi SM(bi → ai). (3.10)

Recalling the definition (2.10) of dissipations, this is,

−
n∑

i=1

pi δM(ai → bi) ≤ SM(ā→ b̄) +
n∑

i=1

pi SM(bi → ai), (3.11)

or,
n∑

i=1

pi δM(ai → bi) ≥ −SM(ā→ b̄) −
n∑

i=1

pi SM(bi → ai). (3.12)

We can re-write this as,
n∑

i=1

piδM(ai → bi) ≥ −
SM(ā→ b̄) +

n∑
i=1

pi SM(b̄→ ai)

− n∑
i=1

pi

(
SM(bi → ai) − SM(b̄→ ai)

)
.

(3.13)
Applying the Fundamental Theorem twice and invoking (3.4) gives us,

SM(ā→ b̄) +
n∑

i=1

pi SM(b̄→ ai) ≤
n∑

i=1

pi S [ρai] − S [ρā] = −
n∑

i=1

pi S [ρai ∥ ρā]. (3.14)

Plugging this into (3.13) yields,
n∑

i=1

pi δM(ai → bi) ≥
n∑

i=1

pi S [ρai ||ρā] −
n∑

i=1

pi

(
SM(bi → ai) − SM(b̄→ ai)

)
. (3.15)

Equation (3.15) is completely general, and holds for any states whatsoever. If, now, the states
{bi} are thermodynamically equivalent, then, for all i,

SM(bi → ai) = SM(b̄→ ai), (3.16)

and so (3.15) becomes,
n∑

i=1

pi δM(ai → bi) ≥
n∑

i=1

pi S [ρai ||ρā]. (3.17)

Thus, we have,

Proposition 2 (Landauer bound on dissipations)
For any manipulation M that takes states {ai, i = 1, . . . , n} to states {bi} that are thermodynami-
cally equivalent to each other, and any positive numbers {pi} such that

n∑
i=1

pi = 1,

12



we have
n∑

i=1

pi δM(ai → bi) ≥
n∑

i=1

pi S [ρai ∥ ρā],

where ā is a mixtures of the states {ai}, with weights {pi}.

As an immediate corollary we get the special case in which the manipulation M takes all of
the input states to the same state.

Corollary 2.1
For any manipulation M that takes states {ai, i = 1, . . . , n} to the same state b, and any positive
numbers {pi} such that

n∑
i=1

pi = 1,

we have
n∑

i=1

pi δM(ai → b) ≥
n∑

i=1

pi S [ρai ∥ ρā],

where ā is a mixtures of the states {ai}, with weights {pi}.

If we apply our result to the case in which the states {ai} are distinguishable, we get the
following corollary.

Corollary 2.2
For any manipulation M that takes each of a distinguishable set of states {ai, i = 1, . . . , n} to
states {bi} that are thermodynamically equivalent to each other, and any positive numbers {pi}
such that

n∑
i=1

pi = 1,

we have
n∑

i=1

pi δM(ai → bi) ≥ −k
n∑

i=1

pi log pi.

As shown in Appendix B, this is equivalent to the following.

Corollary 2.3
For any manipulation M that takes each of a distinguishable set of states {ai, i = 1, . . . , n} to
states {bi} that are thermodynamically equivalent to each other,

n∑
i=1

e−δM(ai→bi)/k ≤ 1.

This is the version stated in the previous section.
The Landauer principle has a generalization to the case in which thermodynamic equivalence

of the output states is not exact, but approximate.

Proposition 3
For any manipulation M that takes states {ai, i = 1, . . . , n} to states {bi}, and any positive num-
bers {pi} such that

n∑
i=1

pi = 1,
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we have
n∑

i=1

pi δM(ai → bi) ≥
n∑

i=1

pi S [ρai ∥ ρā] −
n∑

i=1

pi

(
SM(bi → ai) − SM(b̄→ ai)

)
,

where ā and b̄ are mixtures of the states {ai} and {bi}, respectively, with weights {pi}.

We can also get a generalization in terms of the relative entropies S [ρbi ∥ ρb̄]. The quantity∑
i pi S [ρbi ∥ ρb̄] is equal to zero when all of the distributions {bi} are the same, and is positive

otherwise, and thus is an indicator of the degree of distinctness of the distributions {bi}.

−SM(ā→ b̄) ≥ S [ρā] − S [ρb̄]; (3.18)

−SM(bi → ai) ≥ S [ρbi] − S [ρai]. (3.19)

Inserting these into (3.12) yields,

n∑
i=1

pi δM(ai → bi) ≥ S [ρā] − S [ρb̄] +
n∑

i=1

pi
(
S [ρbi] − S [ρai]

)
= S [ρā] −

n∑
i=1

pi S [ρai] −
S [ρb̄] −

n∑
i=1

pi S [ρbi]

 . (3.20)

Using (3.4), this gives us,

n∑
i=1

pi δM(ai → bi) ≥
n∑

i=1

pi
(
S [ρai ∥ ρā] − S [ρbi ∥ ρb̄]

)
, (3.21)

This gives us a version of the Landauer principle in terms of reduction of distinguishability of
the sets of states {ai} and {bi}.

Proposition 4
For any manipulation M that effects state transitions ai → bi, and any positive numbers {pi}
such that

n∑
i=1

pi = 1,

we have
n∑

i=1

pi δM(ai → bi) ≥
n∑

i=1

pi
(
S [ρai ∥ ρā] − S [ρbi ∥ ρb̄]

)
,

where ā and b̄ are mixtures of the states {ai} and {bi}, respectively, with weights {pi}.

4 Approximating reversibility

The second law of statistical thermodynamics entails that, for any a, b,

SM(a→ b→ a) ≤ 0. (4.1)

We do not expect there to be any process that takes a to b and then back to a without any
dissipation. However, if the array of permitted manipulations is sufficiently rich, there might
be no bound on dissipation short of zero, and we may have SM(a→ b→ a) = 0.
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One way to have a process that proceeds with negligibly small dissipation is to keep the
system A in contact with a heat reservoir large and noisy enough that the reservoir may be
regarded as canonically distributed throughout the process, and to vary the parameters λ slowly
enough that the time it takes for any appreciable change in these parameters is long compared
to the equilibration time-scale of the system A. Then the system A may be treated as if it
is in equilibrium with the reservoir at each stage of the process.5 We can also consider slowly
varying the temperature of the reservoir. For a process like that, at any time t during the process,
A may be treated as having a canonical distribution for the instantaneous parameter values
(λ(t), β(t)).

If ρ1 is a canonical distribution for parameters (λ, β), and ρ2 a canonical distribution for
slightly differing parameters (λ + dλ, β + dβ), then, to first order in the parameter differences,6

d⟨H⟩ = ⟨H2⟩ρ2 − ⟨H1⟩ρ1 =
∑

i

⟨
∂H
∂λi

⟩
ρ1

dλi − β−1 d⟨log ρ⟩. (4.2)

The first term on the right-hand side of this equation is the expectation value of the work done
by changing the external parameters; the remainder is the expectation value of the heat obtained
from the reservoir.

⟨d̄ Q⟩ = −kT d⟨log ρ⟩, (4.3)

where kT = β−1. This means that, for a process in the course of which the system A is in
continual contact with a heat reservoir at temperature T and the parameters λ are varied slowly
from values λa to λb, the expectation value of total heat absorbed will have the approximate
value

⟨Q(a→ b)⟩ ≈ −kT (⟨log ρb⟩ρb − ⟨log ρa⟩ρa) = T (S [ρb] − S [ρa]) . (4.4)

As long as there is no in-principle limit to how much time a state-transformation may take,
there is no in-principle limit to how closely this approximation can hold, and equality will be
approached as the time-scale of the changes in the parameters λ is increased, relative to the
time-scale of equilibration of the system A.

The result (4.4) is a result about expectation values. It is not assumed that the actual value
of heat exchanged will be close to its expectation value, or even that it will probably be close
to its expectation value. The probability distribution for the heat exchange may have a large
variance, and probabilities of large deviations from the expectation value may be far from
negligible. That is, the result does not depend on disregard of fluctuations. When we say that
the system has time to equilibrate, this does not mean that it is ever in a quiescent state, only
that its distribution may be treated as canonical at each stage of the process.

Let a, b be canonical states with parameters (λa, βa), (λb, βb). We will say that a class of
manipulationsM connects a and b quasi-statically if

1. M contains manipulations of the following form

(a) During time interval [t0, t0+T ], the parameters undergo smooth evolution λ(t), with
λ(t0) = λa and λ(t0 + T ) = λb.

(b) At time t the system A is in thermal contact with a heat reservoir at inverse temper-
ature β(t), where β(t) is a smooth function with β(t0) = βa and β(t0 + T ) = βb.

5This does not, of course, mean that it is in equilibrium, only that, for the purposes at hand, differences
between quantities calculated on the basis of the equilibrium distribution and quantities calculated on the basis of
the actual distribution are small enough that they may be neglected.

6The classical version of this is eq. (112) on p. 44 of Gibbs ([1902]), and the quantum, eq. (121.8) on p. 534
of Tolman ([1938]).
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2. For any such manipulation, there is one that proceeds twice as slowly. That is, there is a
manipulation that takes place in time interval [t0, t0 + 2T ], with parameter values λ′, β′,
where

λ′(t0 + t) = λ(t0 + t/2); β′(t0 + t) = β(t0 + t/2)

for t ∈ [0, 2T ].

Then we have the following result.

Proposition 5
If a, b are canonical states, and M is a class of manipulations that connects a to b quasi-
statically, then

SM(a→ b) = S [ρb] − S [ρa].

We have, as a trivial corollary,

Corollary 5.1
If a, b are canonical states, and M is a class of manipulations that connects a to b quasi-
statically, and also connects b to a quasi-statically, then

DM(a→ b) = 0.

Suppose that we have a system to which can be applied a manipulable external potential
Vλ, and which can also be confined, by suitable barriers, to various regions {Γi} of its state
space. Let {ai} be a finite set of canonical states, confined to the regions {Γi}, with values λa

of the manipulable parameters λ on which the external potential depends, and let {bi} be a set
of canonical distributions confined to the same regions, with parameter values λb. Then, for
any desired degree of approximation to the quasi-static limit, we can find a sufficiently slow
variation of the parameters λ that yields the desired degree of approximation for all of the
transitions ai → bi. We will say, of such a situation, thatM uniformly quasi-statically connects
{ai} to {bi}. We have, as another corollary to Proposition (5):

Corollary 5.2
Let {ai}, {bi} be sets of canonical states, such thatM uniformly quasi-statically connects {ai} to
{bi} and {bi} to {ai}. Let {pi} be a set of non-negative numbers that sum to 1, and let ā and b̄ be
probabilistic mixtures of {ai} and {bi} with weights {pi}. Then

DM(ā→ b̄) = 0.

5 Example: the one-particle gas

The simplest example for illustrating erasure is that of a single particle in a box, with a parti-
tion that can be inserted and removed. If this is the only available manipulation, then we have
a rather boring and uninteresting thermodynamical theory. To get a thermodynamically inter-
esting theory, we need to introduce the possibility of doing work on and obtaining work from
the system.

Suppose that the particle can be subjected to an external potential Vλ, that varies in the x-
direction only. We take the system to be in thermal equilibrium with a heat reservoir at temper-
ature T . On a canonical distribution, the distributions of the momentum p and the coordinates
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other than x are unchanged when the potential Vλ is varied. We therefore integrate these out,
and consider the marginal distribution of the coordinate x.

ρλ,β(x) =
{

Z−1
λ,β e−βVλ(x), inside the container;

0, outside.
(5.1)

Take the x-coordinate within the container to range from −l to l. The partition function is

Zλ,β =
∫ l

−l
e−βVλ(x) dx. (5.2)

Suppose the force on the particle is constant within the box, and may be varied in both
strength and direction. The particle could, for example, be a charged particle, and the applied
field an electric field. Then the external potential varies linearly with x. Take it to be

Vλ(x) = λ kT x/l, (5.3)

where λ is a dimensionless parameter.
The analogue of compressing or expanding the one-particle gas is varying the external po-

tential. As λ is increased from zero, the distribution of the particle becomes more and more
concentrated towards the left end of the container. We can make the probability that it is to
the left of any chosen location as high as we want by taking λ sufficiently large. Similarly, for
negative values of λ, the distribution is concentrated towards the right end of the container.

Relative to a canonical distribution with λ = 0, a distribution for a large value of λ has a large
value of free energy, and so we have to do work on the gas while increasing the potential. The
work done may be recovered by decreasing the potential back to zero. If the process is done
slowly enough that the particle can be treated as canonically distributed at each stage, the ex-
pectation value of the work recovered while decreasing the potential is equal to the expectation
value of the work done in increasing it: the process is thermodynamically reversible.

Let b be a state in which no partition is present and the applied potential is zero. The prob-
ability distribution of the particle is evenly distributed throughout the container. Now insert a
partition that divides the container into subvolumes with ratio p : (1 − p). Let a1(p) be a state
in which the particle is to the left of the partition, and let a2(p) be a state in which the particle
is to the right of the partition.

The states a1(p) and a2(p) are perfectly distinguishable states. There’s a complication, how-
ever: given our class of manipulations, we have no way to prepare them, starting from state b.
If we start from b and increase the potential, we can make the probability that the particle is to
the left of where we intend to drop the partition as high as we like, but it can never be equal to
1.

In place of these states a1(p) and a2(p), which are perfectly distinguishable but not preparable
using the manipulations considered, we consider a pair of states that are almost distinguishable,
and are preparable. Let ϵ be a small positive number, and let aϵ1(p) be a state in which Vλ is
zero, and a partition is present, dividing the container into subvolumes with ratio p : (1 − p),
and in which there is a probability of 1 − ϵ that the particle is to the left of the partition, and
probability ϵ that it is to the right. Define aϵ2(p) similarly, with the probabilities reversed.

One manipulation that takes aϵ1(p) to b is removal of the partition, after which the particle
equilibrates. This is an inefficient operation, as we could have performed an expansion of the
gas, in the course of which work is obtained and heat enters the gas from the reservoir.

To see how much inefficiency, we consider the following process, which is analogous to a
controlled expansion of a gas. We start in state aϵ1(p).
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1. We first slowly increase λ to the point at which, on the canonical distribution for Vλ, the
particle has probability 1−ϵ of being to the left of the partition, and probability ϵ of being
to the right.

2. We remove the partition, allowing the particle to move freely throughout the container.
The probability distribution does not change, as the probability, on the equilibrium distri-
bution, of the particle being on the left of the former location of the partition is the same
as it was before the partition was removed.7

3. The potential is slowly decreased to zero.

The process can be performed in reverse order to create aϵ1(p) from b. If we have available to
us arbitrarily slow processes,

SM(aϵ1(p)→ b→ aϵ1(p)) = SM(aϵ2(p)→ b→ aϵ2(p)) = 0. (5.4)

The expectation value of heat gained in the process of expansion is, in the quasi-static approx-
imation,

⟨Q(aϵ1(p)→ b)⟩ = T (S [ρb] − S [ρaϵ1(p)]) = −kT [(1 − ϵ) log p + ϵ log(1 − p) − v(ϵ)], (5.5)

where
v(ϵ) = ϵ log ϵ + (1 − ϵ) log(1 − ϵ). (5.6)

We can make ⟨Q(aϵ1(p)→ b)⟩ as close to −kT log p as we like by taking ϵ sufficiently small.
Therefore, erasure by removing the partitions has associated with it inefficencies,

η1 = −k[(1 − ϵ) log p + ϵ log(1 − p) − v(ϵ)] ≈ −k log p,

η2 = −k[ϵ log p + (1 − ϵ) log(1 − p) − v(ϵ)] ≈ −k log(1 − p).
(5.7)

Suppose that we want an erasure process that takes both aϵ1(p) and aϵ2(p) to the state b. One
such process goes by removal of the partition. This has the inefficiencies exhibited in (5.7).
But we have only availed ourselves of a fairly limited set of operations. Would it be possible to
concoct a different set of operations, which might include the employment of auxiliary systems
subject to any sort of Hamiltonian we might dream up, whether or not realization of such
Hamiltonians is even remotely feasible, and thereby construct an operation that takes both aϵ1(p)
and aϵ2(p) to b, with lower inefficiency for both input states than the lossy removal-of-partition
operation, which has the inefficiencies (5.7)?

Alas, the answer is negative. As the reader can verify, as long as ϵ < p < 1 − ϵ, the pair of
inefficiencies (5.7) saturate the Landauer bound exhibited in Proposition 2.8 This means that no
process, no matter how elaborate, will achieve a lower inefficiency for both input states, so long
as all exchanges of heat are with canonically distributed reservoirs, there are at the beginning of
the process no dynamically relevant correlations between the state of A and either the auxiliary
systems or the reservoirs, the evolution of the total system is Hamiltonian, and at the end of the
evolution the auxiliary systems are restored to their initial states.

7General rule: if we take state space Γ and partition the space into disjoint regions Γi, a canonical distribu-
tion ρ defined on Γ is a mixture of canonical distributions ρi confined to the regions Γi, with weights being the
probabilities, on ρ, that the system is in Γi.

8Because we have reversibility, inefficiencies and dissipations are equal.
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6 The LPSG proof vindicated

The LPSG proof proceeds as follows.9 Suppose we have a manipulation ML that takes each of a
distinguishable set of states {ai, i = 1, . . . , n} of a device D to a common destination state b. The
proof employs as an auxiliary system a one-molecule gas in a box into which partitions may
be inserted and removed, and which can be expanded reversibly. LPSG reason that, on pain of
violating the statistical second law of thermodynamics, the manipulation ML must satisfy the
Landauer principle. This involves considering the following cycle of operations (performed
with both the device D and the gas G in contact with a heat reservoir at temperature T at all
times). The starting state is one in which device D is in state b, and there are no partitions in
the box.

1. n − 1 partitions are inserted into the box, dividing its volume into n subvolumes, with
volumes that are fractions pi of the total volume. With probability pi, the gas molecule
is in the ith subvolume.

2. A controlled operation is performed on D, using the state of the gas G as control. If the
gas molecule is in the ith subvolume, b is taken into the state ai. The heat exchange with
the reservoir can be made arbitrarily close to TSM(b→ ai).

3. A controlled operation is performed on the gas G, using the state of D as control. The ith
subvolume is expanded reversibly, obtaining heat −kT log pi from the reservoir. The gas
has now been restored to its initial state.

4. The operation ML is performed, restoring the device D to the state b, with heat transfer
σML(ai → b).

If one works through the expectation values of heat exchanges in the course of this cycle,
assuming the statistical second law but not assuming reversibility of the processes b → ai,
then what is obtained is precisely our Corollary 2.2 of section 3. Obviously, if one replaces
the assumption that heat −kT log pi can be obtained in step 3 with the assumption that there
are operations such that the expectation value of heat obtained can come arbitrarily close to
−kT log pi, the result still obtains.

The point of contention is whether expansion of a one-molecule gas can be performed in such
a way that the expectation value of heat obtained is arbitrarily close to −kT log pi. Norton, in
the works cited, contends that this is false. In my opinion Ladyman and Robertson ([2014]) are
right when they say that he has not established this. However, if one has doubts about this being
true for a one-molecule gas expanded by a piston, because of lack of control over a sufficiently
sensitive piston, our example from the previous section of a one-molecule gas subjected to an
external potential may be substituted.

We replace step 3 with the following process. For simplicity we illustrate it for the case of
a single partition; extension to multiple partitions is straightforward. Suppose the particle is
found to be to the left of the partition. The initial state is a1(p).

1. Slowly increase λ to a high positive value λ∗.

2. Remove the partition, and allow the system to equilibrate. Some heat is absorbed from
the reservoir, but, for large λ∗, this is a small amount.

9LPSG present the argument for the case n = 2, but the generalization to an arbitrary number of input states
is obvious and straightforward.
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3. Slowly decrease λ to zero.

If the particle is found to the right of the partition, one takes λ to a large negative value instead.
It is not difficult to calculate the expectation value of heat obtained in such a process in the
quasi-static limit. The details of this calculation need not concern us; what matters if that it can
be made arbitrarily close to −kT log p by taking λ∗ sufficiently large.10

7 Demonology

As Landauer’s principle is often discussed in connection with the literature on Maxwell’s de-
mon, the reader might be wondering what, if any, connection what is done here has with that
literature.

A Maxwell demon is meant to produce violations of the second law of thermodynamics. It is
useful to distinguish between two sorts of feats that a demon might be imagined to accomplish.

Earman and Norton ([1998]) distinguish between straight and embellished violations of the
second law of thermodynamics. A straight violation decreases the entropy of an adiabatically
isolated system, without compensatory increase of entropy elsewhere. An embellished viola-
tion exploits such decreases in entropy reliably to provide work. In a similar vein, David Wal-
lace ([2018]) distinguishes between two types of demon. A demon of the first kind decreases
a coarse-grained entropy, either a Boltzmann entropy or a coarse-grained Gibbs entropy, of an
isolated system. A demon of the second kind violates the Carnot bound on efficiency of a heat
engine over a repeatable cycle that restores the state of the demon plus any auxiliary system
utilized to its original thermodynamic state.

A demon of the first kind illustrates the dependence of entropy on the class of manipulations
considered. A manipulation M outside of a class M might adiabatically decrease a system’s
thermodynamic entropy, as defined with respect toM, but it will not decrease the thermody-
namic entropy, as defined with respect to a wider classM+ that includes M, because it follows
from the definition of thermodynamic entropy, either the standard textbook definition, which
presumes that the thermodynamic states involved can be connected by a reversible process,
or the definition adopted here, that the entropy of an isolated system cannot decrease.11 See
Myrvold ([2020], §8) for further discussion of this point.

Boltzmann entropy is another matter. As has been pointed out by Oliver Penrose ([1970],
Ch. V), by David Albert ([2000], Ch. 5), and by Meir Hemmo and Orly Shenker ([2012],
Ch. 13), if the macroevolution of a system is not predictable—that is, if there is a plurality of
macrostates that it may end up in, with nonzero probability, from a given initial macrostate—
then it is consistent with Hamiltonian evolution that its Boltzmann entropy will with certainty
decrease in the course of isolated evolution. Considerations such as these illustrate the some-
what tenuous nature of the connection between Boltzmann entropy and thermodynamic en-
tropy. While it is true that, for many macroscopic systems subjected to feasible manipulations

10For those who are interested, the result is

⟨Q⟩ = −kT log p − kT log
(

1 − e−2λ∗

1 − e−2pλ∗

)
.

For any p, 0 < p < 1, for large λ∗ we have

⟨Q⟩ ≈ −kT log p − kTe−2pλ∗ .

Therefore, ⟨Q⟩ approaches −kT log p exponentially with increase of λ∗.
11That is, if there is a process that takes a state a to state b with no heat exchange with any reservoir, SM(a →

b) ≥ 0. This follows from the definition of SM(a→ b), and does not depend on the statistical second law.
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and measurements, if Boltzmann entropy is defined with respect to a partition corresponding
to observationally distinguishable states, differences in Boltzmann entropy will approximate
differences in thermodynamic entropy, for other situations, the connection between the two can
come apart, as the authors cited demonstrate.

In a similar vein, Hemmo and Shenker ([2012], Ch.12) address the question of whether there
must be an increase of Boltzmann entropy associated with a logically irreversible operation.
They show that it is consistent with conservation of Liouville measure that one can desig-
nate certain degrees of freedom as information-bearing and effect erasure with respect to those
degrees of freedom without an increase of total Boltzmann entropy of all systems involved.
They count this as a counterexample to Landauer’s principle. It is, however, consistent with
the theorem proven in this paper, which is concerned, not with Boltzmann entropy, but with
dissipations, as defined by (2.10), in terms of expectation values of heat exchanges.

Is a demon of the second kind possible? It follows from the statistical second law that there
can be no system that operates in a cycle, exchanging heat with any number of reservoirs,
that reliably violates the Carnot bound on efficiency of heat engines. Landauer’s principle
is not needed to see this. The principle may, however, serve a heuristic role, in analyzing
some proposed device that may appear at first sight to violate the statistical second law, as a
reminder that the device should operate in a cycle and that dissipations associated with resetting
its state to the initial state should not be neglected. This is accepted in at least some of the
literature on the thermodynamics of computation. Bennett ([2003]), for example, suggests that,
though Landauer’s principle is in a sense a “a straightforward consequence or restatement of
the Second Law,” it nevertheless has considerable pedagogic value.

As is usual in thermodynamics, we have employed a division of the world into the system
of interest and the remainder. We have considered systems subjected to external time-varying
potentials, without including the sources of those potentials in our analysis. Of course, these
sources might have dissipations associated with their operation. Landauer’s principle tells us
that, in addition to whatever dissipation is occurring outside the system of interest, there is
an additional dissipation associated with implementation of operations that are not logically
reversible. One of the concerns of the literature on the thermodynamics of computation is
whether there is any in-principle minimal heat generation internal to the computing machinery.
In such a context, it is entirely appropriate to analyze a system supplied with an external power
supply that is itself left out of the analysis.12

Norton ([2013c]) has recommended restricting consideration to self-contained processes, in-
ternalizing all driving potentials. The thought motivating this seems to be that, if the process
considered is not self-contained, one might be able to construct a system that appears to vi-
olate the second law if external dissipations are neglected, but can be seen not to do so if all
dissipations are taken into account. If this is the motivation, it rests on a false premise. The
statistical second law holds for systems subjected to an external potential. It is necessary to
internalize any control mechanism responsible for controlled operations, but it is not necessary
to internalize the driving potential.

Norton also offers an argument, which he takes to be a ‘no-go’ theorem for the thermody-
namics of computation, to the effect that, if self-contained processes are considered, there is
always dissipation associated with any process that far exceeds the Landauer bound. I do not
believe that he has established this conclusion, but an analysis of that argument would take us
beyond the scope of this paper, and will be left for a sequel.

12This point has been made by Ladyman ([2018], p. 235).
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8 Conclusion

Landauer’s principle, as a statement about dissipations defined, as above, in terms of expec-
tation values of heat exchanges, is a theorem of statistical mechanics. If a manipulation takes
each of a set of n distinguishable input states to the same output state, or to output states that
are thermodynamically equivalent, it is not possible for the manipulation to be dissipationless
for all of the inputs; there must be dissipation, averaged over the set of input states, of at least
k log n. Our proof of Landauer’s principle does not rely on an assumption of the availability
of thermodynamically reversible processes, or even an approximation to them, though, unless
the processes involved can be effected with sufficiently small dissipation, the principle places
no bounds on extra dissipation associated with logical irreversibility. Worries about whether a
sufficiently close approximation to thermodynamic reversibility can be achieved in the face of
molecular-scale fluctuations can be alleviated. If we define reversibility in terms of reversal of
expectation values of heat exchanges, reversibility can be approximated as closely as one likes,
if the processes proceed slowly enough.

Appendix A Proof of the Fundamental Theorem

To be proven: IfM is a class of manipulations of the sort outlined in section 2, then, for any
states a, b,

SM(a→ b) ≤ S [ρb] − S [ρa].

We use the following lemmas.

Lemma 1
For any Hamiltonian H, and any T > 0, the canonical distribution at temperature T minimizes

⟨H⟩ρ − TS [ρ].

Lemma 2 (Subadditivity)
For a composite system AB,

S [ρAB] ≤ S [ρA] + S [ρB],

with equality if and only if the subsystems are probabilistically independent.

Lemma 3
S [ρ] is conserved under Hamiltonian evolution.

We consider some manipulation M ∈ M that takes a state a of A at t0 to a state b at t1. At
time t0 the composite system consisting of A and {Bi} has distribution represented by density
ρtot(t0). At time t1 the density is ρtot(t1). We will write S tot(t) as an abbreviation for S [ρtot(t)],
and similarly for S A(t) and S Bi(t).

By Lemma 1 we have, for each reservoir Bi,

⟨HBi(t0)⟩ − TiS Bi(t0) ≤ ⟨HBi(t1)⟩ − TiS Bi(t1), (A.1)

or,
∆⟨HBi⟩ − Ti∆S Bi ≥ 0. (A.2)

Since ⟨Qi⟩ = −∆⟨HBi⟩, this gives
⟨Qi⟩
Ti
≤ −∆S Bi . (A.3)
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Because A is uncorrelated with each Bi at t0,

S tot(t0) = S A(t0) +
n∑

i=1

S Bi(t0). (A.4)

Because of subadditivity,

S tot(t1) ≤ S A(t1) +
n∑

i=1

S Bi(t1). (A.5)

Because Hamiltonian evolution conserves S ,

S tot(t1) = S tot(t0). (A.6)

Taken together, (A.4), (A.5), and (A.6) yield,

∆S A +

n∑
i=1

∆S Bi ≥ 0. (A.7)

This, together with (A.3), gives us the result,

σM(a→ b) =
n∑

i=1

⟨Qi⟩
Ti
≤ ∆S A. (A.8)

Since this must hold for every manipulation in the set M, it must hold also for SM(a → b),
which we defined as the least upper bound of the set of all σM(a → b) for M ∈ M. This gives
us the desired result,

SM(a→ b) ≤ ∆S A. (A.9)

Appendix B Proof of equivalence of two formulations.

We wish to prove the following.

Lemma 4
Let {xi, i = 1, . . . , n} be any sequence of n real numbers. The following are equivalent.

(A) For all positive {pi, i = 1, . . . , n} such that
∑

i pi = 1,
n∑

i=1

pi xi ≥ −
n∑

i=1

pi log pi.

(B)
n∑

i=1

e−xi ≤ 1.

To prove this, we prove,

Lemma 5
Let {qi, i = 1, . . . , n} be any sequence of n positive real numbers. The following are equivalent.

(A) For all positive {pi, i = 1, . . . , n} such that
∑

i pi = 1,
n∑

i=1

pi log (pi/qi) ≥ 0.
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(B)
n∑

i=1

qi ≤ 1.

From Lemma 5, Lemma 4 follows immediately by taking qi = e−xi . To prove Lemma 5 we
will invoke the log sum inequality.

Lemma 6 (Log Sum Inequality)
For any two sequences of positive real numbers {pi, i = 1, . . . , n}, {qi, i = 1, . . . , n},

n∑
i=1

pi log(pi/qi) ≥
 n∑

i=1

pi

 log

 n∑
i=1

pi

/ n∑
i=1

qi

 .
The proof of this can be found in many textbooks of information theory; see, for example,

Cover and Thomas ([1991]), Theorem 2.7.1.
We now prove Lemma 5.
Proof that (A) ⇒ (B). Let {qi, i = 1, . . . , n} be a sequence of positive real numbers such that

(A) holds. Take

pi = qi

/ n∑
j=1

q j. (B.1)

Then
∑

i pi = 1, and
n∑

i=1

pi log (pi/qi) = − log

 n∑
j=1

q j

 ≥ 0, (B.2)

or,
n∑

i=1

qi ≤ 0. (B.3)

Proof that (B) ⇒ (A). Suppose that {qi} is a sequence of positive numbers such that (B) holds.
Then, by the log sum inequality, for any sequence {pi} of positive numbers such that

∑
i pi = 1,

n∑
i=1

pi log(pi/qi) ≥ − log

 n∑
i=1

qi

 ≥ 0. (B.4)
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