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1. Introduction

Newton’s claim to provide experimental proofs is often criticized. It is argued that his 
proofs are based on hypotheses and not inferred from the experiments alone. This crit-
icism, however, applies a hypothetico-deductive analysis to Newton’s experimental rea-
soning. Such an analysis is not consistent with Newton’s own understanding of his proof 
method. The following reconstruction of Newton’s proof method is intended to do justice 
to his understanding by applying the conception of iconic proofs to Newton’s proofs by 
experiment. The main purpose of this analysis is to explain Newton’s dictum that the ex-
periment alone serves as the source of evidence from which his theorems are derived. After 
drawing a general distinction between symbolic and iconic proofs and illustrating this dis-
tinction by means of Euclidean proofs and Aristotelian syllogisms, I will apply this distinc-
tion to Newton’s experimental proofs and analyze Newton’s proof of the heterogeneity of 
sunlight by his experimentum crucis as an iconic proof. Finally, I will show that this experi-
ment and its underlying method remain prominent in Newton’s Opticks.

2. Symbolic vs. Iconic Proofs

Iconic proofs are distinct from symbolic proofs. The constituents of symbolic proofs are 
sentences, while the constituents of iconic proofs are icons. According to Peirce, an icon 
represents what it represents because it resembles what it represents. By contrast, a sym-
bol symbolizes what it symbolizes merely by convention. This difference can be utilized 
within proofs: In symbolic proofs, the properties in question are not identified by means 
of the properties of the symbols (sentences) used in those proofs. Sentences are proven by 
logical deduction from axioms. By contrast, iconic proofs prove the properties in question 
by means of the properties of the icons used in those proofs; the properties of the icons are 
used as identity criteria for the properties in question.

— Symbolic conception of proof: A proof is a logical deduction of a sentence (the 
proven theorem) from other sentences (the axioms).

— Iconic conception of proof: A proof is a rule-governed construction of an icon that 
provides the proof criteria for what is in question.

The icons providing the relevant proof criteria according to the iconic conception may be 
diagrams such as the diagrams used in Euclid’s geometric proofs, or they may be Venn di-
agrams, Peirce’s existential graphs or Wittgenstein’s ab-diagrams, which are used in iconic 
proof procedures of first-order logic. Euclid’s diagrams represent relevant geometric prop-
erties; Venn diagrams, Peirce’s graphs and Wittgenstein’s ab-diagrams represent relevant 
logical properties (Lampert, 2017, 2018, 2020).

Symbolic as well as iconic proofs can be understood in either a subjective or an objective 
sense. In the first sense, a proof is intended to convince an audience; in the second, a proof is a 
stepwise, rule-governed construction that answers a question by relating it to something given. 
A symbolic proof persuades an audience given that the audience accepts the axioms on which 
it rests. An iconic proof persuades an audience given that the audience shares the adopted crite-
ria for evidence. A symbolic proof relates a theorem to given axioms by deducing the theorem 
from the axioms through the stepwise application of deductive rules. An iconic proof relates a 
property in question to a property of an icon through the application of nondeductive (e.g., ge-
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ometric, diagrammatic or inductive) rules. An icon is a source of objective evidence, meaning 
that the property in question can be identified by a property of the icon.

Since the emergence of mathematical logic at the end of the 19th century, a symbolic 
conception of proofs dominated both, modern proof theory as well as the rational reconstruc-
tion of prominent proofs in the history of science. Induced by the so-called ‘iconic turn’, this, 
however, changed by the work of the recent decades regarding both, the systematic investi-
gation of what proofs are as well as the understanding of historical proofs. Principles of sym-
bolic and iconic proofs are only spelled out rigorously within a modern understanding of for-
mal calculi, be it in terms of rules to deduce theorems or rules to generate icons. The formal 
elaboration of a proof conception helps to make explicit or to work out rigorously implicit 
principles of historical proofs. In doing so, it is not claimed that the founder of the proofs 
were in the possession of a formal and explicit understanding of their proof methods; it is 
merely presumed that historical proofs are based on underlying proof ideas. To make them 
explicit, one must draw distinctions between different proof conceptions in the first place. 
To understand the strugle regarding proofs in the history of sciences better, we need clear-
cut conceptions of proofs that help to make implicit principles of historical proofs explicit. In 
the following, I will first illustrate differences between a symbolic and an iconic conception of 
proof by providing alternative reconstructions of geometrical proofs, illustrated by Euclid’s 
proof of his first proposition, and of logical proofs, illustrated by Aristotle’s syllogism Bar-
bara; then, I will draw analogies to the analysis of Newton’s experimental proof in his exper-
imentum crucis and argue that experiments serve as icons in Newton’s experimental proofs.

2.1. Symbolic vs. Iconic Analysis of Euclidean Proofs

In his first proposition, Euclid proves how to construct an equilateral rectangle. This proof 
is often criticized to be incomplete. This criticism, however, rests on a reconstruction in 
terms of a symbolic conception of proof.

Euclid’s proof refers to the following rules that he establishes prior to his proofs 
(Heath, 1968, pp. 153-155, discussed in detail on pp. 183, 187, 195, 199, and 222):

D15: A circle is a plane figure contained by one line such that all the straight lines fall-
ing upon it from one point among those lying within the figure are equal to one another.

D20: Of trilateral figures, an equilateral triangle is that which has its three sides 
equal, [. . .].

P1: [. . .] to draw a straight line from any point to any point.
P3: To describe a circle with any center and distance.
CN1: Things which are equal to the same thing are also equal to one another.

In illustrating the symbolic conception of proof, I abstain from a detailed logical anal-
ysis of Euclid’s proof. Such an analysis would be enormously intricate and extend beyond 
Euclid’s text. In particular, a full logical formalization of a valid deductive formal proof 
would require further axioms that are neither among Euclid’s presumptions nor mentioned 
in the proof of proposition 1.12Thus, it would be even more evident that Euclid’s proof is 

1 Cf., e.g., (Tarski, 1959); (Beeson, 2019, pp. 35-36); and http://geocoq.github.io/GeoCoq/. (Dal Ma-
gro et  al., 2019), referring to forthcoming work by Lassalle Casanave, also note differences between 
Euclidean proofs by diagrams and Hilbert’s axiomatic proof conception.

http://geocoq.github.io/GeoCoq/ 
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incomplete according to a logical analysis. Instead of a detailed logical reconstruction, I will 
be satisfied with analyzing Euclid’s proof in the form of a sequence of sentences, as pro-
vided in Euclid’s text and based on his postulates, definitions and common notions. This 
suffices to show that the judgment that Euclid’s proof is incomplete depends on the anal-
ysis of his proof as a sequence of sentences. Table 1 provides a simplified symbolic recon-
struction of Euclid’s proof.

Table 1. Symbolic Reconstruction of Euclid’s Proof

Problem: On a given finite straight line to construct an equilateral triangle

Division No. Sentence Rule

Setting out 1 Let the straight line AB exist. Assumption

Construction 2 The circle BCD with center A and radius AB exists. P3
3 The circle ACE with center B and radius BA exists. P3

? 4 The two circles BCD and ACE intersect at point C. ?

Construction 5 The straight lines CA and CB exist. P1

Core Proof
6 AC = AB 1, 2, 4, 5, Def. 15
7 BC = BA 1, 3, 4, 5, Def. 15
8 C A = AB = BC 6, 7, CN1

Conclusion 9 The triangle ABC is equilateral given AB. 8, Def. 20

As has often been noted, this proof has a gap on line 4.2 Furthermore, sentences within 
a symbolic proof must assert propositions. Euclid’s text, however, presents instructions that 
explain how to construct a diagram. According to a symbolic conception of proof, P1 and 
P3 must be interpreted as assumptions of existence, although they in fact refer to actions. 
Thus, the analysis of Euclid’s proof as a symbolic proof neither does justice to the wording 
of Euclid’s text nor yields a compelling symbolic proof.

The sentences in Euclid’s proof do not state propositions. Instead, they either are in-
structions for generating a diagram or point to the relevant properties of the generated 
diagram that prove the geometric properties in question. According to the symbolic con-
ception of proof, the diagram accompanying the text in (Heath, 1968, p. 241) merely illus-
trates the proof; it is neither part of the proof nor does it have any probative force. Accord-
ing to an iconic reconstruction of Euclid’s proof, however, the proof consists not of the 
sentences but of the diagrams to which the sentences refer. Table 2 analyzes the proof step 
by step and relates the sentences to the corresponding diagrams.3 The sentences are repro-
duced almost exactly from (Heath, 1968, p. 241f.).

2 Cf., e.g., (Heath, 1968, p. 242):
 It is a commonplace that Euclid has no right to assume [. . .] that the two circles will meet in a point C.
 For a discussion, cf., for example, (Giaquinto, 2011); (Beeson, 2019, p. 2).
3 For similar reconstructions, cf. (Byrne, 1847, p. 1); (Miller, 2001, p. 2). That diagrams play an essential role 

in Euclid’s proofs has been accepted as standard since the work of, e.g., (Manders, 2008; Mumma, 2012).
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Table 2. Iconic Reconstruction of Euclid’s Proof

Problem: On a given finite straight line to construct an equilateral triangle

Division No. Sentence Diagram Rule

Setting out 1 Let AB be the given finite straight line. P1

Construction 
of the diagram

2 With center A and distance AB, let 
the circle BC D be described. P3

3 With center B and distance BA, let the 
circle AC E be described. P3

4/5

From the point C, in which the circles 
cut one another, to the points A and 
B, let the straight lines C A and C B 
be joined.

2 × P1

Identification 
of geometric 
properties

6 Since the point A is the center of the 
circle C DB, AC is equal to AB. D15

7 Since the point B is the center of the 
circle C AE, BC is equal to AB. D15

8 Since AC and C B are equal to AB, C 
A is also equal to C B. CN1

Solution 9
Since the three straight lines C A, AB 
and BC are equal to one another, the 
triangle ABC is equilateral.

D20
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According to an iconic understanding of Euclid’s proof, the postulates refer to the 
drawing of diagrams and the relation of the drawn figures to geometric figures. P1 and P3 
refer to actions: drawing a line using a ruler and drawing a circle using a compass. How-
ever, a line that is drawn in this way is not exactly straight, is not without breadth and is 
not continuous. Similar caveats apply to the described circle: not every mark that consti-
tutes the described line will lie at exactly the same distance from the center. Nevertheless, 
P1 and P3 postulate that the drawings have the geometric properties of the figures they rep-
resent. Although the drawn figures do not exactly resemble the geometric figures they rep-
resent and although they have a specific magnitude, it is postulated that their resemblance 
to those geometric figures is sufficiently exact to allow them to play the role of the geomet-
ric figures themselves and that their relevant properties represent the geometric properties 
of the represented geometric figures in general within the proof. The drawn figures are not 
instances of generalities that can only be stated through propositions; instead, per the pos-
tulates, they are representatives (paradigms) of arbitrary figures such that whatever can be 
shown by referring to the relevant properties of those representatives may serve as proof of 
the properties of the geometric figures. Consequently, the properties of diagrams that fol-
low from the rule-guided construction of such representatives, such as the intersection of 
drawn circles, may serve as criteria for proof; no further proof is needed that the drawn cir-
cles in fact intersect because this fact can be read off from the diagram on the basis of its 
rules of construction. Consequently, the iconic reconstruction of Euclid’s proof has no gap 
that must be filled by stipulating the intersection point C.

Thus, to close the gap in Euclid’s proof, no further assumption is needed; only a dif-
ferent analysis, based on a different conception of proof, is necessary. The probative force 
of the iconic proof originates from the relevant properties of the constructed diagram. Eu-
clid’s calculus is a special calculus for constructing specific diagrams and reading off their 
geometric properties; it is not a logical, topic-neutral, deductive calculus for deducing prop-
ositions from axioms. One might question the use of non-deductive postulates, definitions 
and common notions to establish the role of diagrams in representing the properties of ge-
ometric objects within Euclidean geometry. However, in doing so, one does not identify 
a gap within Euclid’s proofs. Instead, one rejects the Euclidean calculus itself and, conse-
quently, the praxis and application of Euclidean proofs using a ruler and compass.

2.2. Symbolic vs. Iconic Analysis of Syllogisms

Properties that can be advantageously read off from diagrams without needing to be jus-
tified by further statements or inferences are known as “free rides” or “observational ad-
vantages” in the literature; see, e.g., (Shimojima et al., 1996; Stapleton et al., 2016, 2017). 
This concept is relevant not only for the analysis of Euclid’s proof but also in the case of 
logical proofs. In the case of an analysis of syllogisms as sequences of sentences, for exam-
ple, one needs to introduce and justify deductive inference rules in order to identify correct 
syllogisms. For example, in the case of the syllogism Barbara, no property of the premises 
can serve as a criterion based on which to infer the conclusion. Instead, inference rules are 
needed. For brevity, I simply assume one generalized rule MPP

∀
 in Table 3. This rule can 

be proven in a calculus of natural deduction through universal quantifier elimination, the 
rule of assumption, modus ponendo ponens (MPP), conditional proof, and universal quan-
tifier introduction. The deductive rules of a logical calculus, in turn, are in need of some 
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further meta-logical justification, which is usually provided by semantics showing that 
truth is preserved in the case of sentences expressing propositions.

Table 3. Symbolic Proof of the Syllogism Barbara

Problem: To prove that the syllogism Barbara is a valid

Division No. Sentence Rule

Premises
1 ∀x(Sx → Mx) Assumption 1

2 ∀x(Mx → Px) Assumption 2

Conclusion 3 ∀x(Sx → Px) 2, 1, MPP
∀

According to an iconic representation of the syllogism Barbara as a Venn diagram, 
however, the mere representation of statements of the form ∀x(F x → Gx) is sufficient to 
show that the conclusion follows from the premises. In Venn diagrams, the extensions of 
concepts and their relations are represented by circles and their possible intersections, and 
statements of the form ∀x(F x → Gx) are represented by marking the area that must be 
empty for such a statement to be satisfied. Let us use T to denote the rule for representing 
statements of the form ∀x(F x → Gx) and T to denote the rule for reading off statements 
of that form. Table 4 illustrates that the iconic reconstruction of the syllogism Barbara al-
lows one to read off the conclusion from the representation of the premises. The conclu-
sion comes as a “free ride” from the representation of the premises. There is no need for a 
further meta-logical justification given the rules to decide logical properties by Venn-Dia-
grams. Understanding an iconic proof depends on recognizing some aspect of a representa-
tion rather than on inferring some conclusion from a set of given premises. Again, one 
might prefer the symbolic conception of logical proofs in terms of deductive calculi and 
their semantic justification to an iconic conception of a logical calculus based on non-de-
ductive rules to generate icons and deciding logical properties in terms of icons. This, how-
ever, is a dispute on the principles of proof conceptions and does not show that iconic 
proofs of syllogisms are inconsistent, incorrect or incomplete.

The examples above show that the analysis of a proof and its probative force differs sig-
nificantly between the symbolic and iconic conceptions of proof. In the following, I will 
demonstrate that this distinction also applies to Newton’s experimental proofs.

In the case of Newton’s proof of the heterogeneity of sunlight, the experimentum cru-
cis provides the relevant criterion for proof by representing properties of light. In this sense, 
the experiment is an icon that is utilized within an iconic proof. Newton also uses diagrams 
to depict his experiments. These diagrams play a role similar to that of the textual descrip-
tions of his experiments or the textual explanations in Euclid’s proof: they explain the con-
struction of icons and point out their relevant properties.

In a proper understanding of iconic proofs, it is claimed neither that such proofs are 
self-evident nor that they are not guided by rules. It must be clearly specified which proper-
ties are merely arbitrary properties of the specific representation used in a particular proof 
and which ones are relevant properties to which the proof refers. As for any proof, one 
needs to understand the rules that govern such a proof. It is not simply any perceivable ob-
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jects or their properties that may serve as evidence; instead, only perceivable objects that are 
generated according to certain rules may serve as sources of evidence, and only perceivable 
properties that are identified according to certain rules may serve as criteria for proof. Iconic 
representations gain probative force within a framework of such rules. This holds not only 
for Euclid’s proofs and for iconic proof procedures in logic but also for Newton’s experi-
mental proofs, as I will illustrate in the following.

Table 4. Iconic Proof of the Syllogism Barbara

Problem: To prove that the syllogism Barbara is a valid.

Division No. Sentence Diagram Rule

Construction 
of the diagram

1
Translate
∀x(Sx → Mx)
(Premise 1).

T

2
Additionally translate
∀x(M x → Px)
(Premise 2).

T

Identification of 
logical properties 3

Read off the conclusion
∀x(Sx → Px) from the representation 
of the premises.

T

3. Rules for Experimental Proofs

At first glance, Newton appears to apply the axiomatic method in his experimental proofs. 
In his Opticks, he presents definitions and axioms of geometrical optics prior to his proofs 
of theorems. The appearance of an axiomatic proof method, however, is misleading. New-
ton’s proofs instead are “proofs by experiment”. Theorems are inferred directly from exper-
iments that are described by means of text or diagrams. Newton does not explain how he 
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infers the theorems from the experiments. He does not refer to single definitions or axioms 
to justify the steps of his proofs.

Moreover, the definitions and axioms of Newton’s Opticks are presumptions of ge-
ometrical optics that ground his descriptions of his experiments. This becomes particularly 
clear from his diagrams of prismatic experiments; see, for example, Figure 1 on p.  273 of 
this paper. These diagrams sketch the paths of rays starting from a source of light and end-
ing at color patches. The way in which the propagation of light rays is drawn is based on 
the presumption of Newton’s definitions of light rays (Definition 1), their refrangibility 
(Definition 2) and their reflexibility (Definition 3) as well as the definitions and axioms 
regarding the geometrical descriptions of refraction and reflection (Definitions 4-7, Axi-
oms 1-8) and their relation to colors (Definition 8). Thus, Newton’s definitions and axi-
oms serve as rules for geometrically constructing and interpreting his experiments. With-
out the theoretical concept of a ray of light and fundamental geometric laws concerning 
such rays, it is not even possible to pose questions of geometrical optics or to design and in-
terpret experiments to answer those questions.

In this respect, Newton’s definitions and axioms serve a purpose with regard to the re-
lationship between experiments and physical entities that is similar to the purpose served 
by Euclid’s postulates with respect to the relationship between diagrams and geometric 
entities: they establish how experiments in optics are to be designed and physically inter-
preted such that the properties of an experiment (e.g., color patches on a screen detecting 
“a beam of light”) represent the properties of a physical entity (e.g., rays of light). Similar to 
the textual descriptions in Euclid’s proofs, Newton’s diagrams of an experiment show and 
explain how to construct and interpret the experiment, which is the source of evidence for 
identifying properties of physical entities. In doing so, Newton’s diagrams and textual de-
scriptions both make implicit use of the established definitions and axioms. These rules 
make it possible to link an experiment with the propagation of light rays in the experimen-
tal design.

Table 5. Analogies Between Different Iconic Proofs

Icon Explanation Properties

Euclidean diagram text geometrical

Venn diagram text logical

Newtonian experiment diagram + text physical

The properties of the drawn lines representing rays of light in Newton’s diagrams refer 
to the geometric properties of the rays of light they represent. It is the geometric properties 
of the rays that are identified by the paths the lines follow, from a source of light through 
certain media to color patches. Because of this focus on geometric properties, Newton’s 
concept of a ray of light does not imply any assumptions regarding a theory of light (such as 
that light consists of waves or corpuscles), nor does he attribute colors to rays; rays of light 
induce colors, but they themselves are not colored (Newton, 1730, pp. 108-109). However, 
for simplicity, Newton allows one to speak “grossly” (ibid) of rays as being colored. In the 
same sense, I will use “colored rays” in the diagrams below (see Table 6 on p. 275) to rep-
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resent rays that would induce certain colors if they were to be separated and detected by a 
screen or the eye.

In analogy to Euclid, I summarize Newton’s presumption regarding the geometrical in-
terpretation of optical experiments in the form of the following postulate:

P: To describe the paths of light rays from a light source to patches of color 
through refracting and reflecting media by means of straight lines.

Newton always emphatically rejects the presupposition of hypotheses and the subsequent 
use of experiments to eliminate alternative hypotheses in order to indirectly derive a hy-
pothesis. By contrast, he purports to derive his theorems “positively & directly” (Turnbull, 
1959, pp. 96-97) from experiments. He calls his method of proof “induction” (Newton, 
1730, p. 404). Newton’s experimental proofs rely on principles of causal or, even more gen-
erally, inductive reasoning, such as the principle of causation and other principles of sim-
plicity, such as determinism, continuity, least action and Newton’s rules of reasoning in ex-
perimental philosophy. This is why Newton regards his experimental proofs as inductive 
derivations, as opposed to truth-preserving deductive inferences, which he calls “demon-
stration”.

For the analysis of Newton’s experimentum crucis, we will need only the following two 
“rules of induction”:

IR1: Any difference is caused by another difference.
IR2: Effects of the same kind, if possible, have the same cause.

IR1 is Newton’s version of the principle of causality (Turnbull, 1960, p. 256-257), quoted 
on p.  274 below. IR2 is Newton’s second rule of reasoning in experimental philosophy 
(Newton, 1962, p. 398). I will discuss the application of these two principles below. For 
now, it is sufficient to see that Newton applies rules of inductive reasoning to infer causal 
statements about physical entities from experiments.

4. Early Modern Proof Theory

Against the background of early modern proof theories, Newton was an advocate of the an-
cient geometrical proof method, as opposed to Aristotelian syllogisms in modern natural 
philosophy and to algebraic proofs, as invented by Descartes, in early modern mathematics 
(Guicciardini, 2016). He admired the geometrical method for at least two reasons: (i) for 
not starting with general axioms or first principles without experimental evidence and 
(ii) for being anchored in physical reality. (i) places the geometrical proof method in oppo-
sition to syllogisms, which derive conclusions from axioms, and (ii) places the geometrical 
proof method in opposition to algebraic proofs, which make use of a formalism that gives 
rise to artificial problems of interpretation when proving physical properties (Guicciardini, 
2016, p. 408). Newton admired ancient geometry as a paradigm for applying proof meth-
ods that provide the evidence needed for proving properties in geometry and physics. His 
preference for the geometrical proof method fits well with an iconic conception of experi-
mental proofs in geometrical optics.
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Newton explicitly compared his method of experimental proof with a third distinction 
commonly invoked in early modern proof theories, namely, the distinction between analy-
sis and synthesis, see the final passage of the Opticks, (Newton, 1730, p. 404-405); see also 
MS Add. 3970, f., quoted in (Shapiro, 2004, p. 196). He was familiar with this distinction 
as part of the ancient geometrical proof method4 and criticized Descartes’ use of this dis-
tinction in the algebraic proof method. According to Descartes, analysis consists of reduc-
ing a geometrical problem to algebra (or, more precisely, to a polynomial equation), while 
synthesis consists of building up a geometrical construction from algebra (Guicciardini, 
2016, p. 402). According to Newton, however, such a geometrical construction stands for 
itself. Thus, he saw no need to relate geometrical constructions to algebraic criteria. In par-
ticular, he did not associate synthesis with geometrical construction on the basis of some 
more basic algebraic form.

Many historians interpret analysis as a heuristic step prior to proof, while only synthe-
sis provides the proof itself, e.g. (Guicciardini, 2016, p. 405). However, there is no clear-
cut evidence in the ancient sources for this rather modern way of distinguishing a context 
of discovery from the context of justification. More importantly, this way of interpret-
ing the distinction does not fit with Newton’s understanding of the relation between the 
two approaches. When Newton says that “through analysis they [i.e., the ‘ancients’] dis-
covered propositions, and through synthesis they demonstrated them once found” (New-
ton, 1962, p. 415), this does not mean that he identifies “proof” and “demonstration” such 
that discovering a proposition is not an essential part of a proof. Instead, Newton reserves 
the term “demonstration” for the deduction performed once a solution or proposition is 
found. However, it is “analysis [. . .] that renders them [i.e., propositions] absolutely certain 
and so, because of their certainty, worthy to be admitted into geometry” (hitherto). Anal-
ysis provides certainty because it provides the evidence on which a proof relies. In Euclid’s 
proofs, the method of analysis used to solve a problem consists of geometrical construction 
(cf. steps 2 to 4 in Table 2), while synthesis is used to show that the geometrical construc-
tion thus obtained indeed solves the problem (cf. steps 6 to 8 in Table 2); the method of 
analysis provides the criteria for identifying the properties in question and, thus, precedes 
the method of synthesis within a Euclidean proof. Reducing a Euclidean proof to “the syn-
thetic method of proof” goes hand in hand with regarding Euclid’s proof method as the 
first paradigm of the “axiomatic and deductive” proof method, which is the only one that 
“achieves true scientific” proofs (Guicciardini, 2016, p. 308). This understanding neither 
does justice to Euclid nor helps to explain Newton’s proof theory.

How to interpret the ancient distinction between analysis and synthesis within the ge-
ometrical proof method as well as Newton’s understanding of it is controversial. In the fol-
lowing, I will concern myself only with the application of this distinction to Newton’s ex-

4 The distinction between analysis and synthesis can be traced back to Plato and Aristotle (Menn, 2002) 
and can also be found in Euclid XIII. The relevant passage, however, seems to have been inserted into 
Euclid’s Elements in 60 AD by Heron (Heath, 1968, p. 138). (Ihmig, 2004, section 4), argues that 
Newton refers to the much discussed locus classicus from Pappus (Pappus, 1986, p. 82f.), and (Heath, 
1968, p. 138-139). For an overview of the debate on the primary source of Newton’s distinction be-
tween analysis and synthesis, see (Ducheyne, 2005, p. 218 and footnotes 8 to 14). For the relation be-
tween Newton’s proof method and the ancient distinction between analysis and synthesis, see, among 
others, (Hinitkka et al., 1974, chapter IX); (Guerlac, 1973); (Ihmig, 2004).
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perimental proofs. Plato, Aristotle, Euclid and Pappus all characterize the crucial difference 
between analysis and synthesis by characterizing analysis as the process proceeding from 
the sought to the admitted, whereas synthesis proceeds in the reverse direction, from the 
admitted to the sought. (Ducheyne, 2005, p. 219) rightly points out that Newton does no 
more than refer to this general and uncontroversial idea of the mathematical tradition in 
his application of the analysis/synthesis distinction to experimental proofs (Newton, 1730, 
p. 404). In (i) identifying what is admitted with effects and what is sought with their causes 
and (ii) identifying analysis with induction and synthesis with deduction, he goes beyond 
the mathematical tradition and applies it to experimental philosophy. In doing so, Newton 
contradicts Hooke, who identified synthesis with the inductive and affirmative search for 
causes from effects, while he considered analysis to be conjectural and negative in explain-
ing effects from causes (Hooke, 1705, p. 330); (Hamou, 2018, p. 59, footnote 31). By con-
trast, according to Newton, analysis consists of affirmative, non-hypothetical reasoning as 
the relevant first part of an experimental proof, which establishes causes prior to the pres-
entation of any explanation of phenomena by their causes. If one insists on providing ev-
idence for concluding causes, there is no other way than “the arguing from Experiments 
[. . .] by Induction” (Newton, 1730, p. 404).

Newton also applies the dictum that analysis proceeds synthesis to the composition of 
the first book of the Opticks:

Of this Method I gave an instance in the first book of these Opticks, investigating first by 
Analysis the original differences of the rays in respect of refrangibility reflexibility & colour & 
then from these <differences considered as> principles compounding explications of the colours 
made by Prisms, the colours of the Rainbow & those of natural body.5

This statement makes evident (i) that the method of analysis constitutes experimental 
proof and (ii) that the experimental proofs of the initial propositions of the Opticks are 
based on this method. Newton first establishes the general causes of refraction, reflection 
and color (namely, the various properties of light rays) in Part I of Book 1 before he then 
explains the effects of color in various specific circumstances (prisms, rainbows, and natural 
bodies) through the method of synthesis (mainly in Part II of Book 1).

According to Newton, analysis is related to two aspects of experimental proofs: 
(i) “making experiments” and (ii) “drawing general conclusions from them by induction” 
(Newton, 1730, p. 404). The reasons obtained through analysis are therefore twofold: 
(i) evidence (ratio cognoscendi) and (ii) causes (ratio essendi). The first is obtained by con-
ducting an experiment, and the second are derived via induction based on the relevant 
experimental data. Newton applies the term “analysis” to experimental proofs in which 
causes are inductively inferred from effects produced in experiments that are deliberately 
designed to allow causes to be inferred. In synthesis, by contrast, causal relations are pre-
sumed to explain observed experimental phenomena. Any causal explanation is therefore 
based on proving a causal relation. The crucial point is that Newton’s method of proof 
does not start from possible causal hypotheses or axioms that might then be related to ex-
perimental phenomena in order to eliminate hypotheses. Instead, an experimental proof 

5 10 MS Add. 3970, f. 242v, quoted from (Shapiro, 2004, p. 193); see also (Shapiro, 2004, p. 189); 
(Newton, 1730, p. 405).
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based on analysis consists of establishing positive evidence that allows one to infer causes 
through inductive reasoning.

Figure 1
Newton’s Experimentum Crucis, from (Newton, 1730, Figure 18)

Newton’s application of analysis in experimental proofs can be compared to Euclid’s 
geometric proofs. Just as Euclid’s geometric proofs are based on the construction of ge-
ometrical diagrams to serve as the source of evidence for identifying the geometric rela-
tions in question, Newton’s experimental proofs are based on experiments that serve as the 
source of evidence for identifying the causal relations in question. Just as Euclid’s diagrams 
possess the relevant properties that serve as proof criteria, Newton’s experiments provide 
positive criteria for causal inference. Moreover, just as the understanding of Euclid’s dia-
grams depends on (i) the construction of diagrams to enable the solution of a problem and 
(ii) the identification of the relevant properties of the diagrams to solve the problem in 
question, an understanding of one of Newton’s experiments depends on (i) a description 
of the experiment in the context of a causal problem and (ii) the solution to that problem 
in reference to the relevant properties of the experiment. In this respect, experiments serve 
as icons in Newton’s proofs of geometrical optics. Just as diagrams serve as icons in Euclid’s 
proofs, allowing the properties of geometrical entities to be identified from the proper-
ties of the corresponding icons, experiments enable the identification of properties of light 
from the very properties of the experiments themselves in Newton’s proofs. In the follow-
ing, I will illustrate this by means of Newton’s famous experimentum crucis; see (Newton, 
1671/2, p. 3078-3079), and Figure 1.

5. Experimentum Crucis

With his experimentum crucis (see Figure 1), Newton wishes to elucidate the cause of 
the oblong form of the spectrum produced when sunlight passes through a prism in the 
case that the angle of incidence and the angle of emergence are equal (Newton, 1671/2, 
p. 3076). By rotating the first prism around its axis, Newton moves the spectrum cast on 
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the second board in front of the second prism up and down (cf. the two diagrams on line 1 
of Table 6, which, in contrast to Figure 1, present two significantly different situations for 
comparison). To see that the experimentum crucis makes it possible to compare differences 
under homogeneous conditions, one must understand that the angles of incidence of rays 
originating from different parts of that spectrum and passing through the second prism are, 
roughly speaking, identical. These angles are almost identical because of the rather small 
holes in the boards behind the first and in front of the second prism and the rather long 
distance between the holes. However, although their incidence angles and all other external 
conditions are homogeneous, different rays passing through the second prism refract differ-
ently behind the second prism: the red spot M on the wall, which is produced by rays orig-
inating from the red lower part of the spectrum on the board in front of the second prism, 
is below the blue spot N on the wall, which is produced by rays originating from the blue 
upper part of the spectrum. It is the realization of different perceivable effects (the loca-
tions of M and N on the wall) under homogeneous conditions that proves that the cause of 
this difference must be (internal) differences in the properties of the light (cf. the two fig-
ures on line 2 of Table 6, which identify the relevant aspects of the dijference test). Such an 
inference from effects to their causes is based on the principle of causality (“any variation 
(or difference) must have a cause”; see IR1, p. 10) and presumes conditions of homogene-
ity. Newton is well aware of this kind of causal reasoning enabled by the design of his exper-
iment, as is clear from a letter he wrote to Lucas, quoted from (Turnbull, 1960, p. 256-257, 
the brackets are part of the quoted text):

In ye External causes you name there was no difference. The incidence of ye rays ye specific 
nature of ye Glass ye Prisma figure, &c were the same in both cases, & therefore could not cause 
ye difference: [it being absurd to attribute the variation of an effect to unvaried causes.] All things 
remained ye same in both cases but ye rays, & therefore there was nothing but ye difference of 
their Nature to cause ye difference of their refraction.

The relevant property of the experimentum crucis that justifies Newton’s causal inference is 
the fact that all external factors are identical, yet the positions of the spots on the wall dif-
fer. This justifies the identification of internal differences in the rays of light as the cause of 
the different refraction behaviors behind the second prism, under the presumptions of the 
principle of causation and the description of the experiment according to Newton’s defini-
tions and axioms of geometrical optics.

Newton generalizes his inference that proves the different refrangibility of the light 
rays passing through the second prism to infer the heterogeneity of the sunlight that passes 
through the first prism and gives rise to the oblong spectrum on the second board in front 
of the second prism. This generalization is based on his second rule of reasoning in exper-
imental philosophy: to identical effects (e.g. differences in refraction), one must assign, as 
far as possible (= as long as no conflict with experimental evidence arises), identical causes 
(e.g. differences in the properties of the light); see (Newton, 1962, p. 398), and IR2 on 
p. 270. Clearly, such a rule is not deductive. It is a rule that is needed if criteria for proof are 
to be drawn from experiments: it allows one to generalize causal inferences drawn from dif-
ference tests as long as no other experimental evidence is available.

Table 6 summarizes Newton’s “proof by experiment”. This proof is “iconic” in the 
sense that the properties of the experiment (different positions of color patches) represent 
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the properties of physical entities (different properties of light rays). From this perspective, 
Newton’s experiments are “iconic representations” that allow one to infer causes from ef-
fects. This does not imply that the effects and causes resemble each other visually, in the 
manner of a portrait and a face. As in geometry, the entities that are represented are ab-
stract (not perceivable). Instead, in the case of iconic representations, resemblance means 
that (relevant) differences between representations represent differences in what is repre-
sented. The presumption of such a resemblance is not a necessary or logical truth, but it is a 
necessary condition for iconic proofs.

Table 6. Iconic Analysis of Newton’s Experimental Proof

Problem: To prove that sunlight is heterogeneous

Division No. Sentence Experiment Rule

Experimental 
setting 1

Light rays pass through two 
prisms and create (cause) 
color patches on the wall.

P

Construction of 
difference test & 
Identification of 
causal properties

2

Different properties of the 
light rays result in (cause) 
different refraction behaviors 
behind the second prism.

IR1

Identification of 
causal properties 
by generalization

3

Light consists of rays that are 
differently refrangible (differ-
ing in the properties that gov-
ern refraction behavior).

IR2
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6. Critique of Hypothetico-deductive Analysis

Newton’s experimental proof of the heterogeneity of sunlight by means of his experimen-
tum crucis is often misunderstood as an example of deductive reasoning from alternative 
hypotheses, in which the experimentum crucis is used to decide among alternative hypoth-
eses. Table 7 presents a simplified version of such an analysis that rests on (Sabra, 1981, 
p. 249-250) and (Thompson, 1995, p. 8-9).

Table 7. Symbolic Analysis of Newton’s Experimental Proof

Problem: To prove that sunlight is heterogeneous

Division No. Sentence Rule

Hypotheses 1 Either light rays are modified by prisms or sunlight is het-
erogeneous. Assumption

Experimental fact 2 The light rays are not modified by the second prism. Assumption

Conclusion 3 Sunlight is heterogeneous. 1, 2, Disj. Syll.

On this basis, indirect reasoning by eliminating a hypothesis based on experimen-
tal data raises at least two problems: (i) alternative hypotheses may have been overlooked, 
and (ii) any hypothesis may be made compatible with the experimental data by means of 
auxiliary assumptions. For example, in the case of the above symbolic analysis, one might 
concede that the light rays passing through the second prism are not modified by the sec-
ond prism because the patches M and N on the wall are circular (and monochromatic). 
However, one may still argue that the rays from the sun passing through the first prism are 
modified by the first prism. Thus, the hypothesis that light rays are modified by prisms is 
amended to the hypothesis that some light rays (e.g., white light from the sun) are modified 
by prisms (Sabra, 1981, p. 250).

A modern understanding of crucial experiments in the sense of experiments for de-
ciding among alternative hypotheses does not do justice to Newton. The term “experi-
mentum crucis” was not established in Newton’s time and must not be identified with a 
part of the hypothetico-deductive method as was done later, from the 19th century on-
ward (Hamou, 2018). The term was used first by Boyle in his Defence against Linus in 
1662 and second by Hooke in his Micrographia in 1665, both of which adopt Bacon’s 
notion of an “instantia crucis” (Anstey et  al., 2008, p. 112). (Hamou, 2018; Schwartz, 
2017) have recently argued convincingly that Bacon’s notion and his examples of instan-
tiae crucis cannot be reduced to the hypothetico-deductive understanding of eliminating 
hypotheses by means of negative evidence. Although some of Bacon’s examples support 
such eliminative reasoning (e.g., the tide case), others are used to infer causes positively 
and directly by means of a difference test, as in the flame-in-a-flame case (Schwartz, 
2017, p. 139). Ultimately, then, instantiae crucis can serve a twofold function: to elimi-
nate explanations and to select and affirm explanations. The first function fits well with 
the hypothetico-deductive method, while the latter fits with the inductive Baconian 
methodology.
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Boyle and Hooke use the eliminative function of the term experimentum crucis, which 
is predominant in the later hypothetico-deductive tradition (Hamou, 2018, section 3). 
Similar to his contradiction of Hooke’s application of the analysis/synthesis distinction 
to experimental philosophy (see above, p. 12), however, Newton also contradicts Hooke’s 
understanding of the experimentum crucis by emphasizing its positive and direct function. 
He agrees with Hooke that an experimentum crucis serves for a “search after the true cause” 
(Hooke, 1665, p. 54); (Newton, 1730, p. 3079). He disagrees with Hooke, however, in 
claiming that the method for concluding the true cause consists of induction and, thus, is a 
method of analysis.

This does not mean that Newton’s experimentum crucis cannot be used in the nega-
tive sense to eliminate alternative causal explanations. In fact, in a letter to Pardies, Newton 
argues en passant against modificationism in a way that is similar to the above hypotheti-
co-deductive reconstruction of the argument of the experimentum crucis (Turnbull, 1959, 
p. 167); (Cohen, 1958, p. 107-108 for a translation), see Table 7 for the argument. How-
ever, Newton does not use this argument to prove his own theory by elimination, nor does 
he present this kind of argument in his publications; see the following section. Most im-
portantly, he attributes a decisive probative force to the experimentum crucis because it en-
ables a direct causal inference, while he ignores its negative function when arguing how it 
proves the heterogeneity of sunlight. The modern understanding of an experimentum cru-
cis does not acknowledge that Newton does not derive theorems from sentences by apply-
ing logical rules but rather derives theorems from experiments by means of principles of in-
duction. Just as Euclid’s definitions and common notions allow geometric properties to be 
identified as proof criteria, Newton’s inductive reasoning allows experimental properties to 
be identified as criteria for causal judgments.

7. The First Six Experiments in the Opticks

(Jalobeanu, 2014) argues that Newton’s arrangement of the sequence leading up to his ex-
perimentum crucis in his New Theory from 1671/72 has features of Baconian experientia li-
te ra ta: Newton starts with a surprising experiment that gives rise to a causal question not 
yet answered by any established theory (the one-prism experiment showing the unexpected 
elongation of the spectrum), then proceeds to experiments that eliminate certain possible 
causes (e.g., irregularity of the prism, different incidences of the sun rays or the existence 
of curved rays), and finally presents his experimentum crucis to decide the matter by prov-
ing the “true cause” of the effect in question. (Hamou, 2018, p. 62), rightly points out that 
it makes no sense to analyze Newton’s experimentum crucis as eliminating a rival hypothe-
sis since (i) no rival theory existed to explain the new effect and (ii) the experimentum crucis 
is distinguished from the previous experiments that serve an eliminative function. The se-
quence of experiments culminates in the experimentum crucis, which provides a positive an-
swer to the initial question.

In the following, I will show that the sequence of experiments in the Opticks leading up 
to the experimentum crucis follows a similar narrative that culminates in the experimentum 
crucis. Newton’s experimentum crucis is presented as experiment six among ten total experi-
ments that are related to proposition one and two of the Opticks. Proposition two states the 
heterogeneity of sunlight and is preceded by the first proposition, which states that light 
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rays that differ in color also differ in refrangibility. This first proposition is proven by two 
experiments. From the sequence of six experiments leading up to the experimentum cru-
cis, it may seem as though the experimentum crucis does not, in fact, play a prominent role 
in the Opticks and also does not serve as a prominent example of an experimental proof ac-
cording to Newton. In this section, I will show that the opposite is true.

In Newton’s first experiment, a half-red and half-blue paper is viewed through a prism; 
see Figure 2. The blue half (DG) suffers greater refraction than the red half (FE). This ex-
periment can be viewed as a subjective version of the difference test at the second prism 
in the experimentum crucis. Since, roughly speaking, all conditions are the same except 
the colors on the sheet of paper, it must be the light rays originating from the differently 
colored areas of the paper that cause the difference in refraction.

Figure 2
Newton’s First Experiment, from (Newton, 1730, Figure 11)

However, it is not spectral lights in a dark chamber but rather painted colors on a black 
paper that are refracted in this first experiment. This results in colored edges that Newton 
does not mention. Thus, the phenomenon (the difference in refraction) is not as clear-cut 
as in the case of the refraction behind the second prism in the experimentum crucis. This 



https://doi.org/10.1387/theoria.21155 279

Newton’s experimental proofs

may be the reason why Newton explicitly states in the Opticks that his experimentum crucis 
proves not only proposition two but also proposition one; see the quote below on p. 281. 
However, from the methodological point of view, these differences with respect to the ex-
perimentum crucis only raise doubt as to whether the assumption of homogeneity is fully 
satisfied in Newton’s first experiment. They do not cause one to question the crucial role 
that difference tests play in Newton’s experimental reasoning.

The same argument applies to the second experiment. It is an objective version of the 
first experiment. In contrast to the first, it takes place in a dark chamber and involves a 
white sheet of paper. In contrast to both the first experiment and the experimentum cru-
cis, a lens is used, and the source of light is not the sun but a candle. Since the colors are not 
spectral but rather originate from a sheet of paper, the phenomena are again not as clear-
cut as in the case of the refraction behind the second prism in the experimentum crucis. 
However, from the methodological perspective, the intention of the second experiment is 
also to create a difference test. In both experiments, it is shown (or purported to show) that 
it must be the light rays causing the appearance of different colors that also cause the differ-
ences in refraction because, roughly speaking, all other conditions remain the same.

The first two experiments in the Opticks present simplified and less clear-cut versions 
of a difference situation similar to the second prism in the experimentum crucis. Creating 
difference situations through experiments is crucial for inferring causes from effects, as is 
done in analysis by applying inductive reasoning.

Newton starts the sequence of experiments subsequent to proposition two with two 
one-prism experiments (experiments three and four). The first is identical to the first part 
of the experimentum crucis and is the experiment with which he starts his experientia li te-
ra ta in his New Theory of 1671/72. In this experiment, a spectrum is projected onto the 
wall of a dark chamber. The second is a subjective version of this experiment. It seems sur-
prising that Newton starts his “proofs by experiment” of proposition two with an experi-
ment to which he originally did not attribute any probative force but which he merely used 
to raise the question of the cause of the surprising effect of the elongation of the spectrum 
(Newton, 1671/2, p. 3076-3078). However, Newton deliberately does not state that his 
first experiment proves the heterogeneity of sunlight; rather, he says only that it “agrees 
with his first proposition” (Newton, 1730, p. 27). Furthermore, he emphasizes that the 
two experiments do not answer the question of the reason for the different refraction be-
haviors (Newton, 1730, p. 28):

So then, by these Experiments it appears, that in equal Incidences there is a considerable ine-
quality of Refractions. But whence this inequality arises, whether it be that some of the incident 
rays are refracted more, and others less, [. . .], or that one and the same ray is by refraction dis-
turbed, shatter’d, delated and as it were split and spread into many diverging rays, as Grimaldo 
supposes, does not yet appear by those Experiments, but will appear by those that follow.

From this statement, it is evident that Newton does not regard the single experiments fol-
lowing proposition two as sufficient proofs. Instead, they are part of a sequence arranged to 
direct the course of investigation towards the experiment crucis, which finally answers the 
causal question raised by the preceding experiments.

The two one-prism experiments (experiments three and four) are followed by two 
two-prism experiments (experiments five and six). In experiment five, Newton places a 
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second prism immediately after the first in a rotated position such that in the first prism, 
the rays are refracted upwards, while in the second prism, they are reflected to the side; 
see “Fig. 14” in Figure 3. Newton observes that the breadth is not increased, but the supe-
rior (violet) part again suffers greater refraction than the inferior part after the second re-
fraction; see “Fig. 15” in Figure 3. This experiment is similar to the second experiment in 
the New Theory, which eliminates irregularities of the prism as a possible cause. It is more 
akin to what is called an “experimentum crucis” according to hypothetico-deductive analy-
sis. It falsifies one of the two alternative explanations mentioned in the above quote (New-
ton, 1730, p. 30):

If the rays were dilated [. . .] so that they should not any longer go in single lines to single 
points, [. . .] the second refraction [. . .] would compose the four square image πΓ. But the event is 
otherwise. The image PT was not made broader by the refraction of the second Prism.

Figure 3
Newton’s Fifth Experiment, from (Newton, 1730, Figures 14 and 15)

Thus, one may indirectly conclude that the cause of the different refraction behaviors is 
an inherent difference in the rays correlated with the different colors, as has already been 
sugested by the first experiment (see Figure 2 on p. 18 above). However, Newton nei-
ther draws this indirect conclusion nor claims to have proven proposition two before he 
presents his experimentum crucis. This experiment is experiment six in the Opticks, and 
it marks the center point of his sequence of experiments following propositions one and 
two. It combines an objective and spectral version of the difference test from experiment 
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one with experiment three (the first subsequent to proposition two) and presents the pos-
itive evidence for both propositions one and two (Newton, 1730, p. 38, emphasis mine):

I found that the light which being most refracted in the first Prism did go to the blue end of 
the image [i.e., the spectrum on the board in front of the second prism—T.L.], was again more re-
fracted in the second Prism than the Light which went to the red end of that image, which proves 
as well the first proposition as the second.

Therefore, as in his New Theory, Newton arranges a sequence of experiments that starts 
with an experiment revealing a surprising effect to be explained, then proceeds to experi-
ments that eliminate possible causal explanations before presenting his experimentum cru-
cis as the one that positively and directly answers the question concerning the cause of the 
surprising effect on the basis of a difference test, which is the paradigmatic experiment for 
the inference of causal relations. This does not mean that Newton’s experimentum crucis 
may not also be used to eliminate alternative explanations, such as modificationism. How-
ever, Newton does so in neither his New Theory nor his Opticks. Here, the experimentum 
crucis serves the purpose of providing the positive evidence needed to infer the cause by 
(noneliminative) induction.

It is not the individual experiments following proposition two, or even proposition 
one, that prove either of these propositions; instead, it is the experimentum crucis at the 
center of the sequence of experiments following these first two propositions that serves this 
purpose.

8. Conclusion

Newton never maintained that his experimental proofs were incompatible with alterna-
tive explanations for the observed experimental phenomena. However, possible alternatives 
create gaps in a proof only when a deductive axiomatic proof is taken as the benchmark. In-
stead, Newton’s benchmark is whether a theorem can be proven from nothing but experi-
mental evidence according to principles of induction. According to this measure, Newton’s 
proof method used in his proof from the experimentum crucis is free of gaps because the 
principle of causality allows one to infer that properties of the light rays cause the refraction 
at the second prism and his second rule of reasoning in experimental philosophy allows one 
to generalize this inference to the refraction of the rays of sunlight at the first prism.

One might reject his proof by questioning the assumption of homogeneity. However, 
this is not a rejection of Newton’s method itself but rather a rejection of the specific ex-
perimental conditions. Newton never questioned the relevance of such a critique (Turn-
bull,  1960, p. 79-80). One might also reject Newton’s experimental proof because it is 
non-deductive. However, in doing so, one does not identify a gap within Newton’s induc-
tive experimental proof. According to Newton, a rejection of his proof method undermines 
experimental science because such a rejection does not allow for specific rules that ascribe 
probative force to experiments alone, without feigning hypotheses; see (Turnbull, 1959, 
p. 96-97), and Newton’s fourth regula in the third edition of his Principia (Newton, 1962). 
Making use of rules in terms of postulates to generate a source of evidence and rules to 
identify decision criteria related to it (such as Euclidian definitions and common notions, 
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Venn’s rules to decide logical validity by his diagrams, or Newton’s inductive rules to draw 
conclusions from experiments) has its price in being non-deductive. Yet, it solves the prob-
lem of being in need of a further justification as it is the case in starting from axioms or hy-
potheses and in making use of deductive rules, which have to be justified meta-logically in 
going beyond the pure calculus.

Like the analysis of Euclidean proofs and proofs in logic, the analysis of Newton’s ex-
perimental proofs shows that only the iconic conception of proof can explain the proba-
tive force of these proofs. The reason is that the constituents of iconic proofs provide cri-
teria for identifying relevant properties, whereas symbolic proofs consist of sentences from 
which one cannot read off relevant properties according to certain rules. Therefore, they 
lack the evidence that iconic proofs provide. Consequently, a claim that gaps exist in Eu-
clid’s or Newton’s proofs shows that the interpreter has chosen the wrong conceptual 
framework in which to analyze the proofs in question; it does not identify deficiencies in 
the analyzed proofs themselves.
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