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The Dynamical Renaissance in Neuroscience 

Abstract 

Although there is a substantial philosophical literature on dynamical systems theory in the 

cognitive sciences, the same is not the case for neuroscience. This paper attempts to motivate 

increased discussion via a set of overlapping issues. The first aim is primarily historical and is to 

demonstrate that dynamical systems theory is currently experiencing a renaissance in 

neuroscience. Although dynamical concepts and methods are becoming increasingly popular in 

contemporary neuroscience, the general approach should not be viewed as something entirely 

new to neuroscience. Instead, it is more appropriate to view the current developments as making 

central again approaches that facilitated some of neuroscience’s most significant early 

achievements, namely, the Hodgkin-Huxley and FitzHugh-Nagumo models. The second aim is 

primarily critical and defends a version of the “dynamical hypothesis” in neuroscience. Whereas 

the original version centered on defending a noncomputational and nonrepresentational account 

of cognition, the version I have in mind is broader and includes both cognition and the neural 

systems that realize it as well. In view of that, I discuss research on motor control as a 

paradigmatic example demonstrating that the concepts and methods of dynamical systems theory 

are increasingly and successfully being applied to neural systems in contemporary neuroscience. 

More significantly, such applications are motivating a stronger metaphysical claim, that is, 

understanding neural systems as being dynamical systems, which includes not requiring appeal to 

representations to explain or understand those phenomena. Taken together, the historical claim 

and the critical claim demonstrate that the dynamical hypothesis is undergoing a renaissance in 

contemporary neuroscience. 



 2 

Keywords: Dimensionality reduction; Dynamical systems theory; Motor control; 

Neuroscience; Representation 

  



 3 

1. Introduction 

Throughout the mid-twentieth century, many areas of psychology underwent a “cognitive 

revolution” (Bechtel & Graham, 1999; Thagard, 2005). This revolution drove an information-

processing perspective of mind (Stillings, Weisler, Chase, Feinstein, Garfield, & Rissland, 1995), 

namely, mental activity like decision-making and problem solving, as well as goal-directed 

behavior. This perspective centered on explaining mind in terms of representations that encoded 

and decoded information and the computational procedures that acted on them (Thagard, 2019; 

Von Eckardt, 1995). During that time, the neurosciences were primarily concerned with behavior 

and physiology (Cooper & Shallice, 2010). Accordingly, conceptual tools gaining traction in 

cognitive science (e.g., computation and representation) were largely not employed. On the other 

hand, throughout the 1980s and 1990s, research in cognitive science centered more on 

neurobiologically-inspired accounts of cognition, especially artificial neural networks like 

connectionism (Cooper & Shallice, 2010; Rumelhart, 1989). Even though neurobiologically-

inspired concepts and models gained prominence, the information-processing perspective 

remained and cognition was defined in terms of computations and representations (Boden, 2006). 

The widespread application of such information-processing conceptions of mind presumably left 

many in agreement with Fodor (1975) in thinking that computational and representational 

approaches were “the only game in town” (Rescorla, 2020). 

This overview is, of course, quite simplistic and leaves out significant facts. For example, 

various mind sciences—broadly construed—were not impacted by the cognitive revolution and 

its information-processing perspective. Ecological psychology (Gibson, 1979/1986), 

embodiment (Varela, Thompson, & Rosch, 1991), and synergetics (Haken, Kelso, & Bunz, 

1985), to name a few, carried out rich research programs without appeal to concepts such as 
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“computation” or “representation” in their accounts of mental activity or goal-directed behavior. 

Many of these research programs did not just adhere to different concepts, methods, and theories, 

but were also staunchly opposed to understanding the mind in computational or representational 

terms. Yet, proponents of information-processing accounts were left asking, “If mind is not 

computational or representational, then what is it?” Throughout the 1990s, van Gelder (1995) 

and others published a number of works answering just that question: Mind is best understood 

not in computational or representational terms, but in terms of dynamical systems theory. The 

claim that mind is fundamentally dynamic in nature captured what was at the heart of a variety of 

noninformation-processing accounts of mind. The concepts and methods of dynamical systems 

theory are regularly central to research by ecological psychologists (Chemero, 2009), proponents 

of embodiment and enactivism (Thompson, 2007), and work in coordination dynamics and 

synergetics (Kelso, 2009). What about dynamical systems theory in neuroscience; does it provide 

a viable investigative framework? Answering that question is the primary purpose of this paper. 

I have two aims here: The first aim is primarily historical and is to demonstrate that 

dynamical systems theory is currently experiencing a renaissance in neuroscience. Although 

dynamical concepts and methods are becoming increasingly popular in contemporary 

neuroscience, the general approach should not be viewed as something entirely new to 

neuroscience. Instead, it is more appropriate to view the current developments as making central 

again approaches that facilitated some of neuroscience’s most significant early achievements 

during the mid-twentieth century. The second aim is primarily critical and defends a version of 

the “dynamical hypothesis” in neuroscience. Whereas the original version centered on defending, 

among other things, nonrepresentational accounts of cognition, the version I have in mind is 

broader and includes the substrates of cognitive systems as well. In view of that, I discuss 
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research on motor control as a paradigmatic example that demonstrates that the concepts and 

methods of dynamical systems theory are increasingly and successfully being applied to a wide 

range of neural systems in neuroscience. More significantly, such applications are motivating a 

stronger metaphysical claim, that is, understanding neural systems as being dynamical systems, 

which includes not requiring appeal to representations to explain or understand those 

phenomena. 

In the next section, I focus on the first aim and describe the dynamical renaissance. 

There, I introduce dynamical systems theory and dimensionality reduction. I highlight the 

significant role the latter has come to play in dynamical accounts of neural phenomena, with an 

emphasis on two historical examples of its application: the Hodgkin-Huxley and FitzHugh-

Nagumo models. In the section that follows, I focus on the second aim, and present 

representational and dynamical systems explanations of motor control in order to demonstrate 

how the dynamical renaissance is motivating a reexamination of the necessity of appealing to 

“representations” in explanations of neural phenomena. 

 

2. The dynamical renaissance 

A “renaissance” can be defined as “a situation when there is new interest in something 

and it becomes strong and active again” (Combley, 2011). This term is an appropriate description 

of what is happening in neuroscience because although the concepts and methods of dynamical 

systems theory can be viewed as novel in many contemporary subdisciplines of neuroscience, the 

fact is that the general approach was employed in research on a number of the field’s 

foundational discoveries in the mid-twentieth century. The claim here is not that dynamical 

systems theory, broadly construed, has been absent from all neuroscience practice during those 
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intervening years. It is clear that some dynamical tools—especially differential equations—have 

been standardly applied in neuroscience research for decades.1 Much of this work employs 

dynamical tools in order to model the electrophysiological properties of neurons, particularly 

those concerning neuronal circuits and synaptic organization (Izhikevich, 2007, pp. xv-xvi). 

Consequently, the dynamic properties of neural systems have not on their own been central 

topics of investigation. Thus, dynamical systems theory concepts such as “fixed point attractors,” 

“limit cycles,” and “phase transitions,” as well as particular methods for analyzing and 

describing those properties, have not been regularly employed. It is those features and methods 

that make dynamical systems theory uniquely qualified for investigating the dynamics—

especially nonlinear dynamics—of biological systems like neurons and neuronal networks. Thus, 

historically speaking, when dynamical systems theory has been seen in neuroscience, it has 

commonly been in the service of investigating neurophysiology and organization.2 Moreover, 

 
1 With that said, terms like “dynamic(s)” and “dynamical(ly)” seldom appear in the philosophy 
of neuroscience literature. The following is far from a literature review, but is intended to 
provide illustrative examples: Bickle, Mandik, and Landreth (2019) mention “dynamical” 11 
times, but primarily in terms of nonmechanistic and nonreductionistic approaches falling short of 
providing viable alternatives or explanations; Patricia Churchland (2002) mentions “dynamics” 
and “dynamical(ly)” about 20 times, but usually in ways that deprioritize it, such as “the 
dynamics … will be set aside here” (p. 78), “the metaphor of dynamical systems” (p. 112), and 
that dynamical systems theory will likely augment but not replace information-processing 
approaches (p. 274); and Craver mentions “dynamically” once (2007, p. 4; though 
“hemodynamics” is mentioned on two pages). 
 
2 As Eugene Izhikevich, one of the pioneers in contemporary applications of dynamical systems 
theory in neuroscience, has pointed out, 

Nonlinear dynamical system theory is a core of computational neuroscience 
research, but it is not a standard part of the graduate neuroscience curriculum. … 
As a result, many neuroscientists fail to grasp such fundamental concepts as 
equilibrium, stability, limit cycle attractor, and bifurcations, even though 
neuroscientists constantly encounter these nonlinear phenomena. (Izhikevich, 
2007, p. xvi) 

A brief review of the “Top 10 Global Universities for Neuroscience” in 2020 
<www.usnews.com/education/best-global-universities/slideshows/see-the-top-10-global-
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such research has been informed by information-processing views of neuronal activity and 

organization, including single neurons (e.g., Koch, 1999) and populations of neurons (e.g., 

Schöner, Spencer, & the DFT Research Group, 2016). Such claims draw attention to a number of 

controversial issues recognizable by those familiar with particular debates in the cognitive 

sciences and philosophy of mind.3 One debate concerns the fact that many proponents of 

dynamical systems theory in the cognitive sciences have not only supported use of its concepts 

and methods, but they have also championed a controversial position regarding the nature of 

cognition: the dynamical hypothesis. 

In the cognitive sciences and philosophy of mind, the dynamical hypothesis centers on 

two claims (Port & van Gelder, 1995; van Gelder, 1998). First, is the knowledge hypothesis, 

 
universities-for-neuroscience-and-behavior> offers support to Izhikevich’s claim that dynamical 
systems theory—both linear and nonlinear—is mostly absent from neuroscience curriculums. 
For example, Stanford University has one week on dynamical systems in one class; Washington 
University in St. Louis has nothing explicitly on dynamical systems in its core courses (but 
maybe in an elective); University of Oxford has nothing explicitly on dynamical systems; and 
even Carnegie Mellon University’s joint Ph.D. program in neuroscience and statistics has only 
one course on time series analysis, and it is unclear if it covers nonlinear phenomena. 
 
3 The “philosophy of neuroscience” is intentionally not mentioned here because the majority of 
the relevant philosophical literature on dynamical systems theory has focused on topics typically 
treated as being in the purview of the cognitive sciences (that is, construed such that 
neuroscience is not the central or dominant contributing discipline) and philosophy of mind. 
Even when neuroscience is mentioned, it is usually confined to intersections with the cognitive 
sciences and philosophy of mind. For example, in a review of contemporary issues in the 
philosophy of neuroscience, Bickle and Hardcastle (2012) discuss issues of dynamical versus 
mechanistic explanations, but refer to cognitive science literature. In another example, Eliasmith 
(2010) mentions that dynamical systems theory can be utilized to illuminate how the brain 
implements computations, but does so from the perspective of cognitive science and does not 
discuss neural activity in terms of dynamics per se. As far as I am aware, issues pertaining to 
dynamical systems theory in terms of neuroscience proper have not been discussed until fairly 
recently (e.g., Chemero & Silberstein, 2008; Chirimuuta, 2018; Favela, 2019, 2020; Ross, 2015) 
and have not received nearly as much attention as in the cognitive sciences and philosophy of 
mind. Consequently, the topic of dynamical systems theory in neuroscience remains a relatively 
novel source of material for philosophers. 
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which is an epistemological claim centering on the idea that cognitive agents can be understood 

as dynamical systems (Chemero, 2000; van Gelder, 2006). Taken in isolation, that idea need not 

be controversial because it merely advocates for the use of, for example, data analysis methods 

from dynamical systems theory (e.g., differential equations) to generate hypotheses, create 

models, and to quantify cognition and related phenomena (e.g., goal-directed behavior). 

However, it becomes more provocative when coupled with the second claim: the nature 

hypothesis, which is an ontological thesis centering on the idea that cognitive agents are 

dynamical systems. What makes this second claim controversial is that it eschews explaining 

cognition in terms of information processing, in particular, it rejects understanding cognition as 

essentially computational or representational. This makes the first claim more provocative 

because it has the consequence of removing the need to appeal to the stronger forms of 

“representations” invoked in cognitive science research (e.g., representations with semantic 

properties; Pitt, 2020). Given that information-processing accounts are currently accepted by 

many to be the “thoroughly entrenched conception” of cognition and neural systems (Shapiro, 

2013, p. 362), such that it would be either “confusion or brazenness” (Shapiro, 2013, pp. 362-

363) to reject explaining mental activity and behavior in computational and representational 

terms (cf. Favela & Martin, 2017), it is not surprising that the dynamical hypothesis draws many 

a skeptical eye from contemporary researchers. The goal of this section is not to defend or reject 

the dynamical hypothesis. In keeping with the thesis of this section, I merely aim to demonstrate 

that dynamical systems theory—both in terms of epistemology (i.e., methods) and metaphysics 

(i.e., the nature of cognitive systems)—is not as novel to neuroscience as one could believe based 
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on the ways it is discussed in the literature.4 Instead, its increasing popularity is in fact a return to 

practices that were common in the history of neuroscience. As a historical point, that goal is 

achievable without taking a stand on the dynamical hypothesis’ metaphysical claim. 

Accordingly, as I assume readers are unfamiliar with it, a brief introduction to dynamical 

systems theory is provided in the following subsection. After, I provide historical examples of its 

application. 

 

2.1. A very concise introduction to dynamical systems theory 

There are many excellent general introductions to dynamical systems theory (e.g., 

Alligood, Sauer, & Yorke, 2000; Fuchs, 2013; Guckenheimer & Holmes, 1983; Strogatz, 2015), 

as well as its applications in the mind sciences (e.g., Beer, 2000; Chemero, 2009; Clark, 1997; 

Guastello, Koopmans, & Pincus, 2011; Port, 2006; Riley & Holden, 2012; Thelen & Smith, 

1994). The current introduction is aimed at providing a general overview and giving a sense of 

 
4 As stated in the previous footnote, when dynamical systems theory is discussed in the 
philosophy literature, it is typically in terms of the cognitive sciences and philosophy of mind, 
and not neuroscience or the philosophy of neuroscience per se. With that said, when dynamical 
systems theory is mentioned in that later discipline, it is as if it is novel in neuroscience research. 
One specific example comes from Bechtel who says in regard to new developments in systems 
biology that “the one that has attracted [his] interest, is the development of mathematical tools 
that enable researchers to represent the organization and behavior of systems of large numbers of 
components that interact non-linearly and are organized non-sequentially. These include the tools 
of … dynamical systems theory” (Bechtel, 2017, p. 26). Another example is Chirimuuta, who 
states that the “Techniques of … dynamical systems analysis, imported from other branches of 
science, have become popular in the quest to simplify the brain” (Chirimuuta, 2018, p. 867), and 
then discusses examples of fairly recent applications of dynamical systems theory in 
neuroscience. A third specific example comes from Barrett, who discusses the increasing 
primacy of viewing the brain in dynamical terms when he claims that “the problem raised by 
neuroscience research of the past few decades is that it has added a whole new layer of 
complexity to the brain, namely dynamical complexity” (Barrett, 2016, p. 165). Other examples 
include Ash & Welshon, 2020; Barandiaran & Moreno, 2006; Bechtel, 2015; Burnston, 2019; 
Golonka & Wilson, 2019; Lins & Schöner, 2014; Lyre, 2018; Meyer, 2018; Thomson & 
Piccinini, 2018; Venturelli, 2016; Zednik, 2014. 



 10 

the aspects of dynamical systems theory that will be most significant in later sections (Favela, 

2020). To begin, dynamical systems theory is a branch of mathematics that can evaluate both 

abstract and physical systems as they change over time. One way to understand how dynamical 

systems theory is applied is in terms of its quantitative and qualitative elements. The quantitative 

element is the application of mathematical equations to describe, evaluate, and measure systems. 

A common dynamical mathematical tool is differential equations, which are mathematical 

functions that capture systems’ temporal evolutions, where variables in the equations are 

continuous values, as opposed to discrete values. The qualitative element is the visual depiction 

of the dynamics by means of plotting the equations in a state space, which is the range of 

possible values of a variable as depicted by means of a phase space plot.5 

It is likely that many philosophers with at least some familiarity with dynamical systems 

theory know it by way of van Gelder’s discussion of the Watt centrifugal governor example (van 

Gelder, 1995). Because that example is best described by van Gelder himself, I refer readers to 

that primary source (for those interested in secondary sources, I recommend Chemero, 2000 and 

Shapiro, 2019). Moreover, that example has been the target of much debate (e.g., Eliasmith, 

1997), which I do not wish to detract from the current aim of providing a concise and 

uncontroversial account of dynamical systems theory. Accordingly, here I provide pendulum 

 
5 It is worth noting here that the word ‘qualitative’ is commonly used in another way in 
discussions of dynamical systems theory. Here, “qualitative” is utilized in a manner consistent 
with those usages that refer to a visual depiction of a phenomenon, like a graph, and is contrasted 
with “quantitative,” which provides a numerical depiction, like a differential equation (e.g., 
Alligood, Sauer, & Yorke, 1997, p. 279; Barrat, Barthelemy, & Vespignani, 2008, p. 93; Beer, 
2000, p. 92). It is also common for ‘qualitative’ to refer to the way of being of the phenomena 
being analyzed or depicted via dynamical systems theory. For example, water can undergo 
“qualitative” shifts among gaseous, liquid, and solid state ways of being. 
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dynamics as a more straightforward example. The quantitative element of a dynamical systems 

account of pendulum dynamics is the following: 

 𝑑!𝜃
𝑑𝑡! +

𝑔
𝑙 sin 𝜃 = 0 

(1) 

In this differential equation, 0 is the pendulum swing, which is the phenomenon of interest. 

Angular displacement of arm (𝜃), gravitational acceleration (𝑔), and pendulum length (𝑙) are the 

identified variables contributing to and most responsible for the dynamics of the phenomenon of 

interest. The qualitative element is the phase space plot of the pendulum swinging (Figure 1). It 

is important to keep in mind that a qualitative description of the full range of the system’s 

dynamics via a state space is not intended to provide the kind of information or understanding 

that a diagram does. In the current context, a diagram of pendulum dynamics (Figure 1A) is 

intended to provide understanding of the dynamics in real space. Here, the movement of a 

pendulum across two-dimensional space. The state space of pendulum dynamics (Figure 1B) is 

intended to provide understanding of the dynamics abstractly. Here, the y-axis illustrates the 

velocity of the pendulum over time and the x-axis illustrates the angle of the pendulum at a time. 

For example, looking at (0, 0) on the phase space plot (Figure 1B), tells you that the pendulum is 

around the resting position, and (-2π, 0) and (2π, 0) illustrates the same motion but at opposite 

valued arm angles. Hence, the diagram provides an understanding of movement in actual 

physical space and the state space provides abstract understanding of the temporal space. Thus, 

taken together, the quantitative (e.g., differential equation) and qualitative (i.e., state space plot) 

elements are intended to provide explanations (e.g., contributions of variables) and 

understanding (i.e., abstract nature of the dynamics over time) of the phenomenon of interest. 
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Figure 1. Depictions of pendulum dynamics. (A) Diagram of pendulum dynamics. The diagram 

is intended to provide understanding of the dynamics in real space. Here, the movement of a 

pendulum across two-dimensional space. (B) Phase space plot of pendulum dynamics. The state 

space is intended to provide understanding of the dynamics abstractly. Here, the y-axis illustrates 

the velocity of the pendulum over time ("#
"$

) and the x-axis illustrates the pendulum arm’s angle 

at a time. Whereas the diagram (A) provides understanding of the actual physical space, the state 

space (B) provides abstract understanding of the temporal space. (Modified and reprinted with 

permission from Krishnavedala (2012). CC0 1.0 and Krishnavedala (2014). CC BY-SA 4.0.) 

 

2.1.1. Dimensionality reduction 

A more advanced topic than typically discussed in introductions to dynamical systems 

theory (especially in terms of the mind sciences), but one that will be crucial in later sections, is 

the intersection of dynamical systems theory and dimensionality reduction. In statistics and other 

forms of data analysis (e.g., machine learning), dimensionality (or dimensions) refers to the 

informative features of a dataset. For example, medical data such as blood pressure, temperature, 

white blood cell count, etc., are all features—or inputs—of a dataset obtained for the purpose of 

diagnosing an illness—or output. High-dimensional data refers to datasets with a “high” number 
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(a relative amount) of features such that determining their relationships to each other and the 

phenomenon of interest can be computationally exceedingly demanding. For example, datasets 

comprised of gene expression are paradigmatic cases of high-dimensional data as there are 

seemingly innumerable relationships among genes, different temporal scales, etc. Dimensionality 

reduction, in the simplest terms, is a data processing strategy that attempts to cut down on the 

number of a dataset’s features without losing valuable information (Hinton & Salakhutdinov, 

2006; Nguyen & Holmes, 2019; Sorzano, Vargas, & Pascual-Montano, 2014). This is typically 

done in two general ways: filtering variables from the original dataset to keep only what is most 

relevant or exploiting redundancy in input data to find fewer new variables that contain the same 

information (Cohen, 2017; Sorzano et al., 2014). As with any data processing or analysis 

techniques, one must be aware of the limitations of dimensionality reduction (Carlson, Goddard, 

Kaplan, Klein, & Ritchie, 2018; Jonas & Kording, 2017). Yet, there are many virtues to 

employing dimensionality reduction on high-dimensional datasets, including its ability to: filter 

out meaningless noise (Cohen, 2017), help control for incorrect intuitions about relationships 

among variables (Holmes & Huber, 2018), increase a dataset’s statistical power (Nguyen & 

Holmes, 2019), and reveal deeper organizational relationships and structures (Batista, 2014). 

Dimensionality reduction is not exclusive to dynamical systems theory. But for the aims 

of this paper, the most important way dimensionality reduction intersects with dynamical 

systems theory is for the purpose of reducing the number of variables needed to account for even 

the most complex of data from behavioral and cognitive tasks, as well as the underlying neural 

processes. With simple—usually human-made—systems, it can be relatively straightforward to 

identify the most relevant variables to account for the phenomenon of interest. As discussed 

above, the full range of pendulum dynamics can be understood via three variables: angular arm 
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displacement (𝜃), gravitational acceleration (𝑔), and pendulum length (𝑙). When it comes to 

neural systems and their related behaviors, however, variable identification is typically nowhere 

near as straightforward (Churchland, A. K. & Abbott, 2016; Churchland, M. M. et al., 2012; 

Cunningham & Byron, 2014; Frégnac, 2017; Williamson, Doiron, Smith, & Byron, 2019). Since 

it is crucial to identify the relevant dimensions (i.e., features, variables) when developing models 

and equations of dynamical systems, various dimensionality reduction analyses can be 

employed. These methods include, but are not limited to, linear methods such as correspondence 

analysis and nonlinear methods such as diffusion maps (Nguyen & Holmes, 2019). A popular 

method of dimensionality reduction in the mind sciences, and one that will come up in later 

section, is principal component analysis. 

Here, I provide a brief and conceptually-focused introduction to principal component 

analysis (PCA; see Jolliffe & Cadima, 2016 for a more technical introduction). While PCA has 

been around since the early-1900s, it was not until much more recently that the computational 

resources were available to leverage its techniques on high-dimensional datasets. The basic idea 

underlying PCA is to reduce a dataset’s dimensionality while preserving variability. Here, 

preserving variability means discovering new variables—principal components (PC)—with 

linear functions that match those in the original input data. Moreover, those new variables should 

maximize variance and be uncorrelated with each other (Jolliffe & Cadima, 2016). Werner and 

colleagues provide fish body measurements as an illustrative and simple example of PCA 

(Werner, Rink, Riedel-Kruse, & Friedrich, 2014). In this example, the input dataset contains 

height and length measurements of various fish (Figure 2A). As it is assumed those two 

dimensions are strongly correlated, the PCA defines a change of coordinate systems from the 

original two-dimensional (height, length) data space to a single dimension (first shape score) data 
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space (Figure 2B). This reduction from two dimensions to one dimension retains the maximum 

amount of the original dataset’s variability. 

 

 

Figure 2. Principal component analysis (PCA) example. (A) Fish body measurements provide 

the input dataset, with height and length obtained from N individuals. (B) Height and length are 

assumed to be strongly correlated. PCA defines a change of coordinate system from the original 

(height, length)-axes (here, the x- and y-axes) to a new axes (B1 and B2), which depict the 

principle axes of the dimensions that covary. The process of defining a new coordinate system 

(V) corresponds to a reduction of the dimensionality of the data space, which also retains most of 

the data’s variability. (Modified and reprinted with permission from Werner, Rink, Riedel-Kruse, 

& Friedrich (2014). CC BY 4.0.) 

 

As in the example of fish measurements (Figure 2), when the various dimensionality 

reduction methods intersect with dynamical systems approaches, it is usually for the purpose of 

helping investigators get an epistemological grip on unwieldy data by contributing to the 

identification of the most relevant variables among multivariate datasets. Although 

dimensionality reduction in its contemporary form (e.g., via neural networks and other kinds of 
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machine learning) is relatively new (~early-2000s), issues concerning how to cope with high-

dimensional data have been explicitly discussed in computer science (e.g., the “curse of 

dimensionality;” Bellman, 1961) and statistics (Finney, 1977) since the mid-1900s. It was around 

that time (give a decade back or two) that both dynamical systems approaches and forms of 

dimensionality reduction were contributing to some of the most significant research in 

neuroscience, namely, the Hodgkin-Huxley and FitzHugh-Nagumo models. In the following 

section, I present these cases to motivate the claim that contemporary applications of dynamical 

systems theory in neuroscience is not as much pioneering as it is a revival. 

 

2.2. Dynamical systems theory in neuroscience, then and now 

As mentioned above, it is common to view dynamical systems theory as merely an 

alternative or supplement to the information-processing approaches purported to be dominant in 

the contemporary mind sciences (e.g., Eliasmith, 1996; Kaplan & Bechtel, 2011). In this section, 

I present two historical cases to motivate both the claim that dynamical approaches were 

common in neuroscience research in the mid-1900s and that dimensionality reduction was part of 

practices that facilitated some of the field’s most lauded successes. I begin with Hodgkin and 

Huxley’s (1952) canonical model of action potentials. This Nobel Prize-earning work has been 

described as “elegant,” “groundbreaking,” and the most successful quantitative model in 

neuroscience (Gerstner, Kistler, Naud, & Paninski, 2014; Koch, 1999). A major feature of this 

work was the identification of the action potential (i.e., neuron spike) as a dynamic (i.e., 

temporal) event defined by relatively few variables (i.e., dimensions, elements). The canonical 

Hodgkin-Huxley model is as follows: 
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 𝐼 = 𝐶%
𝑑𝑉
𝑑𝑡 + 𝑔̅&𝑛

'(𝑉 − 𝑉&) + 𝑔̅()𝑚*ℎ(𝑉 − 𝑉()) + 𝑔̅+(𝑉 − 𝑉+) 
(2) 

Key elements of the model are: I (total membrane current as a function of time and voltage), 𝐶% 

(cell membrane capacity per unit), 𝑑𝑉 (change of membrane potential from resting value), 𝑑𝑡 

(change over time), and 𝑔's (ions such as sodium [𝑁𝑎] and potassium [𝐾]). Hodgkin and Huxley 

were able to successfully apply dynamical systems theory in the form of differential equations 

because they conceptualized the phenomenon of interest—namely, action potentials in the squid 

giant axon—as essentially a temporal event. From a dynamical perspective, their job became one 

of identifying the relevant variables responsible for the behavior. In this light, it is easy to see the 

Hodgkin-Huxley canonical model as an early application of a version of the dynamical 

hypothesis. While the original dynamical hypothesis is a set of claims concerning cognitive 

agents, here the concern is physiology. Specifically, Hodgkin and Huxley’s investigative 

framework was dynamical through and through in that it approached the phenomenon of interest 

in terms of its being both able to be understood as a dynamical system (i.e., modeled via 

differential equations) and as being a dynamical system (i.e., defining the action potential as a 

temporal event).6 

 
6 One potential objection to this interpretation of the Hodgkin-Huxley canonical model as 
supporting understanding mid-1900s neuroscience research through the lens of the dynamical 
hypothesis can be raised from proponents of mechanistic explanations. Mechanistic explanations 
are commonly considered to be the dominant explanatory approach to the mind sciences, and the 
life sciences in general (Craver & Tabery, 2019). There is an enormous literature concerning the 
nature of mechanistic explanations and how they contrast with rival explanatory methods like 
dynamical explanations (e.g., Chemero & Silberstein, 2008; Gervais, 2015; Zednik, 2011). 
Additionally, there is literature describing the Hodgkin-Huxley model as a paradigmatic example 
of mechanistic explanation (e.g., Craver, 2008; Craver & Kaplan, 2020). I do not wish to enter 
that debate here as it goes beyond the scope of my current aims. It is enough, I believe, to 
motivate that it is reasonable to interpret the Hodgkin-Huxley model as an example of dynamical 
systems theory playing a central role in neuroscience research in the mid-1900s. 
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As with any attempts at modeling complicated phenomena, it can be quite challenging to 

select the best variables to account for the target of interest. This is especially true with 

biological entities that usually have features that often interact nonlinearly. Consequently, many 

biological phenomena produce high-dimensional data. To the uninitiated, the Hodgkin-Huxley 

model presented above may seem quite complicated due to the appearance of many variables. 

Even if the model is seemingly complicated, Hodgkin and Huxley (1952) went through many 

iterations of models before developing the streamlined canonical model presented above. 

Moreover, defining the model above actually requires defining three of the variables with 

differential equations of their own, such that the Hodgkin-Huxley model, fully defined, is the 

following four-dimensional model: 

 𝐼 = 𝐶%
𝑑𝑉
𝑑𝑡 + 𝑔̅&𝑛

'(𝑉 − 𝑉&) + 𝑔̅()𝑚*ℎ(𝑉 − 𝑉()) + 𝑔̅+(𝑉 − 𝑉+) 
(2) 

where 

 𝑑𝑛
𝑑𝑡9 = 𝛼,(1 − 𝑛) − 𝛽,𝑛, (3) 

 𝑑𝑚
𝑑𝑡9 = 𝛼-(1 − 𝑚) − 𝛽-𝑚, (4) 

 𝑑ℎ
𝑑𝑡9 = 𝛼.(1 − ℎ) − 𝛽.ℎ (5) 

 

Seeing that the fully defined Hodgkin-Huxley canonical model is four differential equations 

makes clearer that the model cannot be solved analytically. Moreover, plotting the model along 

four dimensions creates a phase space plot that is challenging to interpret (Gerstner et al., 2014). 

Such cases are examples of the work dimensionality reduction can do to facilitate understanding 

of high-dimensional data. 
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The FitzHugh-Nagumo model of neuron excitability (FitzHugh, 1961; Nagumo, Arimoto, 

& Yoshizawa, 1962) is essentially the product of applying dimensionality reduction to the 

Hodgkin-Huxley model. Whereas the fully defined Hodgkin-Huxley model is a four-dimensional 

set of differential equations, the FitzHugh-Nagumo model is a pair of two-dimensional 

differential equations: 

 
𝑉̇ = 𝑉 −

𝑉*

3 −𝑊 + 𝐼 
(6) 

 𝑊̇ = 0.08(𝑉 + 0.7 − 0.8𝑊) (7) 

 

What is more, the FitzHugh-Nagumo model includes only three variables: 𝐼 (stimulus current 

magnitude), 𝑉 (cell membrane potential), and 𝑊 (recovery variable). Whereas the fully defined 

Hodgkin-Huxley model requires a four-dimensional phase space plot to depict the full range of 

behavior, the full range of behavior of the FitzHugh-Nagumo model can be depicted by a simpler 

two-dimensional phase space plot (Figure 3). 
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Figure 3. Phase space plot of FitzHugh-Nagumo model. With just two dimensions—𝑉 

(membrane potential) and 𝑊 (recovery variable)—the phase space plot depicts the full range of 

behavioral trajectories from a range of initial conditions. (Modified and reprinted with 

permission from Scholarpedia. CC BY-NC-SA 3.0.) 

 

The FitzHugh-Nagumo model captures the full temporal range of neuronal excitation and 

propagation with two electrochemical properties: potassium and sodium ion flows (Izhikevich & 

FitzHugh, 2006). It is worth noting that he FitzHugh-Nagumo model is less biologically realistic 

than the Hodgkin-Huxley model because it includes less empirically validated dimensions. With 

that said, it is still able to capture much of the same key information that the Hodgkin-Huxley 

model does. Though the Hodgkin-Huxley model is more biologically realistic than the FitzHugh-

Nagumo model, only temporal projections of its four-dimensional phase trajectories can be 
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simultaneously observed, which has the consequence of not allowing the model’s solution to be 

observed via a single plot (Izhikevich & FitzHugh, 2006). In other words, a plot of the Hodgkin-

Huxley model can depict direction of activity over time (i.e., projections), but not the states that 

it will settle in. With only two dimensions, the entire solution of the FitzHugh-Nagumo model 

can be plotted. Consequently, not only is the temporal trajectory of activity depicted (and 

maintained from the Hodgkin-Huxley model), but so too is the solution, namely, the states that 

the system settles in (i.e., properties not revealed by plotting the four dimensions of the Hodgkin-

Huxley model). Thus, not only does the FitzHugh-Nagumo model capture the key information 

concerning the properties of excitation and propagation that contribute to single-neuron spiking 

that the Hodgkin-Huxley model does, but by having its full solution plotted on two dimensions it 

reveals nonlinearities and feedback that contribute to spiking activity (Izhikevich, 2007; 

Izhikevich & FitzHugh, 2006). In that way, the FitzHugh-Nagumo model is a clear example of 

dimensional reduction methods integrated with dynamical systems theory methods in the history 

of neuroscience. Specifically, information about the phenomenon of interest—namely, single-

neuron activity—that is captured by four dimensions in the Hodgkin-Huxley model is maintained 

when reduced to the two dimensions “principle components” in the FitzHugh-Nagumo model. It 

is worth noting that other early applications of PCA in the mind sciences are found in Elman’s 

work on connectionist models of language (Elman, 1991) and in biophysics by Haken and Kelso 

on self-organization in the brain during behavioral tasks (Kelso & Haken, 1995). 

I have presented the Hodgkin-Huxley model and FitzHugh-Nagumo model as cases of 

dynamical systems theory being employed in some of the major achievements in the history of 

neuroscience. Moreover, the latter model also integrated dimensionality reduction methodology. 

What I have not done is presented those cases as a means to demonstrate that dynamical 
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approaches provided the only investigative framework employed in the neurosciences, broadly 

construed. There should be no doubt that mechanistic and reductionistic approaches were 

common and that such research was successfully conducted without dynamical systems concepts 

or methods. With that said, the above two cases should make it clear that it is incorrect to view 

dynamical systems theory as a novel development in contemporary neuroscience (see footnote 4 

above). Even the most cutting edge neuroscience research—from microscale genetics to 

macroscale behavior—with its heavy focus on employing various types of dimensionality 

reducing methods (Churchland, A. K. & Abbott, 2016; Fan & Markram, 2019; Frégnac, 2017) 

have as forerunners research in the mid-1900s that can reasonably be identified as dynamical 

(Kass et al., 2018). It is in that sense that there is a dynamical renaissance in contemporary 

neuroscience, and that it is clear that a version of the knowledge hypothesis part of the dynamical 

hypothesis has turned out to be true, namely, that at least some of the underlying physiology of 

cognitive systems can be understood as a dynamical system, and not as computational. In the 

following section, I present representational and dynamical systems explanations of motor 

control in order to demonstrate how the dynamical renaissance is motivating a reexamination of 

the necessity of appealing to “representations” in explanations of neural phenomena. 

 

3. W(h)ither representations? 

Thus far, I have attempted to make the primarily historical and weaker point that the 

increased presence of dynamical systems theory in contemporary neuroscience is more akin to a 

renaissance than a novel introduction. In this section I aim to make a stronger point: along with 

utilizing concepts and methods, the revival of dynamical systems theory in contemporary 

neuroscience is driving a reassessment of the necessity of the concept “representation” in 
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explanations of neural phenomena. This point parallels the nature hypothesis part of the 

dynamical hypothesis—namely, that cognitive agents are dynamical systems—and states that 

neural systems are dynamical systems. As discussed above, whereas the knowledge hypothesis 

part of the dynamical hypothesis landed quietly, the nature hypothesis arrived loudly. The reason 

is that central to the nature hypothesis is the metaphysical claim that cognition is not essentially 

computational or representational in nature (van Gelder, 1995). Given that computations and 

representations are defining features of the purportedly dominant information-processing 

frameworks in the mind sciences since at least the cognitive revolution (~1950s), it is no wonder 

that it has been said that it would be either “confusion or brazenness” (Shapiro, 2013, pp. 362-

363) to reject explaining cognition—or neural systems—in computational and representational 

terms. In this section, I aim to demonstrate that—although it may indeed be brazen—it is 

certainly not confused to think that the phenomena investigated by the neurosciences can be 

explained without appeal to representations. I do so by discussing representational and 

dynamical accounts of motor control. 

 

3.1. Motor control 

Motor control is the ability of a system to generate goal-directed and coordinated 

movements with the body and environment (Latash, Levin, Scholz, & Schöner, 2010). A simple 

example of motor control is when a monkey is hanging from a tree branch with one hand and 

reaches for a piece of fruit with the other hand. The goal is to not fall and get something to eat at 

the same time. What is being coordinated is the body (arms, hands, legs, etc.), location of tree 

branch in relation to body, and location of fruit in relation to body and tree. There are various 

theories for understanding motor control, with their own background assumptions, such as 
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artificial intelligence/robotics, ecological, neuroanatomical, and synergetics/self-organization 

(Turvey & Fonseca, 2008). Here, I focus on the traditionally predominant approaches in 

neuroscience that have focused on the central nervous system (CNS) and sensorimotor 

transformations (Jordan & Wolpert, 2000). In short, these approaches are information-processing 

frameworks, where the motor system (i.e., limbs, joints, and muscles) receives motor commands 

(e.g., force, reach, torque adjustments; Diedrichsen, 2012) from the controller located in the CNS 

(Jordan & Wolpert, 2000). Moreover, representations and the information they encode are 

fundamental to this approach. This is admittedly a very general overview of motor control. My 

aim here is not to provide a thorough introduction to motor control, but to focus on what can 

broadly be referred to as “representational” and “dynamical systems” approaches to motor 

control. The presentation of these approaches is intended to demonstrate that the renaissance of 

dynamical systems theory in contemporary neuroscience is motivating nonrepresentational 

explanations of various neural phenomena. 

 

3.2. Representational accounts of motor control 

There is a long history in neuroscience and related fields (e.g., neurology) during which 

representations have played a central role in accounts of motor control (for discussion of 

competing applications of the term in the history of neuroscience, see Chirimuuta, 2019). This 

history includes usages such as: the somatosensory cortex represents the body (e.g., Brecht, 

2017), neuronal activity patterns represent systematic relationships with body and world (e.g., S1 

somatotopic maps; Wilson & Moore, 2015), and neurons are vehicles that represent semantic 

information for goal-directed behavior (Thomson & Piccinini, 2018). In many areas of current 

neuroscience research, “representations” have been cashed out in terms of coding (Brette, 2019; 
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Dehaene, 2014; Koch & Marcus, 2014). As both a literal and metaphorical term, “coding” 

(including “decoding” and “encoding”) has also come to be the way representations involved in 

motor control are understood (Shenoy, Sahani, & Churchland, 2013; Thomson & Piccinini, 

2018). Like “representation,” there are various uses of the term “coding.” As Brette (2019) 

points out, the phrase “neural coding” appears in over 15,000 papers in a Google Scholar search 

of literature from the past ten years. For that reason, I will not attempt to provide an all-

encompassing definition of “coding” or “neural coding.” Instead, I limit discussion to “coding” 

in terms of representations involved in motor control. 

Given that information-processing approaches have such a large presence in 

contemporary neuroscience, it is unsurprising that concepts from computer science are appealed 

to when attempting to explain key claims of the approach, namely, that cognitive and neural 

systems are computational and representational in nature. As a starting point, motor control from 

an information-processing perspective can be understood in the following terms: 

[T]he motor system can be considered a system whose inputs are the motor 

commands emanating from the controller within the central nervous system … To 

determine the behavior of the system in response to this input, an additional set of 

variables, called state variables, also must be known. For example, in a robotic 

model of the arm, the motor command would represent the torques generated 

around the joints and the state variables would be the joint angles and angular 

velocities. Taken together, the inputs and the state variables are sufficient to 

determine the future behavior of the system. (Jordan & Wolpert, 2000, p. 601; 

italics in original) 
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Along those lines, the focus of motor control research in neuroscience has been to explain how 

such commands and state variables are encoded and decoded (Shenoy et al., 2013). In addition, 

the primary research target has been single neurons and the ways parameters are coded to control 

cortical output. From this general approach, single neurons provide the vehicles for encoded and 

decoded content, such as the content of state variable parameters. Thus, the job of the 

neuroscientist has been to describe the firing of individual neurons in the motor cortex as a 

function of various parameters (i.e., state variables) for concurrent or upcoming movements 

(Shenoy et al., 2013, pp. 340-341). 

Consider a standard neuroscience experiment: the instructed-delay task. In this task, 

experimental subjects (e.g., human, monkey, etc.) are instructed which movements they should 

make after a cue tells them to make the movement (Kandel, Schwartz, & Jessell, 2000). A typical 

experimental setup involves a subject sitting in a chair in front of a touch screen while 

behavioral, muscle, and/or neural measurements are recorded. A basic task could involve the 

subject visually fixating on a green target on the screen and touching it with their hand (Figure 

4A), another red target appears so they know where their movement must be made, and after a 

delay, the subject is presented with the green target and then moves to the spot where the red 

target was (Shenoy et al., 2013). One kind of representational account of this event is as follows: 

The task (i.e., reaching targets with a hand) is encoded (represented) in the controller located in 

the CNS, which outputs commands to the motor system. The controller incorporates encoded 

(represented) sensory information as well, namely, visual information in the form of green and 

red targets. The controller also incorporates information from state variables that have encoded 

(represented) states of the system itself, such as arm angle, torques around the elbow joint, etc. In 

view of that story, the neuroscientist working on motor control focuses her research on single 
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neurons by elucidating the relevant state variables encoded and identifying the tuning of those 

parameters necessary to produce successful movement (Figure 4B). 

 

 

Figure 4. Representational and dynamical systems accounts of motor control. (A) In an 

instructed-delay task, a participant begins by focusing on a starting point, such as a green target, 

is presented another target (e.g., red square), and is instructed to point to the spot the second 

target was located after being presented with the first target. Behavioral, muscle, and/or neural 

measurements are recorded during the task. (B) Representational accounts of motor control 

traditionally focus on single neurons (e.g., Jordan & Wolpert, 2000). The research aim is to 

identify the firing rate (𝑟) of single neurons (𝑛) in the motor cortex that describe functions of 

various parameters (𝑝𝑎𝑟𝑎𝑚/) that represent concurrent or upcoming movements (equation 1). 

Models of neuronal populations (equation 2) can integrate parameter functions defined at the 

single neuron. Motor commands are encoded in motor neurons via pulses that provide state 

variable profiles (B, bottom). (C) Dynamical systems accounts of motor control often focus on 
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neural populations. The research aim is to elucidate neural population cortical activity (𝒓(𝑡)) that 

is mapped onto muscle activity (𝒎(𝑡)), as well as other intermediating circuits (𝐺[𝑥]), that 

produce body movements in a manner that achieves the system’s aims (equation 3). 𝒓(𝑡) can be 

defined to capture neural population temporal activity (𝐫̇) that is determined by local motor 

cortex circuitry (ℎ(𝑥)) and inputs from other areas of the system (𝐮(𝑡)) (equation 4). State space 

plot of rotational dynamics (bottom). Data from Churchland et al. (2012) were reduced via jPCA 

to two dimensions that capture a significant portion of the neural population’s variance. Here, 

“a.u.” refers to “arbitrary units,” which is acceptable because the plot depicts the abstract nature 

of the population’s dynamics and not its actual dynamics in real space. (Modified and reprinted 

with permission from Pixabay and SVG Silh. CC0 1.0 (A); Modified and reprinted with 

permission from Eyal et al. (2018). CC BY 4.0 and Sartori et al. (2017). CC BY 4.0 (B); and 

Modified and reprinted with permission from Prior (2018). CC BY 4.0 and Lebedev et al., 

(2019). CC BY 4.0 (C).) 

 

Shenoy and colleagues (2013) describe the representational perspective as focused on 

explaining single-neuron activity in terms of tuning for movement parameters (Shenoy et al., 

2013, p. 340). They present the following as the general model adhered to by such approaches: 

 𝑟,(𝑡) = 𝑓,(𝑝𝑎𝑟𝑎𝑚0(𝑡), 𝑝𝑎𝑟𝑎𝑚!(𝑡), . 	. 	. ) (8) 

where the firing rate (𝑟) of single neurons (𝑛) in the motor cortex are described as functions of 

various parameters (𝑝𝑎𝑟𝑎𝑚/) representing concurrent or upcoming movements. If it seems that 

the number of relevant parameters could be enormous, that is because it is. Part of the reason is 

because identifying each parameter, as well as defining its tuning, must also take into account 

covariates such as target locations, limb kinematics, proprioceptor activity, muscular synergies, 
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and more (Shenoy et al., 2013). It is worth pointing out that although the general model defined 

by Shenoy and colleagues that focuses on single-neuron activity is true of much neuroscience 

research on motor control, the general idea also applies to research on neuronal populations (e.g., 

Sartori, Yavuz, & Farina, 2017). In such cases, the general model of neuronal populations 

contributing to motor control is as follows: 

 𝐷𝑅, =
1

𝑡, − 𝑡,10
 (9) 

where 𝑅 refers to the parameters encoded in single neurons that code for movement instructions 

to the body and 𝐷 refers to the activity of neuronal populations that map to and from the body. 

Shenoy et al.’s general model of single neurons can be readily incorporated into the population 

model by defining 𝑅 as 𝑓,(𝑝𝑎𝑟𝑎𝑚0(𝑡), 𝑝𝑎𝑟𝑎𝑚!(𝑡), . 	. 	. ). Thus, even if a model of motor control 

is focused on neuronal populations, the action—that is, the representational action—remains 

located in the single neurons that state variables are encoded in. In summary, representational 

accounts understand motor control as a form of information processing, where movement is 

controlled beforehand and concurrently, said movements are encoded in single neurons, and 

neuronal activity is tuned to various parameters (i.e., state variables) that contribute to the action 

(e.g., limb velocity, joint torque, etc.). 

 

3.3. Dynamical systems accounts of motor control 

Although representational accounts of motor control can utilize dynamical systems theory 

methods (e.g., treating data as continuous and applying differential equations; e.g., Schöner et 

al., 2016), there can be fundamental differences between them insofar as explaining motor 
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control goes.7 First, dynamical systems accounts of motor control focus on neural dynamics, 

specifically, the dynamics of neural populations (Figure 4C). This contrasts with representational 

accounts that focus on the coding (i.e., representation) of movement parameters (e.g., body 

states, such as limb angles, and world states, such as target location), and how those parameters 

are tuned in single neurons. Second, the dynamical systems approach focuses on the state of the 

system producing movement and not what outputs of the system are represented. In other words, 

the dynamical systems approach is centrally concerned with system dynamics (or rules) that 

constitute movement (Churchland et al., 2012; Gallego et al., 2017; Michaels, Dann, & 

Scherberger, 2016) and representational approaches are centrally concerned with how the system 

codes for current and future movements (Heitmann et al., 2015; Schöner et al., 2016). 

One way to begin to understand the dynamical systems approach to motor control is in 

terms of how it conceptualizes the nervous systems. Whereas the representational approach 

views the nervous system as, well, a representational system, the dynamical systems approach 

views the nervous system as a pattern-generating system. The patterns the nervous system 

generates are aimed at successful movement. A general model for understanding this view of the 

nervous system is as follows (Shenoy et al., 2013): 

 𝒎(𝑡) = 𝐺[𝒓(𝑡)] (10) 

 
7 It is important to reiterate the scope of the current project. The aim is not to provide accounts of 
“representational” and “dynamical systems” approaches to motor control in toto. Instead, it is to 
frame the differences in a way that highlights how they can have deeply diverging commitments. 
Consequently, it is not a simple binary division between the two. The fact is that there is a lot of 
gray. One example is work by Schöner and colleagues (e.g., Lins & Schöner, 2014; Schöner et 
al., 2016) that clearly applies a “dynamical systems theory” approach, while also focusing on 
neuronal populations instead of single neurons, and is representational. Another example is work 
by Krakauer and colleagues (e.g., Krakauer, Ghilardi, & Ghez, 1999; Shadmehr & Krakauer, 
2008), which can be viewed as residing at the intersection of representational and dynamical 
approaches. 
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where neural populations of cortical activity (𝒓(𝑡)), are mapped onto muscle activity (𝒎(𝑡)), 

with other intermediating circuits (𝐺[𝑥]), to produce body movements in a manner that achieves 

the system’s aims (Figure 4C). The variable 𝒓(𝑡) is further defined as the following function: 

 τ𝐫̇(𝑡) = ℎR𝐫(𝑡)S + 𝐮(𝑡) (11) 

where neural population over time (𝐫̇) is determined by local motor cortex circuitry (ℎ(𝑥)) and 

inputs from other areas of the system (𝐮(𝑡)). As such, a key feature of the dynamical systems 

approach is to elucidate the ways in which movements are driven—that is, determined, 

constrained, and sustained—by temporal patterns produced by neural populations (Shenoy et al., 

2013, p. 341). 

Churchland and colleagues successfully applied this approach to motor control during 

reaching. For details of the experiment and analyses, I refer readers to the primary source 

(Churchland et al., 2012; for further discussion by the authors see Shenoy et al., 2013; and for 

critiques of the study see Lebedev et al., 2019). In short, the authors conducted both single- and 

multi-unit recordings of four monkeys’ motor and premotor cortex during an instructed-delay 

task. Although the across-trial firing rate among single neurons exhibited commonly expected 

dynamics, they also demonstrated “quasi-oscillations patterns” in the form of rotational structure 

just before movement onset (Churchland et al., 2012, p. 52). The investigators then assessed the 

neural populations to see if the same rotational structure was exhibited at the population level. 

Findings at the neural-population level included: rotational dynamics during reaching, rotational 

dynamics in the same direction across conditions (i.e., variations of the instructed-delay task), 

rotational dynamics followed from a preparatory state, and the state space of the dynamics are 

not directly related to the arm movements (Churchland et al., 2012, pp. 52-53). It is important to 
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clarify these findings, especially the fourth. In order to do so, it is necessary to explicate the data 

analyses a bit. 

Churchland and colleagues utilized a dynamical systems theory approach to analyze the 

data. In doing so, they applied the elements described in section 2 above: a quantitative element 

that incorporated dimensionality reduction and a qualitative element. In order to quantify the 

rotational dynamics, they utilized a type of principal components analysis they call “jPCA:” 

 𝑥̇(𝑡, 𝑐) = 𝑀2345𝑥(𝑡, 𝑐) (12) 

where 𝑥̇(𝑡, 𝑐) is the population state at time 𝑡 and condition 𝑐, and 𝑀2345 is a matrix that 

captures the rotational dynamics (Churchland et al., 2012, p. 54). Datasets were reduced to six 

dimensions and then analyzed via the jPCA. The jPCA process reduced the datasets to two 

dimensions that were able to capture a significant portion of the variance. Thus, the population 

dynamics were plotted on a two-dimensional state space (e.g., Figure 4C, bottom). As discussed 

above (section 2), in dynamical systems theory, a state space can be an abstract depiction of 

dynamics and not a literal depiction of movement in real space (Figure 1). Accordingly, the state 

space plots produced from Churchland et al.’s jPCA data are not actual depictions of neural 

population dynamics, but an abstract depiction of the dynamics, which Churchland and 

colleagues refer to as “rotational” given their oscillatory nature. In other words, the rotational 

movement of the dynamics in the state space does not indicate that the real neurons from which 

the data was collected fire individually or as a population in a circular movement around a center 

point in physical space. Instead, in terms of the two identified principal components that capture 

the majority of variance (i.e., jPC1 and jPC2), from the preparatory state (red or green circle; 

Figure 4C, bottom), the dynamics can be understood as “rotational” in that they begin from a 

center point, and then their trajectory demonstrates movement away from the center and then 



 33 

back in the direction of the center. It is in that way that the state space is an abstract depiction of 

the dynamics.8 The four findings will be easier to grasp now that the analyses themselves, 

especially the state space plots, are better understood. 

In regard to the first and second findings, the rotational dynamics (i.e., population-scale 

neural activity) during reaching were statistically the same across the different experimental 

conditions (i.e., movements to variously-located targets). Third, the various movements during 

tasks followed from the statistically same preparatory states, namely, the rotational dynamics. 

What that means is that task movements were the output of regular system dynamics instead of 

the system representing the desired outcome. That leads to the fourth—and for current purposes 

the most important—finding, the dynamics depicted by the state space (Figure 4C, bottom) do 

not depict (or represent) the real space movements they were implicated in. In short, although the 

arm movements may look “rotational” as they reach to and from the starting position in real 

space, the rotational dynamics exhibited by the state space are not representations of the arm 

movements. They are abstract depictions of the temporal dynamics of the neural populations. 

Think back to the discussion of the qualitative element of dynamical systems theory approaches 

discussed above (section 2.1). The phase space plot of pendulum dynamics (Figure 1B) is not a 

depiction of the pendulum moving in real space. It is a visual depiction of the abstract nature of 

the temporal dynamics. Correspondingly, the phase space plot of rotational dynamics (Figure 4C, 

bottom) is not a depiction of neural populations activity in real space. It is a visual depiction of 

the abstract nature of the neural population activity after being reduced to two principal 

components that account for a significant portion of the original dataset’s variability. As a result, 

 
8 Thanks to John Krakauer for discussing with me this aspect of Churchland et al.’s work, and 
attempting to clarify the model and state space plot of rotational dynamics. Any remaining 
mistakes in interpretation or presentation are mine alone. 
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the state space rotational dynamics do not imply that the neural population codes for (or 

represents) rotational movements. 

In summary, dynamical systems accounts understand motor control as a form of pattern 

generation, where the nervous system does not represent states but drives desired movements. In 

that way, the nervous system is better thought of as constituting and producing forces that turn 

out the body’s movements. Furthermore, such an approach is not about accurately representing 

or encoding state variables but as producing movements that regularly lead to successful 

outcomes or not. In this way, the dynamical approach to motor control supports the dynamical 

hypothesis. First, as Churchland and colleagues’ research demonstrates (Churchland et al., 2012; 

Shenoy et al., 2013) it is a successful application of the elements of dynamical systems theory to 

fruitful research on neural systems, namely, motor control can be understood as a dynamical 

system. Second, that research demonstrates that core topics in neuroscience can be investigated, 

explained, and understood without appeal to information-processing frameworks, especially 

without invoking representations as key features of complex and goal-directed activity. That is to 

say, motor control can be understood as a dynamical system. I do not intend for this argument to 

lead to the conclusion that representations can wither away completely from neuroscience 

research, or from work on motor control. I do intend for this argument to motivate the claim that 

representations—as well as information-processing approaches in general—need not be the 

unquestioned go to in neuroscience research. Whither representations in neuroscience? Not 

eliminated, but not absolutely necessary either. 
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4. Conclusion 

Dynamical systems theory is becoming increasingly popular in contemporary 

neuroscience (for a small sample see Breakspear, 2017; Deco et al., 2017; Honey & Sporns, 

2008; Izhikevich, 2007; Rabinovich et al., 2006; Sussillo, 2014). In spite of the increased 

prominence in neuroscience research, discussion of dynamical systems theory in neuroscience 

among philosophers has been minimal (exceptions to this include Chemero & Silberstein, 2008; 

Chirimuuta, 2018; Favela, 2019, 2020; Ross, 2015). This is slightly odd given significant 

discussion of dynamical systems in cognitive science by philosophers (see section 1 above). 

Perhaps, this is the case because philosophers have assumed that arguments applicable in 

cognitive science apply broadly to other mind sciences such as neuroscience. Yet, the place of 

dynamical systems theory in neuroscience is unique to that of cognitive science. Significant 

discussion among cognitive scientists and philosophers on the topic of dynamical systems theory 

began in the 1990s. But in neuroscience, dynamical systems theory was central in the mid-1900s, 

faded a bit, and then recently shows signs of increased applicability. For that reason alone, one 

could think philosophers (especially in history and philosophy of science; though, as mentioned 

above, see Chirimuuta, 2019) would be more interested in understanding dynamical systems 

theory in the history of neuroscience. I hope to have motivated the worth of such a project here. 

In addition, I have aimed in this paper to motivate viewing research in contemporary 

neuroscience from a dynamical systems theory approach as supporting a version of the 

dynamical hypothesis. Whereas the original dynamical hypothesis (e.g., van Gelder, 1995) 

focused on cognitive agents, the version I have in mind is broader and includes the substrates of 

cognitive systems as well. Accordingly, I argued that the concepts and methods of dynamical 

systems theory have successfully been applied to neural systems in contemporary neuroscience. 
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Moreover, I have argued that such approaches have also motivated understanding neural systems 

as dynamical systems, which includes not requiring appeal to computations or representations to 

explain or understand those systems. Taken together, the historical claim—that dynamical 

approaches were prominent in the mid-1900s—and the critical claim—that representations are 

unnecessary in at least some core areas of research—demonstrate that the dynamical hypothesis 

is undergoing a renaissance in contemporary neuroscience. 

 

Acknowledgments 

The title of this paper is directly inspired by Shenoy, Sahani, and Churchland: “Indeed, 

the dynamical systems perspective may be experiencing a renaissance in neuroscience as a 

whole” (2012, p. 340). I thank Guest Editor Sarah Robins for interest in the project. Thanks to 

the anonymous reviewers for constructive and helpful feedback that I believe contributed to 

improving the paper a great deal. Thanks to John Krakauer for discussion and clarifying some of 

the technical aspects of the neuroscience. Thanks to Mary Jean Amon for extensive comments on 

earlier drafts. Finally, I would like to convey my appreciation to the Summer Seminars in 

Neuroscience and Philosophy, in c/o John Templeton Foundation and Duke University, for their 

generosity in providing funding to support open access for this article. 

 

  



 37 

References 

Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). Chaos: An introduction to dynamical 

systems. New York, NY: Springer. 

Ash, M., & Welshon, R. (2020). Dynamicism, radical enactivism, and representational cognitive 

processes: The case of subitization. Philosophical Psychology, 1-25. 

doi:10.1080/09515089.2020.1775798 

Barandiaran, X., & Moreno, A. (2006). On what makes certain dynamical systems cognitive: A 

minimally cognitive organization program. Adaptive Behavior, 14(2), 171-185. 

Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex 

networks. New York, NY: Cambridge University Press. 

Barrett, N. F (2016). Mind and value. In M. Garcia-Valdecasas, J. I. Murillo, & N. F. Barrett 

(Eds.), Biology and subjectivity: Philosophical contributions to non-reductive 

neuroscience (pp. 151-180). Switzerland: Springer. 

Batista, A. (2014). Multineuronal views of information processing. In M. S. Gazzaniga & G. R. 

Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 477-489). Cambridge, MA: 

MIT Press. 

Bechtel, W. (2015). Can mechanistic explanation be reconciled with scale-free constitution and 

dynamics? Studies in History and Philosophy of Science Part C: Studies in History and 

Philosophy of Biological and Biomedical Sciences, 53, 84-93. 

Bechtel, W. (2017). Systems biology: Negotiating between holism and reductionism. In S. Green 

(Ed.), Philosophy of systems biology: Perspectives from scientists and philosophers (pp. 

25-36). Cham, Switzerland: Springer. 



 38 

Bechtel, W., & Graham, G. (Eds). (1999). A companion to cognitive science. Malden, MA: 

Blackwell. 

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 

4(3), 91-99. 

Bellman, R. E. (1961). Adaptive control processes: A guided tour. Princeton, NJ: Princeton 

University Press. 

Bickle, J., & Hardcastle, V. G. (2012). Philosophy of neuroscience. eLS. Chichester, UK: John 

Wiley & Sons, Ltd. doi:10.1002/9780470015902.a002414 

Bickle, J., Mandik, P., & Landreth, A. (2019). The philosophy of neuroscience. In E. N. Zalta 

(Ed.), The Stanford encyclopedia of philosophy (fall 2019 ed.). Stanford, CA: Stanford 

University. Retrieved from 

https://plato.stanford.edu/archives/fall2019/entries/neuroscience/  

Boden, M. A. (2006). Mind as machine: A history of cognitive science (vol. 1 & 2). New York, 

NY: Oxford University Press. 

Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 

20(3), 340-352. 

Brecht, M. (2017). The body model theory of somatosensory cortex. Neuron, 94(5), 985-992. 

Brette, R. (2019). Is coding a relevant metaphor for the brain? Behavioral and Brain Sciences, 

42: e215. doi:10.1017/S0140525X19000049 

Burnston, D. C. (2019). Getting over atomism: Functional decomposition in complex neural 

systems. The British Journal for the Philosophy of Science, axz039. 

doi:10.1093/bjps/axz039 



 39 

Carlson, T., Goddard, E., Kaplan, D. M., Klein, C., & Ritchie, J. B. (2018). Ghosts in machine 

learning for cognitive neuroscience: Moving from data to theory. NeuroImage, 180, 88-

100. 

Chemero, A. (2000). Anti-representationalism and the dynamical stance. Philosophy of Science, 

67(4), 625-647. 

Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press. 

Chemero, A., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism 

with science. Philosophy of Science, 75(1), 1-27. 

Chirimuuta, M. (2018). Explanation in computational neuroscience: Causal and non-causal. The 

British Journal for the Philosophy of Science, 69(3), 849-880. 

Chirimuuta, M. (2019). Synthesis of contraries: Hughlings Jackson on sensory-motor 

representation in the brain. Studies in History and Philosophy of Science Part C: Studies 

in History and Philosophy of Biological and Biomedical Sciences, 75, 34-44. 

Churchland, P. S. (2002). Brain-wise: Studies in neurophilosophy. Cambridge, MA: The MIT 

Press. 

Churchland, A. K., & Abbott, L. F. (2016). Conceptual and technical advances define a key 

moment for theoretical neuroscience. Nature Neuroscience, 19(3), 348-349. 

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., 

& Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 

487(7405), 51-56. 

Clark, A. (1997). The dynamical challenge. Cognitive Science, 21(4), 461-481. 

Cohen, M. X. (2017). MATLAB for brain and cognitive scientists. Cambridge, MA: MIT Press. 

Combley, R. (Ed.). (2011). Cambridge business English dictionary. Cambridge University Press. 



 40 

Cooper, R. P., & Shallice, T. (2010). Cognitive neuroscience: The troubled marriage of cognitive 

science and neuroscience. Topics in Cognitive Science, 2, 398-406. 

Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. 

New York, NY: Oxford University Press. 

Craver, C. F. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley 

model of the action potential. Philosophy of Science, 75(5), 1022-1033. 

Craver, C. F., & Kaplan, D. M. (2020). Are more details better? On the norms of completeness 

for mechanistic explanations. The British Journal for the Philosophy of Science, 71(1), 

287-319. 

Craver, C., & Tabery, J. (2019). Mechanisms in science. In E. N. Zalta (Ed.), The Stanford 

encyclopedia of philosophy (summer 2019 ed.). Stanford, CA: Stanford University. 

Retrieved from https://plato.stanford.edu/archives/sum2019/entries/science-mechanisms/ 

Cunningham, J. P., & Byron, M. Y. (2014). Dimensionality reduction for large-scale neural 

recordings. Nature Neuroscience, 17(11), 1500-1509. 

Deco, G., Kringelbach, M. L., Jirsa, V. K., & Ritter, P. (2017). The dynamics of resting 

fluctuations in the brain: Metastability and its dynamical cortical core. Scientific Reports, 

7(3095), 1-14. doi:10.1038/s41598-017-03073-5 

Dehaene, S. (2014). Consciousness and the brain: Deciphering how the brain codes our 

thoughts. New York, NY: Penguin. 

Diedrichsen, J. (2012). Motor coordination. Scholarpedia, 7(12): 12309. 

doi:10.4249/scholarpedia.12309  

Eliasmith, C. (1996). The third contender: A critical examination of the dynamicist theory of 

cognition. Philosophical Psychology, 9, 441-463. 



 41 

Eliasmith, C. (1997). Computation and dynamical models of mind. Minds and Machines, 7(4), 

531-541. 

Eliasmith, C. (2010). How we ought to describe computation in the brain. Studies in History and 

Philosophy of Science Part A, 41(3), 313-320. 

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical 

structure. Machine Learning, 7, 195-225. doi:10.1023/A:1022699029236 

Eyal, G., Verhoog, M. B., Testa-Silva, G., Deitcher, Y., Benavides-Piccione, R., DeFelipe, J., ... 

& Segev, I. (2018). Human cortical pyramidal neurons: From spines to spikes via models. 

Frontiers in Cellular Neuroscience: Cellular Neurophysiology, 12(181), 1-24. 

doi:10.3389/fncel.2018.00181 

Fan, X., & Markram, H. (2019). A brief history of simulation neuroscience. Frontiers in 

Neuroinformatics, 13(32). doi:10.3389/fninf.2019.00032 

Favela, L. H. (2019). Integrated information theory as a complexity science approach to 

consciousness. Journal of Consciousness Studies, 26(1-2), 21-47. 

Favela, L. H. (2020). Dynamical systems theory in cognitive science and neuroscience. 

Philosophy Compass, 15(8), e12695, 1-16. doi:10.1111/phc3.12695 

Favela, L. H., & Martin, J. (2017). “Cognition” and dynamical cognitive science. Minds and 

Machines, 27, 331-355. doi:10.1007/s11023-016-9411-4 

Finney, D. J. (1977). Dimensions of statistics. Journal of the Royal Statistical Society: Series C 

(Applied Statistics), 26(3), 285-289. 

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. 

Biophysical Journal, 1(6), 445-466. 

Fodor, J. A. (1975). The language of thought. New York, NY: Thomas Y. Crowell. 



 42 

Frégnac, Y. (2017). Big data and the industrialization of neuroscience: A safe roadmap for 

understanding the brain? Science, 358(6362), 470-477. 

Fuchs, A. (2013). Nonlinear dynamics in complex systems: Theory and applications for the life-, 

neuro-, and natural sciences. New York, NY: Springer-Verlag. 

Gallego, J. A., Perich, M. G., Miller, L. E., & Solla, S. A. (2017). Neural manifolds for the 

control of movement. Neuron, 94(5), 978-984. 

Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From single 

neurons to networks and models of cognition. Cambridge, UK: Cambridge University 

Press. 

Gervais, R. (2015). Mechanistic and non-mechanistic varieties of dynamical models in cognitive 

science: Explanatory power, understanding, and the ‘mere description’ worry. Synthese, 

192(1), 43-66. 

Gibson, J. J. (1979/1986). The ecological approach to visual perception. Boston, MA: Houghton 

Mifflin. 

Golonka, S., & Wilson, A. D. (2019). Ecological mechanisms in cognitive science. Theory & 

Psychology, 29(5), 676-696. 

Guastello, S. J., Koopmans, M., & Pincus, D. (Eds.). (2011). Chaos and complexity in 

psychology: The theory of nonlinear dynamical systems. Cambridge, MA: Cambridge 

University Press. 

Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and 

bifurcations of vector fields. New York, NY: Springer-Verlag. 

Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human 

hand movements. Biological Cybernetics, 51, 347-356. 



 43 

Heitmann, S., Boonstra, T., Gong, P., Breakspear, M., & Ermentrout, B. (2015). The rhythms of 

steady posture: Motor commands as spatially organized oscillation patterns. 

Neurocomputing, 170, 3-14. 

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural 

networks. Science, 313(5786), 504-507. 

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its 

application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 

500-544. 

Holmes, S., & Huber, W. (2018). Modern statistics for modern biology. New York, NY: 

Cambridge University Press. 

Honey, C. J., & Sporns, O. (2008). Dynamical consequences of lesions in cortical networks. 

Human Brain Mapping, 29(7), 802-809. 

Izhikevich, E. (2007). Dynamical systems in neuroscience: The geometry of excitability and 

bursting. Cambridge, MA: MIT Press. 

Izhikevich, E. M., & FitzHugh, R. (2006). FitzHugh-Nagumo model. Scholarpedia, 1(9):1349. 

doi:10.4249/scholarpedia.1349 

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent 

developments. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 374(2065), 20150202. doi:10.1098/rsta.2015.0202 

Jonas, E., & Kording, K. P. (2017). Could a neuroscientist understand a microprocessor? PLoS 

Computational Biology, 13(1): e1005268. doi:10.1371/journal.pcbi.1005268 



 44 

Jordan, M. I., & Wolpert, D. M. (2000). Computational motor control. In M. S. Gazzaniga (Ed.), 

The new cognitive neurosciences (2nd ed.) (pp. 601-618). Cambridge, MA: The MIT 

Press. 

Kandel, E. R., Schwartz, J. H., & Jessell, T .M. (Eds.). (2000). Principles of neural science (4th 

ed.). McGraw-Hill. 

Kaplan, D. M., & Bechtel, W. (2011). Dynamical models: An alternative or complement to 

mechanistic explanations? Topics in Cognitive Science, 3(2), 438-444. 

Kass, R. E., Amari, S. I., Arai, K., Brown, E. N., Diekman, C. O., Diesmann, M., ... & Kramer, 

M. A. (2018). Computational neuroscience: Mathematical and statistical perspectives. 

Annual Review of Statistics and Its Application, 5, 183-214. 

Kelso, J. A. S. (2009). Coordination dynamics. In R. A. Meyers (Ed.), Encyclopedia of 

complexity and systems sciences (pp. 1537-1564). Berlin: Springer-Verlag. 

Kelso, J. A. S., & Haken, H. (1995). New laws to be expected in the organism: Synergetics of 

brain and behaviour. In M. Murphy & L. O'Neill (Eds.), What is life? The next fifty years: 

Speculations on the future of biology (pp. 137-160). Cambridge, MA: Cambridge 

University Press. doi:10.1017/CBO9780511623295.012 

Koch, C. (1999). Biophysics of computation: Information processing in single neurons. New 

York, NY: Oxford University Press. 

Koch, C., & Marcus, G. (2014). Cracking the brain’s codes. Technology Review, 117(4), 42-46. 

Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for 

kinematic and dynamic control of reaching. Nature Neuroscience, 2(11), 1026-1031. 



 45 

Krishnavedala. (2012). Geometrical diagram for the derivation of the height of a simple 

pendulum. Wikipedia. Retrieved from 

https://en.wikipedia.org/wiki/File:Simple_pendulum_height.svg 

Krishnavedala. (2014). Pendulum phase portrait. Wikipedia. Retrieved from 

https://commons.wikimedia.org/wiki/File:Pendulum_phase_portrait.svg 

Latash, M. L., Levin, M. F., Scholz, J. P., & Schöner, G. (2010). Motor control theories and their 

applications. Medicina, 46(6), 382-392. doi:10.3390/medicina46060054 

Lebedev, M. A., Ossadtchi, A., Mill, N. A., Urpi, N. A., Cervera, M. R., & Nicolelis, M. A. 

(2019). Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of 

rotation dynamics. Scientific Reports, 9(18978), 1-14. doi:10.1038/s41598-019-54760-4 

Lins, J., & Schöner, G. (2014). A neural approach to cognition based on dynamic field theory. In 

S. Coombes, P. b. Graben, R. Potthast, & J. Wright (Eds), Neural fields: Theory and 

applications (pp. 319-339). New York, NY: Springer. 

Lyre, H. (2018). Structures, dynamics and mechanisms in neuroscience: An integrative account. 

Synthese, 195(12), 5141-5158. 

Meyer, R. (2018). The non-mechanistic option: Defending dynamical explanations. The British 

Journal for the Philosophy of Science, axy034. doi:10.1093/bjps/axy034 

Michaels, J. A., Dann, B., & Scherberger, H. (2016). Neural population dynamics during 

reaching are better explained by a dynamical system than representational tuning. PLoS 

Computational Biology, 12(11): e1005175. doi:10.1371/journal.pcbi.1005175 

Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating 

nerve axon. Proceedings of the IRE, 50(10), 2061-2070. 



 46 

Nguyen, L. H., & Holmes, S. (2019). Ten quick tips for effective dimensionality reduction. PLoS 

Computational Biology, 15(6): e1006907. doi:10.1371/journal.pcbi.1006907 

Pitt, D. (2020). Mental representation. In E. N. Zalta (Ed.), The Stanford encyclopedia of 

philosophy (spring 2020 ed.). Stanford, CA: Stanford University. Retrieved from 

https://plato.stanford.edu/archives/spr2020/entries/mental-representation/ 

Port, R. F. (2006). Dynamical systems hypothesis in cognitive science. In L. Nadel (Ed.), 

Encyclopedia of cognitive science. John Wiley & Sons, Ltd. 

doi:10.1002/0470018860.s00020 

Port, R. F., & van Gelder, T. (Eds.) (1995). Mind as motion: Explorations in the dynamics of 

cognition. Cambridge, MA: The MIT Press. 

Prior, M. (2018, October 2). Scientists have built an artificial human brain cell. Frontiers Science 

News. Retrieved March 9, 2020 from https://blog.frontiersin.org/2018/10/02/cellular-

neuroscience-brain-neurons-memory/ 

Rabinovich, M. I., Varona, P., Selverston, A. I., & Abarbanel, H. D. (2006). Dynamical 

principles in neuroscience. Reviews of Modern Physics, 78(4), 1213-1265. 

Rescorla, M. (2020). The computational theory of mind. In E. N. Zalta (Ed.), The Stanford 

encyclopedia of philosophy (spring 2020 ed.). Stanford, CA: Stanford University. 

Retrieved from https://plato.stanford.edu/archives/spr2020/entries/computational-mind/ 

Riley, M. A., & Holden, J. G. (2012). Dynamics of cognition. Wiley Interdisciplinary Reviews: 

Cognitive Science, 3, 593-606. 

Ross, L. N. (2015). Dynamical models and explanation in neuroscience. Philosophy of Science, 

82(1), 32-54. 



 47 

Rumelhart, D. E. (1989). The architecture of mind: A connectionist approach. In M. Posner 

(Ed.), Foundations of cognitive science (pp. 133-159). Cambridge, MA: MIT Press. 

Sartori, M., Yavuz, U. Ş., & Farina, D. (2017). In vivo neuromechanics: Decoding causal motor 

neuron behavior with resulting musculoskeletal function. Scientific Reports, 7(13465), 1-

14. doi:10.1038/s41598-017-13766-6 

Schöner, G., Spencer, J. P., & the DFT Research Group. (2016). Dynamic thinking: A primer on 

dynamic field theory. New York, NY: Oxford University Press. 

Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. 

Experimental Brain Research, 185(3), 359-381. 

Shapiro, L. A. (2013). Dynamics and cognition. Minds and Machines, 23, 353-375. 

Shapiro, L. (2019). Embodied cognition (2nd ed.). New York, NY: Routledge. 

Shenoy, K. V., Sahani, M., & Churchland, M. M. (2013). Cortical control of arm movements: A 

dynamical systems perspective. Annual Review of Neuroscience, 36, 337-359. doi: 

10.1146/annurev-neuro-062111-150509 

Sorzano, C. O. S., Vargas, J., & Pascual-Montano, A. (2014). A survey of dimensionality 

reduction techniques. arXiv. https://arxiv.org/abs/1403.2877 

Stillings, N. A., Weisler, S. E., Chase, C. H., Feinstein, M. H., Garfield, J. L., & Rissland, E. L. 

(1995). Cognitive science: An introduction (2nd ed.). Cambridge, MA: The MIT press. 

Strogatz, S. H. (2015). Nonlinear dynamics and chaos: With applications to physics, biology, 

chemistry, and engineering (2nd ed.). New York, NY: CRC Press. 

Sussillo, D. (2014). Neural circuits as computational dynamical systems. Current Opinion in 

Neurobiology, 25, 156-163. 



 48 

Thagard, P. (2005). Mind: Introduction to cognitive science (2nd ed.). Cambridge, MA: MIT 

Press. 

Thagard, P. (2019). Cognitive science. In E. N. Zalta (Ed.), The Stanford encyclopedia of 

philosophy (spring 2019 ed.). Stanford, CA: Stanford University. Retrieved from 

https://plato.stanford.edu/archives/spr2019/entries/cognitive-science/ 

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition 

and action. Cambridge, MA: The MIT Press. 

Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of the mind. 

Cambridge MA: Belknap Press. 

Thomson, E., & Piccinini, G. (2018). Neural representations observed. Minds and Machines, 

28(1), 191-235. 

Turvey, M. T., & Fonesca, S. (2008). Nature of motor control: Perspectives and issues. In D. 

Sternad (Ed.), Progress in motor control (pp. 93-122). Boston, MA: Springer. 

van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 

92(7), 345-381. 

van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain 

Sciences, 21(5), 615-628. 

van Gelder, T. (2006). Revising the dynamical hypothesis. In P. Farias, & J. Queiroz (Eds.), 

Advanced issues on cognitive science and semiotics (pp. 73-91). Aachen: Shaker Verlag. 

Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and 

human experience. Cambridge, MA: The MIT Press. 

Venturelli, A. N. (2016). A cautionary contribution to the philosophy of explanation in the 

cognitive neurosciences. Minds and Machines, 26(3), 259-285. 



 49 

Von Eckardt, B. (1995). What is cognitive science? Cambridge MA: MIT Press. 

Werner, S., Rink, J. C., Riedel-Kruse, I. H., & Friedrich, B. M. (2014). Shape mode analysis 

exposes movement patterns in biology: Flagella and flatworms as case studies. PLoS 

ONE, 9(11): e113083. doi:10.1371/journal.pone.0113083 

Williamson, R. C., Doiron, B., Smith, M. A., & Byron, M. Y. (2019). Bridging large-scale 

neuronal recordings and large-scale network models using dimensionality reduction. 

Current Opinion in Neurobiology, 55, 40-47. 

Wilson, S., & Moore, C. (2015). S1 somatotopic maps. Scholarpedia, 10(4):8574. 

doi:10.4249/scholarpedia.8574 

Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238-263. 

Zednik, C. (2014). Are systems neuroscience explanations mechanistic? PhilSci Archive. 

http://philsci-archive.pitt.edu/id/eprint/10859 

 


