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Abstract 

The predominant view in the contemporary philosophies of the life sciences is that the most 

fundamental and viable kinds of explanations are mechanistic. In fact, some philosophers of the 

life science have claimed that the only genuine explanations in the life sciences are mechanistic. 

We believe this to be an unnecessarily restrictive position, both descriptively and normatively. 

Descriptively, much actual scientific research in the life sciences is not readily cast as 

mechanistic. There are many natural phenomena that benefit from the application of multiple 

explanatory strategies, even at the same scale of investigation. Thus, normatively speaking, 

research in the life sciences ought to begin from a pluralistic position concerning explanatory 

style. We defend this claim by means of the application of both mechanistic and dynamical 

explanatory strategies to bird flocking. 

Keywords: bird flocking, dynamical explanation, explanatory pluralism, mechanistic 

explanation 
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Explanatory Pluralism: A Case Study from the Life Sciences 

 

1. Introduction 

For nearly 20 years, a number of philosophers have defended the claim that mechanistic 

explanations are the most fundamental kind of explanations in the life sciences. This claim is 

said to be both historically and normatively true (e.g., Bechtel & Abrahamsen, 2005, 2006; 

Craver, 2005, 2006, 2007; Craver & Bechtel, 2007; Craver & Darden, 2005, 2013; Darden & 

Craver, 2002; Machamer, Darden, & Craver 2000; Piccinini & Craver 2011). The reach of 

mechanistic explanations, it is claimed, not only applies to the biological sciences but also other 

special sciences such as economics (Craver & Alexandrova 2008; cf. Reiss, 2007). In keeping 

with this claim are arguments that alternative kinds of explanations, such as dynamical 

explanations, are worthwhile only insofar as they can augment mechanistic explanations (Bechtel 

& Abrahamsen, 2010, 2011; Kaplan & Bechtel, 2011; Kaplan & Craver, 2011). Many responses 

have been made in defense of dynamical explanations as being full explanations in themselves 

(e.g., Beer, 2000; Chemero, 2009; Favela, 2020a; Favela & Martin, 2017; Ross, 2015; van 

Gelder, 1998; Yoshimi, 2012). However, we think there is an issue in the debate that has not 

received enough attention, namely, the restrictive nature of adhering to “one size fits all” 

explanatory frameworks. In short, we think adhering to the mechanism-only position results in 

unnecessarily limited conceptions of the world. Whether implicitly or explicitly, to adhere to a 

position that mechanistic explanations are fundamental is to simultaneously adhere to the idea 

that science investigates a world populated mechanisms (Mitchell, 2002; Wright & Bechtel, 

2006, pp. 59-61). The same goes for dynamical-only explanations. We believe this to be an 

unnecessarily restrictive position, both descriptively and normatively. Descriptively, much actual 
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scientific research in the life sciences is not readily cast as mechanistic (e.g., see Chialvo’s 

discussion of non-mechanistic approaches topics such as biological organisms, glassy states, 

language, proteins, and turbulence; 2018). There are many natural phenomena that benefit from 

the application of multiple explanatory strategies, even at the same scale of investigation. Thus, 

normatively speaking, research in the life sciences ought to begin from a pluralistic position 

concerning explanatory style (e.g., Suppes, 1978). 

The world is tremendously complex. Moreover, there are various explanatory goals that 

guide and motivate investigations. In light of these facts, we believe that investigations in the life 

and other special sciences ought to begin from an agnostic position concerning the nature of the 

phenomena under inquiry (Chemero & Silberstein, 2008; Dale, 2008; Dale, Dietrich, & 

Chemero, 2009; Godfrey-Smith, 2010; Love, 2012; Sterelny, 1996). To start from an agnostic 

position is to be open to pluralism. If we are to be pluralistic, then we should not exclude a priori 

the prospect of multiple empirically reasonable theoretical frameworks. Of course, all 

investigations must start somewhere. However, investigations need not all start from the same 

place, nor do all investigations need to start with the same theoretical commitments. Moreover, 

in some cases there is no single kind of explanation that will account for all aspects of a single 

phenomenon. In other words, there are cases in which no single path to discovery will be able to 

account for the True total nature of a phenomenon. Along these lines, the central argument we 

defend here is as follows: 

P1. Mechanistic explanations appropriately account for some natural phenomena. 

P2. Mechanistic explanations are not always reducible to other kinds of explanations. 

P3. Dynamical explanations appropriately account for some natural phenomena. 

P4. Dynamical explanations are not always reducible to other kinds of explanations. 
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P5. There are natural phenomena with different features amenable to varying explanatory 

strategies. 

P6. The explanatory strategy appropriate for those different features are not reducible to 

other explanatory strategies. 

C1. There are natural phenomena that require multiple explanatory strategies. 

C2. There are natural phenomena that require both mechanistic and dynamical 

explanations. 

Conclusions one and two underlie the necessity for explanatory pluralism in the life 

sciences. We demonstrate this and explanatory pluralism by means of a case study. The case 

study is that of bird flocking, specifically, starling murmurations. We proceed by first giving an 

account of mechanistic and dynamical explanations. Then, we present our case study: bird 

flocking. After, we describe mechanistic and dynamical explanations of different aspects of bird 

flocking at the same scale of investigation. We then address the challenge from proponents of 

dynamic mechanistic explanations. Finally, we elucidate why this case supports the notion of 

explanatory pluralism. In particular, we make clear how a devotion to explanatory monism 

prevents one from being able to account for certain features of a natural, biological phenomenon. 

Being an explanatory pluralist allows one to account for those features. 

 

2. Mechanistic and Dynamical Explanations 

What follows are accounts of mechanistic and dynamical explanations. Given the 

enormous size of the relevant literature, we do not claim to provide all encompassing accounts of 

mechanistic or dynamical explanations. Instead, we intend to highlight some of the typical 

characteristics of those explanations, particularly those that we understand as being difficult to 
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reconcile and which we take as underlying reasons why the two approaches are often viewed as 

at odds with each other. Moreover, we focus on those aspects of these two explanatory strategies 

that are explicitly utilized in scientific practice. 

 

2.1 Mechanistic explanations 

There are numerous versions of “mechanistic explanations” (for a very small sample see 

Bechtel, 2008; Bechtel & Richardson, 1993/2010; Craver, 2007; Glennan, 2005; Machamer, 

Darden, & Craver, 2000; etc.). Though there are a number of sophisticated philosophical 

accounts of mechanistic explanation in recent years (for review see Glennan & Illari, 2018), here 

we limit ourselves to early work that can broadly be conceived as the “new mechanism” that 

appeared in the 1990s and early 2000s (i.e., Bechtel & Richardson, 1993/2010; Machamer et al., 

2000). We limit our discussion to that conception of mechanistic explanation for two reasons. 

First, attempting to synthesize the literature into a single “mechanistic framework,” while 

properly treating the relevant work, is far beyond the scope of the current work. Second, we take 

the early work by people such as Bechtel and Richardson to be attempts at understanding 

heuristics utilized by scientists in their research (1993/2010, e.g., pp. xiii-xiv, xix, 37, 236); 

heuristics that we take to still be central to practice in the life sciences. Accordingly, we utilize 

“mechanistic explanation” as referring to three main features: linearity, localization, and 

component dominance. Before explaining each of those features, we begin with a general 

description of a mechanistic explanatory strategy. In very broad terms, a mechanistic explanation 

is one in which the behavior of a system is accounted for in terms of the functions and 

interactions of its parts (Bechtel & Richardson, 1993/2010, p. 17). “Mechanisms” are the entities 

and activities whose organization exhibits the explained phenomenon (Craver, 2007). The 
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organization of these entities and activities produce regular changes from start or set-up to finish 

or termination conditions (Craver & Darden, 2013, p. 15; Machamer et al., 2000). 

The methods utilized to bring about these explanations are those of decomposition and 

localization. As Bechtel and Richardson describe it, decomposition allows for “the activity of a 

whole system [to be treated] as the product of a set of subordinate functions (1993/2010, p. 23). 

Moreover, these interactions are accounted for in a manner that is additive and linear 

(1993/2010, p. 23). Localization is the investigative process by which “the different activities 

proposed in a task decomposition [are identified] with the behavior or capacities of specific 

components” (1993/2010, p. 26). A mechanistic explanation is achieved when a phenomenon’s 

mechanisms are described (Machamer et al., 2000). With this general picture of mechanistic 

frameworks and explanations in mind, we now focus on three of the main commitments of 

mechanistic explanations: linearity, localization, and component dominance. 

The first commitment underlying mechanistic frameworks is linearity. Machamer, 

Darden, and Craver state that, “Mechanisms are entities and activities such that they are 

productive of regular change from start or setup to finish or termination conditions” (2000, p. 3). 

Such a conception of mechanisms should not be surprising since one of the heuristic assumptions 

of human bounded rationality is that humans often think of events as occurring linearly (Bechtel 

& Richardson, 1993/2010, p. 18). In other words, humans think about events in sequential and 

step-by-step terms: “Why did D happen? Because first A, then B and C, and then D.” In order to 

reveal the significance such commitments to linearity have, it is informative to look at how 

linearity constrains the way data is analyzed. 

Linearity can be understood as a temporal factor in that phenomena are the result of 

sequential steps. As long as the steps in a particular linear process are followed, then particular 
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outcomes are guaranteed. When conceived of as a temporal factor, linearity can be understood 

structurally, where “structure” refers to the relations of parts. In that way linearity can be 

understood as a kind of additivity (Sternberg, 1969), and can be summed up in the following 

equation (Eq. 1; Ivancevic & Ivancevic, 2007, p. 52): 

 f(x + y) = f(x) + f(y) (1) 

The idea that the equation captures is that a phenomenon, f, can be characterized as composed of 

components x and y, or f can be characterized as components x and y added together. The 

phenomenon f is nothing more or less if it is conceptualized as being a unit comprised of parts x 

and y or as a phenomenon comprised of part x added to part y. 

If a phenomenon is linear, and if it is additive, then it should follow that the effects of 

perturbations on the system are localized in individual components (Holden, Van Orden, & 

Turvey, 2009, p. 319). Systems that are the result of additive dynamics can be described as 

having weak interactions (Holden et al., 2009). They are “weak” because system-level behaviors 

are primarily the result of their parts added together. Consider a system S comprised of parts X, 

Y, and Z. If the properties of S are the result of additive relations among X, Y, Z, and if X = 1, Y = 

2, and Z = 3, then S will have property 6 (SX,Y,Z), specifically, the result of an additive 

relationship among X, Y, and Z (1 + 2 + 3 = 6). Thus, if X were perturbed such that property 1 

was “knocked out” (e.g., when a neuron receives a “block” and is cutoff from inputs from other 

neurons), then S should have a resulting property 5 (Sy,z). System S goes from property 6 to 

property 5 because perturbing X alone does not affect the properties of Y or Z. Such a system can 

be understood as being component dominant. 

Component dominance refers to cases where a system’s behaviors result from additively 

and linearly organized parts with rigid architecture and predetermined functions. A component-
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dominant system is one that can be decomposed into distinct functional units of a larger system 

(Richardson & Chemero, 2014). Where the relevant components “bottom out” is a matter of 

debate (e.g., Kuhlmann & Glennan, 2014). Though for current purposes, we can understand the 

“lowest level” components as those that are experimentally revealed to be the spatial (e.g., size), 

temporal (e.g., duration), and causal (e.g., feedback) parts of the mechanism under investigation 

(Povich & Craver, 2018, p. 106). One way to identify components is to first assume the 

phenomenon under investigation is additive. In order to reveal additivity, the phenomenon is 

decomposed in order to localize specific capacities. When the data from the parts are analyzed, 

they should demonstrate component-dominant dynamics, that is, weakly interacting parts, with 

local affects that can be summed to reveal the whole behavior. If the parts of the system can be 

summed to reveal the whole behavior, then the commitments to linearity, additivity, localization, 

and component dominance was the correct one. Both artifacts and natural phenomena can exhibit 

additivity, linearity, and component dominance. Artifacts include combustion engines, pocket 

calculators, and toilets. Natural phenomena include Shepherds’ account of chemical transmission 

at synapses (Machamer et al., 2000, pp. 8-13), long-term potentiation (Craver, 2005), vitamin C 

biosynthesis (Figure 1A), and major signal transduction pathways (Figure 1B). Again, as we 

stated at the start of this section, our aim was not to synthesize the large and sophisticated 

philosophical literature on mechanisms. Instead, we merely aimed to present a form of 

mechanistic explanation that we take to be common in scientific practice. In the following 

section, we take the same approach with dynamical explanations. 
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Figure 1 

Common Biological Mechanisms 

 

Note. Schematics of biological mechanisms can be as relatively straightforward as the 

mechanism for vitamin C biosynthesis in vertebrates (A); or as complicated as major signal 

transduction pathways in mammals (B). (Copyright Wikipedia CC BY-SA 3.0 and CC BY-SA 

4.0.) 
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2.2 Dynamical explanations 

The philosophical literature on dynamical explanations is not nearly as vast or 

controversial as that for mechanisms; this is especially true for special sciences (for discussion, 

see Favela, 2020b). This may be due to philosophers inheriting a clearer articulation of the 

concepts and methods from engineers and scientists who broadly agree on their definition and 

usage (for review see Strogatz, 2018). Dynamical explanatory strategies typically center on 

accounting for the relevant variables within a set of differential equations and depicting the 

phenomenon in a phase space, which, following the variables in the equations, represents all 

possible states of the system and how the system evolves over time. Although there are linear 

dynamical systems, much of the appeal and power of dynamical systems theory stems from its 

ability to capture nonlinear phenomena. Dynamical explanations tend to focus on the principles 

responsible for a system’s spatial and temporal structure. Such explanations are similar, though 

not equivalent, to covering law explanations, are counter-factual supporting, and provide 

evidence for unification of apparently distinct phenomena (Stepp, Chemero, & Turvey, 2011, pp. 

432-435). 

When thinking about the nature of dynamical explanations, the first thing to keep in mind 

is that dynamical explanations seek to accomplish something very different than mechanistic 

explanations. As discussed in the previous section, mechanistic explanations tend to focus on 

identifying the constitutive components and properties of the components of the phenomenon. 

Dynamicists tend to be interested in discovering principles, how widely they apply in nature, and 

how they can be predicted and manipulated in order to facilitate understanding of complex 

phenomena. Instead of the constituents of a phenomenon, dynamical explanations are about 
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discovering how the states of a system evolve over time according to a principle (Riley & 

Holden, 2012). These principles are often written captured via differential equations, which are 

suited due to their ability to express temporal features of a system. Nonetheless, for an 

investigator to understand how the system evolves, having access to a model and solving the 

equations is not always enough. That is why it is typical for an investigator to plot the equation 

in a state space, which contains all possible states of the system over time (Kelso, 1997). Having 

a qualitative interpretation of a system (i.e., a state space, phase space portrait, etc.) facilitates 

understanding for an investigator in a way that equations alone do not. 

As mentioned above, the dynamical systems treatment of a phenomenon includes 

capturing the phenomenon in a phase space that represents all possible states of the system and 

how the system evolves over time. Such pictorial depictions of a system can facilitate 

understanding a system in a way that abstract equations might not. Take the example of the 

bursting behavior of a single neuron (Izhikevich, 2007). Izhikevich’s “simple” model of spiking 

neurons is represented via the following two coupled differential equations (Izhikevich, 2010, p. 

5063, equations 2.1 and 2.2): 

 𝐶�̇� = 𝑘(𝑣 −	𝑣!"#$)(𝑣 − 𝑣$%!"#%) − 	𝑢 + 	𝐼 (2.1) 

and 

 �̇� = 𝑎[𝑏(𝑣 − 𝑣!"#$) − 𝑢] (2.2) 

With these two equations, the entire range of firing behavior of a pyramidal neuron is captured. 

The equation in the first part of the model (2.1) captures factors responsible for a single neuron’s 

membrane potential (v), or firing. The second equation (2.2) captures factors responsible for the 

recovery, or repolarization, of a single neuron (u). 
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Although this simple model is biologically realistic, Izhikevich points out that solving 

(i.e., understanding) the model of the firing behavior of the neuron is difficult to achieve 

analytically (2007, pp. 43, 81, 270). In this situation, “analytic” means obtaining knowledge 

about the behavior of the system by actually solving the equations. Solving differential equations 

is fundamental to the utilization of such methods. In order to solve a differential equation, one 

must find a function that specifies a rule that determines values of the dependent variable and 

does not change the dependent variables (Brown, 2007, p. 13). Thus, in order to solve or 

understand the model, it is necessary to plot it in a phase space (Figure 2). This phase space 

portrait allows the qualitative behavior of a complex system (single neurons) to be analyzed via a 

model with two differential equations (2.1 and 2.2), all in terms of a simple two-dimensional 

plane that shows the entire range of behaviors of the system over time. Understanding is 

facilitated by limiting the causally relevant factors to two dimensions: recovery variable u and 

membrane potential v. This strategy is particularly well-suited for investigating phenomena with 

two particular characteristics: nonlinearity and interaction dominance. 
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Figure 2 

Phase Space Portrait of Izhikevich Model of Spiking Neurons 

 

Note. Phase space portrait of Izhikevich model of spiking neurons (2010, p. 5063; equations 2.1 

and 2.2). As part of the dynamical explanatory strategy, plotting equations on a two-dimensional 

plane can provide a qualitative understanding of a model otherwise too complicated to solve 

analytically. (Modified with permission from J. Terwilliger, 2018. Retrieved October 24, 2018 

from http://jackterwilliger.com/biological-neural-networks-part-i-spiking-neurons/) 

 

Nonlinearity refers to the dynamics of systems whereby the output is not directly 

proportional to the input (Carello & Moreno, 2005). This is in contrast to linear systems that are 

additive in that outputs are directly proportional to inputs. As discussed in the previous section, if 

a phenomenon is linear, and if it is additive, then it should follow that the effects of perturbations 
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on the system will reveal “weak interactions” localized in individual components (Holden, Van 

Orden, & Turvey, 2009, p. 319). Systems that are nonlinear, on the other hand, are not typically 

comprised of weakly interacting components. Thus, instead of being component dominant, 

nonlinear systems can be interaction dominant. 

Interaction dominance refers to a kind of dynamics exhibited by a system. Systems are 

interaction dominant when the dynamics or properties of the interactions among the parts 

supersede those that the parts would have separately or if the parts contributed to a system via 

additive interactions (Holden et al., 2009; Silberstein & Chemero, 2013; Silberstein, 2021). 

Interaction-dominant systems can also be described as non-modular or non-decomposable. When 

a system is modular, decomposable, and component dominant, then the properties of the system 

result from the properties of the component parts “added” together. In this way, the composition 

and capacities of parts can be the primary cause of the dynamics of the system. Mechanistic 

explanation is appropriate in these cases because when a system is component dominant, then the 

strategy of decomposition and localization works quite well. However, in the case of systems 

with interaction-dominant dynamics, the method of decomposition and localization is not usually 

effective, as the properties of interaction-dominant systems result primarily from the dynamic 

interactions of the components. It is possible to figure out how the properties of the components 

contribute to the dynamics of the system, but only when examined post-hoc. In other words, if an 

investigator were presented with a set of components, and if she were not permitted to observe 

how those components act as a system, then it is unlikely—if not impossible—to predict what 

the system’s behavior would be. In some cases, this is due to the fact that components of 

interaction-dominant systems can have properties that result from non-additive interactions 

(Carello & Moreno, 2005; Sternberg, 1969, 2011). 
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In the previous section, we described a linear and additive system, S. Let us look at a 

nonlinear and non-additive system, S*. If S* is comprised of A, B, C, where A =1, B = 2, and C = 

3, but the interactions among A, B, C are nonlinear, then swapping out A for D (D = 4) could 

alter the interactions of the entire system. So, if S* is a nonlinear and non-additive system, then 

the system-level activity could be exponential or multiplicative, for example: S* = 24 (where 

S*D,B,C [4 × 2 × 3 = 24]) or S* = 96 (where S*D,B,C [42 × 2 × 3 = 96]). In this way, we can also see 

what happens to a system that is interaction dominant. 

Interaction-dominant systems have system-level properties that override the properties of 

the components. In a component-dominant system, where the interactions of the components are 

additive, the properties of the whole system are no more or less than the properties of the 

components: System SX,Y,Z (X =1, Y = 2, and Z = 3) has property 6 if the interactions are additive 

(1 + 2 + 3 = 6). In an interaction-dominant system where the interactions are nonlinear (i.e., 

exponential or multiplicative), the interactions of the components are altered based on the nature 

of the system as a whole: System S*D,B,C (D = 4, B = 2, and C = 3) has property 39 if the 

interactions are additive ([4 + 2]2 + 3 = 39) or property 192 if the interactions are multiplicative 

([4 × 2]2 × 3 = 192). In the previous two examples, the brackets and exponent are intended to 

capture the nonlinear effects upon an interaction-dominant system, that is, how the place within a 

system can alter the properties within that system. 

This concludes our descriptions of mechanistic and dynamical explanations. As we 

mentioned at the start of this section, given the enormous size of the relevant literature, we have 

not intended to provide comprehensive accounts of mechanistic or dynamical explanations. 

Instead, we focused on the characteristics that most clearly differentiate them, specifically, the 

emphasis on linearity and component dominance typical to mechanistic explanations, and the 
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emphasis on nonlinearity and interaction dominance of dynamical explanations. Moreover, we 

focused on conceptual and methodological commitments that we take scientific practitioners to 

adhere to when their work expresses commitments to mechanistic or dynamical features. With 

these accounts given, we can proceed to our case study in explanatory pluralism. 

 

3. A Case Study 

Starlings (sturnus vulgaris) are a family of small to medium-sized birds found in many 

places around the world including Asia, Europe, and North America. Among other things, 

starlings are known for their murmurations. A “murmuration” is a flock of starlings. Starling 

flocks can number in the hundreds to thousands. What makes these flocks noteworthy is their 

globally unified behavior. Murmurations are a coordination phenomenon in which interactions 

between individuals produce collective, large-scale patterns (Bialek et al. 2012, p. 4787). To 

watch a flock of starlings during the day is to see a single, dark, and large blob-like form moving 

about and taking on various shapes in the sky (Figure 3). No matter the directions or shapes, the 

flock maintains movements that appear collective, synchronous, and ordered in a global manner 

(Cavagna et al. 2010, p. 11865). Explaining such collective animal behavior is very difficult, 

particularly if you want to explain how each bird has the nearest neighbors that it has at a 

particular time. This problem is further confounded if you want your explanation to be done with 

a few simple rules and variables. There are two explanations that have come to the forefront in 

the literature on bird flocking (Bialek et al. 2012; Cavagna et al. 2010; Cavagna et al. 2013a; 

Cavagna et al. 2013b; Kattas et al. 2012; Procaccini et al. 2011). One explanation is mechanistic 

and accounts for scale-free behavior and bird orientation. The other explanation is dynamical and 

accounts for scale-free behavior and bird velocity. Each will be presented in turn. It is crucial to 
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keep in mind that both are applied at the same level of analysis, that is, the biobehavioral scale at 

which flocking occurs. 

 

Figure 3 

Starling Flock 

 

Note. Starling flock in Gretna, Dumfries and Galloway, Scotland. (Source: Walter Baxter. 

Creative Commons Attribution-Share Alike 2.0 Generic License. Retrieved September 25, 2013 

from http://www.geograph.org.uk/photo/1069366). 

 

3.1 Mechanistic explanation of orientation in bird flocking 

When attempting to account for bird flocking behavior, the mechanistic explanation 
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attempts to answer the following question: How does the behavior of bird X navigating amongst 

its nearest neighbors, Y1-Y7, result in scale-free correlations? “Scale-free” refers to the behavior 

of the flock as a whole such that the “behavioral change of one individual influences and is 

influenced by the behavioral changes of all other individuals in the group” (Cavagna et al. 2010, 

p. 11866). One aspect of this question involves providing an explanation for the orientation of 

each bird. The mechanistic explanation for this feature of the phenomenon posits the maximum 

entropy model (Bialek et al. 2012). This model accounts for the location of nearest neighbors by 

starting from the individual bird and explaining outwards towards the flock. The model also 

attempts to account for the effect of one bird’s movements as cascading throughout the flock. As 

a result, the flock is understood primarily as a group of individual birds. 

In utilizing the maximum entropy model, the mechanist need only posit “[s]imple 

behavioral rules based on imitation” to account for coordination among nearest neighbors 

(Cavagna et al. 2010, p. 11869). The behavior based on imitation that the maximum entropy 

model ascribes to individual members of flocks are treated as tantamount to the behavior of 

ferromagnetism. Ferromagnetism is the kind of magnetic force that most people are familiar 

with. Demonstrations of ferromagnetism include, for example, the forces responsible for magnets 

sticking to refrigerator doors and two magnets repelling from one another when both of their 

positive charged sides are facing each other (Newman, 2008; Sandeman et al. 2008). Similarly, 

individual birds are treated as individual magnets: birds have a front and back end, and magnets 

have a positive and negative end. 

If individual birds are accurately treated as individual magnets, then a model of the 

individual birds based on such magnetic properties should be consistent with actual flock 

movements (i.e., maximum entropy distribution; Bialek et al. 2012, p. 4786). Bialek et al. (2012) 
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provide the following model (Eq. 4), 
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where 𝑗 ∈ 𝑛'-  refers to individual bird 𝑗 belonging to group 𝑛' with nearest neighbors 𝑖. As 

Bialek et al. (2012) demonstrate, the model provides simulations that are indeed consistent with 

experimental correlations in large flocks of starlings. From this core model, further models 

following the same rules of ferromagnetism, which underlie maximum entropy distribution, can 

provide other specific information, such as the orientation of multiple birds (Eq. 5), 
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where 𝑛' refers to orientations of neighborhood of birds. A powerful feature of the basic model 

in Eq. 4 is that in addition to providing the orientation of individual birds in a flock, it also 

exhibits the scale-free structure of the flock as a whole. Thus, modifications to the model, such 

as Eq. 5, allow for the comparison of flocks of various sizes without compromising the 

experimentally consistent scale-free behavior among flock orientations (Bialek et al. 2012). 

Whether tracking individual birds (e.g., 𝑗 in Eq. 4) or two or more birds (e.g., 𝑛' in Eq. 5), it is 

the influence of the individual upon the group that is captured via the models. Since the models 

are consistent with experimental data (i.e., movements of real bird flocks), it is reasonable to 

understand that individual bird orientation is driven via a local (i.e., individual bird) process. 

Moreover, such local processes also contribute to the scale-free structure of the flock as a whole. 

By modeling the flocks as being composed of birds with magnet-like rules of behavior, 

the maximum entropy model accounts for the location of each nearest neighbor, with the added 

benefit of also capturing the flock’s apparent scale-free coordination. The explanation is 
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mechanistic because the basic tenets of a mechanistic explanation remain, namely, that of linear 

decomposition and localization: the coordination behavior of the whole flock can be treated as 

the product of decomposable linear activities that are localizable in the individual birds. Once 

decomposed and localized, the coordination of the individual birds in the flock can be modeled 

in a manner similar to the ferromagnetic forces. 

 

3.2 Dynamical explanation of velocity in bird flocking 

As with the mechanistic explanation, when attempting to account for bird flocking 

behavior, the dynamical explanation attempts to answer the following question: How does the 

behavior of bird X navigating amongst its nearest neighbors, Y1-Y7, result in scale-free 

correlations? As stated above, “scale-free” refers to the behavioral change of individuals 

influencing the flock as a whole. One aspect of this question involves providing an explanation 

for the velocity of each bird. The dynamical explanation for this feature of the phenomenon 

posits the superdiffusion model (Cavagna et al. 2013a). This model accounts for the velocity of 

each bird by starting from the flock as a whole and explaining inwards towards the individual. In 

other words, this approach treats the flock as the primary system to be explained, whereas the 

mechanistic model above treated the individual birds as requiring the primary explanation. The 

superdiffusion model also accounts for the effect of the velocity of the flock as a whole 

cascading throughout to affect the velocity of each individual bird. 

The dynamical explanation accounts for the velocity of a bird and its nearest neighbors in 

terms of their behavior resulting from diffusion taking its course: at each instant of time each 

bird is interacting with whatever birds have been brought there by their superdiffusive wandering 

throughout the flock (Cavagna et al. 2013a, p. 5). In physics, diffusion is the process by which 
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particles seem to spread randomly, often to the point of equilibrium if environmental conditions 

suffice (Newman, 2008, pp. 15-16, 33-36). When superdiffusion occurs in scale-free systems, 

particles (or birds) will explore space via nonlinear processes (ben-Avraham & Havlin, 2004, pp. 

57-72; Li et al. 2011). 

If bird flocks do indeed move via superdiffusion, then the model should demonstrate 

individual bird movements that are consistent with actual flock movements. Cavagna et al. 

(2013) provide the following model (Eq. 6) to capture the diffusion processes of the flock, 

 𝛿𝑅2(𝑡) = 𝐷𝑡3 (6) 

where 𝛿 is the change of the position of birds 𝑅 at time 𝑡, 𝑎 is the diffusion exponent, and 𝐷 is 

the diffusion coefficient. Simulations of the model are consistent with experimental observations 

of bird flocks. The following model (Eq. 7) is derived from Eq. 6 in order to calculate bird 

velocities, 

 
𝛿𝑟2(𝑡) ≡

1
𝑇 − 𝑡

1
𝑁 A A[𝒓-(𝑡4 + 𝑡) − 𝒓-(𝑡4)]2

,

-./

5676/

7#.4

 
(7) 

where 𝑹89(𝑡) refers to the position of the center of the flock at time 𝑡 and 𝑟-(𝑡) = 𝑅-(𝑡) −

𝑅89(𝑡) refers to the position of a bird 𝑖 in the flock. Along with the number of birds in the flock 

𝑁 and the time series length 𝑇, the velocity of the flock can be calculated. A powerful feature of 

Eq. 4 is that in addition to providing the velocity of the flock, it also maintains the scale-free 

structure of the flock as whole. This is accounted for by treating the individual birds as relating 

to the whole flock as if they are individual particles within a body of fluid. Moreover, the 

relationship of bird to flock and vice versa—as particle to fluid and vice versa—is nonlinear. 

Specifically, the velocity affects the flock via cascades that are not additive (i.e., linear), but 

multiplicative (i.e., nonlinear). Such a nonlinear relationship contributes to explanations of 
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velocity resisting the methods of decomposition and localization, namely, methods more 

appropriate to phenomena comprised of additively/linearly related components. By modeling the 

flock as a single superdiffusive system, the superdiffusion model accounts not only for the 

velocity of each bird, but also for the scale-free coordination of the flock. Moreover, accurate 

predictions can be made of the velocities of the birds within the flock, thereby negating the need 

to decompose the flock and localize individual birds (Cavagna et al. 2013a, pp. 7-8). 

 

4. Dynamic Mechanistic Explanations 

As stated in the introduction, the predominant view in the philosophies of the life 

sciences is that it is both historically and normatively true that mechanistic explanations are the 

most fundamental kind of explanations in the life sciences. There is a lot to be said for that 

position, not least of which is the descriptive fact that the term ‘mechanism’ is commonly used in 

the life sciences. There are countless examples of this in neuroscience alone, where questions are 

typically stated in the form of, “What are the mechanisms of: Alzheimer’s, memory, pleasure 

and displeasure, stress, theta rhythms, vision, etc.?” With that said, proponents of mechanistic 

explanations in the life sciences have been challenged by phenomena that resist typical 

mechanistic methodologies (i.e., decomposition and localization) and conceptualizations (e.g., 

linearity and component dominance). The challenges come from phenomena that are nonlinear 

and interaction dominant in nature. So, what happens when a proponent of mechanism-only 

explanations is faced with a phenomenon that lends itself to nonlinear dynamical, graph-

theoretic, or topological concepts and methods? Such folks tend to break into two camps: One 

camp argues that those concepts and methods are not parts of explanations insofar as they are not 

mechanistic explanations (e.g., Craver, 2007; Darden & Craver, 2002; Kaplan & Bechtel, 2011; 
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Piccinini & Craver, 2011). The other camp says that those concepts and methods are parts of 

explanations insofar as they are part of dynamic mechanistic explanations (DME; e.g., Bechtel & 

Abrahamsen, 2010, 2011, 2013; Kaplan, 2018; Levy & Bechtel, 2013). 

Proponents of DME typically make two moves: import methods from other explanatory 

frameworks and/or redefine ‘mechanism’ to include concepts from other explanatory 

frameworks. Bechtel and Abrahamsen (2013) provide an illustrative example of the “import 

methods” move. Bechtel and Abrahamsen argue that a DME account of circadian rhythms 

involves decomposing the phenomenon into component parts and operations, then recomposing 

the components via computational models that include differential equations corresponding to 

the parts and operations (2013, pp. 707-708). We do not think this approach is actually anything 

more than a mechanistic explanation, albeit one that uses calculus to bolster the conceptual and 

methodological commitments. Merely corresponding differential equations to components does 

not make an explanation “dynamical,” that is, in the sense we described “dynamical 

explanations” above. Thus, utilizing calculus cannot be a differentiating factor among dynamical, 

mechanistic, and DME. Besides, plenty of classical computational explanations and the like use 

calculus (e.g., Eliasmith & Anderson, 2003; Harnad, 1993; Pylyshyn, 1984; see discussion by 

Lamb & Chemero, 2018). Mechanistic explanations adhere to the method of decomposition and 

localization; Bechtel and Abrahamsen’s DME does that. Mechanistic explanations are also 

component dominant; Bechtel and Abrahamsen’s DME is also, albeit with the addition of 

differential equations to correspond with the components. What makes “dynamical explanations” 

interesting is not their use of differential equations. Dynamical explanations are interesting only 

insofar as the phenomena they investigate exhibit properties different than or incommensurable 

with those of other explanatory strategies, such as interaction dominance. 
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The second move made by DME proponents when faced with a phenomenon that resists 

mechanistic methods and/or concepts is to redefine what a “mechanism” is. Proponents of DME 

do not abandon mechanistic frameworks when a phenomenon is, for example, interaction 

dominant. Instead, they expand the purview of mechanistic explanations to include phenomena 

they had not before. We assume that is not a legitimate argumentative tactic. Such a move is 

tantamount to the following line of thought: “I argue that all humans are mortal.” I then meet an 

immortal human. Instead of saying, “I cannot categorize all humans as mortal,” I now say, 

“Some mortal things live forever.” It is, admittedly, common for philosophers to define technical 

terms as they see fit, but doing so runs the risk of failed communication and muddied waters. 

However, as it concerns the mechanistic vs. dynamical explanations debate, we ought to be clear 

about what commitments each explanatory framework makes and, especially, pay attention to the 

features that make differences in their being different. Using differential equations, as mentioned 

above, is not one of those commitments. Understanding a phenomenon as component or 

interaction dominant is. Such commitments are not readily encompassed by the other framework, 

which is why they are different approaches in the first place (for more detailed discussion of this 

issue, we recommend Issad & Malaterre, 2015). 

 

5. Explanatory Pluralism 

In the preceding sections, we presented bird flocking as a case in the life sciences that is 

justifiably given both a mechanistic and dynamical explanation for various features at the same 

biobehavioral scale. The mechanistic strategy treats the flock as a collection of individual units. 

Bird orientation and scale-free coordination are explained via the maximum entropy model, 

which regards individual birds as following simple rules similar to individual magnets. The 
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dynamical strategy treats the flock as a single complex system that emerges from the interaction 

of individual units. Bird velocity and scale-free coordination are explained via the superdiffusion 

model, which regards the flock as a single mass where individual birds are moved by and move 

the system via a diffusive process. Each explanation aims at the same general question: How 

does the behavior of bird X navigating amongst its nearest neighbors, Y1-Y7, result in scale-free 

correlations? However, each strategy provides a different kind of explanation for different 

features of the same phenomenon: bird location and bird velocity. All of the explanations (i.e., 

models) occur at the same scale of investigation, namely, the biobehavioral level at which 

murmurations occur. Is there a single explanatory strategy that will account for all aspects of this 

single scale? Specifically, is there justifiable reason to attempt to provide a mechanist account of 

velocity or a dynamical account of location? We do not believe so. Though there is overlap in 

some of the explained behavior (i.e., scale-free coordination), there are essential features of the 

phenomenon that are excluded by the explanations of each explanatory strategy. Consequently, 

the features of the bird flock at the biobehavioral scale are not all appropriately conceptualized as 

mechanisms (e.g., component dominant) or dynamical systems (e.g., interaction dominant). This 

is because the flock both has mechanisms and is a dynamical system at the same scale of 

investigation. 

It is reasonable to see hints of the predicament of underdetermination in science as an 

underlying issue (Stanford, 2009). Specifically, one could claim there is not yet enough evidence 

to arbitrate the issue. Perhaps a mechanist can say, “My strategy explains bird orientation, it will 

eventually explain bird location too!” Perhaps a dynamicist can say, “My strategy explains bird 

location, it will eventually explain bird orientation too!” Nonetheless, underdetermination is not 

an issue here, nor are issues concerning empirically equivalent theories (van Fraassen, 1980). 
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When placed within different investigative frameworks, bird flocking can be conceptualized in 

different ways. For example, if the bird flock is a component-dominant system, then all of its 

features are additively and linearly related. On the other hand, if the bird flock is an interaction-

dominant system, then all of its features are nonlinearly related. The challenge with applying one 

set of theoretical commitments (e.g., component or interaction dominance) to this case is that 

there is empirical evidence for both being applicable to different features. It seems that there is 

not empirical equivalence among mechanistic and dynamical strategies because each strategy is 

applied to different features, namely, orientation and velocity. If certain theoretical commitments 

are accurate, namely, if certain features of the flock are properly characterized as component 

dominant and others as interaction dominant, then it would be unproductive to attempt to fit the 

square peg of component-dominant phenomena into the round hole of dynamical explanations or 

the round peg of interaction-dominant phenomena into the square hole of mechanistic 

explanations. 

With that said, in light of the possibility of giving two equally viable explanations of 

different aspects of the same phenomenon, we believe that starting investigations from positions 

other than pluralism can result in the unjustifiable application of theoretical commitments. 

Starting from a commitment to pluralism allows one to utilize various explanatory tools without 

the limitations that come with stringent adherence to single strategies. A lesson to take from a 

commitment to pluralism is that the study of a single phenomenon may simultaneously require 

multiple kinds of explanatory frameworks. This is not because the data is underdetermined or 

there is empirical equivalency. This is because the data from a single phenomenon are the result 

of very different kinds of causes, namely, causes that in one instance are best treated 

mechanistically and in another best treated dynamically. Insisting on just one style of explanation 



EXPLANATORY PLURALISM 28 

will leave us in the position of being able to explain bird orientation or bird velocity, but not 

both. 

Let us revisit the argument presented in the first section. We have shown that (P1) 

mechanistic explanations appropriately account for some natural phenomena, here, bird 

orientation, which is a phenomenon not readily reducible to another explanatory framework (P2), 

such as a dynamical one. We have shown that (P3) dynamical explanations appropriately account 

for some natural phenomena, here, bird velocity, which is a phenomenon not readily reducible to 

another explanatory framework (P4), such as a mechanistic one. Starling murmurations are a 

natural phenomenon that exhibit various features amenable to different kinds of explanatory 

strategies (P5): mechanistic approach for bird orientation and dynamical approach for bird 

velocity. Due to key commitments of each (P6), mechanistic strategies (e.g., component 

dominance) do not reduce to dynamical approaches, and dynamical strategies (e.g., interaction 

dominance) do not reduce to mechanistic approaches. Thus (C1), starling murmurations require 

multiple explanatory strategies to explain various features at the same biobehavioral scale of 

investigation. Moreover (C2), starling murmurations require both mechanistic (i.e., orientation) 

and dynamical (i.e., velocity) explanatory strategies to be more fully understood. 

 

6. Conclusion 

We view explanatory pluralism as a virtue. Starting from a position of pluralism is a 

virtue not only in scientific inquiry but other forms of inquiry as well. It is likely that some see 

explanatory pluralism as a bad position to subscribe to. Examples include those who adhere to 

the mechanism-only or dynamical-only explanatory framework points of view, as well as those 

who think that what makes dynamical explanations interesting can readily be subsumed by 
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mechanistic approaches. Others likely not to be satisfied with explanatory pluralism include 

those who want necessary and sufficient conditions for such concepts as “science,” “cause,” and 

“explanation.” However, those who are interested in the practice of science will see that there is 

no matter of fact as to which kind of explanation holds the position of primacy over all others 

(cf. Feyerabend, 1975/2010). Furthermore, those interested in the practice of science will also 

see that there is no adherence to a single theoretical commitment, come what may (cf. Quine, 

1951). An honest investigator, be she a biologist, philosopher, or physicist, will accept the 

primacy of phenomena over commitment to ideology. Moreover, pluralism is not just the 

beginning, but also sometimes the end. That is to say, that there are different kinds of 

explanations of the same system; or, as we show here, different kinds of explanations—with 

some opposing claims; e.g., component vs. interaction dominance—of the different but closely 

related aspects of the same system. This is not necessarily a case of underdetermination, or a 

failure to find the right mechanistic or dynamical explanation. This can be the end state. In this 

case, the orientations of individual birds in the flock are mechanistically explained, while their 

velocity is dynamically explained. There is no reason to think that starling murmurations are 

unique in this respect. 
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