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Abstract 

We analyse the issue of using prior information in frequentist statistical inference. For that 

purpose, we scrutinise different kinds of sampling designs in Jerzy Neyman’s theory to reveal 

a variety of ways to explicitly and objectively engage with prior information. Further, we turn 

to the debate on sampling paradigms (design-based vs. model-based approach) to argue that 

Neyman’s theory provides an argument for the conciliatory approach in the frequentism vs. 

Bayesianism debate. We also demonstrate that while Neyman’s theory, by allowing non-

epistemic values to influence evidence collection and formulation of statistical conclusions, 

does not compromise the epistemic reliability of the procedures and may improve it. This 

undermines the value-free ideal of scientific inference. 

 

 

1. Introduction 

Jerzy Neyman was a 20th-century statistician who is recognised as one of the co-founders of 

the frequentist statistical paradigm, which dominated the methodology of natural and social 

sciences in the 20
th

 century (Lehmann 1985). His main contributions to inference from data 

(estimation, hypothesis evaluation; see, e.g., Neyman, Pearson 1928) and the process of 

interpreting the outcomes of experiments (philosophical assumptions and the goals of science; 

see, e.g., Neyman 1957) have been widely discussed by philosophers of science (e.g., 

Hacking 1965; Giere 1969; Mayo 1983; Mayo and Spanos 2006) and have often been 

criticised as disadvantageous with regards to the Bayesian statistical paradigm (see e.g., 

Romeijn 2017; Sprenger 2016, 2018) and the likelihoodist statistical paradigm (e.g. Royall 

1997). However, Neyman’s contribution to data collection and sampling designs has been, 

until recently (Zhao 2020), largely neglected by philosophers of science,
 1

 even though his 
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 Except perhaps for his conceptions of causal effect in a randomised experiment (Pearl 2009, 126-132). 
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contribution to this field is significant (Little 2014) and still remains a standard element of 

present-day sampling frameworks (Srivastava 2016).
2
 

Highlighting the sampling theory of Jerzy Neyman is vital in light of the lack of self-

standing and proper expositions of Neyman’s views concerning sampling in philosophical 

literature. Zhao (2020) depicted Neyman as one of the representatives of the so-called design-

based (as opposed to model-based) general approach to sampling. Design-based inference 

schemes depend only on a study’s sampling plan, hence are independent of the values of the 

data collected, whilst the model-based inference scheme is also based on post-observational 

considerations, it is conditioned by the one and only realised sample (see Särndal 2010, 116). 

Zhao referred to Neyman’s statements concerning the general notion of a sample’s 

representativeness and Neyman’s critique of sampling that rely on the researcher’s decisions 

instead of randomisation. Nonetheless, Neyman’s sampling designs are not fleshed out by this 

author. Moreover, in citing only selected fragments of Neyman’s views, Zhao depicted 

Neyman as a proponent of unrestricted randomisation in which the use of prior information
3
 

concerning a population is minimised. This image of Neyman’s view on sampling, as we 

show in this article, is misleading. 

The second important reason to bring out Neyman’s original sampling theory regards 

the philosophical debate between frequentism and Bayesianism, in which Neyman’s sampling 

theory has been omitted. Many philosophers of the scientific method claim that Bayesianism 

provides a more adequate account of scientific inference than frequentism, with this being 

because Bayesianism explicitly encodes available prior information as a prior probability (e.g. 

Howson and Urbach 2006, 153–154, Romeijn 2017). 

Frequentism, and especially the Neyman-Pearson’s approach, is often regarded as 

unable to articulate the prior information it presupposes. For example, (Sprenger 2009, 240) 

claims that the frequentist procedure uses “implicit prior assumptions”; and that the 

frequentist inference assumptions that precede statistical inference, “are often hidden behind 

the curtain”, while the Bayesian framework reveals such assumptions in a more explicit way 

(Sprenger 2018, 549, sect. 4). Bayesianism is regarded as superior with regard to the 

“conventional” methods that are used in frequentist statistics, because “conventional 

                                                 
2
 There are several other sampling plans in scientific literature that we do not discuss in this paper because we 

restrict our work to Neyman’s contribution and the philosophical analysis thereof. 
3
 We use this term to denote a piece of information that is potentially or actually used in scientific inference as 

an element of a particular study and which is not a part of the observational data gathered when the study is 

conducted. Prior information is or can be shared and communicated as something that plays a role in drawing 

scientific conclusions. From this perspective it could also be termed “common knowledge” (cf. Lewis 1969, 53) 
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statistical methods are forced to ignore any relevant information other than that contained in 

the data” (McCarthy 2007, 2). This purported lack of sensitivity to context-specific prior 

information is expressed as “maximally uninformative” use of prior information in sampling 

design (Zhao 2020, 5). The approach of Neyman (and Pearson) to statistics is considered to 

“rely on a concept of model that includes much more preconditions, according to which much 

of the statistician’s method is already fixed” which contrasted with “building and adjusting a 

model to the data at hand and to the questions under discussion”, which is thought to be a key 

feature of Fisherian’s competing approach (Lenhard 2006, 84). These objections entail that 

prior information is in principle not utilised by Neyman’s frequentist statistical methods in an 

objective and epistemically fruitful way. The important question then is whether these 

objections stand when we consider the perspective of Neyman’s theory of sampling. 

Our third source of motivation in analysing Neyman’s sampling designs is the debate 

concerning the role of non-epistemic values in science. Classically, social values, such as 

economic, ethical, cultural, political, and religious values, are understood in opposition to 

epistemic (cognitive) values (see e.g. Laudan 2004). The value-free ideal of science (VFI) 

assumes that collecting evidence and formulating scientific conclusions can be undertaken 

without making non-epistemic value judgments, and states that scientists should attempt to 

minimise the influence of these values on scientific reasoning (see e.g. Douglas 2009; Betz 

2013), with non-epistemic values including moral, political, and social values (Reiss, 

Sprenger 2017). In frequentist statistics, the choice of a sampling scheme influences the 

process and outcome of statistical reasoning. This is accomplished by determining the 

mathematical model of study design (see e.g. Lindley, Phillips 1976) and by the fact that the 

choice of sampling scheme influences sample composition. This prompts the question of 

whether, and how, an explicit influence of some social factors on the process of forming a 

scientific conclusion is present in Neyman’s sampling designs, and if so, whether the 

implementation of this type of prior information at the stage of designing a sampling scheme 

is adverse, neutral, or perhaps beneficial epistemically (with regards to estimation). Such a 

type of influence on a sampling scheme is different from the type of influence that has the 

form of the practical considerations that dictate the uneven setting of error rates in Neyman-

Pearson’s theory of hypothesis testing. The latter has already been a subject of philosophical 

debate since long before (see e.g. Levi 1962) but the influence of practical, ethical, and 

societal considerations on the process of collecting evidence and formulating scientific 

conclusions with regards to Neyman’s sampling theory has not been philosophically 

elaborated. If it could be shown that allowing for the influence of some social values on 
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sampling design is beneficial epistemically, then this would pose an argument against VFI, as 

the ideal assumes that the influence of social (non-epistemic) values are epistemically 

adverse. 

In this article, we analyse the use of prior information in Neyman’s sampling theory 

(Sect. 2). We show that in Neyman’s frequentism explicit and epistemically beneficial use of 

manifold types of prior information is possible and of primary concern when designing the 

study. This is contrary to philosophers’ statements like the ones mentioned above by Lenhard, 

Sprenger, or Zhao. We indicate that this applies not only to sampling in connection with 

estimation but also to testing hypotheses (Sect. 3.1). We refer to the outcomes of the analysis 

to support two philosophical-methodological conclusions. The first is weakened opposition 

between frequentist and Bayesian approaches to sampling and estimation (Sect. 3.2). The 

second is undermined VFI (Sect. 3.3). 

We use the term objectivity (objective) in the sense of process objectivity, meaning the 

objectivity of scientific procedures. Of the possible facets of objectivity, we concentrate on 

two. The first is that the prior information on which an outcome is contingent on is explicitly 

and unequivocally stated, and thus knowledge is intersubjectively communicable and 

controllable by means of the shared standards of its expression and use. The second is that 

procedures are not contingent on non-epistemic factors, including social ones, that would 

negatively influence the epistemic value of procedures (see Reiss, Sprenger 2017). By the 

term epistemic value, we understand a value that positively contributes to reaching the 

epistemic goal of the assertion of new theses that are close to the truth and the avoidance of 

the assertion of theses that are far from the truth (see David 2001). In the case considered by 

Neyman, desired properties of the method of statistical estimation from a sample oriented 

towards the aforementioned general goal translate into two more specific goals. Firstly, to be 

able to generate statistically reliable conclusions and to have control over the nominal 

frequency of false conclusions (we use “(𝐼 )” to denote this aspect of the general goal). 

Secondly, to increase the accuracy of true conclusions (for this one we use “(𝐼𝐼)”). More 

precisely, (𝐼) being able to carry out an unbiased statistical interval estimation of a sought 

after quantity and to calculate error probability in the first place and—once such estimation is 

achievable—to (𝐼𝐼) maximise the accuracy of an interval estimator
4
 (minimise the length of 
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 The random variable (a function that assigns a real number to each possible outcome of a random 

phenomenon), which is used to generate estimates of a sought-out population parameter, is called an estimator. 

To give a simple example: an estimator of the population mean is a random variable  
 

 that is a function of 
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possible intervals) (see Neyman 1937, 371). When we speak of the influence of social values 

on statistical inference we think of letting prior information of social factors be implemented 

in sampling design and thus influence the process (and effect) of estimation in respect to 

aspects (𝐼) and (𝐼𝐼). The influences of social factors considered by us are the influences on 

reaching the epistemic goal indicated in (a) and (b). Realisation of the epistemic goal in its 

two described aspects can be understood as the realisation of the two epistemic values 

respectively: the value of achieving statistical reliability in the method of estimation (which, 

as we present later in the text, is called consistency by Neyman), and the value of increasing 

the accuracy of estimation methods.
5
 

 

 

2. The Use of Prior Information in Neyman’s Theory of Sampling Designs 

In this section, we refer to Neyman’s contributions to the methodology of sampling (in 

connection with estimation) in order to reveal that his framework aims at the explicit 

incorporation of the diverse types of prior information that are available in different research 

designs. 

Historically, the challenge of drawing inferences from a sample rather than from a 

whole population was tantamount to ascertaining that the former is a representation of the 

latter
6
 (cf. Kuusela 2011, 91-93). In his groundbreaking paper (1934) Neyman compared two 

“very broad” (559) groups of sampling techniques that presuppose taking representative 

samples from finite populations by random sampling in its special form, so-called stratified 

sampling and purposive selection (sampling). What was, for Neyman, distinctive for random 

sampling was that there was some randomness present in the selection process, as opposed to 

the second broad group of sampling called purposive selection, where there is no randomness 

in the selection process. It follows from his paper that the method of random sampling may be 

of “several types” (Neyman 1934, 567-568) including simple random sampling with or 

                                                                                                                                                         
random variables that refer to possible outcomes of particular trials (related to selections of one sampling unit), 

while the numerical value  
 
, which is a function of the observed values, is an estimate. The variance of an 

estimator is the expected size of the squared deviation of a random variable (an estimator) from its expected 

value; to simplify it can be said that variance is a measure of the expected departure of an estimator’s value from 

the true one. An interval estimator generates numerical values in the form of intervals with known pre-

observational probability of the generated interval will cover the true value of the population parameter. 
5
 The necessity of narrowing down possible topics of our investigation due to paper size limitations and our goal 

of taking a closer look at Neyman’s sampling theory led us to consider only those epistemic aspects of sampling 

techniques that were considered by Neyman himself. 
6
 One of the still most commonly used descriptions of a representative sample is that such a sample is a 

miniature of the population (cf. Dumicic 2011, 1222-1224). 
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without replacement, and stratified and cluster sampling (discussed by us below in this paper), 

among others. The meaning of random sampling can be rephrased in more recent terms as 

probability sampling. In probability sampling, each unit in a finite population of interest has a 

definite non-zero chance of selection (Steel 2011, 896-898). This chance does not need to be 

equal for every unit. Neyman’s rationale of a random selection is that such a selection enables 

the application of probability calculus: the conducting of interval estimation and the 

calculating of error probability, which, in Neyman’s view, is not feasible in the case of 

purposive selection (1934, 559, 572, 586).
7
 Purposive selection means that the selection of 

sampling units is determined by a researcher’s arbitrary, non-random choice and it is either 

impossible to ascribe probabilities to the selection of a particular possible set, or these 

probabilities are a priori known to be either 0 or 1. 

 

2.1. Stratified and Cluster Sampling 

Stratified sampling is a kind of probability sampling in which, prior to drawing a random 

sample, a population is divided into several, mutually exclusive and exhaustive groups 

(groups are called strata from which the name of the approach derives). Next, the sample is 

divided into partial samples, each being randomly drawn from the strata. Stratified sampling 

is often a natural way of sampling, e.g., in a survey about support for a new presidential 

candidate conducted separately in each province of a country where, roughly speaking, a 

province corresponds to a stratum. Citizens in such a case are not randomly selected from the 

population of the country’s inhabitants as a whole but from sub-populations called strata. If 

the number of persons interrogated differs among the strata in a way that the proportion of a 

sub-sample size relative to the size of a sub-population will be the same for each province, 

then every inhabitant of the country will have the same chance of being included in the 

survey. Such a form of stratified sampling, where inclusion probabilities are equal for every 

member of a population, prevailed at the time of the publication of Neyman’s classic paper in 

1934. A simple example can help to understand the core idea. Imagine a country with three 

provinces with 25, 10, and 5 inhabitants, respectively. The sample size comprises 8 trials, 

thus the sizes of corresponding subsamples must be 5, 2, and 1, accordingly. This is to assure 

that none of the strata will be under- or overrepresented and for the whole sample to remain 

                                                 
7
 Neyman recognised R.A. Fisher as the one who introduced to sampling and experimentation the principle that 

to control errors and produce a rigorous measure of uncertainty, it is necessary that a sample be collected by 

random selection and not through arbitrary choice (Neyman 1950, 292; Neyman 1977, 110; cf. Marks 2003, 

933). 
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representative of the population. Stratified sampling is particularly useful when the variability 

of the investigated characteristic is known to be in some way dependent on an auxiliary 

factor. Strata should then be determined to represent the ranges of such a factor—we discuss 

this later in this section. It is often very difficult to sample individual units of a population. 

Sometimes the characteristics of a population or its environment make this impossible in 

principle, such as, for example, in the case of determining the value of weekly church 

donations per person in a particular city. Imagine no public data is available and you want to 

estimate it based on a random sample. In some countries, the amount donated is not formally 

determined and how much one gives is in principle a secret for many parishioners. In this 

case, a possible way of data collection would be to treat parishes with a known number of 

parishioners and a known sum of donations as a cluster—a new sampling unit of a higher 

order. In other cases, the cost of sampling units is simply too high compared to its benefits, all 

things considered, as in the case of investigating per capita food expenditure. It is much easier 

to get to know what the monthly food expenditure of a household is with the known number 

of members of a household than it is to draw a particular member of a household and to 

determine how much she spends per month. This is because food for all members of a 

household is usually bought jointly and shared without discriminating how much of a product 

was used by an individual member. One approach in such a case is to investigate clusters of 

units, like households, rather than the units themselves. 

Thus, this type of sampling for Neyman consists of treating groups of individuals as 

units of sampling. Clusters as groups are collectives of units that are always taken into 

consideration together: first some of the clusters are selected at random and then all members 

of the selected clusters are included in the sample. Strata, in contrast, are conceived as subsets 

of a population and from every distinguished subset (stratum), some units are drawn at 

random. For example, if a country’s districts were treated as clusters, rather than strata, then 

random drawing would apply to districts themselves: some districts would be randomly 

selected and then all the citizens from the selected districts would be subjected to the 

questionnaire. Sometimes the attributes of a cluster’s elements are measured separately for 

each element and generalised, while in other cases, a generalised measure is immediately 

available (being unique). This second case would be the just mentioned examples of parishes 

and households, where measures of an element’s attributes are not available. A clear 

advantage of cluster sampling is that it seems to naturally capture the structure of many 

studied populations, and so it may be the only reasonable sampling scheme in the socio-

economic realm, for “human populations are rarely spread in single individuals. Mostly they 
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are grouped” (Neyman 1934, 568). This type of sampling was later classified as one-stage 

cluster sampling. This type is opposed to the multi-stage type, in which clusters are randomly 

selected in the first stage but random selection is continued in the follow-up stage(es) within 

the selected clusters (see Levy, Lemeshow 2008, 225). 

Sampling of clusters can be combined with stratified sampling. If prior information 

prompts one towards sample clusters instead of the original units of the population, then the 

original population can be reconceptualised as a population of clusters, and stratification can 

thus be performed on the reconceptualised population of clusters. Neyman used this approach 

in his 1934 paper. Still, the assumptions, roles, and consequences may be examined separately 

for clustering and stratification, as exemplified by Neyman. 

We turn now to the epistemic consequences of the use of prior information by means 

of stratification and clustering. Neyman has mathematically demonstrated that the information 

on how a population is organised and socio-economic factors like those mentioned above can 

be objectively applied in the process of scientific investigation at the stage of designing the 

sampling scheme. He has shown how these factors influence the process of statistical 

inference—thus how social values influence statistical inference and enable statistically 

reliable conclusions and for there to be control over the nominal level of false conclusions; as 

a means to reach the epistemic goal in aspect (𝐼). 

Even when stratification and/or clustering is arbitrary it does not rule out the 

feasibility of an estimation (see aforesaid the (𝐼) aspect of the epistemic goal) that will use 

Neyman’s concept of the best estimator, today called the best
8
 linear unbiased estimator 

(B.L.U.E.),
9

 which was presented in Neyman’s 1934 paper and denoted as the linear 

unbiased
10

 estimator of minimal variance (Neyman 1934, 563-567). In Neyman’s 

terminology, the value of the variance of an estimator is inversely proportional to its accuracy 

(Neyman 1938a). An increase in the accuracy of estimation means shorter confidence 

intervals (see Neyman 1937, 371).
11

 That a method of sampling is representative means that it 

                                                 
8
 The term “best” means: of minimal variance among estimators of the type considered and under the condition 

of no prior assumption of the probability (density) function of data. 
9
 Neyman (1934, 564-565) stressed that he didn’t state that linear estimators are the best in an “unequivocal” 

sense and argued for the choice of this type of estimator to be an element of his theory based on certain 

“important advantages” of linear estimators, discussion of which is beyond the scope of this paper. 
10

 An unbiased estimator is an estimator the expected value of which is equal to the true value of the parameter 

being estimated (in opposition to biased estimator, for which the expected value is not equal to the true value). 
11

 The discussed properties relate directly to the method (estimator—mathematical construct), not to the 

estimate—single, particular outcome based on the observed data—or calculated interval yielded by the use of 

this construct. The interpretation of the connection between the methodological optimisation and outcomes is 

that, on average, an estimate’s (data) variance will be smaller and the calculated confidence interval—shorter 
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enables consistent estimation of a research variable and of the accuracy of an estimate (see 

Neyman 1934, 587-88). Consistency of the method of estimation means, in Neyman’s theory, 

that interval estimation with a predefined confidence level can be ascribed to every sample 

irrespective of the unknown properties of a population (Neyman 1934, 586). Consistent 

estimation can be achieved regardless of the variation of the research variable within a 

particular strata, the way a population is divided into strata and the primary entities organised 

into clusters (Neyman 1934, 579). 

Neyman’s analysis of stratified and clustered sampling designs
12

 indicate how to 

properly implement information—that is available prior to the onset of the research process—

concerning how a population is organised and its relevant socio-economic factors. He has 

mathematically shown that information representing the influence of these factors can be 

implemented in an explicit, objective way. Moreover, that it will not have a negative 

influence on the correctness of an estimation’s procedure, i.e., without obstructing consistent 

estimation. As we argued, in some cases, allowing these factors to influence the statistical 

inference may even be the only way to obtain a consistent estimation which otherwise would 

be impossible. This was the case in the example using the knowledge about citizens structured 

in households or believers structured in parishes. As we already argued, without 

implementing this knowledge to perform cluster sampling, gathering the information by 

random sampling of particular persons would not be feasible due to it being way too difficult 

or expensive like in the example of households. In other cases, cluster sampling is necessary 

if one wants to comply with social standards, like in the example of parishes, in which, as we 

have already explained, the ethical standards would require not to sample individuals. 

Consider the epistemic goal in its (𝐼) aspect, i.e., in being able to generate statistically 

reliable conclusions and to have control over the nominal rate of false conclusions. Properly 

designed cases of stratified and clustered sampling can exhibit the influence of social (non-

epistemic) values on the process of collecting evidence and formulating scientific 

conclusions. We now turn to discuss two other conceptions of Neyman. 

 

2.2. Purposive Selection and Optimum Allocation Sampling 

                                                                                                                                                         
(more accurate). It could also be said that an increase of the accuracy of the estimator yields that the expected 

variance of an estimate is smaller, and length of an interval—shorter. 
12

 The mathematical background for Neyman’s statements concerning (stratified) cluster sampling can be found 

in full detail in Neyman (1933, 33-69). 
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In contrast to the method of stratified sampling (or, more generally, the method of random 

sampling), purposive selection, has been aimed not at random selection, but at the maximal 

representativeness of a sample obtained by means of intentional (purposive) selection of 

certain groups of entities. This selection is based on an investigator’s expert knowledge of 

general facts about the population in question or her own experience concerning the results of 

previous investigations.
13

 This kind of approach may sometimes appear natural to a 

researcher. For example, consider an ecologist who wants to assess the difference in blooming 

periods of certain herb species, say Hepatica Nobilis, from two large forest complexes 

exposed to different climatic conditions. If an investigator knows about the presence of a 

certain factor of secondary interest and its influence on the abnormal disturbance of the 

selected species’ blooming, she might tend to exclude sampling from those forest sites (and 

thus those individuals of the herb) that are to a large extent subject to the local extreme 

(abnormal) disturbances of the aforementioned factor. This can be explained as an attempt to 

minimise the risk of a random drawing of an ‘extreme’ sample whose observational mean 

would be very distant from the population mean of the blooming period. It seems reasonable 

in such a case to purposively select specimens growing in sites that represent normal 

conditions with regards to this factor. By avoiding the risk of selecting an extreme sample, 

amore representative sample will be selected which, ideally, should lead to better accuracy of 

the assessment of the relevant characteristic of the population. 

According to Neyman, the basic assumption underlying purposive selection was that 

the values of an investigated quantity (ascribed to particular units of the investigated 

population from which a sample is to be taken) are correlated with the auxiliary variable and 

that the regression of these values on the values of this same auxiliary variable is linear 

(Neyman 1934, 571). Neyman stated that if one assumes that the above hypothesis is true, 

then successful purposive selection must sample units of the population for which the mean 

value of the auxiliary variable will have the same value, or at least as close as possible to the 

value for the whole population (see Neyman 1934, 571). This can be motivated by the 

following simple example: suppose that the quantity of an average weekly income from 

donations is positively correlated with the mean age of the members of a parish, then, if most 

of the parishes from the investigated population were “senior” (in terms of the average age of 

members), the sample should include an adequately larger number of “senior” parishes than 

                                                 
13

 Purposive sampling was anticipated by the monograph method, in which entities typical to a population were 

selected based on the concept in which a population as a whole “had a reality external and superior to individuals 

(…) whereas individuals were simply contingent manifestations of it” (Desrosières 1998/1993, 214). 
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“younger” ones so that the mean “age” of a parish in a sample is close to the mean age of a 

parish from the whole population of parishes. 

As mentioned earlier, purposive selection originally concerned non-probabilistic 

sampling. Neyman later modified the concept of purposive selection so that it became a 

special case of random sampling. What was assumed, to differentiate random sampling from 

purposive selection before Neyman’s paper, was first that “the unit is an aggregate, such as a 

whole district, and the sample is an aggregate of these aggregates” (1934, 570). Neyman has 

shown that the fact that “elements of sampling are … groups of … individuals, does not 

necessarily involve a negation of the randomness of the sampling”. We discussed this in 

Subsection 2.2 under the label of cluster sampling, as it is called nowadays. Thus, “… the 

nature of the elements of sampling”—whether the unit of sample is an individual, or a cluster 

(a group of individuals), should not be considered as “constituting any essential difference 

between random sampling and purposive selection” (1934, 571). 

Second, it was assumed by the time of Neyman’s analysis that “the fact that the 

selection is purposive very generally involves intentional dependence on correlation, the 

correlation between the quantity sought and one or more known quantities” (1934, 570-571). 

Neyman has shown that this dependence can be reformulated as a special case of stratified 

sampling,
14

 which was by then regarded to be a type of random sampling. The effect of 

joining these two facts was as follows: “the method of stratified sampling by groups (clusters) 

includes as a special case the method of purposive selection” (1934, 570) and thus the concept 

of purposive selection became a special case of random sampling that takes the form of 

stratified sampling of clusters. The consistency of estimation does not mean that its accuracy 

cannot be further improved by an appropriate sampling scheme. Neyman stressed that this 

reconceptualised purposive sampling can be applied without difficulties only in exceptional 

cases. As an improved alternative to the method of purposive selection, but also to the method 

of simple random sampling and the method of stratified sampling with sample sizes for strata 

being proportionate to the sizes of the strata from which they are drawn, Neyman (1934) 

offered a method that is today called optimum allocation sampling. 

Neyman showed in his analysis of how to minimise the length of an estimator in the 

case of stratified sampling design that the size of the stratum is not the only factor that should 

be taken into account when determining the size of the partial sample of a stratum. It is more 

                                                 
14

 “[T]he method of stratified sampling by groups (clusters) includes as a special case the method of purposive 

selection” (Neyman 1934, 570). 
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optimal for an estimate’s accuracy to also take into account estimates of the standard 

deviation of the research variable in strata (Neyman 1933, 92).
15

 The variance of an estimator 

is proportional to the variability of the research variable within strata. Therefore, to minimise 

the variance of the estimator by optimal sample allocation, the sample size for a stratum 

should be proportional to the quotient of the size of a stratum with the variability of the 

research variable in a stratum (Neyman 1933, 64; 1934, 577-580). If the variability of an 

auxiliary characteristic is known to be correlated with the variability of the research variable, 

one can use this information to divide the population into more homogenous strata with 

regards to the auxiliary variable, which will result in smaller (estimated) variances of the 

research variable within a stratum and subsequently a more accurate estimation (Neyman 

1933, 41, 89; 1934, 579-580).
16

 In the case of the absence of any ready data, estimation of the 

variability of the investigated quantity within strata requires preliminary research; the result of 

such an initial trial may subsequently be reused as a part of the actual (main) trial (Neyman 

1933, 43-44). When one cannot make any specific assumption about the shape of the 

regression line of the research variable on the auxiliary variable, “The best we can do is to 

sample proportionately to the sizes of strata” (Neyman, 1934, 581-83). 

The above presented methodological ideas proposed by Neyman are clear cases of the 

direct, objective methodological inclusion of prior information of relationships between the 

sought after characteristics of the investigated population and some other auxiliary 

characteristics. These ideas demonstrate how sampling design and, eventually, the accuracy of 

an outcome can depend on the correlation of an investigated quantity with another quantity. If 

such information is known prior to sampling, it can increase estimation’s accuracy. The same 

holds for implementing prior information about the estimated variability of an investigated 

property.
17

 

If clusters are the elements of sampling, minimising their size also increases the 

accuracy of an estimator (Neyman 1934, 582). Making clusters comprised of the same 

number of entities also increases the accuracy (Neyman 1933, 90). What was not addressed 

                                                 
15

 What was overlooked by Neyman is that Tschuprow (1923) also derived this rule of optimal sample 

allocation. Neyman acknowledged Tschuprow’s priority in later years (Neyman 1952b). 
16

 Neyman states that “There is no essential difference between cases where the number of controls is one or 

more” (Neyman 1934, 571), and if there is more than one known correlation, then one can implement all the 

relevant knowledge about manifold existing correlations by means of the “weighted regression” of the variable 

of interest upon multiple controls (see Neyman 1934, 574-575). 
17

 Except for improving the accuracy of CIs, stratified sampling has other epistemic advantages that we could 

consider if there was no limit to the size of this article. For example, this type of sampling can provide 

information for optimising estimators in so-called model-assisted estimation techniques (see, e.g., Royall, 

Henson, 1973), that are exploited, for example, in small area estimation. 



 

13 

by Neyman is that more internally heterogeneous clusters also increase the accuracy of an 

estimation. So, pre-study information concerning some social factors in how a human 

population is structured in terms of the research variable can serve to devise smaller, or more 

internally varied, clusters so as to increase accuracy. 

These facts about stratification and clustering indicate that via the use of Neyman’s 

theory of sampling and estimation, prior information about the changeability of an 

investigated property, about the dependence of the research variable on auxiliary factors, and 

about contextual social factors can be implemented using statistical procedures in an objective 

way to increase the accuracy of estimation. This means the epistemic benefit as seen from the 

(𝐼𝐼) aspect of the epistemic goal. 

 

2.3. Double Sampling 

Now we turn to aspects of Neyman’s sampling design that concern strongly conventional 

factor that inevitably and essentially influences the processes of collecting evidence and of 

formulating conclusions, namely the prior information regarding the costs of research. 

It is taken for granted in statistics that Neyman “invented” (Singh 2003, 529) or 

“developed” (Breslow 2005, 1) a method called double sampling ( Neyman 1938a) or two-

phase sampling (Legg, Fuller 2009). Neyman, in his analysis of stratified sampling (1934), 

proved that if a certain auxiliary characteristic is well known for the population, we can use it 

to divide the whole population into strata and undertake optimum allocation sampling to 

improve the accuracy of the original estimate. The problem of double sampling refers in turn 

to the situation in which there is no means of obtaining a large sample which would give a 

result with sufficient accuracy—because sampling a variable of interest is very expensive and 

because knowledge of an auxiliary variable, which could improve the estimate’s accuracy, is 

not yet available. The sampling procedure is as follows: the first step is to secure data for the 

auxiliary variable only from a relatively large random sample of the population in order to 

obtain an accurate estimate of the distribution of this auxiliary character. The second step is to 

divide this population, as in stratified sampling, into strata according to the value of the 

auxiliary variable and to draw at random from each of the strata a small sample to secure data 

regarding the research variable (Neyman 1938a, 101-102). Neyman intended this second 

stage to follow the optimum allocation principle (Neyman 1938b, 153).
18

 

                                                 
18

 It is important not to confuse 2-phase sampling with 2-stage sampling. In the first case both samples are drawn 

from the same population,  but with regards to different variables, whilst in the second case a sample is taken 
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The main problem in double sampling is how to rationally allocate the total 

expenditure between two samplings so that the sizes of the first large sample and the second 

small sample, as well as sizes of samples drawn from particular strata, are optimal from the 

perspective of the accuracy of estimation (Neyman 1938b, 155). For example, suppose that 

the average value of food expenditure per family in a certain district is to be determined. 

Because the cost of ascertaining the value of this research variable for one sampling unit is 

very high, limited research funds only allow one to take quite a small sample. However, the 

attribute in question is correlated with another attribute, for example, a family’s income, 

whose per-unit sampling cost is relatively low. An estimate of the original attribute can be 

obtained for a given expenditure either by a direct random sample of the attribute or by 

arranging the sampling of the population in the two steps as described above. 

Neyman provided formulas for the allocation of funds in double sampling that yield 

greater accuracy of estimation compared to estimation calculated from data obtained in one-

step sampling – both having the same budget. Nevertheless, in certain circumstances, double 

sampling will help to avoid the unnecessary loss of the accuracy of an estimate, while in 

others, it will lead to less accurate results. Neyman indicated that certain preliminary 

information must be available in order to verify whether the sampling pattern will lead to 

better or worse accuracy and to know how to allocate funds (Neyman 1938a, 112-115). So, 

double sampling requires prior estimates of the following characteristics: the proportion of 

individuals belonging to first-stage strata, the standard deviation of the research variable 

within strata, the mean values of the research variable in strata, and, obviously, the costs of 

gathering data for the auxiliary variable and research variable per sampling unit (see Neyman 

1938a, 115).
19

 To increase the efficiency of estimation by using double sampling, both types 

of costs must differ enough, and the between-stratum variance of the research variable must 

be sufficiently large when compared to the within-stratum variance (Neyman 1938a, 112-

115). Thus, to evaluate which of the two methods might be more efficient, prior information 

concerning the above-indicated properties of the population sampled is required. It is also 

needed to approximately determine the optimal size of the samples (Neyman 1938a, 115). 

What we have shown is that the method of double sampling articulates the rules of 

using the prior information concerning the structure of a population (with regard to an 

                                                                                                                                                         
from the population studied and a second sample is taken from a subpopulation comprising only of entities that 

belong to the sample obtained at the first stage.  
19

 Given the need for some previous knowledge or preliminary estimation of these quantities, Neyman ultimately 

labeled the method “triple sampling” (Neyman 1938b, 150). 
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auxiliary variable interrelated with a research variable), the information about the estimated 

values of a research variable, its variability, as well as typical economic factors: the costs of 

different types of data collection and available research funds. Those rigid rules determine the 

estimation procedure and its effects in an objective manner. More importantly, this method 

guides a researcher towards the realisation of the second (𝐼𝐼) aspect of the epistemic goal: the 

correct use of these types of information can increase the accuracy of estimation. 

 

 

3. Methodological and Philosophical Consequences 

We open this section with a recap of generalised methodological findings from the previous 

Section and proceed to analyse Neyman’s use of prior information in study design from the 

perspectives of frequentism vs. Bayesianism controversy (3.1-3.2) and the debate on the role 

of non-epistemic values in science (3.3). 

For Neyman, one can decide on the primary unit of the population and the division of 

the population into strata by taking into account information concerning the existing 

population structure (e.g., in the case of separated provinces), economics (e.g., the household 

as units of investigation of people’s food expenditure), and by respecting moral/social norms 

(e.g., when one asks about the average donation of a church member). A different choice of 

the primary unit of selection or a different stratification is objectively dependent on this 

information, while the epistemic goal in its (𝐼) aspect is not hindered by this dependence. 

Moreover, this influence can contribute to this aspect of realisation of the epistemic goal by 

enabling estimation (making statistically reliable conclusions) and control over the nominal 

level of false conclusions, which would be hard to execute otherwise (like in the case of the 

investigation of food expenditure per capita). 

If auxiliary factors (like a natural factor that is disturbing a species’ blooming, or a 

social factor in the form of income influencing expenditure) are known to be correlated with 

the quantity in question, and this knowledge is implemented in the form of appropriate 

sampling design, then the estimation procedure becomes epistemically more reliable as seen 

from the (𝐼𝐼) aspect of the epistemic goal—the accuracy of estimation increases, which means 

that confidence intervals on average become shorter. This is possible because of redefined 

purposive selection (which was regarded by Neyman as very rarely applicable), and optimum 

allocation sampling. If thorough preliminary knowledge of an auxiliary variable, which could 

improve an estimate’s accuracy, is not yet available, one can use the double sampling scheme. 

This design guides a researcher on how the accuracy of an estimator can be improved in a 
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resource-limited situation and when knowledge regarding manifold costs and available funds 

is implemented in the research process. These manifold types of prior information are used at 

the stage of planning and executing the collection of evidence. 

Neyman’s method uses not only prior information relating directly to a sought 

quantity but also related indirectly to it and also information concerning non-cognitive factors 

that can influence a given outcome. All these types of information available prior to 

conducting the research process can be regarded as originating from different research 

contexts in which new research is being carried out. Thus, three main types of prior 

information used in Neyman’s sampling designs can be distinguished: 

1) prior estimates of the research variable and its variability within the population, 

2) correlations between other characteristics of the studied population (auxiliary variables) 

and research variable(s), and 

3) social factors: the technical convenience and availability of research objects (which depend 

on known characteristics of the population), financial factors—costs of the manifold ways of 

gathering data and available funds—and moral considerations. 

These indicated types of information are used in an explicit and unequivocal way: they 

are encapsulated in the form of definite mathematical constructs for sampling designs or in 

the definite values of these constructs’ parameters. Therefore, their use is objective and 

coherent from the perspective of the statistical framework adopted by Neyman. This use of a 

vast spectrum of prior information in designing the study has a positive epistemic influence 

on scientific inference and conclusions derived (shortening a confidence interval means 

changing the contents of a conclusion). 

 

3.1. Sensitivity of Study Design to Prior Information and Transparency of its Use in 

Hypothesis Tests 

It is taken for granted that Bayesian procedures allow to reveal greater than frequentism 

number of explicit inferential assumptions (possibly based on prior information) what 

enhances transparency and productivity of argumentation (Sprenger 2018). Sprenger points 

out that the outcome of a frequentist test is sensitive to issues such as how one defines the 

hypothesis and the plausible alternative, or whether a test is one- or two-tailed, and that it is 

hard to imagine frequentist consideration of these type of assumptions without a fair amount 

of adhockery. In the same article Sprenger also objects to frequentists’ ignoring relevant 

effect size or prior plausibility of a hypothesis (2018, Section 4). 
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In fact, Neyman argues that these types of test features can and must be tailored to a 

particular research problem in reference to prior knowledge (see Neyman 1950, 277-291). For 

example, Neyman (278-79) insists that the effect size of substantial relevance should be 

clearly set and explicitly considered in setting experimental design. The same stands for the 

decision of whether a test is to be one- or two-sided, which itself should be subject to 

experimental verification (282-285). Neyman and Pearson (1928, 178, 186) also admit that a 

prior expectation in regard to the truth-value of a hypothesis is usually the case in research.
20

 

Even though this information is not used as a premise in frequentist inferential procedures it 

can be referred to in determining the statistical design of research and ultimately influence the 

outcome. An example of how this fact could function in practice can be shown in reference to 

McCarthy's (2007, 4-13) simplified example. 

McCarthy recalls a case of detecting the presence of a frog species in a pond. He 

assumes the probability of noting species’ presence in case the species is present to be 0.8, 

probability of noting absence in case it is absent to be 1 and the data obtained to be noting 

absence. He rightly states that the outcome of Bayesian reasoning could be sensitive to the 

knowledge of which type of pond a researcher comes across: whether this would be a type of 

pond in which this species almost always occurs (perfect habitat), or in which it almost never 

occurs (unwelcome habitat). Noting absence would not make the researcher believe the frog 

was absent in the case of perfect habitat, but could suffice to conclude so in the case of 

unwelcome habitat. McCarthy indicates that the influence of this type of prior information on 

the outcome is a key feature of Bayesianism, which the frequentist approach is lacking. 

Nonetheless, the knowledge concerning the type of pond can play a role in 

frequentism at the stage of construing research design. Following Neyman and Pearson (1928, 

178, 186) one could assert that a researcher usually has prior information that prompts them to 

believe that the hypothesis tested is true. If the pond to be examined exemplifies the frog’s 

natural habitat so that they expect the frog to occupy it, this assumption could be used to 

define the hypothesis to be tested as the statement that the species is present. The effect of the 

application of Neyman’s testing scheme (acceptance or rejection based on the 𝑝-value), under 

the conditions assumed by McCarthy, would be acceptance of the statement that the species is 

present. Analogically, in the case of unwelcome habitat, the hypothesis to be tested would 

state that the frog is absent, and the lack of observation would make the researcher accept that 

                                                 
20

 An analysis of a possible epistemic import of this information when freqentist hypothesis testing is considered 

can be found in (Kubiak et al. 2021). 
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it is absent. Therefore, the prior information about the type of pond can possibly be utilised by 

a frequentist at the stage of designing the statistical model (of the hypothesis to be tested in 

this case) and influence the outcome of the investigation. 

The above exemplary considerations regarding hypothesis testing are consistent with 

the methodological conclusion from the analysis of Neyman’s sampling designs. They both 

show that in Neyman’s frequentism it is the study design where taking into account various 

types of prior information is possible and of primary epistemic concern. An interesting quest 

for future research could be to investigate, based on case studies, whether and how some 

assumptions concerning study designs in frequentist hypothesis testing play a role analogical 

to the role of inferential assumptions in Bayesianism. This type of investigation would be in 

line with a recent statement that the best choice of one of the two—Bayesianism or 

frequentism (that follow from Neyman and Pearson’s perspective)—depends on the case 

considered (see Lakens et al. 2020). 

 

3.2. Reconciliation of Bayesian and Frequentist Approaches to Sampling and Estimation 

Neyman is believed to be a co-founder of the design-based approach to sampling and 

estimation (Sterba 2009, 713; Särndal 2010, 114). Zhao classified maximally uninformative 

randomisation to be the core idea of the design-based approach to sampling and estimation 

and contrasted it with the model-based approach in which a sample composition is affected by 

the knowledge of outside factors represented by auxiliary variables: “model-based inference 

in sampling relies on assumptions concerning the relationship between control and target 

variables” (2020, 14). The established belief is also that an inference pattern in the design-

based approach is conditional on sampling design established prior to sampling whilst the 

model-based approach is conditional on an actual sample obtained (Särndal 2010, 116; 

Royall, Herson 1973, 883). Bayesian modelling requires specification of the prior distribution 

for investigated quantities whilst design-based conception assumes that the investigated 

quantities are fixed and unknown values existing independently of the observer (Little 2004, 

547-548).
21

 The above can be encapsulated by the statement that “Design-based inference is 

inherently frequentist, and the purest form of model-based inference is Bayes” (Little 2014, 

417). 
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 There exists also a frequentist modelling (of a Fisherian-type) in which investigated quantity is a random 

sample from a “superpopulation” but the argument we present in this article does not require reference to this 

conception. 
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One of the advantages of Neyman’s design-based approach is that he proposes an 

integrative mathematical model of the research process, which itself becomes “an object of 

mathematical argument” (Lenhard, 2006, 84). It allows the most efficient course of action to 

be determined on mathematical grounds. Zhao suggested that, for Neyman, the core of this 

mathematical design was maximally uninformative randomisation based on the presumption 

that “maximal noninformation precludes outside factors from systematically affecting 

(‘informing’) a sample’s composition” (2020, 5-6). What we have shown in Section 2 is that 

this is the other way around: outside factors affect a sample’s composition in a very informed 

way. In both conceptions, prior information plays a role in construing models that affects a 

sample composition and the outcome of estimation, although in each of them it is used 

differently. Below we argue that juxtaposition of Neyman’s design-based conception with the 

Bayesian model-based reveals that they are complementary or even analogical in certain 

respects. 

Both approaches to sampling and estimation have deficiencies. Shortcomings of the 

design-based approach are mainly the limited guidance in the case of small samples and 

inapplicability when randomisation is highly corrupted (Zhao 2020). The major weakness of 

the model-based approach is that it can lead to much worse inferences than the design-based 

approach when the model is seriously misspecified (Little, 2004). These deficiencies can be 

diminished by granting the complementarity of the two approaches: each method can be 

improved when supported by elements of the other one. In the model-assisted design-based 

approach crude design-based estimators can be post-observationally refined in reference to 

values estimated by the model (Stahl et al. 2016, 3). Additionally, it is argued that frequentist 

estimation needs Bayesian reasoning to justify the application of confidence interval to a 

single case (see Williamson 2013, 313). In a design-assisted model-based approach, balanced, 

design-based random sampling allows a researcher to find better-specified and more robust 

models (Särndal 1978, 35; Little 2012, 316; Williamson 2013). This entails that the two 

approaches are complementary rather than exclusive: “There are certain statistical scenarios 

in which a joint frequentist-Bayesian approach is arguably required” (Bayarri, Berger 2004, 

59). It is known that sometimes the two frameworks coincide in terms of the outcomes (see 

Tillé, Wilhelm 2017, 183). There are also cases in which one of them is more effective than 

the other and therefore the status of the universal superiority of any of the two approaches to 

estimation is inconclusive and preferability depends on the context of research (Samaniego, 

Reneau 1994). 
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Tillé and Wilhelm argue that in current practices the principle of randomisation 

interplay with informed sampling represented by two principles, the principle of restriction—

the idea of avoiding extreme sample by balancing on auxiliary variables—and the principle of 

giving higher probability inclusion for units that contribute more to the variability of the 

estimator (2017, 179-181). Zhao (2020) finds randomisation distinctive to Neyman’s design-

based approach and informed sampling to be specific for the model-based approach. As we 

have shown this is not true because informing the sample by means of adequate stratification 

is an important element of Neyman’s sampling theory. Also, Neyman’s idea of optimum 

allocation sampling implies unequal inclusion probabilities (Kuusela 2011, 164). This means 

the distinction, as drawn by Zhao, dissolves when Neyman’s theory is considered. Neyman’s 

theory is an example of frequentist joint use of randomising and informing the sample. This 

means the Bayesian model-based approach is not the only one which can rely on prior 

information to perform more informed sampling, which makes the two alternative approaches 

functionally closer to each other. 

Functional similarity between Bayesian model-based and Neyman’s design-based 

approach becomes more perspicuous as the influence of the information about the actual 

sample on the quality of estimation is considered. In some cases, it is more optimal from the 

perspective of the accuracy of the outcome to balance sample on auxiliary variable(s) based 

on the design of adequate stratified sampling with respect to this variable(s) (Neyman 1933, 

41, 89; Neyman 1934, 574-575). With a lack of adequate prior information, a preliminary trial 

may be required in order to establish the design, and the result of such an initial trial may 

subsequently be reused as a part of the actual (main) trial (Neyman 1933, 43-44). This means 

that Neyman allows for the actual sample to influence the quality of the estimation procedure, 

whereas Zhao (2020) claims this type of feature to be specific for the model-based approach. 

In conclusion, Bayesian model-based and Neyman’s design-based approaches to 

sampling and estimation can be complementary and are in part functionally analogical with 

respect to the use of prior information and the use of information about actual sample for the 

sake of epistemic profit. This supports the idea of reconciliation in the frequentism vs. 

Bayesianism debate. The idea is to leave aside overly discussed interpretative issues and to 

turn to—best by joint eclectic approach—the real issue to be solved, which is the gap between 

assumed probabilistic models and reality; this is the common ground for the two paradigms to 

meet (Kass 2011). In the model-based approach, the model in question is the probabilistic 

model for outcomes’ distribution that may be far from the truth with respect to the reality of 

population values. This model can be refined thanks to design-based sampling. In the design-
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based approach in turn it is the probabilistic model of sampling (of units) distribution (the 

model of research design) that may not fully meet the reality of research conditions. 

Unfavourable effects of this can be levelled by refining a design-based estimator thanks to the 

assistance of a model for outcome’s distribution. The complementarity of Neyman’s and 

Bayesian approaches to sampling and estimation may be understood in two ways. Firstly, as 

was already noted, different classes of problems may advise one or the other as a better 

solution and in this respect, the two approaches are complementary in reference to the 

spectrum of these classes. Secondly, they can be thought of as complementary in the sense 

that for some problems the solution can be optimised by integrating the two approaches.  

In the following subsection, we discuss the second of the announced general issues 

clearly present in Neyman’s approach: the implementation of non-epistemic values. 

 

3.3. The Role of Social Values in Research Design 

One widely held view among scientists and philosophers regarding scientific objectivity is 

their “freedom from personal or cultural bias” (Feigl 1949, 369). Thus, to ensure the 

objectivity of scientific procedures and outcomes, the research process should be robust with 

regards to personal subjective values as well as independent from the social and economic 

contexts of scientific research. One way to accomplish this value-free ideal of science is to 

ignore these contexts of research activities and exclusively “focus on the logic of science, 

divorced from scientific practice and social realities” (Douglas 2009, 48). As we indicated in 

the introductory section, the VFI states that the process of collecting evidence and formulating 

scientific conclusions can proceed without the influence of these type of values, like moral, or 

social ones, and that these influences should be avoided. Contrary to this stance, some authors 

(e.g. Steel 2010) argue that the influence of this type of values are inseparable and/or does not 

need to have an adverse effect on scientific cognition. Others (e.g. Elliott, McKaughan 2014) 

state that VFI is inconsistent with the actual goals of scientists which are a mixture of 

epistemic and non-epistemic considerations. 

The fact of the intrinsic influence of social values on the considered process, and by 

that on the shape of the outcome is well illustrated by a number of recently debated research 

areas, most notably climate change (for an overview, see Elliott 2017), where the focus of 

research is determined by value-laden prior information. As succinctly expressed by 

Baumgaertner and Holthuijzen (2016, 51), who advance an analogous point for conservation 

biology, “The research is guided by what is deemed important; however, that ends up being 

measured (e.g., by an anthropocentric perspective or an ecocentric approach). That means that 
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the areas of research that are focused on are selected by nonepistemic values.” An apt 

example of this is the relativity of an outcome of vegetation classification: the choice of 

different ontologies and thus the choice of how data is presented to a computer program that 

performs the vegetation classification may depend on the practical purpose for which the 

classification is being made (Kubiak, Wodzisz 2012). 

The intrinsic influence of non-epistemic factors is present in frequentist statistical 

methodology. Neyman and E. Pearson’s conception of hypothesis testing includes the explicit 

influence of factors of a societal type upon the process of the formation of scientific 

conclusions (see e.g. Neyman 1952a). As we already said in the introductory section, this is 

done by relying on practical factors in the uneven setting of error risks. Knowledge of these 

factors, which is available prior to sampling, once included can be regarded as the 

implementation of a special type of prior information. The influence of premises 

(information) of economic, cultural, moral, and other societal types on the process of 

collecting evidence and formulating scientific conclusions can be understood as the influence 

of social values on this aforementioned process. This is a violation of the VFI. 

By now it is evident that an intrinsic influence of non-epistemic values is present in 

some disciplines and in Neyman-Pearson statistical methodology of testing hypotheses. This 

does not necessarily seriously undermine the VFI as some could find these disciplines not 

fully realising the ideal of scientificness (when they are compared to, for example, physics or 

chemistry), and this methodology undesired and replaceable by an alternative one. A serious 

counterargument to VFI would be to show that the impact of non-epistemic values can be 

neutral or even beneficial epistemically. As far as the mentioned impact on methodology of 

testing hypotheses is concerned the issue turns out to be multifaceted and the jury is out. The 

epistemic import of the impact of non-epistemic values on setting error risks, which is an 

element of research design, may be positive or negative depending on the case considered 

(Kubiak et al. 2021). The effect of the epistemic evaluation of this influence depends also on 

the aspect from which the assessment is taken up. For example, it may differ depending on 

whether outcome replicability or experiment replicability is considered (see Kubiak, Kawalec 

2021). What is the impact of non-epistemic values when Neyman’s theory of sampling is 

examined in turn? 

As we have shown in Section 2, the influence of premises of societal type on the 

process of collecting evidence and on the shape of conclusions takes place in the construction 

of sampling design. This influence takes effect in the form of social-value-laden appropriate 

clustering, stratification, and sample allocation. What we have concluded is that Neyman’s 
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sampling method covers common non-epistemic factors such as financial factors, technical 

convenience, and moral considerations. Admittedly, these do not exhaust all possible factors, 

but still embraces the most pertinent ones. We also argued that this means that the influence 

of social values like cost-effectiveness, practical convenience, or compliance with social (e.g. 

ethical) standards on collecting evidence and formulating scientific conclusions can positively 

contribute to the realisation of the epistemic goal in the two aspects discussed in this article. 

The influence of non-epistemic values simultaneously becomes a realisation of the epistemic 

values of what Neyman called the consistency and accuracy of estimation. Therefore, contrary 

to what VFI postulates, certain types of social values can, and sometimes even should 

influence the scientific process for the sake of epistemic profits. In consequence, VFI 

becomes seriously undermined by the presented methodological argumentation. The case of 

Neyman’s statistical methodology motivates the adoption of a more balanced, less principled 

position: whether research design should or should not be intrinsically laden by non-epistemic 

values depends on which specific type of value is taken into consideration and impact on 

which element of the totality of the design is scrutinised. 

 

 

4. Conclusion 

Neyman’s theory of sampling designs has been largely ignored in philosophical debates and 

its recent depiction by Zhao (2020) is flawed. We presented a self-standing reconstruction of 

the theory. It follows that Neyman’s sampling designs enable a statistical estimation that 

would be hard to execute otherwise and minimise the variance of an estimator thanks to the 

objective use of a vast spectrum of prior information about the presence of natural 

mechanisms, about the attributes of investigated populations, and socio-economic contexts. 

Lenhard (2006, 84) claims that adjusting a model to the question under discussion, and 

also to the data at hand is not the case in Neyman’s approach (2006, 84) We have proven that 

such a statement is not fully justified. For Neyman, it is the model of study design where a 

great emphasis is put to implement prior information with an epistemic profit. This includes 

prior estimates about the research variable and the inclusion of information about an actual 

sample. 

We also showed that Neyman’s approach gives the possibility of objective inclusion 

of prior information in the study design not only for the purpose of better estimation but also 

to make better-informed hypothesis testing. We believe that reoccurring in philosophical 

debates are statements about the uninformed use of prior information in frequentism, like e.g. 
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Sprenger’s (2018), rather refer to scientists’ malpractices than to the conception itself, at least 

when Neyman’s conception is concerned. This is perhaps because of the negligence of 

Neyman’s crucial views regarding the use of prior information in the study design, especially 

his ideas regarding sampling designs. 

In reference to the debate on the design-based vs. model-based approach to sampling 

and estimation, it can be concluded that the Neymanian way of informed sampling is different 

than, but not necessarily functionally contrary to the Bayesian way. They are complementary 

approaches, which strengthen the conciliatory approach to frequentist and Bayesian statistics. 

The specificity of some types of prior information intended to be used in Neyman’s 

sampling theory reveals that Neyman’s methods let non-epistemic values influence the study 

design and outcome with the epistemic profit. This methodological fact undermines the value-

free ideal of science. 
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