
 

 

 

Weintraub’s Response to Williamson’s Coin Flip Argument 

Matthew W. Parker 

Rotman Institute of Philosophy 

Western University 

ORCID 0000-0002-7436-2149 

Declarations 

Funding - partly supported by the John Templeton Foundation under grant #61048. 

Conflicts of interest/Competing interests – none. 

Availability of data and material – not applicable. 

Code availability – not applicable. 

Authors' contributions – only one author. 

Ethical approval – not applicable. 

Informed consent – not applicable. 

  



 2 

 

Abstract 

A probability distribution is regular if it does not assign probability zero to any possible event.  

Williamson (2007) argued that we should not require probabilities to be regular, for if we do, 

certain “isomorphic” physical events (infinite sequences of coin flip outcomes) must have 

different probabilities, which is implausible.  His remarks suggest an assumption that chances are 

determined by intrinsic, qualitative circumstances.  Weintraub (2008) responds that Williamson’s 

coin flip events differ in their inclusion relations to each other, or the inclusion relations between 

their times, and this can account for their differences in probability.  Haverkamp and Schulz 

(2011) rebut Weintraub, but their rebuttal fails because the events in their example are even less 

symmetric than Williamson’s.  However, Weintraub’s argument also fails, for it ignores the 

distinction between intrinsic, qualitative differences and relations of time and bare identity.  

Weintraub could rescue her argument by claiming that the events differ in duration, under a non-

standard and problematic conception of duration.  However, we can modify Williamson’s 

example with Special Relativity so that there is no absolute inclusion relation between the times, 

and neither event has longer duration except relative to certain reference frames.  Hence, 

Weintraub’s responses do not apply unless chance is observer-relative, which is also 

problematic.  Finally, another symmetry argument defeats even the appeal to frame-dependent 

durations, for there the events have the same finite duration and are entirely disjoint, as are their 

respective times and places. 
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This paper is dedicated to the memory of Colin Howson, a brilliant and cheerful scholar. 

 

1. Introduction 

A probability distribution is regular if it does not assign probability zero to any possible 

event.  If, for example, we flip a fair coin infinitely many times, what is the chance it will come 

up heads every time?  Normally we would express this as the infinite product ½ ´ ½ ´ ½ ´ … = 

0.  But if such an event is possible, a regular probability distribution must assign it a strictly 

positive probability (or no value at all).1 

There have been many arguments that chances or credences should be regular (e.g., 

Carnap 1950, 1963; Kemeny 1955, 1963; Lewis 1980; Skyrms 1980; Wenmackers and Horsten 

2013; Hofweber 2014; Benci et al. 2013; 2018).  However, there are well known cases where 

constructing a regular distribution is problematic.  For our coin flips, it requires a modification to 

the axioms of probability, for under the standard Kolmogorov axioms, if the tosses are fair and 

independent, the probability of an infinite sequence of heads must be smaller than any positive 

real number. 2  Hence, under the usual assumption that probabilities are real numbers, the 

probability of an infinite sequence of heads must be zero, and regularity fails. 

 
1 In general, a probability function assigns probabilities to all sets in some algebra of subsets of a sample space, not 
all subsets of the sample space.  Hájek (unpublished) takes regularity to imply that all sets of possible outcomes are 
assigned non-zero probability, rather than non-zero or none at all.  We could call Hájek’s regularity strong 
regularity, and the weaker condition that every non-empty set of outcomes is assigned either non-zero probability or 
none at all, weak regularity.  Hájek argues against strong regularity, but here we are mainly concerned with weak 
regularity, for, as we will see, the latter is already problematic, provided that a few very simple events do have 
probabilities. 
2 Proof:  Suppose 0 < ε Î R.  Choose n > log1/2 ε.  Write H(m, m + 1,…, n) for the event that flips m, m + 1,…, n all 
come up heads.  Since the flips are fair and independent, Prob(H(1, 2, 3,…, n)) = (½)n < ε.  By independence, 
Prob(H(1, 2, 3,…)) = Prob(H(1, 2, 3,…, n)) ´ Prob(H(n + 1, n + 2, n + 3,…)).  By the normality axiom, Prob(H(n + 
1, n + 2, n + 3, …)) < 1.  Hence Prob(H(1, 2, 3, …)) < ε ´ 1 = ε. 
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A common proposal (see above references) is to introduce infinitesimal and hyperreal 

probabilities.  In that case, countable additivity must be abandoned, for sequences of hyperreal 

numbers do not generally have well defined limits.  (Hence, when we speak of probabilities here, 

this is not meant to imply countable additivity.)  But using infinitesimal values, we can keep 

finite additivity and still assign a positive probability to an infinite sequence of heads, just one 

that is smaller than any positive real number.  Regularity is saved, if at a cost. 

However, Williamson (2007) argues that regularity introduces an untenable asymmetry 

that is not corrected by introducing hyperreals.  Regularity, he argues, implies that the 

probability that every coin toss in a given infinite sequence yields heads is smaller than the 

probability that every toss after the first yields heads.  But these two events may be 

“isomorphic”, in which case, he says, they must have the same probability.  Introducing 

infinitesimals does not resolve this conflict. 

Howson (2017) and Benci et. al (2018) have recently criticized Williamson’s argument 

and related symmetry arguments against regularity, and their criticisms are answered in Parker 

2019.3  However, the first published criticism of Williamson’s argument, due to Weintraub 

(2008), awaits a compelling response.  Weintraub argues that Williamson’s events are not 

physically identical, for the sequence of tosses after the first toss is a proper subsequence of the 

original, and this relation is not symmetric.  In another case that Williamson discusses, where a 

 
3 Howson continued his critique of Williamson in 2019a and 2019b.  His 2019a does not address the arguments of 
Parker 2019.  Howson 2019b acknowledges a related argument, based on the claim that spacetime invariance is “a 
fundamental feature of nature”, but Howson then downplays the infinitesimal asymmetries implied by regularity as 
lying within an empirically “more-than-acceptable margin of error”.  We will not pursue this dispute at length here, 
but a brief remark is warranted:  If we are willing to accept an infinitesimal margin of error, then there is no need to 
introduce infinitesimals.  Regularists could instead just accept the classical real-valued theory of probability as 
empirically close enough.  On the contrary, it seems that what regularists about chances want is a better or more 
accurate theory of chance, at a level of detail that exceeds the empirical discernibility of individual chance values.  
For that purpose, we must decide whether the principle of spacetime invariance and other symmetry considerations 
outweigh the arguments for regularity, which even Howson (ibid.) regarded as weak. 
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third sequence is not contained in either of the others, Weintraub points out that the times at 

which the tosses in the third sequence occur are asymmetrically contained in the times for the 

first sequence.  These asymmetries, she argues, can account for the differences in probabilities 

required by regularity.   

Weintraub’s argument has been criticized by Haverkamp and Schulz (2011).  We will see 

that their response is inadequate, but also that Weintraub’s argument is itself insufficient to 

vindicate regularity.  On a plausible view, which Williamson seems to take for granted, the 

chances and credences of events should be determined by their intrinsic, qualitative properties 

and circumstances, not extrinsic or haecceitistic features.  The differences Weintraub finds in 

Williamson’s events appear to be extrinsic and haecceitistic, and hence to have no force against 

Williamson, given that view.  However, Weintraub has suggested (in personal communication) 

that Williamson’s events can be taken to differ in duration, which plausibly is an intrinsic, 

qualitative property.  This purported difference in duration requires a radically nonstandard and 

problematic conception of duration, since all the sequences of coin flips are infinitely long, but 

that is not a conclusive refutation.  Hence, the success of Weintraub’s rebuttal to Williamson 

hinges on the proposition that (a) probabilities need not be determined by intrinsic qualitative 

properties, or (b) the sequences do differ in duration and that is an intrinsic, qualitative property. 

 However, Williamson’s argument can be modified to circumvent these issues.  In a 

relativistic version, there is no asymmetry to account for a difference in probability, not even an 

extrinsic or haecceitistic one.  There Weintraub’s solution would require making the probabilities 

relative to reference frames, and I will briefly argue that this is implausible.  But even if one bites 

that bullet, we can imagine yet other experiments, each consisting of a single trial bounded in 

space and time, where regularity again implies that two outcomes must have different 
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probabilities, with no asymmetry of inclusion, duration, or size, and no recourse to frame-relative 

probabilities. 

Hence, one of the costs of regularity is that perfectly symmetric events under perfectly 

symmetric circumstances must be assigned different chances and credences.  This is not merely 

counterintuitive but entails arbitrariness and other theoretical vices that make it unattractive.  

That does not conclusively refute Weintraub or regularity; one can always choose to bite one 

bullet or another.  Our purpose here is to illustrate what pain the bullet biter must endure, and 

thus, hopefully, advance the debate.  Our arguments will mainly focus on the unattractiveness of 

regular chances, with regular credences arguably coming in tow, if perhaps less clearly. 

 

2. Williamson’s argument 

Williamson (2007) considers a countably infinite sequence of independent coin flips at 

one second intervals, with a fair coin.  We write ‘H(1)’ for the event that the first toss comes up 

heads, ‘H(1…)’ for the event that all of the tosses come up heads, and ‘H(2…)’ for the event that 

the second and subsequent flips all come up heads.  Independence then implies that  

           Prob(H(1…)) = Prob(H(1)) ´ Prob(H(2…)) = ½ ´ Prob(H(2…)).                  (1) 

For a regularist, Prob(H(1…)), Prob(H(2…)) > 0, since both events are possible.  It follows from 

this and (1) that Prob(H(1…)) < Prob(H(2…)).   

Williamson argues that the regularist is mistaken, for…  

H(1...) and H(2...) are isomorphic events.  More precisely, we can map the constituent single-toss 

events of H(1...) one-one onto the constituent single-toss events of H(2...) in a natural way that 

preserves the physical structure of the set-up just by mapping each toss to its successor.  H(1...) 
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and H(2...) are events of exactly the same qualitative type; they differ only in the inconsequential 

respect that H(2...) starts one second after H(1...).  Thus H(1...) and H(2...) should have the same 

probability.  

Hence, if “isomorphic” events have the same probability, regularity must fail in this case.  

Williamson shows directly that if Prob(H(1…)) = Prob(H(2…)) then both are zero, despite the 

events being possible.  These arguments use only first-order properties that apply equally to real 

and hyperreal numbers, so introducing hyperreals does not help the regularist here. 

 Williamson also considers a third sequence “to make the point vivid”, but we will see that 

it has more significance than that:  

[S]uppose that another fair coin, qualitatively identical with the first, will also be tossed infinitely 

many times at one second intervals, starting at the same time as the second toss of the first coin, 

all tosses being independent.  Let H*(1...) be the event that every toss of the second coin comes 

up heads […].  Then H(1...) and H*(1...) should be equiprobable, because the probability that a 

coin comes up heads on every toss does not depend on when one starts tossing, and there is no 

qualitative difference between the coins.  But for the same reason H*(1...) and H(2...) should also 

be equiprobable.  These two infinite sequences of tosses proceed in parallel, synchronically, and 

there is no qualitative difference between the coins… (175) 

In other words, Prob(H(1…)) = Prob(H*(1…)), because the probability of an event does not 

depend on when it happens, provided the circumstances are otherwise fixed,4 nor to which 

particular coin it happens, if the coins are exactly alike, and Prob(H*(1…)) = Prob(H(2…)), 

 
4 Of course, the probability of one being blinded by sunlight is lower at night than during the day, as one referee 
pointed out, but that is due to a difference in circumstances, not the mere times of the proposed events. 
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because the probability of an event does not depend on where it happens either.5  By transitivity, 

we again get Prob(H(1…)) = Prob(H(2…)), and these must be exactly zero by the previous 

argument.   

But the introduction of H*(1…) does more than make the point vivid.  It circumvents the 

asymmetry between H(1…) and H(2…) consisting in the fact that the sequence (2…) is a 

subsequence of (1…) and not vice-versa.  The events H(1…) and H*(1…) are entirely separate 

and qualitatively identical; they differ only in time (or, relativistically, in their spatiotemporal 

relations to other events).  Hence, on Williamson’s view, they should have the same probability.  

Likewise, H*(1…) and H(2…) are separate and qualitatively identical, differing only in place 

(or, again, spatiotemporal relations).  So, one cannot in either case argue that the events are not 

symmetric simply because the coin tosses that make up one are included in those that make up 

the other and not vice versa.  H(1…) and H*(1…) consist of entirely separate coin tosses, as do 

H*(1…) and H(2…).   

Williamson claims that his arguments apply to both chance and rational credence.  

Whatever sort of probability we are concerned with, he thinks it is unreasonable to assign 

different probabilities to perfectly similar events: 

 
5 I am speaking loosely here of “the same event” occurring at different times or places or involving different coins.  
We can speak this way if we regard an event as a class of possible configurations in space and time (including any 
motions) of matter, energy, fields, or whatever physical entities exist, identified by the intrinsic structure of the 
configuration rather than the absolute place or time at which it hypothetically occurs or the bare identities of the 
entities involved.  Alternatively we might understand an event as a class of spacetime configurations in a particular 
place or time, with specific samples of matter or what have you, so that it makes no sense to speak of the same event 
occurring in a different place or time or with a different coin.  But in that case we can instead speak of qualitatively 
similar events at different times and places.  The present point is just that, on Williamson’s view, perfectly similar 
events in different times and places or involving numerically distinct but perfectly similar coins should have the 
same chance.  For further clarification of Williamson’s notion of an event, see Parker 2019. 
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H(1...) has exactly the same chance as H*(1...) and H*(1...) has exactly the same chance as 

H(2...).  It would be unreasonable to give H(1...) more or less credence than H*(1...) or H*(1...) 

more or less credence than H(2...).  Likewise for other kinds of probability.  (2007) 

He says nothing about why such an assignment of credences would be unreasonable. 

 

3. Isomorphism, Chance, and Credence 

Williamson’s arguments are clearly based on a tacit premise articulated in Parker 2019:   

Isomorphism Principle (IP).  If two events are isomorphic (in the relevant sense), they 

should have the same probability, 

where probability is not assumed to satisfy all of the Kolmogorov axioms,6 but represents chance 

or rational credence.  Williamson does not state this principle, but his inference from what he 

calls isomorphism to equiprobability makes it clear.  What he means by ‘isomorphic events’ is 

not the existence of a structure-preserving bijection between two subsets of a sample space, as 

Howson (2017) takes it, but rather, as Williamson explains in the first passage quoted above, the 

existence of a map between the constituent conjuncts of two conjunctive events, which preserves 

the physical structure of the events (cf. Parker 2019).   

More plainly, Williamson’s isomorphism just consists in the qualitative physical 

similarity of events.  Hence, Parker 2019 formulates a version of IP for chances as follows: 

 

 
6 In particular, this does not assume countable additivity.  Regularists often introduce infinitesimal probabilities in 
order to obtain regular, uniform distributions over infinite sample spaces, and these infinitesimal probabilities are 
not countably additive.  Since regularists are already willing to sacrifice countable additivity, Parker 2019 does not 
take it for granted, and nor will we here. 
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IP¢.  Two events that differ at most in where and when they hypothetically occur (and 

perhaps in matters of bare identity but not in qualitative features) have the same chance.   

 

This does not follow from or imply IP but is a variation of IP amenable to a simple argument 

involving the presumed spacetime invariance of natural laws.  Here we want to defend the 

plausibility and attractiveness of IP more generally.  For that purpose, we will reformulate it in 

chance and credence versions as follows: 

 

IPCh.  Two events that differ at most in where and when they hypothetically occur (and 

not in intrinsic, qualitative features or circumstances) have the same chance.7 

IPCr.  Lacking “inadmissible” information about actual outcomes (Lewis 1980), it would 

be irrational to assign different credences to two events that differ at most in where and 

when they occur (and not in intrinsic, qualitative features or circumstances). 

 

We will now try to clarify these two principles and briefly consider some possible objections.  

However, we will not attempt to refute all such objections, since Weintraub’s response does not 

rely on them.  Our focus here is on Weintraub’s responses, to which we will soon come. 

An intrinsic property is roughly one that does not involve relations to other things.  It is 

notoriously difficult to make this precise (see, e.g., Humberstone 1996; Francescotti 1999), but 

some properties are clearly not intrinsic.  For example, the property of a sequence of coin flips 

being preceded by an additional flip, or equivalently, forming a proper part of another sequence, 

 
7 This is a slight elaboration of IP¢, making explicit the restriction to intrinsic, qualitative properties.  It is also 
similar to Schaffer’s Stable Trial Principle (2003) and his Intriniscness Requirement (2007). 
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is clearly extrinsic to the properly included sequence of flips.  Hence, IPCh implies that the 

chance of a sequence of coin flips having a certain outcome is not affected by the mere fact of 

being part of a larger sequence.  This does not rule out the possibility that an earlier coin flip 

could in principle have effects that influence future flips by modifying the background conditions 

of those flips.  For the purpose of Williamson’s examples, though, we stipulate that there are no 

such effects. 

Qualitative properties are often described as those that can be specified without reference 

to any particular individual, place, or time (e.g., Hempel and Oppenheim 1948; Francescotti 

1999), though Hempel points out that it is not clear which properties can be so specified in a 

given natural language.  (See Cowling 2015 and Hoffmann-Kolss 2018 for further efforts to 

define ‘qualitative’.)  Nonetheless, some properties are clearly qualitative, such as the property of 

a coin that its mass is unevenly distributed, and it is clear how some such properties might 

influence chances in a coin flip.  Other properties are clearly not qualitative but “haecceitistic” 

(Kaplan 1975) or “impure” (Loux 1978).  Suppose for example we name one sequence of coin 

flips Ximena and another Yasmin.  Then Ximena has the property of being Ximena and Yasmin 

does not.  Or, perhaps Ximena has the property of occurring in London, while Yasmin occurs in 

Tacoma.  Matters such as where or when an event takes place are explicitly classified as 

haecceitistic (Hempel and Oppenheim), and this is defensible because points in space and time 

are individuals that lack any differentiating qualitative properties.   

On the other hand, relationists might deny the very existence of individual points in space 

and time.  They do not regard spatiotemporal relations as held in virtue of specific positions and 

times, but rather, positions and times as obtuse expressions of relations.  But in that case, place 

and time are clearly extrinsic, concerning not things or events in themselves but their relations to 
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other things or events.  Thus, according to IPCh and IPCr, neither place, time, nor relative places 

or times can matter to probabilities. 

Again, Williamson does not state IP or any of our variants.  However, his argument 

appears to presuppose IPCh and IPCr.  The events in his examples clearly differ in extrinsic and 

haecceitistic respects, being distinct events occurring at different times and places, with different 

inclusion or parthood relations.  The intuition driving the argument seems to be that the events 

and their relevant conditions are intrinsically, qualitatively identical, and such events should be 

assigned the same probabilities.  Similar principles are widely favoured and argued for elsewhere 

(Arntzenius and Hall 2003; Schaffer 2003; 2007).  Furthermore, IPCh and IPCr have pragmatic 

significance.  A system of chances or credences that depend on extrinsic or haecceitistic factors 

would be difficult to apply because the discernible, local properties of a system would not be 

sufficient to determine them.  If the value of probabilities is to help us manage uncertainty, they 

must be somewhat accessible to us, and our variants of IP help to ensure that they are.   

 A possible objection to IPCh comes from Humean best-systems theories of chance.  

Lewis (e.g., 1994) thought that chances were just the stochastic values determined by those laws 

that make up the best theory of the world, where being best consists in some balance of 

simplicity, strength, and fit with the whole tapestry of “perfectly natural” qualities.  One might 

be tempted to think that, on this kind of account, chances are not determined by intrinsic 

qualitative properties but by facts quite extrinsic to them, since it is the entire tapestry of natural 

properties that determines the best system and the chances.  The problem of undermining, which 

threatened and perhaps still threatens Lewis’s theory, consists in the observation that even the 

best theory of the world, if it is at all chancy, will allow for possible events that would make that 

theory no longer the best (see Ismael 1996 and Hájek 1997, 217 for enlightening discussions).  
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The important point for us is that, on Lewis’s theory, chances do depend counterfactually on 

extrinsic facts.  

However, that kind of dependence on extrinsic facts does not conflict with IPCh nor 

undermine Williamson’s argument.  All IPCh requires is that any two qualitatively identical 

events have the same chance in our actual world, not in every possible world.  Undermining 

means that, if, counterfactually, some future runs of coin flips or appropriately related events 

were to come out differently than they will in the actual world, then the chances of Williamson’s 

runs coming out all heads might be different than they are.  But, arguably, those chances would 

still be the same for all three runs and therefore violate regularity.  On Lewis’s account, the 

whole tapestry of qualities determines the laws of nature, and the laws of nature in turn 

determine chances.  And, historically, the laws of nature determine chances of events based on 

the intrinsic qualitative properties of those events, and background conditions, in a spacetime-

invariant way.8  It is hard to see how a system of laws that made chances depend on extrinsic and 

haecceitistic features of events could be a best system, as it would be complicated and hard to 

apply.  Thus, in the relevant sense, Lewis’s theory tends to support IPCh.9  It is not important for 

 
8 This is essentially the argument for IP¢ in Parker 2019.  Of course, it is conceivable that the laws of nature might 
depend on haecceitistic properties or lack the relevant spacetime invariance, but it is at least plausible that they need 
not.  To accept such capricious “laws” as fundamental would amount to saying that the way things behave, including 
chances, varies for no underlying reason, and it would be hard to accept such a system as the best possible.  In any 
case, we have had considerable scientific success with spacetime invariant, qualitative laws so far and can plausibly 
continue to do so. 

Note also that Arntzenius and Hall (2003) argue, contra Lewis, that uniform dependence on qualitative 
properties is a compelling requirement of chance and shows that the Principal Principle is not all we know about it.  
According to Schaffer (2007, footnote 17), Lewis himself considered accepting this argument. 
 
9 The fact that Lewis himself favoured regular, hyperreal probabilities is no counter-argument, since Lewis was not 
aware of Williamson’s later argument and, to the best of my knowledge, never commented on any symmetry 
arguments against regularity (but see the preceding note regarding his response to Arntzenius and Hall 2003).  Lewis 
apparently thought that the best system would involve regular, hyperreal chances, but that is a point that 
Williamson’s argument calls into question. 



 14 

Williamson’s argument whether the laws are determined by distant extrinsic facts as long as they 

attach the same probabilities to his three infinite coin flip events. 

This is less obvious for other theories of chance that are also subject to undermining.  

Hoefer (2007), for example, argues that objective chances are not necessarily derived from 

universal, invariant laws but directly from the mosaic itself,10 and he even faintly suggests that 

they may vary over time (570).  But it is still at least plausible that any varying chances in the 

best system could be attributed to changing circumstances.  The counterfactual dependence of 

chances on extrinsic facts is irrelevant; the question is whether the best system will attribute 

different chances to qualitatively identical events in qualitatively identical local circumstances, 

and that in itself is already a demerit for such any such system.   

Note also that Williamson’s events are rather special.  A coin flip is one of the 

paradigmatic examples of a special chance setup (a Stochastic Nomological Machine) that, for 

Hoefer, guarantees a stable distribution of outcomes.  However, Williamson’s experiments are 

infinite sequences of coin flips, where the chances of the individual outcomes are identical by 

hypothesis.  What does Hoefer’s theory say about such experiments?  What it and Lewis’s theory 

both imply, I suggest, is that the applicability of IPCh to such sequences is ultimately a question 

of theoretical virtue.  In the actual world there will probably never be an infinite sequence of coin 

flips or similar independent, identically distributed trials, so the mosaic provides no direct 

information about their outcomes.  Hence, the choice between a system in which an infinite 

sequence of heads has chance zero and one in which it has infinitesimal chance is more question 

of simplicity, strength, and other theoretical virtues than fit, and the latter sort of system has clear 

theoretical vices:  The additional complexity of hyperreal numbers and of dependence on 

 
10 Thanks to an anonymous referee for raising this point. 
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extrinsic, haeccetitistic features, and, arguably, arbitrary and potentially misleading excess 

structure (Parker 2013; 2019; Pruss 2013; 2021a).11 

Even on a bare frequentist theory, chances are relative to a reference class (the class of all 

setups to which the chance applies and whose outcomes count towards the relative frequencies 

that constitute or determine that chance).  The chance of an event may depend on actual 

frequencies across spacetime, but outcomes of setups in the same reference class get the same 

chance, and a reference class that is delimited by extrinsic or haecceitistic features is of little use.  

So, again, in this world, IPCh plausibly holds, and Williamsons’ argument plausibly succeeds. 

IPCh, then, remains a live option, even in the face of undermining.  It is attractive in that 

it makes chances simple and useful:  They are straightforwardly determined by intrinsic, 

qualitative properties.  To determine the chance of an outcome, we need not know everything 

about the larger context, nor the inscrutable identities of the objects, times, and places involved 

in the experiment.  

Now, what about IPCr?  Williamson says very little about credence in his 2007; he seems 

to think it obvious that isomorphic physical events should be given the same credence.  One 

might argue that one simply has no reason to assign different credences to qualitatively identical 

events, but it is not obvious that extrinsic and haecceitistic facts, such as timing or set inclusion, 

cannot rationally affect credence.  However, we can argue for IPCr from IPCh and the Principal 

Principle (PP), which essentially says that, other things being equal, if we know the objective 

chance of an event E on condition C, our credence in E on C should equal the chance.  Hence, if 

chances are determined by intrinsic, qualitative properties, then so are rational credences, unless 

 
11 Botazzi and Katz (2020; 2021) have argued against such arbitrariness claims in the context of Robinson- or 
Nelson-style non-standard analysis.  They do not appear to have resolved all arbitrariness worries, and some of their 
arguments seem to be countered already in Barrett 2010, but we cannot take that up here. 
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we know something more than the chances.  Lewis argues that this principle characterizes the 

role that a measure on events must play if it is to count as chance (1980; 1994).  Hoefer (2007) 

goes further and attempts to deduce PP from his theory of objective chance, while Pettigrew 

(2020) offers a kind of Dutch book argument and a pragmatic utility argument for PP.   

On the other hand, there is a well known argument that credences should be regular, 

which might override PP.  If we assign an event a strictly zero probability, then no amount of 

Bayesian updating on evidence can change our minds, which seems unreasonably stubborn 

(Lewis 1980).  But there are also well known replies to that argument (e.g., Easwaran 2014, 8–

10).  Indeed, there are many arguments for regularity that we have not refuted.  Our focus here is 

on Weintraub’s specific response to Williamson.  All we have tried to establish in this section is 

that IPCh and IPCr have some appeal and plausibly underly Williamson’s argument.  Insofar as 

IPCr is appealing and defensible, the arguments below apply to credence as well as chance, 

though IPCr’s standing may indeed be weaker than that of IPCh. 

 

4. Weintraub’s response 

Weintraub (2008) points out a difference between H(1…) and H(2…): 

But in fact, Williamson’s example shows that isomorphism doesn’t preserve all basic physical 

properties. [… A]lthough all the physical properties of the constituent events are preserved by the 

mapping, as are the temporal intervals between adjacent tosses, there is a global property (of the 

complex event) which is not preserved.  The second sequence is a proper subset of the first.  So 

they are not physically identical in a way which would allow us to invoke supervenience and infer 

that they are equiprobable. (249, Weintraub’s emphasis) 
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Thus Weintraub supposes that the inclusion or parthood relation between H(1…) and H(2…) is a 

physical property sufficient to account for an infinitesimal difference in probability. 

 This is why Williamson’s second example is significant.  Regularity implies that 

Prob(H*(1…)) must differ from Prob(H(1…)) or Prob(H(2…)), but there is no inclusion relation 

between H(1…) and H*(1…), nor between H*(1…) and H(2…), so Weintraub’s response to the 

first example does not apply to the second.  But Weintraub has an answer to the second as well: 

The set of temporal points occupied by one sequence [H*(1…)] is a proper subset of those 

occupied by the second sequence [H(1…)].  So the two sequences do not share all their physical 

properties. (249) 

So, while H(1…) and H*(1…) do not differ in their mutual inclusion or parthood relations, they 

differ in their times, which do have an asymmetric inclusion relation. 

For Weintraub, this difference is not merely set-theoretic.  In personal communication 

she expands: 

Williamson's two systems are not physically identical.  One occupies a longer temporal stretch.  

And surely this kind of temporal difference (as opposed to mere temporal delay) may be 

physically significant.  If, for instance, one object is heated for a longer time than is another, we 

may well expect other differences.12 

So the difference in times brings with it a very physical difference in duration.  Of course, by any 

standard measure, H(1…), H*(1…), and H(2…) all have the same duration, namely infinite.  But 

supporters of regularity sometimes ally with new sorts of measures and theories of number in 

 
12 Weintraub made this remark several years ago in an informal context.  She should not be held accountable for it, 
but the suggestion it makes is important to consider here. 



 18 

which a set is always larger than any of its proper subsets (Benci and Di Nasso 2003; Benci, 

Horsten, and Wenmackers 2013; 2018).  It is a small step from this to an alternative measure of 

duration such that H(1…) is longer than H(2…) or H*(1…). 

 

5. Haverkamp and Schulz on Weintraub 

Haverkamp and Schulz (2011) argue that, if Weintraub is right that Prob(H(1…)) < 

Prob(H*(1…)), then by the same reasoning, “two runnings of the same chance device are not 

governed by the same probabilities” (398, their emphasis). 13   

To show this, Haverkamp and Schulz consider two coins.  In order to make their point, 

they need each coin to undergo two separate infinite sequences of flips, so they consider 

supertasks in which a coin flip is executed at shorter and shorter intervals, yielding infinitely 

many results in finite time.  We begin flipping Coin 1 first, and then commence flipping Coin 2 

simultaneously with Coin 1’s second flip.  In order for Weintraub’s argument to apply, the flips 

must stay synchronised as they accelerate.  Thus the flips of Coin 2 again occur at times that are 

a proper subset of the times when Coin 1 is flipped, and indeed, in this case, the sequence of flips 

of Coin 1 will be uncontroversially longer in duration than that of Coin 2.  In another 

experiment, after the first two sequences of flips have ended, Coin 2 starts flipping first, Coin 1 

joins in when Coin 2 produces its second outcome, and again they remain synchronized and 

finish simultaneously.  Now suppose that the chance of Coin 1 coming up all heads is the same 

for both sequences of flips with that coin.  By Weintraub’s reasoning, Haverkamp and Shulz say, 

 
13 Actually, we could say this about Williamson’s original story as well.  H(2…) is after all an outcome of a second 
run of qualitatively the same experiment with the very same coin as that in H(1…).  It just happens also that the 
experiment of H(1…) properly includes that of H(2…), which gives Weintraub her foothold to argue that the events 
are physically different.  Nonetheless, it is still a repeat of (qualitatively) the same experiment with (numerically) the 
same device. 
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the probability that Coin 2 comes up all heads on its first run is slightly greater than the 

probability that Coin 1 does.  But by the same reasoning, the probability that Coin 2 comes up all 

heads on its second run is slightly less than the probability that Coin 1 does.  Hence, if the 

probability of an all-heads outcome is the same for both runs with Coin 1, it is not the same for 

both runs with Coin 2.  

 But why is this a problem for the regularist?  Why should the chance of producing all 

heads not vary over these experiments?  While Weintraub argues that Williamson’s experiments 

differ, Haverkamp and Schulz’s experiments differ even more.  The first run of flips of Coin 1, in 

their story, is uncontroversially shorter in duration than, and not entirely simultaneous with, that 

of Coin 2, while the second run of flips of Coin 2 is shorter than and not entirely simultaneous 

with that of Coin 1.  Hence, for at least one of these coins, the first and second run must have 

different finite durations, and on Weintraub’s view, it seems, a difference in duration is sufficient 

for a difference in chance.  In any case, the runs here are not metrically isomorphic, so we no 

longer have as much reason to expect the probabilities to be the same.  In Williamson’s example, 

as Weintraub observes, “the physical properties of the constituent events are preserved by the 

mapping, as are the temporal intervals between adjacent tosses” (my emphasis).  In Haverkamp 

and Schulz’s example, this is not the case.  Turning Williamson’s infinite sequences into finite-

time supertasks disrupts the symmetry between the events and thus undermines the argument for 

equiprobability.   

Hence, Haverkamp and Schulz’s critique of Weintraub is inconclusive, and not effective 

against one such as Weintraub who regards nearly any physical difference between events as 

sufficient for a difference in chance.   
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6. Differences that make a difference 

 The real problem with Weintraub’s response is that it overlooks the implicit reasoning 

behind Williamson’s argument.  Williamson’s events H(1…), H(2…), and H*(1…) are designed 

to share the same intrinsic, qualitative circumstances.  He imagines three infinitely long 

experiments, each conducted in qualitatively the same way under the same intrinsic, qualitative 

conditions.  The asymmetric differences of inclusion, parthood, and timing between these 

experiments are clear, and it is equally clear that Williamson does not regard such differences as 

relevant.  He expresses this sort of view when he writes, “That H(2...) is preceded by another toss 

is irrelevant, given the independence of the tosses”, and, “[T]he probability that a coin comes up 

heads on every toss does not depend on when one starts tossing,” and again, “[T]hat the first coin 

will be tossed once before the H(2...) sequence begins is irrelevant” (175).  Weintraub describes 

the differences between the events as physical, but even if granted, that is not sufficient.  

Williamson does not suppose that there are no physical differences between his events, but that 

there are none that make a difference. 

 The differences that do matter on this view are intrinsic and qualitative.  Relations to 

other events, such as other coin tosses, are stipulated not to have a causal influence on the 

experiments in Williamson’s examples and therefore to be irrelevant to the chances.  Likewise, 

matters of bare identity are supposed irrelevant.  The coins in H(1…) and H*(1…), for example, 

are not the very same coin, but if they are alike in every way then they should be associated with 

the same probabilities. 

 Weintraub’s differences, as stated in 2008, concern relations of set inclusion, either 

between the coin tosses themselves or between the times they occupy.  Her argument turns, not 

on the claim that H(1…) has some unary property that H*(1…) lacks or vice versa, but on the 
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claim that there are asymmetric relations between them.  Hence, the differences are extrinsic 

from the outset.  But they are also haecceitistic rather than qualitative.  Say that a relation (rather 

than a property) is purely qualitative if it holds between relata in virtue of the relata’s purely 

qualitative properties alone, and otherwise it is haecceitistic.  Set inclusion, I claim, is a 

haecceitistic one.  A set A is a subset of B if and only if B contains the very same individuals as 

A (and possibly more).  Whether this is so does not depend at all on the qualitative properties of 

the sets or their elements, but only on which particular individuals are in A and B.  Hence, set 

inclusion, on its own, is not the sort of thing that can make a difference in chance or credence, on 

the reasonable view suggested by Williamson’s argument. 

 The differences between Williamson’s events can also be expressed in terms of 

mereology rather than set theory.  Event H(2…) arguably forms a part of H(1…) and not vice 

versa, while the sequence or mereological sum of times occupied by H*(1…) is part of that 

occupied by H(1…).  But parthood too seems to be a haecceitistic relation rather than a 

qualitative property.  The individual coin flip outcomes that constitute H(2…) do so in virtue of 

which individual events they are, not how they are.  The first heads outcome of H(1…), after all, 

is qualitatively identical to the rest, yet is not part of H(2…). 

The relative positions and times of events are also haecceitistic relations.  They hold in 

virtue of where or when the events occur, and, as argued above, such properties are haecceitistic 

because points in space or time are qualitatively undifferentiated individuals.  On a relationist 

view of space and time, there are fundamentally no such points; positions and times are then 

relational and hence extrinsic. 

 So Weintraub is right that there are differences between H(1…), H(2…), and H*(1…), 

and we may even call them physical differences, but on the reasonable view underlying 
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Williamson’s argument, they are not the kinds of differences that make any difference to the 

chances of those events, and if we know those chances, they should not make any difference to 

credences either, by PP.  The differences in inclusion, parthood, and timing between H(1…), 

H(2…), and H*(1…) are all extrinsic as well as haecceitistic.  Our IPCh and IPCr assert that 

relevant differences must be both intrinsic and qualitative, but either restriction on its own would 

suffice to disqualify these differences. 

 On the other hand, Weintraub’s remarks about duration, quoted above, suggest that we 

can see the difference between H(1…) and H(2…) or H*(1…) as an intrinsic, qualitative 

difference, just as heating a rod for ten minutes is intrinsically, qualitatively different from 

heating it for nine.  However, this view depends on a very non-standard conception of duration, 

under which two countably infinite sequences, or two one-way infinite continuous intervals, 

which are not only equal in cardinality but also isomorphic under the standard metric, can 

nonetheless differ in length.  I have noted in Section 3 that such a notion of duration is not far 

from some new conceptions of number and measure.  These are so-called Euclidean measures, 

under which proper inclusion implies a difference in size.  But such conceptions are 

controversial and quite non-standard, and they suffer from difficulties similar to those affecting 

regular probabilities, namely that they assign different sizes to qualitatively identical sets.  This 

makes them partly arbitrary and inhibits their usefulness (Parker 2013).  If we wish to adopt a 

similarly Euclidean notion of duration, we are faced with this problem:  Exactly which durations 

will we assign to H(1…) and H*(1…)?  Suppose we assign them infinite hyperreal durations x 

and x – 1 seconds, respectively.  We might just has well have assigned x – 1 to H(1…) and x – 2 

to H*(1…).  There is nothing to determine which particular hyperreal we should assign to which 

stretch of time.  The most we could say non-arbitrarily is that H(1…) lasts one second longer 
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than H*(1…).  But if that relation implies that H(1…) has smaller probability than H*(1…), then 

again the probabilities are partly determined by extrinsic considerations, contrary to IPCh and 

IPCr. 

This criticism of Weintraub’s appeal to duration is not conclusive.  Perhaps we could 

overcome the arbitrariness issues, or live with them, and adopt a non-relational notion of 

duration under which some eternities are longer than others.  But the move is dubious, and we 

can form further, stronger rebuttals to Weintraub by further varying the examples.   

 

7. Relativity 

 Even if we are willing to accept a notion of duration under which some eternities are 

longer than others, with all that entails, it is not always clear which eternity is longer.  

Williamson and Weintraub both seem to assume a non-relativistic framework in which times and 

simultaneity are absolute.  However, in a more realistic relativistic setting, the inclusion relation 

between the times of H(1…) and H*(1…) only holds from one inertial reference frame.  The 

corresponding flips in H(2…) and H*(1…) are space-like separated, so that for one inertial 

observer, H(2…) and H*(1…) are simultaneous, but for another they are not.  For the second 

observer, the flip times of H*(1…) are not included in the flip times of H(1…), and hence 

Weintraub’s argument does not apply. 

 Let us specify our experiments more precisely.  Suppose that for an observer in an inertial 

reference frame F1 in Minkowski spacetime, an eternal sequence A of coin flips A1, A2, A3, … 

occur in the same place at, say, ten second intervals, while a sequence B of flips B1, B2, B3, … 

occur at the same times in frame F1, but so far from A that flips A1 and A2 are both spacelike 

separated from B2.  The flips are all qualitatively identical with respect to properties relevant to 
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the probabilities, though still chancy and independent with probability ½ of heads, as in 

Williamson’s examples.  Relative to frame F1 and to the intrinsic structure of Minkowski 

spacetime, the experiments A and B are perfectly symmetric.  Let HA(n…) denote the event that 

each flip An, An + 1, An + 2, … – i.e., each flip after An – 1 – comes up heads, and similarly for 

HB(n…).    

 Following Williamson, we can now argue as follows:  Events HA(1…) and HB(2…) are 

quantitatively identical and have no asymmetric inclusion relation; they are disjoint.  Therefore, 

they should have the same probability.  Likewise, HB(2…) and HA(2…) are qualitatively 

identical and disjoint, so they should have the same probability.  By transitivity, Prob(HA(2…)) 

= Prob(HA(1…)) = ½ ´ Prob(HA(2…)), so Prob(HA(2…)) = 0 and regularity fails.  

 Following Weintraub, one can object that HA(1…) and HB(2…) are not alike in every 

way, since the times at which flips B2, B3, B4, … occur are properly included in the times of A1, 

A2, A3, …, and not vice versa.  Thus, on a nonstandard “Euclidean” notion of duration, HA(1…) 

is longer in duration than HB(2…) and thus intrinsically and qualitatively different from 

HB(2…).  But from another reference frame, these events are simultaneous and qualitatively 

alike; each is just a spatial translation of the other, with exactly the same duration, even on a 

Euclidean notion of duration.  Weintraub’s response might work for observers in frame F1, if we 

allow her conception of duration, but not in F2. 

 One option now open to the regularist is to suppose that durations and chances 

themselves are frame-relative.  In that case, Weintraub’s argument can still be made for some 

observers, namely those at rest in F1, while for other observers, one can give a different version 

of her argument.  For example, if HB(2…) is simultaneous not with HA(2…) but with HA(1…) 

for a given observer, Weintraub could argue that, for that observer, HB(2…) is less likely than 
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HA(2…), because the times of the former properly include those of the latter, and hence the 

argument by transitivity that Prob(HA(1…)) = Prob(HA(2…)) again fails.  Intermediate cases 

are trickier; if HB(2…) is not simultaneous with any event HA(n…) for a given observer, then 

Weintraub cannot justify a difference in probability in terms of an inclusion relation, but she 

might still claim that the event that starts later for a given observer has shorter duration and 

therefore greater probability for that observer. 

But to suppose that objective chances are frame-relative is quite awkward.  It makes them 

much less objective in the sense that they depend on the observer’s velocity.  This is hard to 

make sense of.  When one event has greater chance than another, it is supposed to be more likely 

to occur.  But the actual occurrence of HA(1…) and the like is not frame-relative.  HA(1…) 

occurs for one observer in our spacetime if and only if it occurs for all.  In what sense then can it 

be objectively more likely for one observer than another?  To hold that it is would be rather like 

holding that a random number is more likely to be even than to be divisible by two.  These 

events are equally likely regardless of the observer’s perspective, because they are in fact the 

same event. 

Let us amplify this insight with a more elaborate example.  Suppose that continuum-

many coin flip sequences like our sequence A actually occur, all simultaneously in reference 

frame F1.  The sequences are infinitely long and qualitatively uniform as in Williamson’s 

examples, and, as it happens, seven of these sequences come out all heads.  An equally large 

continuum of infinite flip sequences like our sequence B also occur, with the second flip of each 

sequence in this second continuum spacelike separated from the first two flips of the sequences 

in the first continuum.  Again, let’s say seven sequences in the second continuum come out all 

heads.   
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In frame F1, the sequences of coin flips are simultaneous, while in frame F2, they are not; 

the sequences in the second continuum start later for observers in F2.  Now suppose two 

observers assign regular probabilities to all of the outcomes of infinite coin flips, including 

events in which a sequence comes out all heads.  Observer 1, in frame F1, assigns the same 

probability to ‘all heads’ for the sequences in both continua.  Observer 2, in F2, assigns higher 

probability to ‘all heads’ for sequences in the second continuum than those in the first – twice as 

high – due to the latter sequences starting earlier and having longer duration in some Euclidean 

sense.  Then Observer 1’s probabilities better fit the actual outcomes than Observer 2’s, and we 

can contrive betting situations (involving goods with hyperreal utilities) where Observer 1 would 

consequently fare better.  If there had been 14 outcomes of all heads in the second continuum, 

then Observe 2’s probability would be a better fit, but in either case, one is a better fit than the 

other. 

Strictly speaking, the facts in this example are compatible with both of the observers’ 

probability distributions and many others.  Probabilities need not match the frequencies exactly, 

so neither Observer 1 nor Observer 2 is necessarily wrong, but it is hard to see how they can both 

be right if they assign different probabilities when confronted with the same outcomes and 

frequencies.  If such experiments are multiplied many times across the Humean mosaic with 

similar outcomes, then a Humean best system, or for that matter, any good theory of chance, 

ought to assign the same chances to those outcomes for all observers in all reference frames, 

since the actual outcomes are the same for all observers in all reference frames.     

Of course, it is always possible to bite the bullet and accept frame-relative chances.  But 

the pain that a bullet biter must suffer here is this:  Different observers must assign different 

probabilities to the same events in light of the same actual outcomes.  If regularity is to be 
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defended, the debate should address the acceptability of such consequences.  However, in the 

next section, we will see a final example where even an appeal to duration offers the regularist 

no escape. 

 

8. Bounded, disjoint events 

 Even if we are prepared to accept such relativity of chance, and that mere differences in 

inclusion or infinite duration make a difference to probabilities, we can give another symmetry 

argument against which those defences are ineffective.  There are examples of qualitatively 

identical events which must differ in chance under regularity but which do not even have the 

sorts of differences that Weintraub points to.   

We will construct an example of an event such that, if regularity holds, a mere translation 

of this event in space or time must have a different probability.  What is more, the event and its 

translation take place in a finite, bounded region of spacetime, and neither includes or even 

overlaps the other, nor do their times and places.  This is similar to examples discussed 

elsewhere (Bernstein and Wattenberg 1969; Barrett 2010; Parker 2013; 2019; Pruss 2013; 

2021b), but in those versions, regularity implies failures of invariance under rotations and what 

we might call modular translations, where the events are still related by inclusion.  Here the 

events are related by an ordinary translation and entirely disjoint.14 

For exposition, however, we begin with modular translations.  Let us take as our sample 

space the half open interval [0, 1).15  Say a translation mod 1 is a transformation T on [0, 1) 

 
14 Pruss (2021b) gives a similar mathematical example (p. 9) and an enlightening general theorem (p. 8), but does 
not take up questions of inclusion, intersection, or physical examples. 
15 We can think of this interval either as an abstract sample space, or as a physical interval in space or time.  In the 
applications mentioned below, we can use the abstract mathematical interval [0, 1) to represent the physical one, or 
the physical interval itself can serve as the relevant sample space, provided space and time are continuous. 
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equivalent to first performing a translation and then taking the fractional part of the result.  That 

is, for some c Î [0, 1),  

𝑇𝑥 = 𝑥 + 𝑐	(mod	1) = - 𝑥 + 𝑐, if	𝑥 + 𝑐 < 1,
𝑥 + 𝑐 − 1, otherwise.  

So a translation mod 1 is, so to speak, a “piecewise translation” made up of two translations:  T1, 

mapping [0, 1 - c) rightwards to [c, 1), and T2, mapping [1 - c, 1) leftwards to [0, c).   

In general, translations mod 1 fail to preserve regular probabilities.  Suppose c is 

irrational.  Then the points Tn0 never coincide for different whole numbers n.  Now let X = {Tn0:  

n Î N}.  Then TX = {Tn0:  n > 1} is a proper subset of X = {0} È TX.  If Prob is a regular finitely 

additive probability function over sets including {0}, X, and TX, then  

Prob(X) = Prob({0}) + Prob(TX) > Prob(TX). 

Thus, translations mod 1 defined on such sets do not preserve regular probabilities. 

Translations mod 1 are not translations per se, but the fact that translations mod 1 do not 

preserve regular probabilities implies that true translations do not either.  Assume Prob is regular 

and assigns values to the sets X, TX, and [0, 1 - c), as well as intersections and complements of 

these sets.  Let X1 = X Ç [0, 1 - c) and X2 = X Ç [1 - c, 1).  Then T1X1 and T2X2 are disjoint.  

Since Prob(X) ≠ Prob(TX), it follows by additivity that either Prob(X1) ≠ Prob(T1X1) or Prob(X2) ≠ 

Prob(T2X2).  So at least one of the translations T1 or T2 fails to preserve Prob.  Thus translations 

do not preserve regular probabilities that are defined on simple sets like X1 and X2. 

Notice that T1X1 is not a subset of X1 and T2X2 is not a subset of X2.  In fact, if Prob is 

defined on sufficiently small intervals in [0, 1) as well as the set X, then we can split X up into 

finitely many smaller sets Xi such that each TXi is disjoint from Xi.  By finite additivity, there is at 
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least one such set Xi for which Prob(Xi) ≠ Prob(TXi).16  So if a regular probability measure is 

defined over sufficiently small intervals (as probabilities on continuous spaces normally are), 

then for any translation T there are disjoint sets A and TA that differ in probability.  This inequity 

cannot be made more palatable by pointing out that TA is a proper subset of A, because it is not. 

Hence, on the regularist view, it is impossible to choose a random number in the interval 

so that no set is privileged over any of its disjoint translations.  We cannot throw a dart at a 

rectangular dartboard in such a way that it is as likely to hit a point with x-coordinate in a set A 

as in a disjoint translation TA.  Likewise, if quantum fluctuations occur in some otherwise 

vacuous region, then for the regularist there will be bounded sets A of points such that a 

fluctuation is slightly more likely to occur at a point in A than in certain disjoint translations of A, 

and similarly there will be bounded sets B of times such that a fluctuation is more likely to occur 

at a time t in B than in certain disjoint translations of B. 

These asymmetries are implausible.  The events in question are qualitatively identical.  

They differ only in where or when they occur.  Thus, on the reasonable view that chances 

supervene on intrinsic, qualitative circumstances, an event E and a mere translation TE must 

have the same chance, and regularity must fail.  Here, Weintraub cannot claim that there is a 

significant difference between the events consisting in their inclusion or parthood relations, or in 

such relations between their times or places, because neither the two events in question, nor their 

times or places, are so related.  Nor can she claim that the events have different durations or 

lengths, or any other intrinsic, qualitative difference.  Each event consists in a single occurrence 

within a specified set of points in space or time, and these point sets are mere translations of each 

 
16 More formally, let T be a translation Tx = x + c.  Suppose A, TA Í [0, 1) and Prob(A) ≠ Prob(TA).  Choose n Î N 
so that 1/n < c.  For each whole number i < n, let Ai = A Ç [i/n, (i + 1)/n).  Then Ai and TAi are disjoint, and by finite 
additivity, åi Î {0, 1,..., n – 1}Prob(Ai) = Prob(A) ≠ Prob(TA) = åi Î {0, 1,..., n – 1}Prob(TAi).  So for at least one i, Prob(Ai) ≠ 
Prob(TAi).  Hence there is a set Ai and a disjoint translation of Ai that differ in probability. 
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other, with the same structure, extension, and finite radius.  They do have physical differences, 

namely differences in time or place, but those are precisely the kinds of differences that should 

not matter to chances, on the view implicit in Williamson’s argument.    

 

9. Conclusion 

 Williamson’s coin flip argument and the variations discussed here show that, if regularity 

holds, then qualitatively identical events must have different probabilities.  But if probabilities 

are determined by intrinsic, qualitative properties, this cannot be so.  Thus, the regularist must 

deny the latter, which is a heavy price to pay for the debatable virtue of regularity. 

 Weintraub’s published response seems to overlook the plausible background assumptions 

of Williamson’s argument.  She points out that Williamson’s events have physical differences 

but ignores the fact that they are not intrinsic, qualitative differences.  They are differences of 

time, place, and bare identity only—precisely the kinds of differences that, on the view that 

Williamson’s argument suggests, should not make any difference to probabilities.  To this 

Weintraub could reply that the events in question differ in duration and durations is an intrinsic, 

qualitative property.  The fact that such a position entails a radically nonstandard and 

problematic notion of duration is not enough to conclusively refute it.   

However, in a relativistic setting, the asymmetric relations of inclusion between the times 

of Williamson’s events H(1…) and H*(1…) and the ostensible differences in duration are frame-

relative.  If such differences are sufficient for a difference in chance, then “objective” chances 

are decidedly relative, depending on the velocity of an observer with respect to the events.  This 

is difficult to make sense of, given that the events in question either occur for all observers or for 
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none.  To maintain Weintraub’s position, different observers must assign different probabilities 

to the same events despite the same actual outcomes. 

 But worst of all for the regularist, there are other examples where Weintraub’s response 

simply does not fit.  We saw a construction of events – involving random numbers, dart throws, 

or quantum vacuum fluctuations – that are qualitatively identical, entirely disjoint in time and 

space, and of equal duration and extension, but which must differ in probability if regularity 

holds.  Thus our claim is vindicated:  If chances are regular, then they are not determined by 

intrinsic, qualitative circumstances, and if rational credences are regular, they do not track such 

supervenient chances.  This does not spell the end for regularists but illustrates the costs of their 

commitments.  Further debate over regularity will have to assess such costs against the 

arguments in favour. 
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