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Abstract

It is argued that two ontological assumptions in Bohr’s original atomic
model are actually supported by the latter quantum mechanics. They are:
(1) electrons are particles; and (2) they undergo discontinuous jumps.

1 Introduction

Niels Bohr proposed what is now called the Bohr model of the atom in 1913
(Bohr 1913). He suggested that electrons are particles and they undergo two
kinds of motion in atoms; they either move continuously around the nucleus
in certain stationary orbits or discontinuously jump between these orbits. This
gives a visualizable picture of motion of the electrons in atoms. The Bohr model
was latterly replaced by quantum mechanics, in which the physical state of an
electron is described by a wave function. What, then, does the wave function
represent? Exactly what are electrons? And how do they move in atoms?

The physical meaning of the wave function has been an important inter-
pretative problem of quantum mechanics. The standard assumption is that the
wave function of an electron is a probability amplitude, and its modulus squared
gives the probability density of finding the electron in a certain location at a
given instant. This is usually called the probability interpretation of the wave
function. Notwithstanding its great success, this interpretation is not wholly
satisfactory because of resorting to the vague concept of measurement (see, e.g.
Bell 1990). Recently a new analysis strongly suggests that the wave function
not only gives the probability of getting different outcomes, but also may offer
a faithful representation of reality (Pusey, Barrett and Rudolph 2012). This
analysis confirms the earlier result obtained based on protective measurements
(Aharonov and Vaidman 1993; Aharonov, Anandan and Vaidman 1993), and
shows that the standard probability interpretation of the wave function is ripe
for rethinking. In fact, the realistic view of the wave function is already a com-
mon assumption in the main alternatives to quantum mechanics such as the
de Broglie-Bohm theory and the many-worlds interpretation (de Broglie 1928;
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Bohm 1952; Everett 1957; DeWitt and Graham 1973). Unfortunately, however,
the precise meaning of the wave function is still an unresolved issue in these
theories.

In this article, we will demonstrate that a deep analysis of protective mea-
surements and the mass and charge distributions of a quantum system may
help answer the above questionsﬂ It turns out that microscopic particles such
as electrons are indeed particles, but their motion is never continuous but al-
ways discontinuous and random. Moreover, the wave function represents the
state of random discontinuous motion of particles, and in particular, the modu-
lus squared of the wave function gives the probability density for particles being
in certain locations. In some sense, this new picture of quantum reality may be
regarded as an extension to Bohr’s discontinuous quantum jumps.

2 Measuring the state of a quantum system

The meaning of the wave function in quantum mechanics is often analyzed in
the context of conventional (impulsive) measurements, for which the coupling
interaction between the measured system and the measuring device is of short
duration and strong. As a result, even though the wave function of a quantum
system is in general extended over space, an ideal position measurement can
only detect the system in a random position in space. Then it is unsurprising
that the wave function is assumed to be related to the probability of the random
measurement result by the standard probability interpretation. This also indi-
cates that conventional measurements cannot obtain enough information about
a single quantum system to determine what physical state its wave function
represents.

Fortunately, it has been realized that the physical state of a single quantum
system can be protectively measured (Aharonov and Vaidman 1993; Aharonov,
Anandan and Vaidman 1993; Aharonov, Anandan and Vaidman 1996; Vaidman
2009)@ A general method is to let the measured system be in a nondegenerate
eigenstate of the whole Hamiltonian using a suitable protective interaction (in
some situations the protection is provided by the measured system itself), and
then make the measurement adiabatically so that the state of the system neither
collapses nor becomes entangled with the measuring device appreciably. In
general, the measured state needs to be known beforehand in order to arrange a
proper protection. In this way, such protective measurements can measure the
expectation values of observables on a single quantum system, and in particular,
the mass and charge distributions of a quantum system as one part of its physical
state can be measured as expectation values of certain observables. Since the
principle of protective measurement is independent of the controversial collapse
postulate and only based on the linear Schrodinger evolution (for microscopic
systems such as electrons) and the Born ruleE|7 which are two established parts
of quantum mechanics, its result as predicted by quantum mechanics can be

1For a more detailed analysis see Gao (2011a, 2011b, 2013a, 2013b).

2Note that the earlier objections to the validity and meaning of protective measurements
have been answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999; Vaid-
man 2009; Gao 2012).

31t is worth noting that the possible existence of very slow collapse of the wave function
for microscopic systems does not influence the principle of protective measurement.



used to investigate the meaning of the wave functiorﬁ

According to protective measurement, the charge of a charged quantum sys-
tem such as an electron is distributed throughout space, and the charge density
in each position is proportional to the modulus squared of the wave function of
the system therdﬂ Historically, the charge density interpretation for electrons
was originally suggested by Schrédinger when he introduced the wave function
and founded wave mechanics (Schrodinger 1926). Schrodinger clearly realized
that the charge density cannot be classical because his equation does not in-
clude the usual classical interaction between the densities. Presumably since
people thought that the charge density could not be measured and also lacked
a consistent physical picture, this initial interpretation of the wave function was
soon rejected and replaced by Born’s probability interpretation (Born 1926).
Now protective measurement re-endows the charge distribution of an electron
with reality by a more convincing argument. The question then is how to find a
consistent physical explanation for it. Our following analysis can be regarded as
a further development of Schrédinger’s original idea to some extent. The twist
is: that the charge distribution is not classical does not imply its non-existence;
rather, its existence may point to a new, non-classical picture of quantum reality
that hides behind the wave function.

3 Electrons are particles

The key to unveil the meaning of the wave function is to find the physical origin
of the charge distribution. The charge distribution of a quantum system such
as an electron has two possible existent forms: it is either real or effective. The
distribution is real means that it exists throughout space at the same time, e.g.
there are different charges in different positions at any instant. The distribution
is effective means that at every instant there is only a localized, point-like par-
ticle with the total charge of the system, and its motion during an infinitesimal
time interval forms the effective distribution. Concretely speaking, at a partic-
ular instant the charge density of the particle in each position is either zero (if
the particle is not there) or singular (if the particle is there), while the time
average of the density during an infinitesimal time interval gives the effective
charge density. Moreover, the motion of the particle is ergodic in the sense that
the integral of the formed charge density in any region is required to be equal
to the expectation value of the total charge in the region.

If the charge distribution is real, then any two parts of the distribution (e.g.
the two wavepackets in box 1 and box 2 in the example given in the Appendix),
like two electrons, will also have the same form of electrostatic interaction as
that between two electrons, which is described by the potential term in the
Schrédinger equation. The existence of such electrostatic self-interaction for
individual quantum systems contradicts the superposition principle of quantum
mechanics (at least for microscopic systems such as electrons). Moreover, the
existence of the electrostatic self-interaction for the charge distribution of an
electron is incompatible with experimental observations either. For example,
for the electron in the hydrogen atom, since the potential of the electrostatic

4Tt can be expected that protective measurements will be realized in the near future with
the rapid development of quantum technologies (cf. Lundeen et al. 2011).
5See the Appendix for an introduction of this important result.



self-interaction is of the same order as the Coulomb potential produced by the
nucleus, the energy levels of hydrogen atoms would be remarkably different from
those predicted by quantum mechanics and confirmed by experiments if there
existed such electrostatic self-interaction. By contrast, if the charge distribution
is effective, then there will exist no electrostatic self-interaction of the effective
distribution, as there is only a localized particle at every instant. This is consis-
tent with the superposition principle of quantum mechanics and experimental
observations.

To sum up, we have argued that the superposition principle of quantum
mechanics requires that the charge distribution of a quantum system such as
an electron is not real but effective; at every instant there is only a localized
particle with the total charge of the system, while during an infinitesimal time
interval the ergodic motion of the particle forms the effective charge distribution,
and the charge density in each position is proportional to the modulus squared
of the wave function of the system there. In short, electrons are particles,
and their charge distributions in space, which are measureable by protective
measurements, are formed by the ergodic motion of these particles.

4 Particles move in a discontinuous and random
way

The next question is which sort of ergodic motion the particles undergo. If
the ergodic motion of a particle is continuous, then it can only form the mass
and charge distributions during a finite time interval. But the mass and charge
distributions of a quantum system at each instant, which is proportional to the
modulus squared of the wave function of the system at the instant, is required to
be formed during an infinitesimal time interval near the instantﬂ Thus it seems
that the ergodic motion of the particle cannot be continuous. This conclusion
can also be reached by analyzing a specific example. Consider an electron in
a superposition of two energy eigenstates in two boxes 1 (x) + ¥2(x). In this
example, even if one assumes that the electron can move with infinite velocity, it
cannot continuously move from one box to another due to the restriction of box
walls. Therefore, any sort of continuous motion cannot generate the effective
charge distribution el (x) + wg(x)\?ﬂ

On the other hand, in order that the ergodic motion of a particle forms the
right mass and charge distributions, for which the mass and charge density in
each position is proportional to the modulus squared of its wave function there,
the (objective) probability density for the particle to appear in each position
must be proportional to the modulus squared of its wave function there too (and
for normalized wave functions they should be equal)ﬂ This is understandable,

6For instance, in the example given in the Appendix, the trajectory of the electron wave
packet is influenced by the effective charge in box 1 during an arbitrarily short time interval
according to quantum mechanics.

7One may object that this is merely an artifact of the idealization of infinite potential.
However, even in this ideal situation, the ergodic model should also be able to generate the
effective charge distribution by means of some sort of ergodic motion of the electron; otherwise
it will be inconsistent with quantum mechanics.

8Besides, for normalized wave functions, the (objective) probability current density must
also equal to the formed mass or charge flux density divided by the mass or charge of the
particle.



since that the mass and charge density is large in a position requires that the
frequency of the particle appearing there is high. Moreover, from a logical point
of view, the particle must also have an instantaneous property (as a probabilis-
tic instantaneous condition) which determines the probability density for it to
appear in every position in space; otherwise the particle would not “know” how
frequently it should appear in each position in space. This property is usually
called indeterministic disposition or propensity in the literatureﬂ

In summary, we have argued that the consistency of the formed mass and
charge distribution with that predicted by quantum mechanics requires that the
ergodic motion of a particle is discontinuous, and the probability density for the
particle to appear in every position is equal to the modulus squared of its wave
function there. In other words, the ergodic motion of the particle is random
and discontinuous.

5 Meaning of the wave function

According to the above analysis, microscopic particles such as electrons are
indeed particles. Here the concept of particle is used in its usual sense. A particle
is a small localized object with mass and charge, and it is only in one position
in space at an instant. Moreover, the motion of these particles is not continuous
but discontinuous and random in nature. We may say that an electron is a
quantum particle in the sense that its motion is not continuous motion described
by classical mechanics, but random discontinuous motion described by quantum
mechanics.

=
=

t ' t

Fig.1. Continuous motion vs. discontinuous motion

Unlike the deterministic continuous motion, the trajectory function z(t) can
no longer provide a useful description for random discontinuous motion. It has
been shown that the strict description of random discontinuous motion of a par-
ticle can be given based on the measure theory (Gao 2011). Loosely speaking,
the random discontinuous motion of the particle forms a particle “cloud” ex-
tending throughout space (during an infinitesimal time interval), and the state
of motion of the particle is represented by the density and flux density of the
cloud, denoted by p(z,t) and j(x,t), respectively, which satisfy the continuity
equation % + % = 0. This is similar to the description of a classical
fluid in hydrodynamics. But their physical meanings are different. The particle
cloud is formed by the random discontinuous motion of a single particle, and the
density of the cloud, p(z,t), represents the probability density for the particle

9Note that the propensity here denotes single case propensity. In addition, it is worth
stressing that the propensities possessed by particles relate to their objective motion, not to
the measurements on them.



to appear in position = at instant ¢, and it satisfies the normalization condition
fj;o p(z, t)dr = 1.

As we have argued in the last section, for a charged particle such as an
electron, the cloud will be an electric cloud, and p(z,t) and j(z,t), when mul-
tiplied by the total charge of the particle, will be the (effective) charge density
and electric flux density of the cloud, respectively. Thus we have the following
relations:

pla 1) = e, P, m
) = st ) 2880y, 22D, )

Correspondingly, the wave function t(z, t) can be uniquely expressed by p(z,t)
and j(z,t) (except for an overall phase factor):

la,t) = /pla, ™ I s B e Ih, (3)
This means that the wave function ¢ (x,t) also provides a description of the
state of random discontinuous motion of a particle.

This picture of motion of a single particle can be extended to the motion of
many particles. The extension may also help explain the multi-dimensionality
of the wave function (cf. Monton 2002; Lewis 2004). At a given instant, a quan-
tum system of IV particles can be represented by a point in a 3/N-dimensional
configuration space. During an infinitesimal time interval near the instant,
these particles perform random discontinuous motion in the real space, and
correspondingly, this point performs random discontinuous motion in the con-
figuration space and forms a cloud there. Then, similar to the single particle
case, the state of the system is represented by the density and flux density of the
cloud in the configuration space, p(x1,xs,...xN,t) and j(z1, 22, ...xN,t), where
the density p(z1, z2,...xN,t) represents the probability density of particle 1 ap-
pearing in position x; and particle 2 appearing in position xs, ..., and particle
N appearing in position z NH Since these two quantities are defined not in the
real three-dimensional space, but in the 3N-dimensional configuration space, the
many-particle wave function, which is composed of these two quantities, is also
defined in the 3N-dimensional configuration space.

One important point needs to be stressed here. Since the wave function in
quantum mechanics is defined at a given instant, not during an infinitesimal time
interval, it should be regarded not simply as a description of the state of motion
of particles, but more suitably as a description of the dispositional property of
the particles that determines their random discontinuous motion at a deeper
leveﬂ In particular, the modulus squared of the wave function determines the
probability density of the particles appearing in certain positions in space. By
contrast, the density and flux density of the particle cloud, which are defined
during an infinitesimal time interval near a given instant, are only a description
of the state of the resulting random discontinuous motion of particles, and they

10When these N particles are independent, the density p(z1,2,...z,t) can be reduced to
the direct product of the density for each particle, namely p(z1,x2,...zN,t) = Hiil p(xi,t).

1 For a many-particle system in an entangled state, this dispositional property is possessed
by the whole system.



are determined by the wave function. In this sense, we may say that the motion
of particles is “guided” by their wave function in a probabilistic way.

6 Conclusions

In this article, we have argued that two ontological assumptions in Bohr’s orig-
inal atomic model, which are (1) electrons are particles; and (2) they undergo
discontinuous jumps, are actually supported by quantum mechanics. There are
three main steps to reach this conclusion.

First of all, protective measurement, whose principle is based on the estab-
lished parts of quantum mechanics, shows that the charge of a charged quantum
system such as an electron is distributed throughout space, and the charge den-
sity in each position is proportional to the modulus squared of its wave function
there. Next, the superposition principle of quantum mechanics requires that the
charge distribution is effective, that is, it is formed by the ergodic motion of a
localized particle with the total charge of the system. Lastly, the consistency of
the formed distribution with that predicted by quantum mechanics requires that
the ergodic motion of the particle is discontinuous, and the probability density
of the particle appearing in every position is equal to the modulus squared of
its wave function there.

Therefore, quantum mechanics seems to imply that microscopic particles
such as electrons are indeed particles, and their motion is discontinuous and
random. Moreover, the wave function describes the state of random discontin-
uous motion of particles, and at a deeper level, it represents the dispositional
property of the particles that determines their random discontinuous motion.
In particular, the modulus squared of the wave function not only gives the prob-
ability density of the particles being found in certain locations as the standard
probability interpretation assumes, but also gives the probability density of the
particles being therdﬂ This new picture of quantum reality may be regarded
as an extension to the discontinuous quantum jumps assumed by Bohr in his
atomic model.
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Appendix: Protective measurement of the charge
distribution of a charged quantum system

Since the existence of the charge distribution of a charged quantum system is
the basis of our analysis of the meaning of the wave function, we will briefly
introduce this important result here. For a more detailed analysis see Aharonov
and Vaidman (1993), Aharonov, Anandan and Vaidman (1993, 1996), and Gao
(2013).

Consider a protective measurement of the charge of a quantum system with
charge @ in a small spatial region V' having volume v. This is equivalent to
measuring the following observable:

A:{Q, ?fer, n
0, ifzxgV.

A protective measurement of A in a general superposition state 1 (x,t) yields

(4) = Q /V o, ) P, (5)

which gives the charge of the system in the region V. When v — 0 and after
performing measurements in sufficiently many regions V', we can find the charge
density everywhere in space, which turns out to be pg(z,t) = Q¢(z, t)Hﬂ

This result can be illustrated by a specific example. Consider a quantum
system with charge () whose spatial wave function is

Zﬁ(fﬂvt) = awl(x’t) + wa(xvt)’ (6)

where 11 (x,t) and s(z,t) are two normalized wave functions respectively lo-
calized in their ground states in two small boxes 1 and 2, and |a|? + |b]? = 1.
A measuring electron, whose initial state is a Gaussian wave packet narrow in
both position and momentum, is shot along a straight line near box 1 and per-
pendicular to the line of separation between the boxes. The electron is detected
on a screen after passing by box 1. Suppose the separation between the boxes
is large enough so that a charge Q in box 2 has no observable influence on the
electron. Then if the system is in box 2, namely |a|? = 0, the trajectory of the
electron wave packet will be a straight line as indicated by position “0” in Fig.2,
indicating that there is no charge in box 1. If the system is in box 1, namely
la|> = 1, the trajectory of the electron wave packet will be deviated by the
electric field of the system by a maximum amount as indicated by position “1”
in Fig.2, indicating that there is a charge @ in box 1. These two measurements
are conventional measurements of the eigenstates of the system’s charge in box
1, and their results can reveal the actual charge distribution in box 1. However,
when 0 < |a|?> < 1, i.e. when the measured system is in a superposition of
two eigenstates of its charge in box 1, it is well known that such conventional
measurements cannot detect the actual charge distribution in box 1.

13Similarly, we can protectively measure another observable B = %(AV + VA). The

measurements will give the electric flux density jo(z,t) = hQ (Y*Vip — pVp*) everywhere

2msi
in space. According to the Schrodinger equation, the charge density and electric flux density

satisfy the continuity equation W + V. jo(z,t)=0.
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Fig.2. Scheme of a protective measurement of the charge distribution of a
quantum system

Now let’s make a protective measurement of the charge of the system in
box 1 for the general superposition state. Since the state ¢ (x,t) is degenerate
with its orthogonal state 1’ (x,t) = b*1(x,t) — a*he(x,t), we need an artificial
protection procedure to remove the degeneracy, e.g. joining the two boxes with
a long tube whose diameter is small compared to the size of the boyﬂ By this
protection ¢ (z,t) will be a nondegenerate energy eigenstate. The adiabaticity
condition and the weakly interacting condition, which are required for a protec-
tive measurement, can be further satisfied when assuming that (1) the measuring
time of the electron is long compared to i/AE, where AFE is the smallest of the
energy differences between ¢ (z,t) and the other energy eigenstates, and (2) at
all times the potential energy of interaction between the electron and the sys-
tem is small compared to AE. Then the measurement by means of the electron
trajectory is a protective measurement, and the trajectory of the electron wave
packet is only influenced by the expectation value of the charge of the system
in box 1. As a result, the electron wave packet will reach the position “|a|?”
between “0” and “1” on the screen as denoted in Fig.2, indicating that there is
a charge |a|?@ in box 1.

In conclusion, protective measurement shows that the charge of a charged
quantum system is distributed throughout space, and the charge density in each
position is proportional to the modulus squared of its wave function there.

141t is worth stressing that the added protection procedure depends on the measured state,
and different states need different protection procedures in general. This means that a pro-
tective measurement with an artificial protection procedure requires that the wave function
of the measured system is known beforehand.

10



	Introduction
	Measuring the state of a quantum system
	Electrons are particles
	Particles move in a discontinuous and random way
	Meaning of the wave function
	Conclusions

