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Abstract

In the proposed non-Aristotelian finitary logic (NAFL), truths for
formal propositions can exist only with respect to axiomatic theo-
ries, essentially as temporary axiomatic declarations in the human
mind. An undecidable proposition P in a consistent NAFL theory
T is true/false with respect to T if and only if it has been aziomati-
cally declared as true/false by virtue of its provability /refutability in
an interpretation T* of T. In the absence of any such axiomatic dec-
larations, P is in a superposed state of ‘neither true nor false’ and
comnsistency of T requires the existence of a non-classical model for T
in which P&—P is the case. Here T* is an axiomatic NAFL theory
that, like T, resides in the human mind and acts as the ‘truth-maker’
for (a model of) T. Quantum superposition is justified by identify-
ing ‘axiomatic declarations’ for the truth/falsity of P (by virtue of its
provability /refutability in T*) with ‘measurement’ in the real world.
NAFL also explains and de-mystifies the phenomenon of entangle-
ment. NAFL severely restricts classical infinitary reasoning, but pos-
sibly provides sufficient machinery for a consistent axiomatization of
quantum mechanics.
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1 Introduction to Non-Aristotelian Finitary
Logic (NAFL)

The language, well-formed formulae and rules of inference of NAFL theo-
ries [1, 2] are formulated in exactly the same manner as in classical first-order
predicate logic with equality (FOPL), where we shall assume, for convenience,
that natural deduction is used; however, there are key differences and restric-
tions imposed by the requirements of the Main Postulate of NAFL, which is
explained in this section. In NAFL, truths for formal propositions can exist
only with respect to axiomatic theories. There are no absolute truths in just
the language of an NAFL theory, unlike classical/intuitionistic/ construc-
tive logics. There do exist absolute (metamathematical, Platonic) truths in
NAFL, but these are truths about axiomatic theories and their models. As
in FOPL, an NAFL theory T is defined to be consistent if and only if T has
a model, and a proposition P is undecidable in T if and only if neither P nor
its negation =P is provable in T.

The Main Postulate of NAFL

If a proposition P is provable/refutable in a consistent NAFL theory T, then
P is true/false with respect to T (henceforth abbreviated as ‘true/false in
T%); i.e., a model for T will assign P to be true/false. If P is undecidable
in a consistent NAFL theory T, then the Main Postulate [2] provides the
appropriate truth definition as follows: P is true/false in T if and only if P
is provable/refutable in an interpretation T* of T. Here T* is an axiomatic
NAFL theory that, like T, temporarily resides in the human mind and acts
as a ‘truth-maker’ for (a model of) T. The theorems of T* are precisely those
propositions that are assigned ‘true’ in the NAFL model of T, which, unlike
its classical counterpart, is not ‘pre-existing’ and is instantaneously generated
by T*. For a given consistent theory T, T* could vary in time according to
the free will of the human mind that interprets T. Hence T* could be T+P
on a given day, T4+—P on another, or just T itself on a third day, where P
is undecidable in T; the essence of the Main Postulate is that P is true/false
in T if and only if it has been aziomatically declared as true/false by virtue
of its provability /refutability in T*. In the absence of any such axiomatic
declarations, i.e., if P is undecidable in T* (e.g. take T*=T), then P is
‘neither true nor false’ in T and Proposition 1 shows that consistency of T



requires the laws of the excluded middle and non-contradiction to fail in a
non-classical model for T in which P&—P is the case.

Proposition 1. Let P be undecidable in a consistent NAFL theory T. Then
PV =P and —(P&—P) are not theorems of T. There must erist a non-
classical model M for T in which P&—P is the case.

The interpretation of P&—P in the non-classical model will be explained
in Sec. 2. Proposition 1 is a metatheorem, i.e., it is a theorem about axiomatic
theories. The concepts in Proposition 1, namely, consistency, undecidabil-
ity (provability) and the existence of a non-classical model for a theory (and
hence, quantum superposition and entanglement), are strictly metamathe-
matical and not formalizable in NAFL theories. An NAFL theory T is either
consistent or inconsistent, and a proposition P is either provable or refutable
or undecidable in T, i.e., the law of the excluded middle applies to these
metamathematical truths.

Proof. By the Main Postulate of NAFL, P (—=P) can be the case in T if and
only if P (—=P) has been asserted aziomatically, by virtue of its provability in
T*. In the absence of any such axiomatic assertions (e.g. if T*=T), it follows
that neither P nor —P can be the case in T and hence PV —P cannot be a
theorem of T. The classical refutation of P&—P in T proceeds as follows: ‘If
P (=P) is the case, then =P (P) cannot be the case’, or equivalently, ‘=P (P)
contradicts P (—P)’. But, by the Main Postulate, this argument fails in
NAFL and amounts to a refutation of P&—P in T*=T+P (T+-P), and
not in T as required. Careful thought will show that the classical refutation
of P&—P in T is the only possible reason for —(P&—P) to be a theorem
of T, and it fails in NAFL. The intuitionistic refutation of P&—P in T is
flawed and also fails in NAFL, as will be shown below. By the completeness
theorem of FOPL, which is taken for granted in NAFL, it follows that there
must exist a non-classical model for T in which P&—P is satisfiable. O

Consider the law of non-contradiction as stated in a standard system of
intuitionistic first-order predicate logic due to S. C. Kleene, namely,
-P = (P = Q). This formula asserts that from contradictory premises P
and — P, an arbitrary proposition ) can be deduced, which is absurd. Hence
—(P&—P) seemingly follows. However, note that in intuitionism, truth is
provability (not necessarily in a specific theory T); together with the in-
tuitionistic concept of negation, it follows that an asssertion of —(P&—P)



is the same as deducing an absurdity from P&—P, or equivalently, from
contradictory premises P and —=P. But we have seen that the ‘absurdity’ re-
ferred to here is precisely the fact that any proposition can be deduced, given
contradictory premises! The above ‘proof’ of =(P&—P) from contradictory
premises, mandated by the intuitionistic concepts of truth and negation, is
flawed because any proposition can be so deduced. Note that this ‘proof’ is
formally indistinguishable from one in which —(P&—P) is substituted for the
arbitrary proposition (). In NAFL, it is not possible to deduce an arbitrary
proposition from contradictory premises [1] in a non-classical model, and so
the flawed intuitionistic argument for —(P&—P) fails in any case. Indeed,
as explained in Ref. [1], the argument for deducing an arbitrary proposition
would normally proceed as follows:

P&—P = P,
P=PVQ,
P&-P = —P,
-P&[PV Q] = Q.

The final step fails in a non-classical NAFL model for a theory T (in which
P&—P is the case) because this step presumes the law of non-contradiction
for P. Note that the existence of this non-classical model does not make T
inconsistent or paraconsistent, because T does not prove P&—-P. However,
one could assert that model theory for NAFL requires the framework of a
paraconsistent logic, so that the non-classical models can be analyzed. NAFL
is the only logic that correctly embodies the philosophy of formalism [2];
NAFL truths for formal propositions are axiomatic, mental constructs with
strictly no Platonic world required.

An NAFL theory T requires two levels of syntax, namely the ‘theory
syntax’ and the ‘proof syntax’. The theory syntax consists of precisely those
propositions that are legitimate, i.e., whose truth in T satisfies the Main
Postulate; obviously, the axioms and theorems of T are required to be in the
theory syntax. Further, one can only add as axioms to T those propositions
that are in its theory syntax. In particular, neither P&—P nor its negation
PV =P is in the theory syntax when P is undecidable in T. The proof syntax,
however, is classical because NAFL has the same rules of inference as FOPL;
thus ~(P&—P) is a valid deduction in the proof syntax and may be used to
prove theorems of T. For example, if one is able to deduce A = P&—P in the
proof syntax of T where P is undecidable in T and A is in the theory syntax,
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then one has proved —A in T despite the fact that —=(P&—P) is not a theorem
(in fact not even a legitimate proposition) of T. This is justified as follows:
—(P&—P) may be needed to prove theorems of T, but it does not follow in
NAFL that the theorems of T imply —(P&—P) if P is undecidable in T. Let
A and B be undecidable propositions in the theory syntax of T. Then A = B
(equivalently, =A V B) is in the theory syntax of T if and only if A = B is
not (classically) deducible in the proof syntax of T. It is easy to check that if
A = B is deducible in the proof syntax of T, then its (illegal) presence in the
theory syntax would force it to be a theorem of T, which is not permitted by
the Main Postulate: in a non-classical model for T in which both A and B are
in the superposed state, A&—B must be non-classically true. If one replaces
B by A in this result, one obtains the previous conclusion that —=(A&—-A) is
not in the theory syntax. For example, take Ty to be the null set of axioms.
Then nothing is provable in Ty, i.e., every legitimate proposition of Ty is
undecidable in Ty. In particular, the proposition (A&(A = B)) = B, which
is deducible in the proof syntax of T (via the modus ponens inference rule),
is not in the theory syntax; however, if A = B is not deducible in the proof
syntax of Ty, then it is in the theory syntax. Note also that -—A < A is not
in the theory syntax of Ty; nevertheless, the ‘equivalence’ between ——A and
A holds [2] in the sense that one can be replaced by the other in every model
of Ty, and hence in all NAFL theories. Indeed, in a non-classical model for
Ty, this equivalence holds in a non-classical sense and must be expressed by
a different notation [2].

NAFL restricts classical infinitary reasoning [3] — infinite sets cannot exist
in consistent NAFL theories (see Sec. 3 of Ref. [1]). However, if an NAFL
theory T admits infinitely many objects satisfying a given property, then T
must necessarily prove the existence of the corresponding infinite (proper)
class [2, 3]. Cantor’s diagonalization argument fails because it requires quan-
tification over infinitely many proper classes (e.g., real numbers), which is
banned in NAFL. For this reason, Godel’s incompleteness theorems do not
apply to, and Turing’s halting problem must be decidable in, NAFL theo-
ries [2]. A Turing machine (TM), by definition, must either halt or not halt;
the superposed state of the TM (in which it neither halts nor not halts),
required by Proposition 1 for undecidability of halting, is not possible in
NAFL. Indeed, such a superposed state would immediately imply that the
TM in fact does not halt. In effect, NAFL bans the self-reference in Cantor’s
and Turing’s arguments. Non-standard models of arithmetic (and hence,
infinite integers or infinitesimals) cannot exist in NAFL [2]; it follows that
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consistency of Peano Arithmetic demands its completeness. Future work
will outline how a limited version of real analysis can be executed in NAFL,
despite these restrictions. This should pave the way for a consistent formal-
ization of quantum mechanics in a single logic (NAFL), without the present
need to abruptly jump from quantum logic to FOPL.

2 Quantum Superposition and Entanglement
Justified in NAFL

The non-classical model M of Proposition 1 is a superposition of two or
more classical models for T, at least in one of which P is true and —P in
another. Here ‘(non-)classical’ is used strictly with respect to the status of
P. In M, ‘P’ (‘-P’) denotes that ‘=P’ (‘P’) is not provable in T*, or in
other words, M expresses that neither P nor =P has been axiomatically
declared as (classically) true in T; thus P, =P, and hence P&—P, are indeed
(non-classically) true in our world, according to this interpretation. Note
also that P and —P are classically ‘neither true nor false’ in M, where ‘true’
and ‘false’ have the meanings given in the Main Postulate. The quantum
superposition principle is justified by identifying ‘axiomatic declarations’ of
truth/falsity of P in T (via its provability /refutability in T* as defined in
the Main Postulate) with ‘measurement’ in the real world. NAFL is more
in tune with the Copenhagen interpretation of quantum mechanics than the
many-worlds interpretation (MWI). Nevertheless, the information content in
M is that of two or more classical models (or ‘worlds’), and MWT is at least
partially vindicated in this sense. Consider the Schrodinger cat example,
where the cat is put into the box at time ¢ = 0 and has a probability 0.5 of
being in the ‘alive’ state at t = 1, when a ‘measurement’ is made of its state.
Let P be the proposition that ‘The cat is alive’, with =P denoting ‘The cat is
dead’; obviously, P is undecidable in a suitable formalization QM of quantum
mechanics. For 0 < t < 1, the observer makes no measurements, and in tune
with the above identification, makes no axiomatic declarations regarding P
in the interpretation QM* (say, let QM*=QM for this time period). In the
resulting non-classical model M of QM, the superposed state P&—P is the
case; this means that the cat has not been declared (measured) to be either
alive or dead, which is certainly true in the real world. At ¢ =1, if P (=P)
is observed, then the observer takes, say, QM*=QM+P (—P); i.e., when



the observer measures the cat to be alive (dead) in the real world, he makes
the appropriate axiomatic declarations in his mind, thus setting up QM*
as defined. It should be emphasized that an NAFL theory only ‘sees’ the
observer’s axiomatic declarations and does not care whether the real world
exists. The observer sees the real world and the proposed identification of his
measurements with his axiomatic declarations is only an informal convention
that is outside the purview of NAFL. The observer could also use his free will
to make his axiomatic declarations irrespective of (and possibly in contradic-
tion to) what he measures in the real world; of course, if P is not about the
real world, then he has no other choice. Note that ‘observer’, ‘measurement’
and ‘axiomatic declaration’ are not part of the theory syntax in an NAFL
theory. To see this, assume to the contrary that @) is the formalized version
of the proposition that “At ¢t = 1 the observer has measured (axiomatically
declared) the cat to be alive”. Then QM does not prove either @ or —@Q,
but requires @@ V =@ to be a theorem, in violation of the Main Postulate of
NAFL (see Proposition 1). It follows that ) cannot be in the theory syntax
of QM; however, @ V —=Q is a valid deduction (and hence @ is legitimate) in
the proof syntax of QM. NAFL also correctly handles the temporal nature
of truth via the time-dependence of QM*. If P is observed at ¢ = 1, then
the proposition R that “The cat was alive for 0 < ¢ < 1” can be formalized
in NAFL because R applies only for ¢ > 1; R does not conflict with the
superposed state P&—P, which applies for 0 < ¢ < 1.

Let A (B) be an undecidable proposition of QM about a given particle
X (its distant entangled counterpart Y) such that QM classically proves the
equivalence A < B. In NAFL, A < B is deducible in the proof syntax of
QM. If no measurements are made, the observer sets QM*=QM and both
A and B are in the superposed state; note that A&—B (or B&—A) is non-
classically true in the resulting model M of QM, which explains why A < B
cannot be a theorem of QM and is therefore not in its theory syntax (see
Sec. 1). If A is measured at a given time, then the observer sets QM*=QM+ A
and it follows that QM* must prove B in NAFL. Thus the axiomatic dec-
laration of A in QM* entails the simultaneous axiomatic declaration of B
(with respect to QM) and there is no mystery associated with entanglement
in NAFL. It is only when A is interpreted strictly as a ‘measurement’ on
the particle X, as is necessary in conventional QM, that one is at a loss to
explain how a simultaneous ‘measurement’, namely B, happens on its dis-
tant entangled counterpart Y. Non-locality is not a problem in NAFL, which
rejects the relativity theories and non-Euclidean geometries [3] for essentially
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the same reason that it accepts superposition and entanglement — the Main
Postulate.
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