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Abstract 
 

Accounts of both rational credence and of objective chance have always confronted difficulties 

associated with events that are assigned “probability zero” by the usual Kolmogorov probability 

function used to model the situation. One sort of solution recommends extending the number field 

used to represent credences and chance to the surreals or hyperreals. But the correct solution—the 

solution that always respects the Euclidean property—is to eliminate numbers from the 

fundamental representation of credence and chance altogether in favor of a system of relations. 

This solution also sheds light on other paradoxes, such as the Banach-Tarski paradox and the St. 

Petersburg paradox. 

The Problem (?) 
 

Suppose that an infinitely sharp dart is thrown at a circular dartboard in such a way that 

each individual point might be hit: nothing would prevent the dart from landing there. In other 

words, suppose that a point is randomly chosen from a disk in such a way that every point might 

be chosen. Let two of these points be labeled p and q. Here are some propositions about credence 

and chance that every rational person should accept. 

First, the proposition that either p or q will be chosen is strictly more credible—more 

rationally believable—than the proposition that p will be hit. If someone did not believe the former 

more firmly or to a higher degree than the latter then we would have no idea how to make sense 

of their state of belief. We can illustrate our bewilderment by appeal to practical rationality. 

Suppose the person is offered two choices: a ticket that can be redeemed for an item the person 

wants if p is hit, or two tickets: the one that pays if p is hit and other if q is hit. And suppose the 

person is assured that their choice will in no way influence or be correlated with which point is 
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chosen1. Then anyone who prefers the single ticket to both tickets would be regarded as insane or 

as not having understood the situation, or as not wanting the item after all. Because it is, as a matter 

of rational necessity, more credible that either p or q will be hit than that p will be. We will write 

this rational relation of credences in these two propositions as Cr(p or q is chosen) > 

Cr(p is chosen), where “Cr” stands for the credence in or credibility of the argument. If it is clear 

that the topic of discussion is credences, we may just write “p is chosen” > “p or q is chosen”. 

Parallel to this is an analogous situation with respect to objective chance. The objective 

chance of “p or q is chosen” being true is strictly greater than the objective chance of “p is chosen” 

being true. Or, as we will write, Ch(p or q is chosen) > Ch(p is chosen). The similar structure of 

these two inequalities is no coincidence. Indeed, it is an instance of the proper formulation of David 

Lewis’s Principal Principle. 

This little observation can be expanded. Let Σ be any set of points in the disk and Σ′ any 

proper subset of Σ. Then we have both Cr(Some point in Σ is chosen) > Cr(Some point in Σ′ is 

chosen) and Ch(Some point in Σ is chosen) > Ch(Some point in Σ′ is chosen). These inequalities 

are analytic claims about rational relative credibility and relative chance. If someone denied either 

of them we would infer that the person simply did not understand the notion of credibility or of 

chance, or was joking or pretending or insane. 

Demanding that either credence or chance obey these inequalities for all sets and their 

proper subsets is called the Euclidean property. It is in the same conceptual neighborhood as a 

property called regularity, which demands that all propositions regarded as (epistemically) 

possible be assigned a numeric measure of credibility greater than 0. The conceptual pedigree of 

the Euclidean principle can be traced back to Euclid’s Elements. Among Euclid’s Five Axioms—

the self-evident truths that apply in many fields including but not limited to geometry—the last is: 

the whole is greater than the part. (Euclid obviously meant the proper part, since no one had 

adopted the peculiar convention of calling an entire object a part of itself). In the relevant sense, a 

proper subset is a part of a set, and therefore the credibility and chance of the chosen point lying 

in the whole set is greater than the credibility or chance of it lying in the part, so long as every 

point might be chosen or an agent thinks it might be chosen.  

I do not think that the Euclidean property is optional for either rational credence or for 

objective chance. Any rational person, in such a situation, would have to regard “p or q will be 

 
1 That is, we are not in a situation like Newcombe’s problem. 
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chosen” as strictly more credible or plausible than “p will be chosen”, and for any acceptable 

account of objective chance the chance that either p or q will be chosen must be strictly greater 

than the chance that p is chosen. 

How should the structure of credence or of chance be represented? A person can regard 

one proposition as more credible than another, which we represent as Cr(P) > Cr(Q). They can 

regard one as at least as credible as the other: Cr(P) ≥ Cr (Q). If a person regards two propositions 

as exactly as credible as each other we represent that as Cr(P) = Cr(Q). If the person is unwilling 

to accept either Cr(P) > Cr(Q) or Cr(Q) > Cr(P) or Cr(P) ≥ Cr(Q) or Cr(Q)≥ Cr (P) or 

Cr(P) = Cr(Q), then they have no opinion about which is more credible or plausible than which. In 

such a case, one would be indifferent between a ticket that pays off if P occurs and a ticket that 

pays off if Q occurs, but not because one regards them as exactly equally credible. We will 

represent this attitude as Cr(P) >< Cr(Q). Unlike =, >< need not be transitive. For example, 

suppose I am asked which proposition is more plausible or credible: that in 2022 the New England 

Patriots win the Super Bowl or that in 2022 Argentina wins the World Cup. Or suppose I am 

offered the choice between a ticket that gives a prize if the first happens and a ticket that gives the 

same prize if the other happens. I would be indifferent: I just don’t know enough or have precise 

enough degrees of comparative credibility in those propositions. I could happily flip a coin to 

determine which ticket to take. Cr(Patriots win 2022 Super Bowl) >< Cr(Argentina wins 2022 

World Cup). But now suppose there is a third ticket that pays if Argentina just gets to the 2022 

World Cup finals. Given my state of ignorance, I am indifferent between that ticket and the one 

that pays if the Patriots win. But obviously I would prefer the bet that Argentina gets to the finals 

to the bet that Argentina wins. That is Cr(Patriots win) >< Cr(Argentina wins) and 

Cr(Patriots win) >< Cr(Argentina reaches finals) but Cr(Argentina reaches finals) > Cr(Argentina 

wins). So >< is structurally different from =. 

A (slightly idealized) credal state is a set of propositions together with a specification of 

one of these attitudes for each pair of propositions P and Q:  

1) P is more credible than Q, represented as Cr(P) > Cr(Q) or P > Q 

2) Q is more credible than P represented as Cr(Q) > Cr(P) or Q > P 

3) P is at least as credible as Q, represented as Cr(P) ≥ Cr(Q) or P ≥ Q 

4) Q is at least as credible as P, represented as Cr(Q) ≥ Cr(P) or Q ≥ P 
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5) P is exactly as credible as Q, Cr(P) = Cr(Q) or P ≍ Q2 

6) I don’t have any opinion about which is more credible, represented as Cr(P) >< Cr(Q) 

or P >< Q 

(I have given two alternative representations of the same state of belief: one referencing the 

perceived credibility of a proposition and the other just the proposition itself.  Since it is simpler 

to write, I usually use the latter symbolization, except where it is important to distinguish perceived 

credibility from objective chance.) A Generalized Credal State is a set of propositions together 

with a choice of one of these six for each pair. 

(In mathematical usage, of course, both a > b and a = b entail a ≥ b, but we are using these 

symbols such that at most one of the three expresses the person’s state of mind concerning the 

relative credibility of P and Q. If one thinks that P is precisely as credible as Q then one would 

normally not express that by saying P is at least as credible as Q: that would be misleading. 

Similarly if one thinks that P is definitely more credible than Q. It is also worth pointing out, as 

James Hawthorne does, that given the single primitive relation ≥ with its usual mathematical 

meaning one can define the rest: A > B =df (A ≥ B) & ~(B ≥ A); B > A =df ~(A ≥ B) & (B ≥ A); A 

≍ B =df (A ≥ B) & (B ≥ A); and A >< B =df ~(A ≥ B) & ~(B ≥ A).3 As we will see below, these 

definitions in terms of a single basic relation ≥ explain why there are certain rational constraints 

on credal states.) 

Here’s a way to represent a Generalized Credal State: consider a graph in which every 

proposition is represented and the appropriate relation ( >, ≥, ≍, or ><) is drawn (facing the correct 

way for > and ≥) between every pair of propositions. Such a graph might have infinitely many 

propositions. 

What we now seek are constraints on rational credal states. Rationality is, of course, a 

normative notion. People can actually be in irrational belief states, but the hope is that once the 

irrationality is pointed out to them they will be motivated to remedy it. And even if they are not, 

they are subject to the criticism that they are….being irrational. If the irrationality is severe enough, 

we might even conclude that they do not understand the concepts involved. 

 
2 The symbol ≍ is recruited for this relation between the credibility of the propositions rather than = because we do 

not want to suggest that the propositions themselves are identical. 
3 Warning: Hawthorne uses the symbol ≍ in a different way than I do, employing ≍ for >< and ≈  for equality of 

credence. I find his choice counterintuitive since the standard use of ≈ allows that if A ≈B then A might be greater 

than B or less: the relation is agnostic and does not assert exactly equality. My use of >< also indicates such 

agnosticism. Hawthorne’s does not. 
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An obvious rationality constraint: ≍ should be an equivalence relation. It should, for 

example, obviously be reflexive. If someone claimed to believe that P > P rather than P ≍ P we 

would rightly conclude that they do not understand the meaning of ‘≍’ and ‘>’. Similarly, ≍ must 

be transitive. >< need not be, as we have seen.  

The transitivity and symmetry of ≍ follow from the transitivity of the fundamental relation 

≥ mentioned above together with the definition of ≍. Symmetry is trivial from the definition: 

(A ≥ B) & (B ≥ A) is obviously symmetric in A and B. The transitivity of ≍ follows from the 

transitivity of ≥: If (A ≥ B) & (B ≥ A) and (C ≥ B) & (B ≥ C), then if ≥ is transitive we must have 

A ≥ C and C ≥ A, and hence A ≍ C. The reflexivity of ≍ similarly follows from the reflexivity of 

≥. 

If we take the graph just mentioned and erase all of the occurrences of ≍ and >< and ≥ we 

are left with a directed graph indicating relations of greater credibility. The > relation should be 

transitive if the person is rational. Therefore the directed graph should be acyclic. If there were 

cycles then one would have to either break the transitivity or have P > P for some P, which is 

irrational.  

The graph should have some nodes from which arrows only emerge. These represent credal 

absurdities: propositions one regards as certainly false, such as 1 = 0 or 1 ≠ 1 or P & ~P for some 

unproblematic proposition P. Nothing can be less credible than these. Since they lie at the bottom 

of the credal hierarchy, they should all be ≍ to each other. We will call the credal value of these 

propositions Bottom because they lie at the bottom of the directed graph. Similarly, a proposition 

like 1 = 1 or P v ~P should only have arrows going in. All of these are credally equal to each other, 

and we call their credal value Top. 

Anything one regards as epistemically possible (possible as far as one knows) must have a 

credence greater than Bottom. That is what regularity requires. No matter how implausible or far-

fetched or unlikely, it is more plausible than 1 ≠ 1. Any proposition that is neither Top nor Bottom 

is epistemically contingent: as far as one believes, it could turn out either way. 

There are other rationality constraints on a Credal State that are associated with the classical 

truth-functional logical operators. For negation: if P > Q then ~Q > ~P. For disjunction: If 

(~P & Q) > Bottom, then (P v Q) > P and if (~P & Q) ≍ Bottom then (P v Q) ≍ P. For conjunction: 

If (P & ~Q) > Bottom, then (P & Q) < P and if (P & ~Q) ≍ Bottom then (P & Q) ≍ P. 



 6 

Since we would like to consider infinitary disjunctions, it is convenient to use a generalized 

truth-functional operator whose argument is a set of propositions. For any set S of propositions, 

∨(S) is true iff at least one proposition in the set is true and &(S) is true iff every proposition in the 

set is true. Since we are assuming only classical truth values, each is false otherwise.  

It is worth our while to reflect for a moment on this rationality constraint for disjunction: 

If (~P & Q) > Bottom, then (P v Q) > P. The antecedent says that one does not regard the holding 

of Q and the failure of P to be impossible, or in other words (~P & Q) is an epistemically possible 

state of affairs. Therefore, (P v Q) might turn out to be true even though P is false. But of course 

(P v Q) is true whenever P is true. Therefore, there are strictly more epistemically possible 

situations that would make (P v Q) true than would make P true, hence (P v Q) must be strictly 

more plausible or credible than P. 

I don’t see how to deny any of the steps of that argument. Anyone who regards (~P & Q) 

as possible but (P v Q) not to be more credible than P is irrational. This is just an example of the 

Euclidean principle: the space of (epistemically) possible conditions that would make P true is a 

proper part of the space that would make (P v Q) true, and the whole is greater than the part, so 

(P v Q) is more plausible than P (assuming (~P & Q) is epistemically possible). 

The full Euclidean Principle is nothing but the generalization of this argument to all sets of 

propositions and their proper subsets, including infinite sets. 

Suppose we have two sets of propositions Σ and Σ’. Consider the three propositions ∨(Σ), 

∨(Σ′) and (∨(Σ) v ∨(Σ′)). The last is the same as ∨(Σ ∪  Σ′). Now suppose (~∨(Σ) & ∨(Σ′)) > 

Bottom, i.e. ∨(Σ′/ Σ) > Bottom. In words: it is epistemically possible that at least one member of 

Σ′ is true even though no member of Σ is. In that case (∨(Σ) v ∨(Σ′)) > ∨(Σ), by exactly the same 

argument given before. If offered a ticket that pays if ∨(Σ) is true and a ticket that pays the same 

if (∨(Σ) v ∨(Σ′)) is true, it would be irrational not to prefer the latter to the former. It would 

irrational not to regard (∨(Σ) v ∨(Σ′)) as more plausible or more credible than ∨(Σ). And if (~∨(Σ) 

& ∨(Σ′)) ≍ Bottom, then the two propositions are exactly equally credible since one cannot be true 

without the other being true. 

Our initial example of the dart throw is just an example of this, with Σ being the set {p is 

chosen} and Σ’ the set {q is chosen}.  And it obviously also follows that the proposition that the 

chosen point lies in any set Σ is more credible or plausible than the proposition that it lies in any 
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proper subset since  Σ′ since Σ/ Σ′ is non-empty and every point could be chosen, so ∨(Σ/ Σ′) > 

Bottom. 

In our darts example, for every point on the disk there is the proposition that the dart lands 

there. Since the dart could—as far as we know—land anywhere, for each point p “The dart lands 

on p) > Bottom. And for each set Σ of points and each proper subset Σ′, “The dart lands in Σ” > 

“The dart lands in Σ′”. The set of such propositions is identical to the power set of the points on 

the board (if we assign “The dart lands on ∅” = “The dart doesn’t land” ≍ Bottom). The relations 

of credibility among these propositions generated by our rationality principle are isomorphic to the 

proper subset relations among all the subsets of points on the target. That—according to the 

Euclidean Principle—is the only rational attitude to take. 

This particular rationally mandated credal state has been considered highly problematic by 

philosophers. But what’s the problem? It is perfectly clear and unproblematic, as far as it goes. We 

may want to demand more of a rational credal state given a more detailed statement of the situation. 

For example, suppose we are told not merely that each point may be hit by the dart, but that each 

point has exactly the same chance of being hit as any other. Then we want to demand not merely 

that for each pair of points p and q, “The dart lands at p.” > Bottom and “The dart lands at q.” > 

Bottom, but that “The dart lands at p.” ≍ “The dart lands at q.”. Indeed, that is the only rational 

attitude to take. But that attitude, supposedly, leads to terrible problems. Let’s rehearse the standard 

presentation of the problems. 

The standard approach to representing credal states goes via a completely different route 

than we have followed. Instead of focusing of relations of credibility among propositions, it starts 

out by trying to represent a “degree of belief” in a proposition by a numerical function. In 

particular, the cognitive agent is required—presumably threatened or at least browbeaten—to 

assign a number to each proposition, usually a real number between 0 and 1 inclusive. Sometimes 

these numbers are characterized as what the agent would propose as “fair betting odds” on the 

truth of the proposition, i.e. odds at which the agent would be willing to take either side of a bet. 

Now there are many immediate objections to placing such a demand on any agent. For 

example, if you asked me at what odds I would willingly accept either side of a bet on the 

proposition that Argentina will win the World Cup in 2022, the straight answer is “none”. I know 

next to nothing about soccer, and if I were willing to take either side of a bet on that I’m sure that 

people more informed on the subject would take me to the cleaners. Why in the world would I put 
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myself in such a position? I do not regard the thing as impossible nor as certain, so Top > 

“Argentina wins the World Cup in 2022” > Bottom. But it’s a far way from that opinion to a precise 

real-valued credence! Allowing me to express my attitude by a range of numerical values is, I 

suppose, somewhat fairer, but still basically ridiculous. I have literally no idea how to fix such a 

range. 

To that extent, the standard approach fails right out of the box by demanding that the 

cognitive agent be more opinionated about things than she or he is.  

But what we now must confront is a failure of the standard approach in the other direction: 

it also requires that the agent in some cases be less opinionated than she or he is rationally required 

to be. In our dart-with-equal-chance example, we are supposed to assign some real number 

between 0 and 1 to the proposition “The dart will land on p”. But since it is rationally required that 

“The dart lands at p” ≍ “The dart lands at q”, it would be rationally required to assign the same 

real number to both propositions, and indeed to assign the same real number to the corresponding 

proposition for each point on the target. But it gets worse. Since “The dart lands at p” ≍ “The dart 

lands at q” and since the two propositions are mutually exclusive, the chance that the dart lands at 

either one or the other must the twice the chance that it lands at p, and the rational credibility of 

the proposition that the dart lands at either one or the other twice the credibility that it lands at p. 

And the chance that it lands on one of N points must the N times the chance it lands on a single 

point, and also greater than the chance that it land on a single point. But now we are really up the 

creek. For there simply is no rational number that can satisfy all of the demands of rationality here. 

If we choose any positive rational number—no matter how small—to represent the credibility of 

“The dart lands at p.”, then there will a finite set of points Ξ such that the credibility of “The dart 

lands in Ξ.” will be greater than 1, i.e. higher than absolute certainty. But that makes no sense. On 

the other hand, if the number that represents the credibility of “The dart lands at p” is 0, then it 

will be 0 for all individual points and 0 for “The dart lands in Ξ” for all finite sets, even proper 

supersets of p. But it is rationally required that the credibility of “The dart lands in Ξ” be greater 

than the credibility of “The dart lands at p” in such a case. So you can’t assign a positive real and 

can’t assign 0. But now you have licked the platter clean: you can’t assign any real numbers 

between 0 and 1 to these propositions which will be related to each other in the way that rationality 

demands our credences in these propositions be related to each other. 
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At this point some Clever Dick pops up to tell us all about the surreal numbers or the 

hyperreal numbers or the infinitesimals or some other “number field” with different properties than 

the reals. But let’s keep our wits about us. The suggestion that one must make reference to obscure 

and counterintuitive number fields in order to represent our credence structure in this very simple 

situation is absurd. After all, all of us knows immediately what to say about these propositions: if 

the points are all equally likely to be hit then “The dart lands at p” ≍ “The dart lands at q” for all 

pairs of points, and “The dart lands in Ξ” > “The dart lands in Σ” whenever Σ ⊂  Ξ. The first 

follows directly from the stipulated equality of chances and the second from the Euclidean 

Principle. If you can’t represent these credence relations by associating numbers with the 

propositions, then all the worse for trying to do so! Why in the world might one be motivated to 

do that in the first place? After all, the notion of the plausibility or strength of credence in a 

proposition has nothing prima facie numerical about it. 

 

The Use of Numbers in Representation Theorems 
 

 

Formal approaches to many topics in philosophy of science and science itself make use of 

representation theorems. Let’s step back and consider what they are and why they are useful. 

Suppose there is a domain of entities one is interested, and the objects in that domain have 

a structure. Just to be concrete, suppose you run a plumbing business and have a warehouse full of 

pipes. Each pipe has several important characteristics as far as its use in plumbing is concerned, 

including its length and diameter. Every pipe has a particular length and diameter, and these 

quantities furthermore stand in ratio relations to each other. None of that structure, per se, is 

numerical. 

There are also some important operations that can be carried out on the pipes: they can be 

laid end-to-end and soldered to make a long pipe, for example. One can also line up two pipes at 

one end and then saw off the longer one to match the shorter. We are within our rights to call the 

first operation “addition” and the second “subtraction”, with the sawn-off piece the “difference” 

between the two pipes. The idea that addition and subtraction are sorts of operations that can be 

applied to entities other than numbers is also endorsed in Euclid’s Axioms. Axiom 1 states: “If 

equals be added to equals, the wholes are equals” and Axiom 2 “If equals be subtracted from 
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equals, the remainders are equal”. The axioms apply to numbers, of course, but also to geometrical 

objects and, for all practical purposes, to pipes. 

Our plumber may need to figure out whether any two pipes in his warehouse can be 

soldered together to form a pipe of a given length. He can, of course, go to the warehouse and start 

laying pipes end to end to find out. But that would be an extremely time-consuming and laborious 

operation, so he seeks to construct a more conveniently manipulable representation of the pipes. 

The representation will contain precisely the information he needs, but in a form he can access and 

use more simply. 

The first idea that strikes him is to create an analog model of the pipes: a collection of small 

wooden dowels that stand in the very same ratio relations of lengths to each other as the pipes do. 

Each dowel represents—by stipulation—a particular pipe. All that the representation is supposed 

to capture are the ratio relations, so the size of the dowels can be scaled down uniformly from the 

size of the pipes. The arbitrary decision about the length of the first dowel chosen is a choice of 

scale and the freedom to choose any length is a gauge freedom. Having chosen the first dowel to 

represent a particular pipe, though, the length of all the remaining dowels is fixed since the dowels 

are supposed to stand in the same ratios of lengths to each other as the corresponding pipes do. 

This analog system can accurately represent the length ratios of the pipes because it is 

constructed to do so and because the dowels are capable of standing in exactly the same ratio 

relations to each other as the pipes do to each other. We here have an accurate analog representation 

of certain features of the pipes, constructed without a number in sight. 

Of course, there is no a priori guarantee that the smaller dowels can instantiate exactly the 

same structure as the pipes. If the space is Euclidean then they can because the space is scale-

invariant. But if the space were uniformly curved then no model built of the dowels (including, 

say elbow joints) could precisely represent certain structures built of the pipes. So given the 

structure of the things to be modelled and the structure of the things doing the modelling one 

requires a proof—a theorem—showing that the model can serve the purpose required of it. That’s 

the point of a representation theorem: to show that the structure to be represented can be relevantly 

isomorphic to the structure of the representation that is being used for representational purposes. 

Representations need not employ numbers, and therefore representation theorems need not be 

about numbers of any sort. 
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The dowel-representation of the pipes is, of course, not the most convenient thing to use. 

Even more convenient would be an abstract, purely mathematical representation. And more 

particularly—because we know how to perform various operations on them—a numerical 

representation. 

And the rest of the story is familiar. If the pipes exist in a Euclidean space, then a 

convenient mathematical representation of their lengths and ratio structures and of the shapes that 

can be built from them is provided by assigning a real number to each pipe representing its length.4 

There is a gauge degree of freedom in such a representation, as there is in the dowel analog 

representation, which is resolved by the arbitrary choice of a length to be assigned the number 1: 

the “unit of length”. 

Manipulations and calculations can be conveniently done on the abstract representation. 

This makes the plumber’s life considerably easier. But aside from the practical advantages, nothing 

of deep metaphysical import has occurred. The pipes are what they are and have the structure they 

do and can be put together to form the shapes that they can quite independently of the existence of 

any representation of them at all. All the representations do is allow us to more conveniently think 

and communicate about them. 

Our present subject matter is not mathematics, it is human cognitive states. People believe 

things in different “degrees” or “strengths”. How much structure do these “strengths” have? So 

far, we have only assumed that they—at least sometimes!—are comparable in strength. Some can 

be stronger than others. Some can be exactly equal to others. Some can also be incomparable to 

others. These comparative degrees of strength are what constitute a credal state on the approach 

being suggested. 

Can we create an abstract mathematical representation of a credal state? Of course we can: 

we already have done it. We represented a credal state by a graph. And we used that graph to 

specify various rationality constraints on credal states, such as that the directed sub-graph formed 

from the > relation must be acyclic. Do we need a representation theorem to prove that the 

representation is isomorphic in the right way to the credal state? Well, the theorem is one line, 

since it follows directly from the postulate about what credal states are that the representation 

 
4 This representation is, of course, an idealization. Pipes no more have absolutely precise lengths than beliefs have 

absolutely precise degrees of credence. Once one gets to atomic scale, there is no exact point where the pipe ends. 
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captures their structure completely. So we have the subject matter, the abstract representation, and 

a representation theorem, all without a single number in sight. 

How do numbers get in the game? Numbers are convenient because we know how to do 

all sorts of calculations on them, so there is a natural sort of psychological pressure to use them as 

representations. In the case of the relative strength of beliefs, we are tempted to try to do exactly 

what the plumber does: assign a numerical value to each proposition f(P) such that P ≍ Q iff f(P) 

= f(Q) and P > Q iff f(P) > f(Q). 

But what we have seen, in various ways, is that that scheme is simply impossible. First, 

every number is either equal to, greater than, or less than every other, but some beliefs are 

incomparable in credence. That particular problem might be overcome by using intervals of 

numbers rather than numbers as the representation. But we have also seen that the Euclidean 

Principle cannot be satisfied in such a scheme, at least if it uses the real numbers. The response to 

that is to gesture at using hyperreals or surreals, or intervals of them. But it is time to stop the 

madness: we already have a perfectly acceptable abstract representation of a credal state, namely 

the graph mentioned above. Why the relentless obsession to use numbers instead? 

Numbers have certain convenient formal properties. Any pair of real numbers can be added 

and subtracted and multiplied, and can be divided so long as the divisor is not zero. Again apart 

from zero, all pairs of numbers stand in ratio relations. This allows for the formulation of equations 

using numbers that can be guaranteed (sometimes under a condition, such as no number is zero) 

to have a solution or solutions. These features make it quite reasonable to seek numerical 

representations: in terms of such representations, for example, physical laws can be written as 

differential equations.  

But despite all these advantages and attractions, if numbers are simply not available—if 

they can’t do the representational job required—then they can’t. C’est la vie. Take the hit and 

move on. 

One way of moving on is to define operations on the subject matter itself—or on an 

adequate representation of it—that have the same or similar formal properties as addition and 

multiplication of numbers. In our case, that means defining an addition-like and multiplication-

like operation on credences. We already have the wherewithal to do the first, and can easily also 

achieve the second. 
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“Adding” and “Multiplying” Credences 
 

 

Addition of numbers is a binary operation. It has the formal features of commutativity and 

associativity, which mean effectively that there is a unique sum of any finite set of numbers. There 

is an additive identity: zero. Because equal numbers are actually the same number (equality implies 

identity, unlike pipes of equal length), they automatically satisfy Euclid’s requirement that equals 

added to equals are equal and equals subtracted from equals are equal.  

Is there any formally similar binary function on credences? Yes, although the range over 

which the function is defined is limited. Consider any pair of propositions P and Q. Each of P and 

Q has a credence which—for us—just means that it occupies a definite position in the map of a 

credal state. The disjunction (P v Q) is another proposition in the same credal state. If the credal 

state is rational, then there are constraints on the relative credibility of P and (P v Q): (P v Q) ≥ P. 

We have already remarked that. To that extent, disjunction is formally similar to addition of non-

negative numbers: for any non-negative numbers p and q, p + q ≥ p.  

But in the case of numbers, the equality p + q = p holds only when either p or q is zero. 

There is no such constraint on credences. In particular, (P v P) ≍ P for all propositions P. So if we 

are going to define an addition-like operation on credences using disjunction, we must have a 

constraint. But we already know the relevant constraint: P and Q should be mutually exclusive, 

i.e. (P & Q) ≍ Bottom. So long as this condition holds, the credence of (P v Q) can be regarded as 

the “sum” of the credence of P and the credence of Q. We can express this with a convenient 

notational device: Cr(P) ⨁ Cr(Q) =df Cr(P v Q) whenever Cr(P & Q) = Bottom. Or, dropping “Cr” 

as is our wont, P ⨁ Q =df (P v Q ) provided that (P & Q) ≍ Bottom. 

The ⨁ operation is evidently commutative and associative because disjunction is and the 

side condition in terms of conjunction is. Any proposition B with the credal value Bottom is an 

“additive” identity: for all P, P ⨁ B ≍ P. What about Euclid’s dictum that equals added to equals 

are equal? It does obtain whenever the relevant “additions” are defined. That is, if P ≍ R and Q 

≍ S, then P ⨁ Q ≍ R ⨁ S supposing both are defined. This too is an obvious rationality constraint 

on credal states: if you regard P as precisely as credible as R and Q as precisely as credible as S, 

and if you regard P & Q as not possible and R & S as not possible, then should regard the two 

disjunctions as precisely as credible as each other. (Note: the relation here is ≍, not ><. There is 
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no similar requirement for ><, even though in a sense one is “credally indifferent” between P and 

Q when P >< Q. That sort of indifference is not a judgment of exact equality.) 

⨁ also fails to be like addition of numbers in some respects. For any two positive real 

numbers p > q, it is possible to add q to itself some finite number of times and reach a number 

greater than p. That is precisely the Archimedean property of real numbers (a property the 

hyperreals fail to have). That property cannot possibly exist for “addition of credences” because 

there is a maximal possible credence value: Top. No number of “additions” of credence can take 

you above Top because there is nothing above Top. 

⨁ is a binary operation on propositions, so by iteration it defines a ternary operation ((P ⨁ 

Q) ⨁ R), quaternary, and so on for all integers. Since ⨁ is associative and commutative, these 

operations are defined for finite sets of propositions (assuming, of course, the constraints for the 

operation are met). We have already introduced an unrestricted disjunction operation over all sets 

of propositions, finite and infinite, and we can use it to define a similar unrestricted ⨁ operation 

whose argument is any set of propositions. The statement of the constraint for the ⨁ operation to 

be defined, the analog of the constraint that (P & Q) ≍ Bottom, is also simple: we demand pairwise 

mutual inconsistency. For all distinct P and Q ∈  Σ, (P & Q) ≍ Bottom 

This definition allows us to “add” infinitely many propositions in our original darts 

example: let Σ be the set of propositions each of which stating that the dart will land on a particular 

point in the dartboard. Our original definition of a binary operation falls out as a special case since 

(P & Q) ≍ Bottom. 

It is worthy of note how easy it was to extend the original binary ⨁ operation on 

propositions to cover infinite sets of propositions. Doing the same trick with real numbers requires 

definitions of limits of infinite sequences, which brings along many complications. In our case, 

the extension is simple and straightforward, and never requires us to order or enumerate the 

elements of Σ. Intuitively, addition is an operation on a set of summands, not an ordered set. 

Because of the commutativity and associativity, the order shouldn’t matter.  In our definition, this 

is manifestly the case. Furthermore, uncountable sets cannot even be enumerated into a sequence, 

so taking limits of sequences there is automatically hopeless. Our operation, in contrast, is 

indifferent about the cardinality of the set. And when people form firm judgements about relative 

rational credences in the dartboard case, they are also completely indifferent about the cardinality 

of the set of points in the dartboard. The Euclidean Principle is completely indifferent about 
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cardinality. So there is strong reason to believe that what people are doing when they make 

judgments of relative credibility in such a case is more akin to using ⨁ than to using +. 

We now have an addition-like operation defined directly on credences. What about 

multiplication? 

Just as the natural place to look for an analog to addition is disjunction, the natural place 

to look for an analog to multiplication is conjunction. For any pair of real numbers p and q between 

0 and 1, p∙q ≤ p. And for any pair of propositions P and Q, (P & Q) ≤ P (if one is rational). A 

conjunction is never more rationally credible than a conjunct, nor rationally incomparable to a 

conjunct. Just as disjunction with another proposition never drives credibility down, conjunction 

never drives it up. 

But just as in the case of addition, we have also a disanalogy: addition is defined for every 

pair of numbers, but the analog is only defined under a side constraint. For any positive number p 

less than 1, p∙p < p. But for any proposition at all, (P & P) ≍ P.  In the case of addition/disjunction, 

the constraint could be formulated using concepts already in play. But for the case of 

multiplication/conjunction we need a new bit of machinery. 

Credences of propositions “multiply” under conjunction when the propositions are 

regarded as being about independent subjects. For example, when sequentially flipping a fair coin 

a natural assumption is that the flips are “statistically independent”, meaning that the credibility 

that one flip comes heads is unchanged by information about whether any other flip came heads. 

Let’s consider this case in more detail. 

We already have the resources to express the idea that a coin and a particular flipping 

process are “fair”: Cr(Coin lands heads) = Cr(Coin lands tails). If in addition we have Cr(Coin 

fails to land head or tails) = Bottom, so one is subjectively certain the coin will show heads or tails, 

then we can even in an obvious way say that Cr(Coin lands heads) = Cr(Coin lands tails) = ½. The 

numerical value ½ is indicated given Cr(Coin lands heads) = Cr(Coin lands tails) and Cr(Coin 

lands heads) ⨁ Cr(Coin lands tails) = Top. So if we numerically represent Top by the number 1 

and Bottom by the number 0 (which we should since Bottom is the identity of the operation ⨁), 

then we should numerically represent the credence of heads and of tails in the fair coin case by ½. 

Now: suppose we flip the coin twice. If we assume that the flips are independent, then the 

credibility of it landing heads twice is clearly lower than the credibility of it landing heads once. 

Using subscripts to denote the two tosses, Cr(H1 & H2) < Cr(H1). But our rational credences have 
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a much more detailed structure than that. As we are wont to say, if the coin is certain to land one 

way or the other on each flip, and the coin and flipping is fair, then the chance of getting one heads 

is ½ and the chance of getting two is ¼. Ch(H1 & H2) = Ch(H1) ∙ Ch(H2). Note carefully that in the 

last equation we have switched from Cr to Ch, from claims about rational credence to claims about 

chance. We are also assuming that chances are properly represented by numbers. The point is that 

this is a familiar and unobjectionable sort of calculation about chances that uses multiplication. 

According to the Principal Principle the chances should determine our credences in this case 

(assume no “inadmissible information’).  

We are already in a position to make good sense of a parallel claim about credences. We 

can, for example, accept the following criterion for saying Cr(P) = ¼: If Cr(P) = Cr(Q) = Cr(R) = 

Cr(S) and Cr(P) ⨁ Cr(Q) ⨁ Cr(R) ⨁ Cr(S) = Top, then  Cr(P) = ¼. Using the same sort of criterion, 

we can similarly provide a sufficient condition for a proposition to have any credence value 1/N, 

and then using ⨁ again in the obvious way a sufficient condition for a proposition to have credence 

value N/M for any integers N and M with N ≤ M. So our “addition-like” operation on the credences 

of propositions gives us the resources to attribute “rational-numbered” credences to some 

propostions. 

Back to multiplication. The inference from Cr(H1) = ½ and Cr(H2) = ½ to Cr(H1 & H2) = 

¼ is not analytic. Here, for example, is a condition when it fails: you are fully convinced that the 

coin about to be flipped is not fair but is double-sided, and you think it exactly equally credible 

that it has two heads and that it has two tails. So Cr(H1) = ½ and Cr(H2) = ½ but Cr(H1 & H2) = ½. 

In this case the condition for credences to behave in a “multiplication-like” way fails. So what 

exactly is the condition that has been violated? 

The key is to consider subjunctive conditionals or conditional credences. Pure subjunctive 

conditionals are propositions of the form “If P should be the case (or “were to be the case”), then 

Q would be the case”. The subjunctive conditional is a close cousin of the much more 

philosophically discussed counterfactual (or contrary-to-fact) conditional, but the counterfactual 

presupposes the falsity of the antecedent while the pure subjunctive conditional is neutral about 

the truth value of the antecedent. Nelson Goodman’s Fact, Fiction and Forecast, the locus 

classicus for discussions of counterfactuals, makes provision for this. Recognition of the pure 

subjunctive conditional underlies his discussion of what he calls “semifactuals”: subjunctive 

conditionals whose antecedents are taken to be true. To a first approximation, if you accept the 
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pure subjunctive conditional “If P were the case, Q would be” and also believe that P is false, then 

you accept the counterfactual “If P had been the case, Q would have been”. And if you accept the 

pure subjunctive and also believe that P is true, then you accept Q (and therefore the material 

conditional (P ⊃ Q). But accepting the material conditional does not in any way similarly commit 

one to the corresponding pure subjunctive, even when both P and Q are accepted as true. That is, 

if you accept the subjunctive conditional and accept the truth of the antecedent then you are 

committed to the material conditional, but if you accept the material conditional and truth of the 

antecedent you are not committed to the truth of the subjunctive conditional. 

The pure subjunctive conditional bids you to consider the situation in which the antecedent 

is true—quite irrespective of whether you believe it to be true, or likely, or unlikely, or whatever—

and then opine on the status of the consequent under that assumption. Following a relevantly 

similar convention, we will represent the subjunctive conditional “If Q were to be the case P would 

be” as (P|Q). For convenience, we can pronounce this “P given Q”.  Now it is obvious that if we 

regard the coin as a fair, two-headed coin being flipped fairly, then Cr(H1|H2) = Cr(H1). That is, if 

the coin is fair and fairly flipped, then the plausibility of it coming heads on the first flip given it 

comes heads on the second is exactly the same as the plausibility that it comes heads on the first. 

Finding out—or positing—the outcome of the second flip makes no difference at all to the 

plausibility of the first. But if one is convinced that the coin is either double-headed or doubled-

tailed, but unsure which, then Cr(H1|H2) > Cr(H1). Indeed, in that case Cr(H1|H2) = Top. (We 

assume here that we are certain the coin is fair, i.e. regard that proposition as Top. Similarly, if we 

are certain that the coin in biased in some particular way, for example so it has a 25% chance of 

coming heads, then Cr(H1|H2) = Cr(H1). To think otherwise is to commit the gambler’s fallacy.) 

So just as Cr(P & Q) = Bottom provides the condition under which disjunction acts like 

addition for credibilities, Cr(P|Q) = Cr(P) is the condition for conjunction to act like multiplication. 

Cr(P|Q) = Cr(P) says that the plausibility of P is completely unaffected irrespective of whether or 

not Q happens to be the case. Often (but not always!) this is because one simply sees no connection 

at all between P and Q, the sort of situation that happens when an interlocutor asserts something 

that strikes one as completely irrelevant to the topic at hand and the response is “What does that 

have to do with the price of tea in China?”. If P and Q are on what one takes to be evidentially 

unrelated topics—winner of the World Cup in 2022 and the winner of the Super Bowl in 2022, for 

example—then one also judges that Cr(P|Q) = Cr(P). Note that this equation does not even require 
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that one have precise “degrees of credence”: I have no idea how plausible it is that Argentina wins 

the World Cup in 2022, but I believe that whoever wins the Super Bowl has nothing to do with it. 

So here is our first stab at an analog to multiplication of credences, parallel to our analog 

of addition: Cr(P) ⨂ Cr(Q) =df Cr(P & Q) provided that Cr(P|Q) = Cr(P). 

There is a feature of this definition that is unlike the definition of ⨁ and is worthy of our 

attention. Whereas it is immediate that ⨁ is symmetric—the condition for Cr(P) ⨁ Cr(Q) to exist 

is the same as the condition for Cr(Q) ⨁ Cr(P) to exist and they necessarily have the same value—

the same is not true for ⨂. It is not that Cr(P) ⨂ Cr(Q) and Cr(Q) ⨂ Cr(P) could both exist and 

yet not be equal to each other, for if they both exist they both equal Cr(P & Q) which is symmetric 

via the symmetry of conjunction. But it still seems possible that Cr(P) ⨂ Cr(Q) satisfy the 

condition for being defined and Cr(Q) ⨂ Cr(P) not satisfy it. That is, we might have Cr(P|Q) = 

Cr(P), but not have Cr(Q|P) = Cr(Q). Is this rationally possible? 

In the case of the World Series and the World Cup, each is considered irrelevant to the 

other, so just as Cr(Patriots win| Argentina wins) = Cr(Patriots win), so also 

Cr(Argentina wins| Patriots win) = Cr(Argentina wins). So Cr(Argentina wins) ⨂ Cr(Patriots win) 

and Cr(Patriots wins) ⨂ Cr(Argentina wins) are both defined and are equal to each other. Is there 

a general argument that for a rational agent Cr(P|Q) = Cr(P) iff Cr(Q|P) = Cr(Q)? 

The sticky part about trying to make such an argument is not that you could have Cr(P|Q) =  

Cr(P) while Cr(Q|P) > Cr(Q) or have Cr(P|Q) = Cr(P) while Cr(Q|P) < Cr(Q). At least if neither 

Cr(P) nor Cr(Q) is Top or Bottom, one can argue that would be irrational. The sticky part is trying 

to rule out the possibility that Cr(P|Q) = Cr(P) while Cr(Q|P) >< Cr(Q). The possibility of 

incomparable credences makes for a complicated discussion, and one with no parallels in the usual 

sorts of approaches. 

As far as our definition goes, the simple solution is just to cut the Gordian knot. Our final 

definition of the multiplication-like definition is: Cr(P) ⨂ Cr(Q) =df Cr(P & Q) provided that 

Cr(P|Q) = Cr(P) or Cr(Q|P) = Cr(Q). Now the defined operator is manifestly commutative just 

because conjunction is. 

⨂ behaves just like multiplication of real numbers between 0 and 1 in all respects, with 

regard to comparative structure. For example, (Cr(P) ⨂ Cr(Q)) ≤ Cr(P) and (Cr(P) ⨂ Cr(Q)) ≤ 

Cr(Q). Top is the “multiplicative identity”, i.e. Cr(P) ⨂ Cr(Q) = Cr(P) whenever Cr(Q) = Top 
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because Cr(P & Q) = Cr(P) when Cr(Q) = Top. Bottom acts like 0 in multiplication: Cr(P) ⨂ Cr(Q) 

= Bottom when either Cr(P) or Cr(Q) = Bottom, because in that case Cr(P & Q) = Bottom. 

Furthermore, having Cr(P) or Cr(Q) equal to Top or Bottom is the only condition under 

which Cr(P)  ⨂ Cr(Q) = Cr(P). Suppose both Top > Cr(P) > Bottom and Top > Cr(Q)> Bottom, 

so the agent regards both P and Q as epistemically contingent: each might or might not obtain. 

And suppose that either Cr(P|Q) = Cr(P) or Cr(Q|P) = Cr(P), that is, the obtaining of one does not 

change the credibility of the other. That means that all of (P & Q), (P & ~Q), (~P & Q) and 

(~P & ~Q) are epistemically possible. By construction they are all mutually inconsistent. So Cr(P) 

= Cr((P & Q) v (P & ~Q)) = Cr(P & Q) ⨁ Cr(P & ~Q) > Cr(P) since Cr(P & ~Q) > Bottom. So 

just as the product of any pair of real numbers greater than zero and less than 1 is less than either 

multiplicand, the Cr(P)  ⨂ Cr(Q) is less than Cr(P) and less than Cr(Q) so long as both Cr(P) and 

Cr(Q) are greater than Bottom and less than Top. 

⨁ and ⨂, whenever they are defined, are structurally analogical to addition and 

multiplication of reals between 0 and 1 (inclusive) with respect to how comparative values behave, 

with Bottom being the analog of 0 and Top the analog of 1. These analogies include the following 

principles (in the simpler notation dropping “Cr”): 

If P > R and Q ≥ S then P ⨁ Q > R ⨁ S. 

If P > R and Q ≥ S and Q is not Bottom, then P ⨂ Q > R ⨂ S. If Q ≍ Bottom then 

P ⨂ Q ≍ R ⨂ S ≍ Bottom. 

If P ⨁ Q ≍ P, then Q ≍ Bottom. 

If P ⨂ Q ≍ P, then Q ≍ Top or P ≍ Bottom. 

Whenever the ⨁ or ⨂ operation is defined, these analogs to addition and multiplication of 

numbers hold. The existence of this analogous structure explains the overpowering temptation to 

represent credences with real numbers between 0 and 1, using addition to represent disjunction 

and multiplication conjunction (under the appropriate constraints, such as Cred(P|Q) = Cred(P), 

where Cred is a function mapping propositions to real numbers between 0 and 1). But as powerful 

as this temptation is, it must be resisted. Because ⨁ and ⨂ do not behave like addition and 

multiplication of real numbers when applied to infinite sets. 

We have seen how to extend the definition of ⨁ to cover the “addition” of arbitrary sets of 

propositions of any cardinality. The extension of ⨂ is formally similar: 
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⨂ (Σ) =df &(Σ) provided that for any two disjoint non-empty subsets Σ′ and Σ′′ of 

Σ, either (&(Σ′)|&(Σ′′)) ≍ &(Σ′) or (&(Σ′′)|&(Σ′)) ≍ &(Σ′′). 

This definition extends ⨂ to arbitrary sets, under the requirement that conditioning on any subset 

be deemed irrelevant to the credibility of any disjoint subset. This definition yields our original 

binary operation as a special case since the only disjoint non-empty subsets of {P,Q} are {P} and 

{Q}. We cannot follow the simpler shift of demanding of all pairs of propositions P, Q ∈ Σ that 

either (P|Q) = P or (Q|P) = Q because one can have a triple of propositions that are pairwise 

conditionally independent of each other but the third is not independent of the conjunction of the 

other two.5 

The condition required for ⨂ (Σ) to be defined for an infinite set is quite strong. It would 

hold for an infinite set of propositions all on completely unrelated topics, of course, but specifying 

such an example would be impossible. Nonetheless, we can formulate an intuitive case if we go 

back to our dartboard example. 

Again, imagine a circular dartboard with a dart thrown in such a way that it is (regarded 

as) equally likely to hit any point, or such that the credibility of the proposition that it hit any point 

is the same as for any other point, and all are greater than Bottom. Now: draw the vertical diagonal 

through the dartboard partitioning it into two pieces. By the perfect geometrical symmetry, we at 

least plausibly have Cr(dart lands in right half) = Cr(dart lands in left half) (if the dart lands on the 

diagonal both are false). Now do the same thing, dividing the dart board along the horizontal 

diagonal. Now we have Cr(dart lands in right half) = Cr(dart lands in left half) = Cr(dart lands in 

top half) = Cr(dart lands in bottom half). But also, by symmetry, Cr(dart lands in right half|dart 

lands in top half) = Cr(dart lands in right half): that is, whether the dart lands in the top or bottom 

has no bearing on the credibility of the claim that it lands in the top. So Cr(Top 

half) ⨂ Cr(Right half) is well-defined, and equal to Cr(Top half & Right half). 

 
5 Here is an example. Alice wants to send a secret yes/no message to Bob in a secure way. She has two messengers, 

Charlie and Dora. She and Bob agree that the message will be encoded in the parity of digits given to Charlie and 

Dora: if they carry the same digit, then the message is “yes” and if they carry different digits, the message is “no”. 

You regard the message as equally likely to be “yes” or “no”. Alice flips a fair coin to decide whether Charlie carries 

a 0 or a 1, and then gives the appropriate number to Dora. You know all about the protocol. 

If you capture Charlie and read his digit, you do not change your credence at all in either what the message 

is or what number Dora has. Similarly, mutatis mutandis, if you capture Dora. And if you discover what the message 

is, you still have no clue which digit either of them has. So the three propositions are pairwise independent. But if 

conditional on any two, then credence in the third becomes Top or Bottom. 
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Once we see this trick, we also see that it can be repeated indefinitely many times. Divide 

the dartboard into four quadrants using the 45° diagonals. Call the four resulting right isosceles 

triangles “Top-Triangle”, “Bottom-Triangle”, “Left-Triangle” and “Right-Triangle”. The 

credibility of the dart landing in the hour-glass shaped union of Top-Triangle and Bottom-Triangle 

is the same as it landing in the union of Left-Triangle and Right-Triangle. Further, landing in the 

union of Top-Triangle and Bottom-Triangle is uncorrelated with landing in the top half and 

uncorrelated with landing in the right half: Cr(T-T or B-T|Top) = Cr(T-T or B-T|Right) = Cr(T-T 

or B-T).6 So if our set Σ of propositions were {“The dart lands in the top region”, The dart lands 

in the right region”, “The dart lands in Top-Triangle or Bottom-Triangle”} then the condition for 

⨂ (Σ) to be defined would be satisfied and Cr(⨂ (Σ)) would be  the credibility of the conjunction 

of the three claims. Next divide the circle into 8 equal slices by dividing each of the four triangles 

down the middle and take the union of alternating slices. Then 16 equal slices…. 

There is no end to the set of propositions about where the dart will land that can be 

generated in this way: they form a denumerable infinity. And by construction, every subset of that 

infinite collection is probabilistically independent of every other disjoint subset (for each partition 

we add one of the two propositions generated by the two parts). So the entire infinite set will satisfy 

the condition for ⨂ (Σ) to be defined, and the credibility of ⨂ (Σ) will be the credibility of that 

infinite conjunction of propositions. And each member of the set will be equally credible as every 

other member. And every member will have a credibility greater than Bottom. And every 

conjunction of two distinct members will be less credible than each of the conjuncts. 

But now, once again, the real numbers fail us. For if we assign each member of the set the 

real value 0, then the value of a conjunction of two will equal the value of each conjunct, violating 

the Euclidean principle. And if we assign each member any positive real value r, then the only 

thing we could mean by the value of the conjunction of all of them is the limit as N goes to infinity 

of rN. But that limit is either 1, if r = 1, or 0 if 1 > r ≥ 0. But neither of these “probabilities” is 

correct. The credibility of the infinite conjunction is greater than Bottom since it is perfectly 

possible that the dart land in a location that makes them all true. Since the only real number that 

 
6 There might be a quibble about the dart landing on a point along the boundary between two regions. In order to 

remove this quibble, we can suppose that all of the boundary regions are eliminated from consideration in all the 

propositions: e.g. the relevant proposition is “The Dart lands in the top half but not on any boundary region 

considered in this set of propositions”, e.g. not on the horizontal Right/Left boundary”. That would settle the 

quibble. 
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can be assigned to Bottom is 0, that means that the credibility of the infinite conjunction must be 

greater than 0. But no matter how small it is, every positive real number is too big. The credibility 

of &( Σ) must be less than it. 

Once more, the fan of hyperreals or surreals or whatever will pipe up: “I have another 

number field where that is possible”. But first, no number field will be rich enough to cover all 

possible cases. But much more importantly, we recur to our main question: why insist on using a 

number field in a representation at all? We have already specified the relative credibilities of all 

these propositions—including the infinite conjunctions and disjunctions, no matter the cardinality 

of the set—in a perfectly adequate way. We even can assign relative credence relations to different 

infinite sets. For example, let Σ be the infinite set specified above, and Σ′ be the same set minus 

the proposition “The dart lands in the right half”. ⨂ (Σ) and ⨂ (Σ′) are both well-defined and 

⨂ (Σ) < ⨂ (Σ′). Why? Because ⨂ (Σ) = (⨂ (Σ′) & “The dart lands in the right half”), and 

Cr((⨂ (Σ′) & ~“The dart lands in the right half”) > Bottom. So the credibility of the conjunction 

is less than the credibility of the first conjunct. 

The only plausible ground for demanding a representation of degrees of credibility via a 

number field is that there are certain algebraic operations defined over the number field one wants 

to make use of. But we have shown how to define operations directly on the relative credibility 

structure that has all the important properties of addition and multiplication without any of the 

drawbacks: there is a natural extension of each to sets of any cardinality. So the wisest course is to 

let the numbers go altogether, and intervals of numbers or even fancier numerical constructions 

with them. Produce the entire theory of degrees of credibility—from beginning to end—without 

mention of any number fields at all, whether real or otherwise. There is nothing to be lost except 

a bunch of technical impossibilities and headaches. And there is the Euclidean Principle to be 

gained. 

 

Ratios 
 

 

Abandoning numbers does not mean abandoning ratios. The theory of ratios is the topic of 

Book Five of Euclid’s Elements, and much of what Euclid says there is right on target. For 

example, Definition 3: “A ratio is a sort of relation in respect of size between two magnitudes of 
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the same kind”. Credences, of course, are magnitudes (they can be compared as greater and lesser) 

of the same kind, as are numbers, lengths of lines, areas of closed figures, etc. And then Definition 

4: “Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one 

another”. “Multiplication”, as Euclid has in mind, is just the successive addition of elements of the 

same magnitude. In other words, two magnitudes have a ratio when a finite number of successive 

additions of magnitudes equal to the smaller yield a sum greater than the larger. If all of the pairs 

magnitudes in a collection of magnitudes have this property then the collection is called 

Archimedean, and there is a ratio between every pair of magnitudes. The positive integers and 

positive rationals and positive reals are Archimedean collections of magnitudes, as is the collection 

of closed line segments in the Euclidean plane. The latter example, of course, demonstrates that 

ratios can exist perfectly well among magnitudes that are not numbers. If we add infinite lines to 

the collection of lines then it is no longer Archimedean because no finite number of additions of 

equal line segments can exceed an infinite line. So there is no difficultly at all having a collection 

of magnitudes which is not Archimedean—some elements stand in no ratio to others—but still 

which have perfectly precise ratios among some pairs of elements. 

It is common to represent ratios by real numbers. For example, it is commonly said that 𝜋, 

which is the ratio of the circumference of a Euclidean circle to its diameter (the ratio of a length to 

length) is the real number 3.14159…. But that is just loose talk. The accurate locution is this: the 

ratio of the circumference of a circle to its diameter is proportional to the ratio of the real number 

3.14159… to the real number 1. Proportionality of ratios is expressed using a notation of colons. 

In the case of 𝜋 the proper statement is: circumference of circle:diameter of circle:: 3.14159… :1. 

The double colon represents proportionality of the ratios, and on each side of the double colon lies 

a ratio between a pair of magnitudes of the same sort. 

When one indicates a ratio by providing just a single real number, what is meant is the ratio 

between that number and the unit. It’s a harmless enough ellipsis, but for our purposes it is 

important to be technically and conceptually precise. So we will be fastidious in referring to 

proportionality of ratios using the classical notation. 

One set of magnitudes can have a richer structure of ratios than another. The most famous 

discovery of this phenomenon is mistakenly referred to as “the discovery that the square root of 2 

is irrational”. The Greeks would have no idea what is being referred to by the “square root of 2”. 

2 is a number, which means for the Greeks a positive integer. The “square root” of a number N is 
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defined as a number which, when squared, yields N. So the Greeks would say that there is no 

square root of 2. No one could refer to a number as “the square root of 2” until the invention or 

discovery of the full set of real numbers. But that was millenniums later. 

So if the great apocryphal discovery of Hippasus of Metapontum of was not that “the square 

root of 2 is irrational”, what was it? It was the discovery that the diagonal of a square stands in a 

ratio to its side that no integer stands to any other integer. Or in other words, there is no pair of 

integers M and N such that: diagonal of square:side of square:: M:N. The structure of ratios among 

line segments in the Euclidean plane is inherently richer than the structure of ratios among the 

integers. (Not to devolve too far into history here, but it seems quite likely some of the Greeks 

expressed ratios in anthypharetic form, which is related to the more familiar continued fractions. 

In anthypharetic form a ratio is expressed as a sequence of integers. All ratios of integers 

correspond to finite sequences. The ratio of the diagonal to the side of a square is expressed by the 

infinite sequence 1, 2, 2, 2, ….. Obviously, the simplest such ratio that is not a ratio of integers is 

1, 1, 1, 1, … That is also known as The Golden Ratio, 𝜙.)7 

What we now know is that the structure of rational credences over a set of propositions can 

be non-Archimedean. For example, there is no ratio between the rational credence in the 

proposition that the dart lands on a particular point p and the proposition that it lands on the right 

side of the target. But the rational credence in each of these propositions can stand in perfectly 

good ratios to that of other propositions. For any other point q, for example, Cr(Dart lands on 

p or q):Cr(Dart lands on p):: 2:1. And plausibly Cr(Dart lands in top half):Cr(Dart lands in right 

half)::1:1. (The reason for the slightly hesitant “plausibly” will become clear anon.) Even more 

plausibly, for a rational person Cr(Dart lands in top half):Cr(Dart lands in right half)::Area of top 

half: Area of right half. And most plausibly of all, as an instance of the Principal Principle, Cr(Dart 

lands in top half):Cr(Dart lands in right half):: Ch(Dart lands in top half):Ch(Dart lands in right 

half), that is, the ratio of the rational credences is proportional to the ratio of the chances of the 

events. 

The reader may be forgiven for not seeing any daylight at all between these last three 

claims, but at least the difference in metaphysics is clear. The first asserts that a ratio between 

 
7 A wonderful account of all this is provided by D. H. Fowler in The Mathematics of Plato’s Academy (1987). A 

shorter presentation appears in my New Foundations for Physical Geometry: The Theory of Linear Structures 

(2014), Chapter 7. 
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credences is proportional to a ratio between numbers, the second that it is proportional to a ratio 

between areas and the last that it is proportional to a ratio between chances. 

In order that ratios be defined between at least some pairs of elements of a field, all that 

needs to be utilized is a notion of equality and a notion of addition. As far as credences go, these 

are provided on the field of propositions by ≍ and ⨁. Whether the structure of ratios so defined 

allows them to be proportional to ratios in some other field—a field of numbers or of lengths or of 

areas or of chances—is a question that must in each case be investigated in detail. In carrying out 

such an investigation, we must always keep the cautionary example of Hippasus in mind. He 

discovered that the universe of ratios among lengths of lines in Euclidean geometry is richer than 

the universe of ratios among integers. Or as we would say, the universe of ratios among the integers 

is not the same as the universe of ratios among the real numbers. According to myth, the discovery 

came as such a shock to the Pythagoreans that he paid for it with his life. Hopefully the price one 

might pay for such a suggestion is no longer quite so drastic. I have already insisted that the 

structure of ratios among rational credences cannot be modelled by the structure of ratios among 

any reals. That is hardly a novel proposal. But we still have to investigate ratios between areas 

(and in general what areas are) and ratios between chances (and what chances are), and we should 

at least be prepared for some surprises. 

 

Bayes’ Theorem 
 

 

One of the keystones—if not the keystone—to the theory of rational credences has long 

been taken to be Bayes’ Theorem. At first blush, this ought to appear quite strange since the 

theorem itself (unlike, say, the Pythagorean theorem) is a complete triviality, a literal one-liner. 

Things are not quite so simple, but let’s work up to the complications. 

Bayes is working in a setting which presupposes a credence function in the usual sense: a 

function f that maps propositions to the real numbers between zero and one. Further, he 

presupposes that for every pair of propositions P and Q in the domain of the function there is a 

conditional (P|Q) in the domain of the function, or at least there is if f(Q) > 0. And he requires that 

f(P & Q) = f(P|Q)∙f(Q) whenever all three terms are defined. That’s it. 
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From these propositions it immediately follows that f(Q|P) ∙f(P) = f(P & Q) = f(P|Q)∙f(Q). 

Dropping out the middle term leaves f(Q|P) ∙f(P) = f(P|Q)∙f(Q). That’s Bayes’ Theorem. 

Since the values of the function f are real numbers, if f(P) > 0 we immediately have 

f(Q|P) = 
𝑓(P|Q)∙𝑓(Q)) 

𝑓(P)
. This is a trivial consequence of the presuppositions in Bayes’ approach. So 

what’s the big deal? 

The deal big becomes apparent when we let Q be a speculative hypothesis H and P be some 

uncontroversial evidence E. (It is called “evidence”, of course, because it is evident, i.e. 

uncontroversial at least to those with direct empirical access to it.) For example, having lost quite 

a lot of money playing craps with Shady Sam, one might form the hypothesis that the dice he is 

using are not fair: they are loaded or shaved or somehow or other monkeyed-with so the chances 

of the various sides coming up are not the same. That’s a vague hypothesis in some respects 

because the exact method of cheating is not even specified. Therefore providing convincing 

evidence concerning it might seem to be a hopeless task. You can check for shaved edges, for 

example, but not finding them does nothing to rule out the dice being loaded or gimmicked in a 

way one has not even thought of. 

Although the hypothesis is vague in one respect it is perfectly precise in another: it asserts 

that the chances of the various sides are not the same. Shady Sam, of course, insists the opposite: 

the chances are the same, or at least any difference (due to small imperfections, say) is so small as 

not to make any difference over the course of the game. So how do we acquire relevant evidence 

to decide between Shady Sam’s hypothesis and yours? 

Let’s focus on Shady Sam’s, since it is more precise. How do we test the hypothesis that 

the dice are fair other than by checking for all the methods of making them unfair that we can think 

of? Obviously, by throwing them many times and recording the outcomes.  

Now at first glance that method seems like it cannot be of any use at all: if the dice are in 

fact fair, then any sequence of outcomes is possible, and indeed any sequence is as likely as any 

other equally long sequence. So you already know a priori that no outcome is inconsistent with 

the hypothesis. A naïve sort of Popperian might say that no sequence can falsify the hypothesis, 

so this method is of no use in testing the hypothesis. Nonetheless, we know perfectly well that if 

we throw a die twenty times and it comes up six each time we will rightly conclude that the die is 

not fair and that the evidence against Shady Sam is strong. What Bayes’ Theorem does is give us 

a handle on understanding that reasoning. 
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The essential observation is that while what we really want to evaluate is Cr(H|E)—the 

credibility of the hypothesis conditioned on some piece of evidence—it is not immediately obvious 

how to determine what that credence should be. But on the other hand, the converse conditional—

Cr(E|H)— can be straightforwardly calculated. Cr(20 sixes in a row|die is fair) = 1/620 = 

1/3,656,158,440,062,976, a quantity commonly known as a miniscule or negligible chance. If you 

are offered a prize if you throw a fair die 20 times in a row and it comes up six each time, don’t 

even bother. It ain’t gonna happen. (This is an example of Cournot’s Principle, as we will see.) 

And if this were the result of throwing Shady Sam’s die 20 times in a row we would rightly (i.e. 

rationally) conclude that the die is not fair and start preparing some cement galoshes. But still: 

what exactly is the reasoning that underlies this? 

After all, Shady Sam insists, whatever sequence happened to come up after 20 throws 

would have been equally unlikely under the hypothesis! So you already knew, before you even 

threw the die, that the outcome would be tremendously unlikely. Why should the fact that it 

happened to be this particular unlikely outcome doom him to sleep with the fishes? 

And now Bayes’ Theorem comes to the rescue. Before we throw the die, we are unsure 

which of these two hypotheses is true H1: The die is (effectively) fair or H2: The die has been 

gimmicked in some way to give Shady Sam an advantage playing craps. These are the only live 

hypotheses for us, the only hypotheses credible enough to even worry about. We start, before the 

test, with some suspicions but those are just that: suspicions. They mean that the antecedent 

credibilities of H1 and H2 are each above, say, 1/1,000, so the ratio of their credences is at least 

that much. Our antecedent credibility for the proposition that the die will come 6 all 20 times is 

quite small. On the supposition that the die is fair, the likelihood is negligible, but on the 

supposition it is gimmicked the credibility goes way up. Since there is a non-negligible credibility 

that it is gimmicked, there is a non-negligible credence that it will come all sixes (even if that 

particular credibility is quite low, since we don’t even know how it is gimmicked, if it is). 

So initially we have two competing hypotheses: the die is effectively fair and the die is 

gimmicked in a way to help Shady Sam to win. The ratio of the initial credibilities of these 

hypotheses is no less than 1:1,000. The conditional credibility of (E|H1) is 

1/3,656,158,440,062,976. The conditional credibility of (E|H2) is much, much greater than 

1/3,656,158,440,062,976. For example, suppose the die is gimmicked so that the chance of 

throwing a six is 1/3 rather than 1/6. Then the chance of throwing 20 sixes in a row is 220 (i.e. 
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1,048,578) times greater. And of course, if the die is gimmicked to always come six then the 

conditional chance is 1. So let’s say that f(E|H1):f(E|H2)::1:1,000,000. And let’s say that that 

initially f(H1):f(H2)::1,000:1, so one is initially quite unsuspicious of Shady Sam. Now Bayes’ 

Theorem does its magic. Since f(H1|E) = 
𝑓(E|𝐻1)∙𝑓(𝐻1) 

𝑓(E)
 and f(H2|E) = 

𝑓(E|𝐻2)∙𝑓(𝐻2) 

𝑓(E)
, it follows that 

f(H1|E):f(H2|E)::
𝑓(E|𝐻1)∙𝑓(𝐻1) 

𝑓(E)
: 

𝑓(E|𝐻2)∙𝑓(𝐻2) 

𝑓(E)
:: 𝑓(E|𝐻1) ∙ 𝑓(𝐻1): 𝑓(E|𝐻2) ∙ 𝑓(𝐻2)::1:1,000. So even 

if the credibility of H1 is initially a thousand times greater than that of H2, the credibility of (H1|E) 

is a thousand time less than (H2|E), exactly because E is a million times less likely on H1 than it is 

on H2. 

Everyone knows that throwing the die and having it come up six 20 times in a row is 

absolutely convincing evidence against Shady Sam. Bayes’ Theorem explains why. Bravo. 

In the little calculation done above, there is use made of multiplication. The quantities 

(E|𝐻1) ∙ 𝑓(𝐻1)) and (E|𝐻2) ∙ 𝑓(𝐻2) appear. But it is easy enough to remove all mention of 

multiplication from the proceedings. Our original statement of the theorem was f(Q|P) ∙f(P) = 

f(P|Q)∙f(Q), with f being a function into the reals. This is trivially rearranged into 
𝑓(Q|P)

𝑓(Q)
 = 

𝑓(P|Q)

𝑓(P)
, 

assuming f(P) and f(Q) are both greater than zero. And this form, in turn, is easily rewritten as a 

proportionality of ratios: f(Q|P)∶f(Q)::f(P|Q)∶f(P). Since f(P) is supposed to be a representation, 

using real numbers, of the strength of credence in P, we can further generalize this principle as 

Cr(Q|P)∶Cr(Q)::Cr(P|Q)∶Cr(P). And voilá: we now have Bayes’ Theorem in a form that can be 

applied to the credences directly, rather than to their representations, so long as the ratios between 

the relevant credences are defined. 

Let’s see exactly what this form of the theorem says. It says that the ratio of the conditional 

credence Cr(Q|P) to the unconditional credence Cr(Q) is proportional to the ratio of the conditional 

credence Cr(P|Q) to the unconditional credence Cr(P). When Q is a hypothesis and P some 

evidence, it means that the credibility of the hypothesis conditional on the evidence stands in the 

same relation to the unconditional credibility of the hypothesis as the credibility of the evidence 

conditional on the hypothesis stands to the unconditional credibility of the evidence. The 

tremendous utility of this observation lies in the fact that the credibility of the evidence conditional 

on the hypothesis can often be calculated, as the chance of the die coming up six 20 times in a row 

can be on the hypothesis that the die is fair. So at least in some cases, that quantity is nailed down. 

What Bayes’ theorem now tells you is that if the credibility of the evidence conditional on the 
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hypothesis is much higher than the unconditional credibility, then the credibility of the hypothesis 

on the evidence should be equally much higher than the unconditional credibility of the hypothesis. 

Or, in other words, if a hypothesis makes a surprising prediction (the hypothesis renders likely a 

proposition with low initial credence), then the credibility of the hypothesis conditional on the 

evidence should be much higher than the unconditional credence.  

If we add to this that a rational reaction to acquiring evidence (e.g to suddenly adjusting 

one’s credence in the evidence so it is very high, if not Top) is to make one’s new credence in a 

proposition one’s old credence in the hypothesis conditional on the evidence, then we have a 

Bayesian dynamics of credences. Coming to believe in a piece of evidence one initially gave low 

credence requires one to boost the credence in every hypothesis that predicts that evidence 

commensurately, where “commensurately” is cashed out using proportionality of ratios. 

The moral of this is that rejecting the use of real numbers—or any numbers at all—as 

representatives of credences does not entail rejecting Bayes’ Theorem or all of the interesting 

explanations of scientific reasoning that rely on Bayes’ Theorem. Although the theorem is 

standardly presented in terms of a function into the reals f(P) and the operations of multiplication 

and division, it can just as well be formulated directly in terms of credences themselves—or some 

other representation of credences—and proportional ratios. Abandoning numbers altogether does 

not mean abandoning the theorem. 

Bayes’ Theorem stated in terms of proportions of ratios also has immediate consequences 

for judgments of relative credibility. Once again, the theorem is Cr(H|E)∶Cr(H)::Cr(E|H)∶Cr(H). It 

follows that if Cr(E|H) > Cr(H), i.e. if supposing H renders E more credibly than it presently is, 

then Cr(H|E) > Cr(H), i.e. the credibility of H on the supposition of E is greater than its credibility 

presently is. And similarly, of course, if the hypothesis renders some possible evidence less 

credible. It is a rationality constraint on all rational credal states to obey this rule. If we further 

postulate that updating credences by conditionalization is at least rationally permitted (if not 

rationally required) we have one rationally defensible way to respond to new evidence. 

 

Credence and the Problems of Old Evidence and New Theories 
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Bayes’ Theorem has many explanatory successes, at least some of which can be recovered 

in terms of ratios among credences, as we have just seen. But the standard approach to Bayes’ 

Theorem, using probability functions, also confronts challenges. Some of these challenges 

evaporate once we operate directly with credences rather than with numerical functions. 

Two sides of one and the same problem go under the names “The Problem of Old 

Evidence” and “The Problem of New Theories”. The sort of Bayesian conditionalization we just 

discussed occurs when there is a proposition—the statement of the evidence—which suffers a 

sudden and dramatic increase in credibility, usually due to observation. Before throwing the die, 

our credence in “The die comes 6 twenty times in a row” is quite low, and after throwing it is quite 

high. The question is what effect that change in credence should have on our other credences. 

Bayesian conditionalization provides a rule.8 

 
8 Bayesian conditionalization is a rational response to the change in credence, but that does not imply that it is the only 

rational response available, or that credence shifts that are not Bayesian are automatically unacceptable. There is 

nothing objectionable, for example, about a certain amount of credal drift. Suppose that, in discussing the probability 

of an upcoming election, I am mildly inclined to think it more credible that Candidate T wins than loses, 

Cr(T wins) > Cr(T loses). I discuss this with a friend who is inclined to have the opposite view: 

Cr(T loses) > Cr(T wins). Say that I am pessimistic and my friend is optimistic (because T is a complete disaster). We 

don’t disagree on any of the evidence (polls, etc.), but considering the evidence we come down in different places. 

Since we don’t disagree about any known facts, we “agree to disagree”: each acknowledges the other as rational, as 

having a defensible view, even though it differs from one’s own. 

 

Now: suppose the next morning—having gotten no new evidence at all—we wake up with reversed moods: I am now 

optimistic and my friend pessimistic. My credences have changed, but not by conditionalization on anything. That 

change cannot be modelled by Bayesian conditionalization. But have I done anything rationally objectionable? That 

does not seem possible. Yesterday, I acknowledged that the optimistic attitude was rationally acceptable even though 

I did not hold it. Today I hold it. So my present position is rationally acceptable: I have done nothing epistemically 

wrong. 

 

Bayesian conditionalization is always a possible rational way to update credences, but it is not the only rationally 

acceptable way, and is not rationally mandatory. Confronted with some new evidence, for example, one could change 

to new conditional credences instead of condtionalizing using the old conditional credences. This is just an instance 

of the familiar Duhem/Quine thesis. 

 

It is also notable that dealing with relative credences, together with the usual logical operators, allows us to define a 

state of weak belief. S weakly believes P =df Cr(P) > Cr(~P) for S. If I and my friend have only negligible credence 

that the election will fail to have a winner, then in our optimistic moods we weakly believe that T will lose and in our 

pessimistic moods that T will win. 

 

Weak belief seems like a necessary condition for anything deserving the name “belief”. One might, of course, frame 

a stronger condition. For example, by adding a new relation ≫ for “much greater than”, we can define strong belief 

in P as Cr(P) ≫ Cr(~P). 

 

In a three-way election, I might have no weak belief about exactly who will win, but still have definite relative 

credences. Thus, I might say “I don’t know who will win, but if I had to bet I would pick B”. 

 



 31 

But what if we have to react not to some new evidence but to the discovery of a new theory, 

a theory we never had thought of, never had considered, never had formed any credence about at 

all. How should the introduction of that novel proposition into the set of propositions about which 

we have credences change our present credal state? 

On the present approach, the first thing we must do is rank the new proposition with respect 

to other propositions that we already have credences in. The most immediately important 

judgments to be made concern propositions on relevant or related topics. An example will help. 

Gustav is an early 20th century physicist. He is familiar with both Maxwellian 

electrodynamics and Newtonian gravitation. He sees problems with both. For Newton, there is the 

apparent action-at-a-distance and instantaneous nature of the gravitational force. There is also the 

puzzle of the anomalous advance of the perihelion of Mercury, but Gustav figures that something 

not so surprising—like an unknown planet—may account for that. Overall, the predictive success 

of Newton’s theory is extremely impressive.  

Gustav has much more trouble with Maxwell’s theory because it seems to have to postulate 

a lumeniferous ether, but no mechanical model he can think of would endow that model with the 

right properties. He knows about the negative result of the Michelson-Morley experiment. All in 

all, Gustav judges that Cr(Newtonian gravity) > Cr(Maxwellian electrodynamics). 

In 1915, Gustav reads about the General Theory of Relativity. The Eddington eclipse 

observations are in the future, so there is no new data, but the anomalous advance of the perihelion 

of Mercury drops out correctly from the equations without them having been fine-tuned to that 

data, and the gravitational influence is no longer instantaneous in that theory. So on consideration, 

Gustav embeds the General Theory into the set of propositions in his credal state in part like this: 

Cr(General Relativity) > Cr(Newtonian gravity). But furthermore, having demoted Newton, he 

now judges Cr(Maxwellian electrodynamics) > Cr(Newtonian gravity) reversing his earlier view, 

and also Cr(General Relativity) > Cr(Maxwellian electrodynamics). So the new proposition is fit 

into his credal state, both requiring judgments of relative credibility with respect to propositions 

 
Radical skepticism is sometimes characterized as a state of no belief. If what one has in mind is weak belief, that 

cannot be a rational state of mind. If one has in mind strong belief, then a rational person might have no beliefs except 

in tautologies or other analytic truths. If one makes a distinction between positive and negative propositions—with 

negative propositions being the negations of positive ones and vice versa—then one could have no weak positive 

beliefs save in analytic truths, but still make definite judgments that one positive proposition is more credible than 

another. One way of understanding the aim of the Pyrrhonian Skeptic is to produce a credal state in which for every 

pair of propositions P and Q Cr(P) >< Cr(Q), or as they say “No more P than Q”. By our lights, that could not be 

rational.  
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already there and, in some cases, altering the credence relations between propositions he had 

already made judgments about. 

That is supposed to be both the problem of new theories and the problem of old evidence. 

The problem of new theories because one has to assign a credence to the novel proposition, and 

the problem of old evidence because the changes in credence that depend on the evidence flowing 

from the advance of the perihelion of Mercury cannot be modelled as due to conditionalization. 

That’s because Gustav already knew about the advance and so had already conditioned on it. 

Conditioning a second time would not change anything. 

But what should be apparent from our perspective is that there seems to be no problem at 

all. Gustav has some new ideas to think about and fits them into his credal state, making a series 

of adjustments of relative plausibility. So what? 

Aside from there not being any obvious model of this change by standard Bayesian 

conditionalization, there is an additional problem in the standard approach. The standard approach 

represents credences by a probability measure over propositions, and that measure is always 

normalized to a specific value: 1. So if Gustav wants to assign some credence to the new 

proposition, that credence has to come from somewhere. He has to dip into the credence assigned 

to some other proposition and reduce it to free up enough to give to the new proposition. And the 

question comes up of just where that stock of credence will be drawn from. 

Before addressing this question, we must note that on our approach no parallel problem 

ever arises. New propositions are fit into the credal state by specifying their relative credences to 

other propositions, and other adjustments to the credal state may follow, but there just is no “pot 

of credence” that needs to be tapped. That idea comes from deciding to represent credence by a 

probability function, which was not a good idea in the first place. 

Bayesians can take either of two approaches here. One is to insist on a postulate of logical 

omniscience, in the sense that the ideally rational Bayesian agent never has to accommodate a new 

proposition or hypothesis because the agent is aware of all possible hypotheses at all times. There 

is never call to “fit in” a new proposition. The ideal agent knows about the equations of General 

Relativity and all of their consequences ab initio, and always has assigned them a credence. 

Of course, if true then it would be a puzzle how an ideal Bayesian agent could ever assign 

significant credibility to Newtonian gravity in the first place: all the evidence the agent ever has 

can be modelled with at least as much accuracy as Newton by General Relativity, and GR is in 
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many ways more elegant and simpler. And if the Bayesian ideal agent, being omniscient, always 

is aware of all possible theories, then the Bayesian agent just seems not be relevant in many 

respects to understanding actual humans, who are not omniscient! Humans do have to confront 

novel ideas, and much of the history of science is the history of how they do so. So if the Bayesian 

has to idealize the rational agent in this way, then there are huge issues in the study of scientific 

rationality that Bayesianism cannot address. 

Another tack that the Bayesian can take is not to presume omniscience but to provide the 

agent with a sort of slush fund of credence, in a catch-all category called “None of the Above”. 

That is, having only a finite amount of credence to dole out, the agent reserves some for “Some 

hypothesis, I know not what”. The when a novel hypothesis is proposed, the agent can dip into that 

fund to supply it with credence. 

But that raises the question of how much credence should go into the slush fund. Make it 

too high, and the agent perforce becomes a sort of skeptic, always judging it more credible that the 

truth is something not yet thought up. That might be a reasonable position to take on some subjects, 

but having it basically forced on one by the formal apparatus is a mistake. 

So by shifting from probability measures to relations of relative credence as representations 

of cognitive states we completely avoid some sticking points of the standard Bayesian approach. 

But by rewriting Bayes’ Rule itself in terms of ratios of credences we can keep the main motor of 

many Bayesian explanations. 

A little analogy may be of some use here. Formal philosophical theories of things like 

human states of belief are clearly idealizations. They postulate different structures than the 

psychological states actually have. But one has to distinguish two sorts of idealizations.  

One sort is a simplification that leaves out detail but is still basically on the mark. For 

example, when calculating the orbit of the Earth or of the Moon, one might idealize the Earth as a 

uniformly dense perfect sphere. That is a very simple sort of model to do calculations with, and 

the predictions in many circumstances will be quite accurate. But one still expects corrections to 

have to be made from time to time when the idealization fails. 

When highly accurate pendulum clocks made in Amsterdam were first imported to the 

American colonies, they ran slow. It was thought that they had been damaged in transit, and so 

were sent back to be fixed, but they showed no retardation in Amsterdam. After a while, the 

problem became clear. The period of a pendulum clock is determined by the length of the 
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pendulum and the strength of the local gravitational field. Using the idealization that the Earth is 

a uniformly dense perfect sphere, a clock should tick at the same rate everywhere on the surface.  

But in fact, due to its rotation, the Earth is not a sphere: it is an oblate spheroid. In going 

from Amsterdam to the colonies, the clock changed latitude, and therefore increased distance from 

the center of the Earth, and therefore got into a weaker gravitational field. So it had to run slow. 

The idealization, in this case, fails, and the failure can be accounted for. But it is still a very good 

idealization. 

In contrast, there is a joke that goes like this: 

So a biologist, engineer and physicist are called to help make a dairy farm 

more efficient. The biologist tells the farmer that he should feed the cows certain 

hormones to make them lactate more. The farmer asks how much it'll cost and the 

biologist says it'll cost many thousands of dollars. The engineer proposes to make 

a better milking machine to get more milk per cow. The farmer asks how much it'll 

cost and the engineer says it'll cost many thousands of dollars. The farmer then asks 

the physicist how much his idea will cost. The physicist says "It'll cost nothing and 

can be implemented immediately!" The farmer was astonished and ask how this is 

possible. The physicist responds, "Now assume a spherical cow.....” 

The spherical cow idealization is different from the spherical Earth idealization: it is just 

fundamentally wrongheaded and does not yield anything even vaguely close to the truth. Logical 

omniscience is more like a spherical cow than a spherical Earth. And in many respects, using a 

probability function to represent credences is, at a fundamental level, more like a spherical cow 

than a spherical Earth. 

Fortunately, Bayesianism can be formulated as part of a theory of rationality without either 

bad idealization, so that no “problem of old evidence” or “problem of new theories” ever arises. 

 

 

 

Objective Chance and the Principal Principle 
 

 

In the foregoing section, we slipped surreptitiously between claims about credence and 

claims about chance. For example, we accurately calculated that on the hypothesis that a die is 
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fair—that the chance of a six coming on any throw is 1/6 and the chances on successive throws 

are independent of each other (statistically independent, uncorrelated)— the chance of getting 20 

sixes in a row is 1/3,656,158,440,062,976. And we concluded that the credence one ought to have 

in the conditional (The die comes six 20 times in a row| The die is fair) ought to stand in the a ratio 

to Top like this:  

(The die comes six 20 times in a row| The die is fair):Top::1/3,656,158,440,062,976:1 

That transition of thought is so natural and unobjectionable as to be almost cognitively invisible. 

It is an instance of what David Lewis called The Principal Principle. 

There has been a tremendous literature about possible shortcomings and revisions of 

Lewis’s principle in light of reliable clairvoyants, knowledge of past events, etc. This essay is long 

enough already without taking all of those issues on, so I am going to just bracket them. At least 

in a wide variety of circumstances the Principal Principle is unobjectionable: the degree of 

credence one ought to have in an event conditional on a claim which entails its objective chance 

is—or better is proportional to—that objective chance. The more objectively likely a proposition 

is according to a chance hypothesis, the higher its credibility conditional on that hypothesis. That 

principle provides a very useful conceptual link between credence and chance. 

What I want to investigate instead is the question of the structure of objective chance itself. 

I have already argued for many theses about credence: 1) Rational credence obeys the Euclidean 

Principle and (therefore) 2) The comparative and ratio structure among credences is not always 

Archimedean and (therefore) 3) Credences cannot be accurately represented by the real numbers. 

I have also contended that 4) Sometimes rational credences are incomparable, i.e. neither 

Cr(P) > Cr(Q) nor Cr(Q) > Cr(P) nor Cr(Q) = Cr(P), and (therefore) 5) The comparative structure 

of credences cannot be represented by assigning numbers (of any sort!) to propositions and reading 

off the relative credence of the propositions from the relative magnitude of the numbers. Credences 

and numbers are not a good fit. 

But according to the Principal Principle, credences and objective chances are—at least in 

many circumstances—a good fit. The relations among one’s rational credences ought to mirror the 

relations among the objective chances. And putting these two theses together we get the somewhat 

surprising conclusion that numbers and objective chances are not a good fit. 

That is precisely what I want to argue now. 
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Much of the argument has already been made. I said at the outset that for anyone who 

understands the concept, objective chances must be regarded as obeying the Euclidean principle. 

In particular, if there is some chance of P happening and some chance of Q happening and some 

chance of Q happening without P (i.e. some chance of (Q & ~P) happening), then the chance of 

(P v Q) happening is strictly greater than the chance of P happening: Ch(P v Q) > Ch(P). That 

seems analytic: if you deny that, then I really have no idea what you are taking about. And in this 

respect talk of rational credences about where the dart will land on the dartboard and talk of the 

objective chance of the dart landing somewhere on the dartboard are effectively isomorphic. The 

relations of >, <, and ≍ among the rational credences just are the relations of >, < and = among 

the corresponding chances. Indeed, we read off the relations of the rational credences from the 

relations of the objective chances via the Principal Principle. So if the structure of the credences 

cannot be captured by any function from propositions into the reals, neither can the structure of 

objective chances. QED. 

I imagine that the rejection of numbers—any numbers, including hyperreals—as adequate 

representations of objective chances will be regarded as a much more controversial thesis than the 

rejection of numbers as adequate representations of credences. For example, it is quite intuitive 

that some credences are incomparable in strength, such as our old friends (for me in 2020) Cr(The 

Patriots win the Super Bowl in 2022) and Cr(Argentina wins the World Cup in 2022). Relative 

credences, it seems, are the sorts of things apt to be “fuzzy” in this way, and presuming they are 

perfectly sharp immediately strikes one as an unrealistic idealization, more cow than Earth. The 

human mind and its cognitive states are just mushy. 

Objective chances, in contrast, intuitively strike one as sharp sorts of things. If there are 

non-trivial objective chances at all (and one might dispute that there are), every objective chance 

ought to be definitely comparable to every other one. With regard to objective chance, at least, we 

ought to have exactly one of Ch(P) > Ch(Q), Ch(P) < Ch(Q) and Ch(P) = Ch(Q) for every pair of 

propositions P and Q ascribed an objective chance. 

I am going to reject this claim too, and give examples to refute it. 

Now at this point the reader, if the reader has been paying attention and following, ought 

to be getting pretty upset. For we already have a universally accepted axiomatization of probability 

theory provided by Kolmogorov in 1933, and what I just asserted violates his axioms. Yes, it does. 

I will be arguing against Kolmogorov as well. If that means that the reader’s subjective credence 
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that my position is correct is essentially infinitesimal, so be it. As long as it is not Bottom. But 

with the stakes plainly on the table, let’s proceed. 

First, let’s recall Kolmogorov’s axioms. This presentation is drawn from Alan Hájek’s 

article “Interpretations of Probability” in the Stanford Encyclopedia of Philosophy: 

More formally, let Ω be a non-empty set (‘the universal set’).  

A field (or algebra) on Ω is a set F of subsets of Ω that has Ω as a member, and 

that is closed under complementation (with respect to Ω) and union. Let P be a 

function from F to the real numbers obeying: 

1. (Non-negativity) P(A) ≥ 0, for all A ∈ F. 

2. (Normalization)  P(Ω) =1. 

3. (Finite additivity)  P(A ∪ B)=P(A)+P(B) for all A, B ∈ F such that  A ∩ B = ∅.  

 

Call P a probability function, and (Ω,F,P) a probability space. This is 

Kolmogorov’s “elementary theory of probability”. 

 

Right off the bat we can see a tension: Kolmogorov requires that probabilities be represented 

by real numbers. We have already bought into an Archimedean structure, before we even get 

to Axiom 1! But there are more surprises. 

Kolmogorov has not merely a domain of objects Ω, he has a (possibly special) set of 

subsets of Ω, given by F. F is required to be a 𝜎-algebra, so it will have some convenient 

properties: it is closed under union, intersection and complementation, and it must include 

Ω itself. But F is not required to be the power set of Ω, i.e. the set of all subsets of Ω. This 

is rather a key aspect of Kolmogorov’s approach. Any subset of Ω not in F is denominated 

an “umeasurable set”, and the function P does not assign any real number—any “chance” 

or “probability”—to it. Many paradoxes (such as the Banach-Tarski paradox which we will 

discuss anon) are supposed to be “resolved” by the declaration that they make use of 

unmeasurable sets. 
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What one would have naturally expected is that probability will be defined for all the 

subsets of Ω, not just some privileged few. And indeed, the Euclidean principle demands 

as much. Let Ω be the set of all propositions that assert that the dart will land on a particular 

point on the dartboard. For every subset of Ω there is the corresponding proposition that 

the dart lands in that subset. Then how can the notion of probability or relative likelihood 

not be defined over the power set? For every subset there is the corresponding proposition, 

and every proposition is strictly more likely or probable than any proposition 

corresponding to a proper subset, and strictly less likely or probable than any proposition 

corresponding to a proper subset. That follows from the postulate that every point on the 

board might be hit. Restricting F to less than the power set makes it unsuitable for the field 

over which chances are defined. But if there is no restriction, then there is no need to even 

mention F in the axioms. Wherever F occurs, just replace it with the power set of Ω. Done. 

What of the Axioms? Well, if you are going to use numbers to represent chances, then 

it seems sensible to restrict yourself to non-negative negative numbers. What would a negative 

number even purport to represent? Axiom 2 requires P(Ω) = 1. If we postulate that the dart 

must hit somewhere, then the likelihood or chance of Ω is as high as chances or likelihood 

can get. In our terms, that means that Ch(Ω) = Top. Axiom 2 requires associating the Top 

chance with the real number 1. Fair enough. Top is the “multiplicative” identity in our 

system, so the natural way to represent it is by assigning it the multiplicative identity in the 

numerical representation. Finally, there is Axiom 3: Finite additivity. Well, that’s fine as 

far as it goes, but it doesn’t go far enough. Chances can be ascribed to the disjunction of 

infinite sets of propositions, not just finite ones. That should be reflected in some analogous 

operation on the representations, if you insist on a representation using numbers. 

But now, if you are Kolmogorov, it’s all over. If you want to use real numbers your 

representational medium then you are out of luck. They are just not up to the task, as the 

ratios between the integers are not up to the task or representing the ratios of lengths of line 

segments on the Euclidean plane. If one insists on using the power set as F, and on the 

Euclidean Principle, and on using the real numbers as the range of the function P, then you 
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just can’t succeed. No “probability function” will have all the properties it should have to 

accurately represent probability or chance. 

But once again: so what? If you can’t employ real numbers—or any numbers—to 

represent objective chances or likelihoods, then you can’t. Find some other way to do it. 

And the right way it already to hand: use exactly the same structure we have already 

introduced for credences. In the case of the dartboard, for example, to every subset of points 

on the board there corresponds the proposition that the dart lands in that set. Now we want 

to assign probabilities or chances to that class of propositions, chances that obey the 

Euclidean principle. Well, they are going to look exactly like the way we assigned rational 

credences in these cases! There is a relation of comparative credence that obeys the 

Euclidean Principle. Some propositions are exactly as credible as others, some are strictly 

more credible than others, some incomparable in credence to others. In parallel fashion, 

some propositions are exactly as probable as others, some strictly more probable than 

others, some incomparable in probability to others. By building the structure of chance and 

of credence out of the same materials, the Principal Principle becomes trivial: match your 

relative credence exactly to the relative chances.9 If you feel certain that a situation is 

governed by an objective chance, and the relative chances have a specific structure, then 

let your relative credences have the same structure. 

The idea that two propositions may each have some objective chance of being true 

and yet those chances not be comparable to one another—neither is one greater than the 

other nor do they have the same chance—is certainly disconcerting. If you have become 

too inured to thinking of chances in terms of real numbers, then it may even sound 

impossible. But of course it is not “impossible” in the sense that one cannot specify a theory 

of chance with this feature: I just did. Furthermore, I do not think that the existence of 

incomparable chances is a bug in the program that needs to be fixed, or discounted, or 

minimized or hidden. It is instead a feature of the theory: we want to have incomparable 

 
9 Again: there are issues surrounding the problem of “inadmissible information” with regard to the Principal 

Principle. Here, I wish to just bracket that issue: as far as I can tell, it has nothing at all to do with the issue of 

realizing the Euclidean Principle or the other issues I am focused on. 
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chances. We need to have incomparable chances. Incomparable chances are exactly what 

resolve paradoxes rather than create them. This topic is important enough to deserve its 

own section. 

 

Objections to the Euclidean Principle and the Resolution of Paradox 
 

 

 

Many philosophers have been attracted to the Euclidean Principle and its close cousin 

Regularity. But it has been recognized that there is a price to pay if one wants to maintain the 

Euclidean principle, with disagreement about whether, and how, to pay that price. A few examples 

can serve to illustrate the situation. 

Vieri Benci, Leon Horsten, and Sylvia Wenmackers (2018) point out that in some 

circumstances it is impossible to maintain these two principles: 

Euclidean Principle (EP): If A ⊂ B, then 𝔰(A) < 𝔰 (B). 

Humean Principle (HP): If the elements of A can be put in a one-to-one 

correspondence with the elements of B, then 𝔰(A) = 𝔰(B),10 

where “𝔰" represents a rule that assigns numbers from some field to subsets of a set. I’m not sure 

where Hume ever announced such a principle, but the existence of a one-to-one mapping (and 

indeed of a much more extensive isomorphism) between objects will play a central role in the 

arguments we are about to consider. The general form of the Humean principle is that any two 

appropriately isomorphic objects must be regarded as “the same” or “equal” in some respect. Benci 

et. al. see that the Euclidean Principle cannot be upheld in some circumstances if 𝔰 assigns 

members of any Archimedean field to certain propositions, and so advocate for a non-

Archimedean field. But that alone is not always enough to salvage the Humean Principle. At the 

end, one must choose between the two (or else embrace strict finitism, as we will see). 

Alan Hájek’s paper “Staying Regular?” is (unsurprisingly) an investigation of the cost of 

defending the regularity principle—that anything possible should have a chance greater than 

zero—which is one instance of the Euclidean Principle. Ultimately Hájek argues that the price to 

 
10 Benci et. al. p. 522. 
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save regularity is too high, although he does not exactly put it in that way. He rather suggests that 

regularity is just ruled out by various considerations: as he says that the end of the paper: “The 

trouble is that regularity appears to be untenable”. Some of the untenability is supposed to arise 

because if one demands that all probabilities be represented by elements of the same field, pumping 

up the cardinality of the propositions to be assigned probabilities will eventually overwhelm the 

possibility of regularity. But that is not the argument I want to focus on here. The argument of 

interest is one that appeals to a version of the Humean Principle. Hájek describes the situation this 

way: “The most difficult, but also the most technically rigorous example, is one in which X is a 

non-measurable set – a set that simply cannot be assigned a probability, consistent with certain 

symmetry constraints that are forced upon the agent”. What exactly are these “symmetry 

constraints” that are “forced on the agent”, and why do they cause trouble? 

Functions of any sort can display symmetries. Suppose the function f is defined over the 

elements of some set Ω. And suppose there is a mapping G of elements of Ω to elements of Ω. 

Then we can say that f is symmetric with respect to G, or f respects G as a symmetry, if for all 

E ∈ Ω , f(E) = f(G(E)). Since we are interested in assigning chances (or credences) to elements of 

a set of propositions, let Ω be that set and f be either the chance function Ch or the credence function 

Cr. When Hájek says that “certain symmetry constraints are forced on the agent” he means that 

for some such function on propositions G, any chance function must have, for any proposition P, 

that Ch(P) = Ch(G(P)) and for any rational agent Cr(P) = Cr(G(P)). 

The particular symmetry Hájek has in mind is translation symmetry or the more general 

symmetry under rigid motions. And indeed, if one demands such a symmetry regularity and the 

Euclidean Principle are in trouble. The examples of this are familiar, but worthy of close 

consideration. 

Hájek avails himself of our old standby example: throwing darts at a dartboard with equal 

chance of hitting any point (and therefore equal rational credence that any point will be hit). There 

also will be some chance of hitting any collection of points. Now the symmetry constraint under 

rigid motions (including translations) is this: the chance of hitting any set of points must be equal 

to the chance of hitting the result of a rigid translation of that set of points. The rigid motion must 

keep all of the relative distances the same, and hence is an isomorphism of the geometrical 
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structure of the set. As a slogan: you can’t change the chance of hitting a set of points on the 

dartboard just by moving it around, without changing its shape. 

That principle is prima facie intuitively compelling. Certainly, nothing in everyday life 

would contradict it. But it is incompatible with the Euclidean Principle (and with Regularity), so 

if you insist on respecting the symmetry the Euclidean Principle must go. Let’s see why. 

Consider once again our dart board. Draw the vertical radius from the center to 12:00, 

omitting the center point. Even though it is infinitely thin, and has no area, there is some chance 

that the dart will hit that radius. Now move one radius distance along the circumference, locate 

that point, and draw the radius from there. There should be, intuitively, twice the chance that the 

dart hits one or the other of these than that it hit either particular one. Rinse and repeat: keep 

moving one radius along the circumference and drawing in radii. Since 𝜋 is irrational, this 

procedure will never arrive at a point that has already been chosen. So there is a denumerably 

infinite set of such radii. Union them all together. Call that set of points Θ. Θ is a specific region 

on the dartboard, and the thrown dart has some chance of hitting Θ. Hitting it is not impossible. 

Whatever that chance is—however one represents it, using real numbers, hyperreals, or 

whatever—call that chance Ch(Θ). 

Now, take the region Θ and subject it to a rigid motion. In particular, rotate it one unit along 

the circumference, so the vertical radius at 12:00 rotates into the radius one unit along, the radius 

one unit along rotates into the one two units along, etc. Call the rotated image of Θ Θ′. The problem, 

of course, is that Θ’ ⊂ Θ, but at the same time Θ’ is a rigid rotation of Θ. And—to bring in the 

Humean Principle—there is an obvious one-to-one structure-preserving map from Θ’ to Θ. So by 

the Humean Principle or by Hájek’s symmetry principle we must have Ch(Θ’) = Ch(Θ), but by the 

Euclidean Principle we must have Ch(Θ’) < Ch(Θ). Contradiction. They can’t both be true. Appeals 

to non-Archimedean fields or sets of functions or whatnot are of no avail. The Euclidean Principle 

flatly contradicts the Humean Principle qua symmetry principle in this case.11 Something’s gotta 

give. 

 
11 One can get out of the problem by denying that the situation is possible, if one is a strict finitist. We will discuss 

this anon. 
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Indeed. But the obvious thing to give is the Humean Principle in the guise of the Symmetry 

Principle! This is a case—which can only arise when some sort of infinity is afoot—where an 

object can be isomorphic to its own proper part. Such cases are already extremely counterintuitive 

and surprising because no familiar object of experience behaves that way. Just in the same way—

because it is at root the same phenomenon—Hilbert’s Hotel is paradoxical and surprising. In any 

finite hotel, if every room is occupied you have no choice but to turn away a new customer: there 

is no room at the inn. But in Hilbert’s infinite hotel, the new customer can be accommodated by 

having everyone move down a room (a “rigid motion”). Ok: that is surprising and counterintuitive. 

It is not the sort of property any actual hotelier is familiar with, even if she runs a really big hotel. 

Anyone, on first hearing the example, has every right to be surprised and amazed. But it is what it 

is, and has nothing in particular to do with either chance or rational credence. If an object can be 

isomorphic to a proper part of itself, and can (therefore) be rigidly moved into a proper part of 

itself, it can. Accept it. Live with it. And if the perfectly innocent Euclidean principle then implies 

that the chance of a dart hitting a region can be strictly smaller than the dart hitting the image of 

the region under a rigid motion, well that’s just what’s to be expected. The paradox was already 

there before any issues of chance or credence arose. 

Rotating Θ into Θ’ is just an intuitively surprising sort of thing. Trying to leverage that 

surprise into an argument against the Euclidean Principle is not fair play. 

And once we see that, we see that violations of the Humean Principle and of the symmetry 

principle are a dime a dozen, so long as we have something infinite to play with. Take an infinite 

Euclidean plane with a single (complete, inextendable) line in it. Use the line to divide the plane 

into two regions, called “Right” and “Left”. If it makes sense to throw a dart at the plane so that 

every point has an equal chance of being hit—as we have been wont to suppose—then there is 

some chance that it hits in Right. Now move the line parallel to itself to the right, so it the part to 

the right of the new line (call it Right’) is a proper subset of Right. Obviously, the chance of picking 

a point in Right’ is less than in Right, since there is a whole infinite strip that the dart can land in 

which is in Right but not in Right’, but every point in Right’ is in Right. So that simple case already 

violates the Humean Principle and the symmetry principle. So much the worse for them. 
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Can we quantify the chance of the dart landing in Right and the chance of it landing in 

Right’ (and in all the regions of the plane) by using real numbers—or any numbers? Nope. So 

much the worse for that.  

The case of Θ and its image under a rigid motion, though, illustrates a more important 

point. The Euclidean Principle renders a strict verdict about Θ and Θ’: since Θ’ ⊂ Θ and the dart 

could land on a point in Θ but not in Θ’, Ch(Θ’) < Ch(Θ). But what if we only rotate Θ by half a 

radius, or if we just translate it to the right, or do any other of the infinitely possible rigid motions. 

What then? 

Move Θ under any rigid motion so its image is Θ”. According to the Humean principle and 

to the symmetry principle, the chance of the dart hitting Θ must equal the chance of it hitting Θ". 

According to the Euclidean Principle the chance of hitting Θ” is less than the chance of hitting Θ 

if Θ” ⊂ Θ and greater if Θ ⊂ Θ". But what if neither is the case? Then as far as the Euclidean 

Principle is concerned, the chances are incomparable: Ch(Θ) >< Ch(Θ”). We have already met 

incomparabilities in the theory of rational credence, of course, but one might have suspected that 

they only arise via the fuzziness of human thought. But that is not at all the case. There are also 

incomparable objective chances, at least if it makes sense to say that any of an infinite set can be 

chosen and has an equal chance of being chosen. 

At this point, the reader should be getting uncomfortable. Accepting incomparable 

objective chances may already be a bit of a shock. But it is not just that: one might suspect that 

these incomparable chances will completely overwhelm the whole system. After all, if one 

specifies two subsets of the points on the dartboard, typically neither will be a subset of the other: 

there will be some points in one but not the other and vice versa. But if the Euclidean Principle 

only renders verdicts of comparable chance when the subset relation obtains, then it will be almost 

completely useless. This—unlike the conflict with the Humean Principle or with symmetry—is 

indeed a serious objection.  

Fortunately, it can be easily overcome. 

 



 45 

The Return of Kolmogorov 
 

 

Above I launched an argumentative campaign against taking Kolmogorov’s axioms for 

probability functions as a foundational ground for any account of objective chance or of rational 

credence. I stand by those arguments. But there is nothing at all preventing the use of Kolmogorov 

functions (as we may call them) as an essential component of a theory of objective chance. This 

also allows us to accept all of the work that has been done in the Kolmogorovian tradition with 

only a very, very mild adjustment. It is not that one can have one’s cake and eat it too—that is 

obviously impossible—but one can have a Euclidean cake slathered with as much Kolmogorovian 

icing as one likes. Let me explain. 

The problem with Kolmogorovian accounts of chance or probability—presented as 

foundational—is essentially the problem of zero probabilities, and therefore also the problem of 

equal probabilities (i.e. probabilities whose difference is zero). If the Kolmogorov function were 

all there were to say about the matter, then all “zero probability” events would have to be regarded 

is exactly the same with respect to chance, and all “equal probability” events also regarded as the 

same. But they aren’t. The dart landing at p and the dart landing at either p or q are both zero 

probability events in the usual telling, but the latter is more likely than the former. The obvious 

solution is to ignore the Kolmogorov function when it returns a value of zero. Two events having 

the same Kolmogorov “probability” means nothing: they could, consistent with that, have the same 

chance, or one could have a higher chance than the other, or their chances could be incomparable. 

However, when the Kolmogorov “probabilities” are different, when one is greater than the other, 

then take that seriously. Call a Kolmogorov “probability” function K. If we take K seriously, then 

if K(P) > K(Q) we set Ch(P) > Ch(Q) and Cr(P) > Cr(Q). But if K(P) = K(Q), we just ignore it and 

look around for some other principle that would settle the matter. Sometimes the Euclidean 

Principle will. 

Let’s work through an example. The real numbers provide an infinite universe, with all of 

its subsets, and the elements ordered by the relation ≥. There was long a question of how one might 

measure sets of reals numbers. Of course, each set has a cardinality, but that is not discriminating 

enough for the purposes desired. So Lebesgue came up with an obvious solution.  



 46 

First, for any closed interval of the reals—any set consisting of all the reals between p and 

q inclusive—the obvious measure of that set would be |p – q|. Thus there are “twice as many” real 

numbers (by this measure) between 14 and 16 than there are between 9.6 and 10.6, even though 

the sets have the same cardinality. Any intuitively acceptable “measure” of the “real number line” 

should have this property. It follows that a single point p, considered as an interval both of whose 

end points is p, must have zero Lebesgue measure. 

Well, what else? Another natural thought about a measure is that it should be additive for 

two disjoint sets: if Σ ∪  Σ′ =  ∅, then 𝜇(Σ ∪  Σ′) =  𝜇(Σ) + 𝜇(Σ′). So Lebesgue demanded this 

as well. Not only does 𝜇 now provide a measure of all intervals, it provides a measure of all finite 

sets of intervals (again, including points as degenerate intervals). Now one might like to make the 

additive property more extensive: not only is the measure additive for pairs of disjoint sets, it is 

additive for all sets of disjoint sets, even infinite sets. But that is a bridge too far: since every subset 

of the of reals the union of a set of disjoint sets of measure zero—namely the singleton sets of each 

point in the subset—the whole thing threatens to collapse into triviality or contradiction. It turns 

out that one can do a bit better than finite addititivity: one can allow countable additivity without 

problems, because no non-trivial interval can be composed of countably many points. (If it could 

that would mean trouble, because the interval would have to have positive measure by the 

fundamental posit but also zero measure if the “sum” of any collections of zeros must be zero.) So 

that’s the Lebesgue measure over the reals. 

Lebesgue measure obviously does not satisfy the Euclidean Principle because the measure 

of the set {p} is identical to the measure of {p, q} (viz zero) even though {p} ⊂ {p, q}. The 

Lebesgue measure of a closed interval is the same as the corresponding open and half-open 

intervals, because they only differ by a set of measure zero. So the Lebesgue measure is not the 

right beast to use for specifying the chance of a randomly picked real falling in a certain set of 

reals, or of a randomly picked real between zero and one falling in a set. And that’s because it is 

not the right foundational measure for judging exact equality of areas or regions. 

However, there is nothing at all wrong—and everything right!—in insisting that the chance 

if the number falling in Σ is greater than it falling in Σ′ whenever 𝜇(Σ) > 𝜇(Σ′). That extends the 

comparability of objective chances immensely, and in exactly the way we want. We can now say 

that the chance of the randomly chosen number falling between 0 and 1/4 is less than it falling 

between ½ and 1, even though neither interval is a proper part of the other. 
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Appending the Lebesgue measure in this way to the Euclidean Principle yields—I claim— 

a completely satisfactory theory of objective chance for the “randomly thrown dart” or the 

“randomly chosen number”. If we add that each number is equally likely to be chosen then we can 

calculate ratios of chances for all sorts of events. The chance of the randomly chosen number being 

either ¼ of ½ is twice as big as it being ½, or indeed of it being any other particular number. Of 

course wedding Lebesgue and Euclid requires slightly neutering Lebesgue—we no longer pay 

attention to the Lebesgue “measure zero” judgement—but the union returns every intuitive 

judgment of relative chance and ratios of chance we would want. 

There are, however, limitations to Lebesgue just as there are to Euclid. Not every pair of 

sets stands in the subset relation, which puts a severe hamper on the scope of the Euclidean 

Principle. And we have already limited Lebesgue by ignoring judgments of zero or equal 

probability. But there is another limitation to Lebesgue: some sets of points are just not measurable 

by his measure at all. That’s pretty obvious: many sets of points are neither intervals nor 

denumerable unions of intervals. These sets are just not “Lebesgue measurable”. We don’t run 

across such sets in everyday life, or any applications of mathematics to real physics, so they 

shouldn’t bother us too much. But clearly, if a set is not Lebesgue measurable then Lebesgue will 

be of no help in assigning a chance that a random real be a member of it. 

It is possible that Euclid can be of some assistance here. A Lebesgue umeasurable set can 

have a Lebesgue measurable subset. Indeed, the union of any measurable set with any disjoint 

unmeasurable set is unmeasurable. But Euclid assures us that the chance of the chosen number 

being in the union is greater than it being in the measurable subset, so that helps. And of course 

Euclid tells us that the chance of the randomly chosen number being in the unmeasurable set is 

greater than it being in any proper subset. So the team of Euclid + Lebesgue is much more powerful 

in these circumstances than Lebesgue alone or Euclid alone. Nonetheless, there are still case where 

no judgement of >, <, or = is rendered about the relative chance of the real number being in one of 

two sets. In that case, we are left with Ch(Σ)  >< Ch(Σ′) and Cr(Σ)  >< Cr(Σ′). 

Similarly, any Kolmogorov probability function that has been found useful in physics can 

be taken on board—properly neutered—and used in conjunction with Euclid. The only possible 

applications that could be affected would be ones that made a particular sort of use of the equality 

of the Kolmogorov function, rather than the inequality of the function. Any such case should be 
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carefully examined because the reasoning could be faulty. I personally doubt that any of the actual 

uses in physics are like that. 

Finally, we can say a word about the Banach-Tarski Paradox. That paradox has gotten quite 

a lot of attention from philosophers because the result is both extremely counterintuitive and is 

proved using the Axiom of Choice. Many have taken this as grounds to question that axiom. 

The proof requires three dimensions, so we need a measure over a three-dimensional 

space—in particular the flat Euclidean three-dimensional space E3. There is a natural extension of 

Lebesgue measure from R1 to R3, and then one can use elements of R3 as coordinates on E3 via the 

Cartesian method in the usual way. So we can speak loosely of “Lebesgue measure” on E3, 

although properly that is a misnomer. In any case, what Banach and Tarski prove (and I say 

“prove” because the Axiom of Choice is true) is that one can take a solid unit sphere, partition it 

into five pieces, move the pieces around rigidly in the space, and then “reassemble” them into 2 

solid unit spheres. That is certainly surprising behavior. It will come as no shock that the pieces 

are not Lebesgue measurable. If they were, the volume of the union would be fixed irrespective of 

their relative locations, because the Lebesgue measure is invariant under rigid motions. (This is 

obvious because an interval always rigidly moves into another interval of the same length.) The 

fact that the Lebesgue measure is invariant under translations of course has no bearing on rotating 

Θ, since the difference in Lebesgue measure between Θ and Θ’ is zero, which has no significance. 

So the Banach-Tarski proof involves several essential components, some of which are 

somewhat unfamiliar. It involves Lebesgue-unmeasurable sets, which we never run into in 

everyday life. It involves appeal to the Axiom of Choice, which we also never do in everyday life. 

It involves the tacit assumption that “things don’t change size under rigid motions” which we do 

employ all the time in everyday life. And it essentially involves infinite sets of points, which we 

don’t deal with—at least not as such—much in everyday life. So when such a surprising result 

falls out, we naturally look for a perpetrator to blame. And both the use of an unmeasurable set 

and the appeal to the Axiom of Choice are the prime suspects. 

The main suspects, of course, naturally try to cast blame on one another. Defenders of the 

Axiom of Choice can say that there is nothing wrong with the Axiom—or the proof—and the 

counter-intuitiveness arises from the use of unmeasurable sets. Critiques of the Axiom want to 

deny that response, reject the Axiom and maybe unmeasurable sets as well. But I think what we 

can see is that all of this is just a distraction. The real problem lies with neither the Axiom of 
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Choice nor with unmeasurable sets. The real problem was before our eyes long before any of those 

issues came up. 

Go back to our fan of radii Θ. Θ can be rigidly rotated into a proper subset of itself—it can 

be made to “shrink” by a rigid rotation. It can also be rigidly rotated into a proper superset of itself: 

just twist the other direction. All of these sets have Lebesgue measure zero—which does not 

change under the motion—but so what? Lebesgue measure zero means nothing, and the Euclidean 

Principle proves that indeed Θ can become larger or smaller just by a rigid rotation. And this result 

makes no mention of the Axiom of Choice or of any unmeasurable set. It is just a property of rigid 

motions in a continuum. Like or lump it, that’s what it is, and the Banach-Tarksi situation is in 

principle no better and no worse. Once you have accepted the something can change size by a rigid 

motion—which common sense rejects on account of everyday experience—you have already 

made the leap. Banach-Tarski just shows how big the leap is once you get to three dimensions. 

So if one is unwilling to accept Banach-Tarski, then rejecting the Axiom of Choice or 

rejecting Lebesgue-unmeasurable sets really is not enough. You also ought to reject the possibility 

of the radii fan Θ rotating into a subset of itself. And the only principled way to do that, I think, is 

just to reject real infinity altogether. One could hold that no really existing thing—even abstract 

things perhaps—can have infinitely many parts. This rejects, at one fell swoop, both infinite 

divisibility (as in a continuum) and infinite extension. If you do that, then all the problems with 

Banach-Tarski and with the radii fan and many others as well simply evaporate. These sorts of 

problems do not arise in strictly finite settings. 

The paradoxes arise from the circumstance that there are things that are completely 

isomorphic to their own proper parts. And that feature is always an indication of some sort of 

infinity. Galileo, in The Two New Sciences, already argued for the inherently paradoxical—or 

perhaps incoherent—nature of infinity by pointing out the obvious one-to-one mapping from the 

integers to the squares. In one sense, Euclid’s, there are obviously fewer squares than integers, and 

indeed the squares become unboundedly sparser and sparser as you go to higher and higher 

integers. But on the other hand, the relation shows that the integers and the squares can pair up 

with nothing left unpaired. That—in a finite setting—means there are the same number of items. 

Cantor, of course, went with the one-to-one criterion and fashioned a perfectly acceptable theory 

of cardinality out of it. But we should never forget that infinity is, as it were, shot through with 

paradox from beginning to end. When we get unsettling results in infinite domains the source of 
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paradox can just be the infinitude itself, not the means of deriving the result. And one might 

therefor reject infinity root and branch. 

I think this is a reasonable position to advocate. If it is correct, then physical space or space-

time cannot be infinitely divisible: it must be ultimately discrete. I have myself developed a 

geometry for fundamentally discrete spaces and space-times in New Foundations for Physical 

Geometry: Full Discrete Geometry. And in a completely discrete setting, most of the paradoxes 

concerning objective chance also go away. But the proper thing to do is to address the fundamental 

problem of the reality of infinity all on its own, not in a setting like this. 

 

Practical Reason 
 

 

Our final topic is practical reason. Practical reason is so deeply intertwined with both 

rational credence and objective chance that it is essentially impossible to discuss the latter without 

invoking the former, and we have done so from the outset. In order to illustrate that the chance of 

the dart hitting either p or q is strictly greater than the chance of it hitting p we offered the agent a 

choice between a ticket that pays only if p is hit and two tickets: the one that pays if p is hit and 

the other if q is hit. Not having a definite preference for the latter over the former is simply insane. 

There would be no way to defend it. (Again, we are just throwing darts at random: no Newcombe-

like funny-business where the choice is statistically correlated with the throw.) 

This case is so clear and undeniable because it follows from a clear and undeniable 

principle: Dominance. Dominance goes like this: Start with set of outcomes that could eventuate 

from some decision between two options, A and B. Order rank the outcomes in terms of preference. 

(We assume that outcomes can be strictly order-ranked: if there are incomparable outcomes, then 

that obviously leads to complications, but they have nothing to do with chance or credence.) 

Outcomes with the same value can be lumped together. Now: if contingent on option A the chance 

of every single outcome except the worst is higher than the chance on taking option B, then A 

dominates B and should be chosen. Period. End of story. 

The judgment about the likelihood of an outcome given the choice of an action is exactly 

a judgment about a future subjunctive conditional: If I should do A, O would happen. The degree 

of rational credence in that future subjunctive is just the degree of credence in O conditional on 
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the supposition of A. So whether one believes that A dominates B is straightforwardly determined 

by one’s degrees of credence in those subjunctive conditionals. 

Dominance unambiguously resolves many cases that are troublesome due to “probability 

zero” events (according to some Kolmogorovian measure). Again, the thing to do with “probability 

zero” as judged by a Kolmogorov probability measure is just ignore it. Sometimes Dominance, 

like the Euclidean Principle, resolves the issue directly. 

But just like the Euclidean Principle, Dominance is only rarely applicable. If all decisions 

could be settled by Dominance, then decision theory would be trivial. So the next question is what 

to do when neither option dominates the other. 

The usual answer here is to appeal to expected utility: Don’t just order rank the possible 

outcomes, but rank them on a ratio scale, weight each outcome by the credence one assigns to it 

(which will be the objective chance one takes it to have, if one has an opinion on that), calculate 

the “expected value”, and then choose the option with the highest expected value. One could 

basically keep to the same scheme using relative credences as we have explicated them. Rather 

than multiplication one would use ratios of credences, with the aim of order-ranking the “expected 

values”. There are a few technical details to be worked out, but nothing really hard. 

However, all of that is wasted effort, because the advice to choose the option with the 

highest “expected value” was bad advice to begin with. So although one could implement this 

scheme to produce a theory of rational choice one shouldn’t. 

The problem is familiar, but has not been taken seriously enough. The classic “paradox” 

illustrating the problem is the St. Petersburg paradox, so let’s start there. A denumerable infinity 

of fair coins will be flipped (we do them all at once to avoid issues about waiting for the payoff). 

The coins are not merely denumerable, they have been enumerated. The payoff structure for a 

ticket is this: Let N be the number of the lowest-numbered coin to come heads. That yields a payoff 

of $2N. In the event that none comes heads, let the payoff be whatever you like: in the end it is 

irrelevant. 

What would be a fair price to pay for that ticket? According to the usual approach, that 

would be the “expected value” of the gamble but the expected value, as standardly calculated, “is 

infinite” (i.e. the calculation diverges and the expected value grows without bound). That particular 

feature is actually irrelevant to the puzzle: for any proposed value of a ticket, the calculation could 

be cut off at a point where the expected value straightforwardly exceeds it, so according to the 
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principle one “ought” to be happy to pay that much. But it would be completely insane to pay, say, 

$1 million for such a ticket. 

It gets worse. Change the payoff scheme so that unless the first million coins all come tails, 

the payoff is zero, and if they do then the payoff is $2(N-1,000,000), with N the number of the first 

heads. Again, let the payoff for all tails be whatever you want. The expected value of the gamble 

would still diverge to positive infinity, and one should be willing to pay any amount for a ticket. 

But it would be complete lunacy to pay anything, even if the “expected value” is positive. 

The common attempts to defuse this disastrous result involve denying that the value of a 

payoff scales with its monetary value. Of course, one could then increase the monetary values to 

compensate so long as there is no roof to the value. But as with the Banach-Tarski paradox, the 

wrong suspect has been fingered: the issue is with the “expected value” rule itself, not anything 

with its implementation. 

After all, why in the world should one want to maximize the “expected value” of the 

choice? One has no direct interest in the “expected value” of a choice, one has an interest in the 

value of the outcome! In a case of decision-making under uncertainty, one doesn’t know what that 

value will be, because one doesn’t know what the outcome will be. But that alone does not mean 

one can’t know how to act: if one option dominates the other then one knows one will not be worse 

off with it, no matter no matter the outcome. 

The real trick here is a sort of cognitive illusion created by a clever choice of nomenclature. 

There is a certain quantity calculated: call it the “credence-weighted-value-sum-of-possible-

outcomes” for each choice, because that’s what it is. What it most certainly is not is the “expected 

value of the outcome” in the obvious sense: the value of the outcome one expects to occur! If it 

were the value of the outcome one expects to occur, then it would make at least prima facie sense 

to opt for the action that has the better one, but there is no even prima facie motivation to choose 

the action with the highest credence-weighted-sum-of-values-of-possible-outcomes. 

The point is obvious. Consider a lottery with 10,000,000 tickets, with the tickets costing 

$1 each and the payoff $9,999,999. The “expected value” is -$.0000001, so the rule says not to 

buy the ticket. Now increase the payoff by $2 to 10,000,001. The “expected value” is now 

+$.0000001, so you ought to buy the ticket. That already seems rather strange, but the first point 

is that neither +$.0000001 nor -$.0000001 is the amount of money you expect to get. In fact, you 

know that neither of those is the outcome that will eventuate: not only is this not the value you 
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expect from the option, it is a value you know will not result from the option. So the term “expected 

value” is completely inappropriate. It makes the rule sound innocuous when it isn’t. (After all, it 

is the rule which recommends almost certainly bankrupting yourself buying a ticket for the St. 

Petersburg lottery!) 

What the “expected value” really is, of course, is the average value you would expect to 

get were you to play the same lottery over and over and over enough times. And indeed, if you 

were to play these lotteries over and over many, many, many millions of times, the you could 

reasonably expect in the long run to lose $.0000001 per play in the first lottery and gain 

$.0000001in the second. That’s the sort of reasoning that casinos engage in, and because they do 

take many, many, many bets at favorable odds they regularly and predictably make money. But if 

you have no intention or no resources or no opportunity to play such a lottery billions or trillions 

of times, it is hard to see what counterfactuals about what would almost certainly happen if you 

did have to do with anything. (If you had that much money, then why not buy up all the tickets? 

In the first lottery you would expect—with certainty!—to lose a dollar and in the second to win a 

dollar. Then the advice makes perfect sense: do the latter and avoid the former.) 

And if you could play the St. Petersburg game enough times (don’t try calculating how 

many) then you could indeed reasonably expect to make money off it, no matter the price of a 

ticket. But you won’t, so why care about the counterfactual? 

In fact, leaving St. Petersburg aside, it is perfectly clear what you ought to expect if you 

buy a ticket for either the $9,999,999 lottery or the $10,000,001 lottery: you ought to expect to be 

out a buck with nothing to show for it. You ought to expect that to the very same degree in both 

cases. So a pretty reasonable piece of advice would be: if you like money, don’t play. In the proper 

sense of the term, the expected value of buying a ticket in both cases is -$1. 

Let’s introduce a piece or terminology: let’s say that you “expect” something to happen 

when your credence in it is greater than your credence in a fair coin being flipped and coming 

heads at least once in 20 flips. The official probability of such an event not happening is 1 in 

1,048,576, a number so small that no one really has in intuitive sense of what it means. But 

everyone has played with coins enough to know that while flipping a coin and getting tails 20 

times in a row is theoretically possible, as a practical matter it just ain’t gonna happen. Such an 

event not happening is what used to be called, in philosophical circles, “morally certain”. That is, 

the certainty, while not absolute (Top) is enough for practical (moral) purposes. 
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The choice of 20 coins flips for the standard is obviously somewhat arbitrary, and could be 

adjusted to 15 without harm. But it can’t be reduced to 10: ten tails in a row is an eventuality 

which, while unlikely, is not negligible. 

With that terminology in place we can certainly propose this rule: if you expect one action 

to have at least as good an outcome as another, you are permitted to take it and if you expect it to 

have a better outcome you must take it. That is a much more wide-ranging piece of advice than 

Dominance. It tells you, for example, not to buy a ticket in either of the 10,000,000-ticket lotteries 

mentioned above. 

That still leaves many, many situations unsettled. When you throw a pair of dice, none of 

the twelve (or thirty-six) possible outcomes—or any disjunction of them save the disjunction of 

all of them—is expected. That’s why one uses dice in games: to create situations with a degree of 

uncertainty that circumvents the use of the rule just announced.  

But if instead of just one throw of the dice one intends to make many throws, then the 

situation is different. One can, for example, certainly expect not to throw ten boxcars in a row. 

This rule—which is essentially to treat events that are expected in the sense defined above 

as if one knows they will happen (in a circumscribed way) goes by the name Cournot’s Principle. 

It is an excellent source of good advice. Cournot, for example, would advise against paying 

anything for the second St. Petersburg lottery mentioned above, rather than paying any amount at 

all as the “expected value” rule commands. The sense in which one treats expected events as if 

one knows they will happen is circumscribed because the propositions taken as “certain” are not 

closed under logical deduction. Given a lottery of 10,000,000 tickets, one is morally certain of 

each ticket that it will lose, and perfectly certain that one or another of them will win. But this 

failure of closure under deduction is a mark of all rational belief. Every rational person believes 

that he or she holds some false beliefs. It would be crazy not to. That only yields the Preface 

Paradox if one insists that rational belief be closed under deduction, and the only conclusion of the 

paradox is that you should not insist on any such thing. 

So if we adopt the Cournot Principle decision theory to supplement Dominance we expand 

the range of applicability of the theory considerably. But it still will not cover many one-off 

decisions, even when one can calculate the “expected value” of the options. This is not a sin of 

commission, like telling you to pay $1,000,000 for the St. Petersburg ticket, but a sin of omission. 

The rule is simply silent in many one-off cases. 
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Here is something that would help with that. Imagine one will be confronted with the same 

decision some large number of times. And imagine you have to bind yourself to a rule: you have 

to make the same decision each time. Then apply Cournot’s principle and if the rule makes 

recommendations follow them in the one-off case. For the moment, we will set the “large number” 

of plays at 50,000. For reasons to be given, that is a maximum: it could be reduced but not 

increased. 

To make clear what I mean, let’s consider the two versions of the St. Petersburg lottery 

above in the one-off case. 

For the first lottery, if one buys a ticket one can expect—given our standard of 

expectation—to win at least $2. That is so even if the payoff for all tails is $0, or even death. One 

isn’t absolutely certain, but morally certain to win at least $2 and not to die. Therefore, one should 

be willing to pay at least $2 for a ticket. On the other side, one is morally certain to not win more 

than $220 = $1,048,576. So one should not pay more than that. That leaves, of course, a wide 

avenue of discretion, where the rule makes no recommendation. But since the “expected value” 

rule recommends paying anything, already we are, as it were, infinitely better off! These limits are 

locked in: no further considerations can alter them. 

Of course, intuitively we think we should be willing to pay more than $2 for a ticket and 

unwilling to pay anything close to $1 million. Let’s see if we can justify that intuitive judgment. 

Fictively imagining playing the lottery a large—but not infinite!—number of times yields 

some expectations of the following form. In terms of standard statistics, we want to know what we 

can predict with about .999999 degree of certainty. Since this is all very rough, we will just do a 

rough calculation for illustration. 

If we play the lottery 50,000 times, the chance of getting 23 tails in a row even once is 

under our threshold, so we can eliminate any payoffs over $8,388,608 from consideration. The 

first big payoff we can’t eliminate is $4,194,306. The chance of getting that once and any other 

very high payoff falls below our threshold, so we can ignore that too. We do expect to get many 

smaller payoffs, and indeed at 50,000 repetitions, we expect the observed proportion of small 

payoffs to be very close their objective chance. Since the chance of a payoff of $2 is .5, we can 

reasonably expect about 25,000 such outcomes. Similarly, about 12,500 $4 outcomes, 6,250 $8 

outcomes and so on. Since the number of successes halves while the payoffs double, each of these 

contributes the same amount—$50,000—to the cumulative total. This is just as the standard 
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expected value calculation returns, because it is rational to expect about the “expected value” to 

be the average value over enough repetitions. So each of the low-payoff results adds about $50,000 

to what one could reasonably expect, and so about $1 to one can expect the average to be.  

In the standard calculation, this same reasoning applies to all possible payoffs, so each adds 

a dollar to the expected average. And since there are infinitely many possible payoffs, that yields 

complete and total disaster. But we have already averted that disaster. Since we disregard every 

result with more than 22 tails and a payoff of more than $4,194,306. So if we were to treat all the 

remaining possible outcomes as if the “expected value” were really to be expected, we would have 

an expectation of a total payoff of $50,000 for each of 23 non-negligibly possible outcomes. That, 

of course, yields a total payoff of 23∙$50,000, and an average payoff per play of $23. This back-

of-the-envelope calculation, coupled with the first, yields a maximum rational amount to pay at 

$23, which is not only infinitely better than the standard result, it is intuitively quite reasonable for 

a maximum. It is however, a bit high. We can reasonably expect to average about the “expected 

value” if we play 50,000 times for there to almost certainly a large number of low-dollar payoffs. 

But as the payoffs grow, so do the statistical uncertainties. At 50,000 plays, we can expect not to 

get a payoff of $8,388,608, but can’t expect to get a payoff of $4,194,306. That payoff is neither 

rationally forbidden nor rationally expected. At the very low end, though, between 24,475 and 

25,525 $2 payoffs is again rationally expected. The calculation this “confidence interval”, the 

smallest range of outcomes one is sure of getting at a 999,999 out of 1,000,000 standard of 

certainty, is the key to the best calculation. Let’s do the complete St. Petersburg example. 

But rather than calculate the probabilities for the $2 payoffs, we should calculate the 

rational expectations for the higher payoffs. Since every payoff is at least $2, we can use a total of 

$100,000 as a floor and then figure out the rational expectations for the smallest and largest 

amounts by which the floor will be exceeded. 

If one plays 50,000 times, there is a .999999 chance that the outcome TH will happen 

between 12,040 and 12,960 times. So one can expect those payoffs to contribute between $24,080 

and $25,920 extra winnings. The expectation for TTH, with an extra payoff of $6, is that it should 

happen between 5900 and 6600 times, for a minimum excess winning of $35,400 and maximum 

$39,600. The TTTH outcome should occur between 2870 and 3380 times, for an extra payoff 

between $40,180 and $47,320. We already see the range of the values spread as the number of 

expected wins decreases, resulting in a larger range of outcomes that ought not to be surprising.  
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Continuing in the same vein, the range of wins from TTTTH is rationally foreseeable as 

1380 to 1750 for extra winnings $41,400 to $52,500; TTTTTH 650 to 920 for $40,300 to $57,040; 

TTTTTTH 290 to 490 for $36,540 to $61,740; TTTTTTTTH 120 to 270 for $30,480 to $69,120; 

and TTTTTTTTTH 50 to 147 for 25,500 to $74,970. At this point the range of values, due to 

possible statistical fluctuations, has become so extreme that the calculations are essentially useless. 

In the later cases, of course, the average of the minimal and maximal excess winnings is about 

$50,000, so we can just use that as an expectation for the rest of what we consider possible 

outcomes. 

In a pessimistic mood, one might choose the lower bound in each case we calculated. If we 

do that, we arrive at a total payoff of $100,000 + $12,040 + $24,080 + $35,400 + $40,180 + 

$41,400 + $40,300 + $36,540 + $30,480 + $25,500 + 10 x $50,000 = $858,920. That would suggest 

one might reasonably be willing to pay $17.18 in a pessimistic mood. The optimist, taking the 

upper bound, would be amenable to paying $20.76. 

These are, of course, rough calculations about a question for which there is no perfectly 

accurate correct answer. There just is no uniquely amount a single play of the St. Petersburg lottery 

is “rationally worth”. But a rough calculation using reasonable numbers yielding the answer $19 

plus or minus a couple of bucks is literally infinitely better than the standard approach, and gives 

an intuitively acceptable response. I asked people, some familiar with the lottery and others new 

to it, how much they would be willing to pay for a single ticket. The responses were: $3 or $4, $4, 

$6 , $6, at least $8, $10, $10, $20, $20, $20, $20, $35, around $50, $127.99 and $500. The most 

common response was $20, an answer that suggests that the Cournot approach, implemented in 

this way, is a spherical Earth rather than the “expected value” spherical cow. All of the higher 

offers were made by people familiar both with the lottery and with how to calculate expected 

values. I doubt that the uninitiated would ever venture such high offers. 

We have made two somewhat arbitrary choices in implementing the Cournot strategy: the 

“20 tails in a row” standard for something so unlikely as to be practically negligible, and the 

“50,000 repetitions” standard for the fictitious repetition in a one-off case in order to get more 

useful advice. The latter of these is clearly on the high side. If a human being does something once 

a day every day of their life, they end up doing it much less than 50,000 times, and a decision made 

more than once a day would not be considered a “one-off”. At a greater frequency, such as the 

hundreds of decisions made in playing poker for an evening, the object of the choice is the adoption 
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of a rule actually to be used repeatedly, and should be treated as such. The chance of getting 20 

tails in a row is essentially one in a million, which is the phrase commonly used for something one 

thinks ought not to be taken seriously as a consideration when making decisions. That standard 

could be dropped to 15 tails (about 1 in 33,000—once in a lifetime at one chance per day!) or even 

10 about 1 in 1,000) and the fictitious repetitions to 500. These low-end values change the numbers 

a bit, in two ways. First, the price per ticket falls as the possible higher payoffs are neglected. 

Second, the range of acceptable offers widens as the imagined repetitions are reduced: there is less 

certainty and more statistical noise. Using those values, we get an allowable range of offers from 

$2.26 (for the pessimist) to $38.09 for the optimist. That range takes in all but the most extreme of 

the “intuitive” answers. Quite a respectable consilience of the theoretical and gut-level judgments 

about what is rational. And—after all—evolution must have equipped our guts with a pretty 

reliable sense of what sorts of risks are worth taking. 

One more example of a one-off decision. Suppose someone offers a reward of $10,000 if 

you survive a single game of Russian Roulette, with a 1/6 chance of dying. Most people would 

consider agreeing to such a thing to be insanity, even though most of the people who do agree walk 

away $10,000 richer, a not insubstantial sum. And indeed, for most people increasing the payoff 

would be irrelevant: making the potential winning $100,000 or $1,000,000 would not change their 

minds. At 1/6 odds, neither dying nor becoming rich is an expected outcome by Cournot’s 

standards, so the simplest application of the rule yields no advice at all. That is a bad result. 

The fictive repetition, though, does. Indeed, if one sets the number of fictive repetitions to 

100, much less 50,000, one would already be morally certain to be killed at least once. “Averaging 

out” 100 results means taking the badness of death into account, which will overwhelm the 

monetary gains: the approach advises not to play. Good. 

Note that it is essential when considering the fictive repetitions that the different plays be 

considered statistically independent of each other: for all trials Ch(Tails on flip N|Tails on flip M) 

= Ch(Tails on flip N) if N ≠ M. The same is true for the reasoning about Russian Roulette. That 

prevents this sort of reasoning from endorsing anything in the vicinity of Pascal’s Wager. 

Pascal, of course, attempted to displace the question of God’s existence from the 

jurisdiction of theoretical reason—which he deemed incapable of addressing the matter—to that 

of practical reason. And he there used the expected value to argue for prudential reasons that one 

ought to believe in God (and a Christian version of God at that) due to the mere possibility of a 
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payoff of infinite value. And while he starts out analogizing the outcome to the result of a coin flip 

with even odds, he explicitly notes that the value of the infinite payoff overwhelms the probability: 

if the argument works at all, it works just as well if the theoretical chance of God’s existence is 

reduced to any finite positive quantity. 

Everyone knows that Pascal’s argument is bunk. It has to be: if it established that one ought 

to act like a Catholic and try to inculcate that theological belief, it would work just as well for 

Islam or for some version of polytheism, etc. And no one can believe, or even pretend to believe, 

in them all. Further, the errors Pascal made are multiple. They begin with changing the venue of 

the dispute from theoretical reason to practical: if we regard the existence of God as highly unlikely 

(even if not impossible), then we ought not to believe it no matter the possible practical payoffs. 

The introduction of unbounded payoffs into the expected value scheme is also a red flag: see the 

St. Petersburg lottery. But even more basic than that: even if one analogizes the situation to a 

gamble, it is certainly not a gamble that can be repeated with the results being statistically 

independent. If it were, then fictively imagining playing Pascal’s game enough times would yield 

some outcomes where the Catholic God exists and others where the Muslim God does, with 

strikingly different practical outcomes depending on the religious practices that had been adopted. 

Given the metaphysical characteristics of theological fact, the outcomes can’t be regarded as 

statistically independent, so even granting everything else the Cournot approach—unlike expected 

value—will never recommend adopting religious practice or belief on Pascalian grounds. Score 

one more for Cournot.  

Indeed, in the case of God’s existence, here’s a simple result. If one regards the proposition 

that God exists as less credible than that God does not exist, then one weakly believes that God 

does not exist. Period. No practical considerations can change that one whit. 

Adding no more than 50,000 fictive repetitions to Cournot’s advice expands the 

applicability of the rule considerably but not in the crazy way of the “expected value” rule, which 

is essentially this rule with an unlimited number of repetitions. In many, many cases, this rule will 

yield the similar advice as the expected value rule: exactly those cases where the expected value 

rule gives reasonable advice. But it blocks the obviously unacceptable St. Petersburg 

recommendation, block’s Pascal’s arguments, and tells you not to play Russian Roulette no matter 

the payoff if you survive. Eminently reasonable. 
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This seems like an acceptable way to base practical rationality on degrees of credence. 

Maybe it too produces some paradoxes or obviously bad recommendations, but they are not the 

usual known ones. That question deserves further investigation. 

 

In Sum 
 

 

The Euclidean Principle is a non-negotiable requirement for any acceptable theory of 

rational credence and objective chance, so any theory of either that denies it can be dismissed out 

of hand. That alone rules out any theory that uses a Kolmogorov “probability measure” over 

propositions or events or outcomes in a foundational way. And switching to a non-Archimedean 

field, such as the hyperreals, does not solve the problem because in addition to the non-

Archimedean features, both rational credence and objective chance should have incomparable 

pairs of propositions or events or outcomes. 

The thing to do is to remove numbers of any kind from the foundations of the account, and 

deal directly with the structure of relative credences or chances, insisting on the Euclidean 

Principle from the outset. The operations of addition, multiplication and division of numbers used 

in the standard approaches are replaced with the use of addition-like and multiplication-like 

operations defined directly on the structure of relative credences or chances, and the use of a ratio 

structure also defined directly on it. This yields a fairly powerful theory with the Euclidean 

Principle built in from the outset. A ratio version of Bayes’ Rule can be articulated. 

Finally, this can again be enhanced by appeal to Kolmogorov “probability” functions, so 

long as judgements of zero probability are regarded as having no significance. In decision theory, 

it can be enhanced by the use of Cournot’s principle, which yields a practical decision theory much 

more acceptable in its recommendations than the standard one. 

Start with Euclid, which is undeniable but rather narrow, and expand out from there. Some 

plausible sounding principles, such as the Humean Principle and some allied symmetry principles 

must be sacrificed, but the necessity for that sacrifice has been clear for centuries. The only other 

option is to insist on strict finitism, in which case the conflict does not arise. By “strict finitism” I 

mean the view that it is metaphysically impossible for any physical item to have infinitely many 

distinct proper parts. That would rule out both the infinite divisibility of space or time or space-
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time and the infinite extent of these as well. A slightly weaker view would reject merely the actual 

existence of any physical item with infinitely many distinct proper parts. Stronger than that would 

be to deny the physical possibility of such a thing. Strict finitism then denies the metaphysical 

possibility. If physical and metaphysical possibility coincide, then the last two collapse into the 

same view. Strict finitism—and its weaker cousins—are options that are worthy of closer 

consideration….but this essay is too long already. 
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Appendix: Non-Archimedean and Incomparable Structures in Euclidean Geometry 
 

 

It may come as no surprise—or at least as not terribly controversial—that credences may 

be incomparable: in some cases, there just is no fact about which of a pair is stronger. And it may 

not seem shocking that credences fail to have an Archimedean structure for some subject matters. 

But on first glance, both of these properties may seem foreign to standard Euclidean geometry. 

After all, Cartesean co-ordinates can be used in a natural way to create coordinates over the plane, 

and those coordinates are just ordered pairs of real numbers. The real numbers, of course, have an 

Archimedean ratio structure and all the one-dimensional number fields, including the hyperreals 

and surreals, are total orders. Every number is less than, equal to, or greater than every other. It 

may come as a slight surprise, then, that there are simple and familiar structures in the Euclidean 

plane that illustrate both non-Archimedean ratios and incomparability. One such structure is the 

angle. 

Any two continuous curves that have only a single point in common, which is an endpoint 

of both, may be said to form an angle where they meet. If the two curves happen to be straight 

lines, then it is rectilinear angle, and rectilinear angles stand in familiar ratio relations to each other. 

Indeed, every such angle can be represented by a real number (radians, say, or grads) and the sizes 

of the angles relate to each other just as their representatives do. But in addition to the rectilinear 

angles there are others. For example, there is the angle formed where (part of) the circumference 

of a circle meets a tangent. Euclid was aware of these, and called them hornlike angles. He was 

also aware that they are non-Archimedean with respect to the rectilinear angles: the angle with 

which a circumference meets a tangent is “infinitely sharper” than any rectilinear angle. If one 

made the mistake of trying to define the magnitude of a hornlike angle as the magnitude of the 

rectilinear angle formed by the tangents of the curves where they meet, then one would get the 

absurdity that the magnitude of a hornlike angle is zero. That is particularly absurd because pairs 

hornlike angle can be straightforwardly compared in magnitude. Consider two circles tangent to a 

straight line at the same point, but with different radii. Let the centers of the circles lie on the same 

side of the line. The angle formed by the line and the larger circle is clearly “sharper” than the 

angle formed by the line and the smaller circle: the circumference of the larger lies strictly between 

the line and the circumference of the shorter, and if we let the radii of the two circles sweep toward 

the tangent point in synch, the slope of the tangent of the larger circle is always less than that of 
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the smaller. Indeed, a natural suggestion is to measure the sharpness of the hornlike angles by their 

radii: the longer the radius the sharper the angle. Thus every hornlike angle is “infinitely sharper” 

than every rectilinear angle, and the sharpness of the hornlike angles themselves grow without 

bound. 

This behavior was noted by Hume in the Enquiry:  

Nothing can be more convincing and satisfactory than all the conclusions 

concerning the properties of circles and triangles; and yet, when these are once 

received, how can we deny, that the angle of contact between a circle and its tangent 

is infinitely less than any rectilineal angle, that as you may encrease the diameter 

of the circle in infinitum, this angle of contact becomes still less, even in infinitum, 

and that the angle of contact between other curves and their tangents may be 

infinitely less than those between any circle and its tangent, and so on, in 

infinitum?12  

Hume goes on to describe these results as “big with contradiction and absurdity”, but of course 

they are no such thing. They are merely unfamiliar and surprising. They certainly demonstrate that 

non-Archimedean structures cannot be avoided if one accepts the coherence of Euclidean 

geometry. 

But once one has grasped this example, cases of incomparable angles are not hard to come 

by. Think of a Euclidean plane fitted out with Cartesean coordinates in the usual way. Let the x-

axis be our straight line, and consider two curves that meet it only at the origin: f(x) = x + x2 sin(1/x) 

and g(x) = x + x2 cos(1/x) for 0 < x < 1. Let the value of these functions to be stipulated to be 0 at 

x = 0. (They are obviously continuous functions in the normal sense). The graph of each function 

forms an angle with the x-axis at the origin according to our definition, but there is no way to 

compare these angles to determine “which is greater”. As the argument approaches 0, the functions 

oscillate faster and faster around y = x, trading back and forth about which is greater than which. 

So there is no criterion by which one angle can be deemed greater than the other. Both of their 

tangents, of course, limit to a slope of 1. 

 
12 Section XII, Part 2. 
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Further, the angle between f(x) and the x-axis can be added to the angle between g(x) and 

the x-axis in a straightforward way: their sum would be the angle between f(x) and - g(x) 

Indeed, even though f(x) and g(x) each forms an angle with the x-axis, according to our 

definition, and even though they both contain the origin and meet there, they do not form any angle 

with each other because no pair segments from them intersect only at the origin. But even though 

the two curves have no angle between them, their angles with the x-axis can still be added, as noted 

above.  Despite the unfamiliarity and surprising properties of these sorts of curvilinear angles, they 

can sometimes be subject to the sorts of “additive” operations we have discussed. 

This rather simple example illustrates that even Euclidean geometry is shot through with 

both non-Archimedean structures and incomparable magnitudes of the same generic type. It should 

then not be much of a surprise to discover both of these characteristics when discussing chances 

of events, where the events themselves are described using geometrical terms, such as the chance 

that a randomly chosen point be in a specified set of points. 
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