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Abstract

What are the pillars on which the success of modern science rest? Although philosophers
have much discussed what is behind science’s success, this paper argues that much of the
discussion is misdirected. The extant literature rightly regards the semantic and inferential
tools of formal logic and probability theory as pillars of scientific rationality, in the sense
that they reveal the justificatory structure of important aspects of scientific practice. As
key elements of our rational reconstruction toolbox, they make a fundamental contribution
to our understanding of the success of science.

At the same time, any science, however exact, is dominated by approximation, error,
and uncertainty, a fact that makes one wonder how science can be so successful. This paper
articulates and illustrates general themes—e.g., that truth-preserving arguments often fail to
preserve approximate truth—that highlight the need for additional semantic resources. Thus,
our proposal is that persistent failures to unravel the reasons behind the success of science in
the face of pervasive error and uncertainty should be attributed to an insufficiently rich way
of rationally reconstructing scientific and mathematical knowledge. What is missing? This
paper claims that there is a third formal method of reasoning that constitutes a distinct
pillar on which rests the success of science, namely, perturbation theory. The paper outlines
how the representational and inferential tools of perturbation theory differ from those of
logic and probability theory, and how they enable us to understand the apparently elusive
aspects of the success of science.

However, compared to its peers, perturbative reasoning has not received the attention
it deserves. As the paper explains, this partly results from the circumstances in which
perturbation theory is taught, and partly from the fact that perturbation theory first appears
to be a vaguely related collection of methods offering no systematic semantic insight. In an
attempt to show that this first impression is wrong, this paper presents its contribution
to the semantic dimension of scientific representation and inference in terms of what I call
“semantic layering.”

1 Success, Satisfaction, and Semantics

Scientific inquiry of the world we live in has been and remains an impressively successful en-
deavour. On many celebrated occasions, it has revealed deep and sometimes surprising truths
about the world, be they of a physical, biological, or socioeconomic nature, to name but a few.
In turn, this increasingly deep understanding has enabled the development of technologies that
have radically transformed the world. Such accomplishments make it undeniable that, in an
important sense, scientific inquiry is highly successful.

It is also undeniable that scientific successes often come at the cost of truth, at least to some
extent. Indeed, it does not take a particularly thorough examination of current scientific theories,
models, hypotheses, and what have you, to see that they are often, and perhaps typically, not
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strictly true. In more technical terms, one would say that such products of scientific inquiry are
not satisfied by the world we live in under their intended interpretation. As a result, scientists
typically can’t afford the satisfaction of working on the assumption that the judgements they
make are unqualifiedly true, or that the premises of their arguments are strictly true. This state
of affairs was nicely captured by Russell (1968, p. 110): “Although this may seem a paradox, all
exact science is dominated by the idea of approximation.” In light of this unavoidable situation,
philosophers of science interested in understanding what makes scientific inquiry successful should
not primarily be contemplating elaborate counterfactual constructions about pristine theories
that contain no error and uncertainty, but instead they should be examining how scientific inquiry
has learned how to live with them.

Reflecting upon the de facto successful practices of applied mathematics, the pressing question
is thus along those lines: Given that the mathematical representations we use and that the
inferences we draw in applied mathematics are typically pervaded by uncertainty, measurement
error, modelling error, analytical approximations, computational approximations, other forms
of guess and ignorance, and methodological gambits, why is it that we obtain results that are
sufficiently accurate in an uncanny number of cases? Indeed, it would seem reasonable to ground
one’s expectations in the pro tanto rule “garbage in, garbage out,” in which case our prima facie
plausibility judgement would clash with the realities of applied mathematical practice. Can a
rational account be given for that success, and if so, what operative concepts will be deployed in
accounting for it?

Whether science’s success, given the circumstances in which it takes place, can be given a
rational account at all has been doubted. For instance, in his famous 1960 paper “The Unrea-
sonable Effectiveness of Mathematics in the Natural Sciences,” Wigner surmised that no such
explanation can be provided: “The miracle of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift which we neither understand nor de-
serve.” Wigner is not skeptical of our ability to successfully apply mathematics to the world, but
of our ability to rationally explain why we do so successfully. To be sure, many distinct versions
of the problem of the applicability of mathematics appear in Wigner’s paper (for a discussion of
other versions, see Fillion, 2016); but in each case, the message is that the use of mathematics in
science is unreasonably effective, and that its success is a miracle. If Wigner is right, the project
proposed here is doomed to fail.

Yet, the evidence adduced in support of Wigner’s claim is flimsy. For one thing, in order
to be justified in declaring that the success of such applications is a miracle (i.e., not ratio-
nally explainable), we would need to ensure that no key aspect of scientific rationality has been
overlooked—but I will argue that there has been such an oversight. Moreover, since the publi-
cation of Wigner’s paper, many philosophers have embraced some version of the so-called “no-
miracle argument” to answer this call for an explanation of the success of science. Following
this line of thought typically associated with a strong flavour of scientific realism, we should not
accept miracles, not at any rate if there is a non-miraculous alternative. The locus classicus of
this stance is Putnam (1975, p. 73): “[. . . ] the positive argument for realism is that it is the
only philosophy that does not make the success of science a miracle.” Thus, we are told, the
descriptions of an underlying reality found in science are accurate, or at any rate “essentially”
or “approximately” true, and this fact explains the success of science.

Many rebuttals to this argument have been put forward; I will mention two that are relevant
to the present discussion. The first has been advanced by Stein (1989, p. 54), who suggests that
truth is not in fact an explanation of the success of scientific theories: “This mode of argument
has from time to time made a powerful impression [. . . but] I submit that it is in fact a snare
and a delusion. [. . . ] what I see as its fatal defect is this: that the postulate in question doesn’t
explain anything. [. . . ] I call this case directly relevant because it is one in which a notion is
introduced as ‘explanatory,’ which under examination is seen to be in effect disconnected from
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its explanandum.” Secondly, as Laudan (1981, p. 32) has famously pointed out, “until we have a
coherent account of what approximate truth is, [. . . such theses] are just so much mumbo-jumbo.”
Thus, the idea of developing an account of approximate truth that accounts for proper descriptive
and inferential practices would play an essential role in explaining the success of scientific inquiry.

Since this discussion dates back some decades already, we could perhaps expect that an answer
to Laudan’s request achieving some sort of consensus would by now have been articulated. That,
however, is not the case. It is true that there has been a growing literature on truthlikeness
(also known as verisimilitude) (e.g., Popper, 1963; Oddie, 1986, 2016). However, I suggest that
this concept is better understood as a rebuttal to the view of the history of science resulting
from pessimistic induction—a view according to which the history of science is essentially the
history of false theories—rather than an explanation of the success of particular practices of
approximation found in the mathematical sciences. Indeed, the driving idea in the literature
on truthlikeness is that the history of science is best understood as a succession of theories
that are increasingly better, in the rough sense that each new theory gets “closer to the whole
truth” than its predecessors. Truthlikeness shares with approximate truth the idea that strictly
false propositions are not all on the same footing, but it is primarily designed to semantically
characterize theories as a whole, rather than individual propositions. Furthermore, truthlikeness
is based on likeness/proximity to the whole truth in a way that makes it possible for some
false propositions to be closer to the truth than some true propositions (Oddie, 2016); this is
ruled out in approximation theory, and furthermore it has nothing to say about “the whole
truth.” Accordingly, it seems that truthlikeness is not what is called for to explain the success
of descriptive and inferential scientific practices used to manage error and uncertainty.

Thus, we are back to the question: why has no satisfactory semantic account of approxi-
mate truth been developed, to effect a transition from mumbo-jumbo to a rationally compelling
explanation of the success of science? For the most part, it seems that philosophers of science
concerned with such things have been unwilling to move away from a certain style of semantics
that is not suitable to discuss matters of approximate truth. I would like to suggest three (to
some degree interrelated) reasons for why that is the case. A first is that one may be overcon-
fident in expecting that the success of a given approach to semantics in one area will extend to
other areas (i.e., handling approximate truth). A second reason is that, even though some worries
are acknowledged, there is a perceived lack of alternatives. A third reason might be that fairly
standard arguments (or the rhetoric surrounding them) that some wish to endorse are closely as-
sociated with (and perhaps depend on) that style of semantics. It it not the purpose of this paper
to examine such arguments systematically; one case that closely relates to the realist argument
mentioned above will sufficiently illustrate the point. The no-miracle arguments argue that, in
some sense, there is no success in science without truth. As part of this argument, the somewhat
malleable notion of truth is typically understood in terms of the more precise model-theoretic
concept of satisfaction, especially as it relates to first-order predicate logic (as opposed to full-
fledged first-order logic). In turn, this claim is justified by more general considerations typically
associated with Quinean naturalism, itself grounded in the Quinean “science first” doctrine. As
Colyvan (2019) puts it: “This doctrine arises out of a deep respect for scientific methodology
and an acknowledgment of the undeniable success of this methodology as a way of answering
fundamental questions about all nature of things.” This alleged success grounds a very robust
form of scientific realism: “Naturalism, then, gives us a reason for believing in the entities in
our best scientific theories and no other entities.” (Colyvan, 2019) An extensive and detailed
discussion of the way in which this argument is deployed can be found in Bangu (2012). The
possibility of adjudicating debates about what sort of gizmos one must be ontologically commit-
ted to on the basis of what is scientifically successful has certainly been considered appealing by
many philosophers of science.

Some semantic presuppositions typically play an important role in this sort of argument,
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including the following:

1. Meaning is determined by truth-conditions (versus, say, a more comprehensive notion of
informational content).

2. Truth-conditions are understood in a framework of “denotational” (or “referential”) seman-
tics, much as they are in relational model theory, and frequently supplemented by other
elements such as a causal theory of reference.

3. Predicates denoting classes of entities have a fundamental role; in particular, to be is to
be quantified over (so that things like modalities and counterfactuals are not regarded as
fundamental to science). The semantic treatment of functors is assumed to require no
special attention.

4. This framework extends to matters of approximate truth.

In light of the project of accounting for the success of science on the basis of a semantic char-
acterization of how approximate truth operates, this semantic quartet does not strike the right
note. Just to be clear: I am not suggesting that this approach to semantics doesn’t account well
for the success of any linguistic practice. It does, especially in natural language, and fragments
of formal languages in which classificatory concepts are emphasized.

The phrase ‘classificatory concept’ is borrowed from Carnap (1966), where classificatory con-
cepts are contrasted with comparative and quantitative concepts.1 Here are simple examples of
predicates or functors expressing each kind of concept: ‘x is a penguin’ (classificatory), ‘x is taller
than y’ (comparative), and ‘the height of x’ (quantitative). When suitable names are substituted
in for the variables in classificatory and comparative predicates, we get a sentence; however, this
is not the case for functors expressing quantitative concepts. Classificatory and comparative con-
cepts don’t usually admit of degrees, at least not in a straightforward manner, but quantitative
concepts do; for example, it is awkward to claim that Tweety is approximately a penguin, but it
is perfectly natural to claim that Tweety is approximately 3 feet tall. Moreover, though one can
use quantitative concepts to define classes of gizmos that we may or may not be ontologically
committed to, their main purpose is to serve as attributes of particular things. Accordingly, it
is natural to think about the semantics of classificatory and comparative concepts in terms of
strict truth conditions, but to think about the semantics of quantitative concepts in terms of
approximate truth conditions. Scientific discourse makes extensive use of each of the three kinds
of concepts, and quantitative concepts are predominant in applied mathematics. One would thus
expect philosophers of science to take the semantics of quantitative concepts very seriously.

Yet, philosophers often maintain that classificatory concepts have a fundamental role and
that other kinds of concepts are redundant devices. From this point of view, the other kinds
of concepts may be included in a symbolic language if one so desires, but nothing is thereby
gained. A standard example can be found in Quine (1986). In the second chapter, he lays
out a symbolic language that includes a stock of n-place predicates, negation, conjunction, the
existential quantifier, and nothing else. He then claims that names (singular terms) and functors
should be regarded as “omitted frills” (p. 25). As he explains, for a name such as a, a formula ϕ(a)
is equivalent to ∃x(x = a∧ϕ(x)); if we introduce in our symbolic language a predicate A(x) that is
to be interpreted as x = a, ϕ(a) is thus seen to be definitionally equivalent to ∃x(A(x)∧ϕ(x)), so
that we can dispense with the name a. If we insist on names picking out a unique object, we can
instead write A(x) ∧ ∀y(Ay → y = x). Similarly, functors such as + (addition) or τ(x) (perhaps
interpreted as the temperature of x) should be regarded as “convenient redundancies” (p. 26),

1A broader characterization of kinds of concepts has been developed as part of the so-called theory of mea-
surements, starting with works such as Scott and Suppes (1958); Suppes and Zinnes (1962).
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since a similar (but somewhat longer) chain of explicit definitions can be used to reduce them
to classificatory predicates. This amounts to assuming that all semantically important aspects
of scientific discourse can be understood by studying how such simplified languages relate to
relational structures (i.e., a domain together with a set of n-tuples to interpret each primitive
n-place predicate). Of course, if one endorses such a restriction, then matters of scientific success
will have to be explained in terms of relational model theory, at least to the extent that a semantic
account is sought. In this paper, I use the phrase ‘standard’ semantics’ to refer to this particular
style of semantics. The question is whether we should be confident that this paradigm extends
to accounting for the success of the linguistic practices that underly how applied mathematics
is used in scientific inquiry, especially as they relate to approximate truth. In what follows, I
examine examples suggesting that we should not be too confident that this will happen.

Yet, of course, it is undeniable that this approach to semantics does get something right. Two
aspects of this perspective are particularly important for the current discussion:

(a) There has to be some sort of “model-world alignment” (a turn of phrase borrowed from
Wilson (2017)) for success.

(b) The success of science supports some form of semantic realism (though not necessarily forms
of ontological or metaphysical realism focused on entities), in the sense that what successful
science takes to be approximately true usually actually is approximately true.

What is questionable in this perspective is that the correct things just pointed out are often
taken to be interchangeable with the following two points: (a’) There has to be “something true”
for success to obtain; (b’) referential semantics and approximation theory should harmonize.
The problem with (a) is that sentences and/or propositions are the bearers of truth. If there
is no expression that captures a function that would describe what the “something true” is,
then it would be misleading to suggest that the model-world alignment has to do with truth
per se. This fact is well-known to working mathematicians, e.g., when they claim that a given
problem has no algebraic, closed-form, or analytic solution(s). The way in which it intervenes
in mathematical modelling was discussed by Fillion and Bangu (2015). Of course, the situation
is even worse when we restrict ourselves to a restricted language along the lines of what was
said above. Accordingly, the conditions for model-world alignment may not be expressible or
efficiently identifiable, in which case the model-world alignment would be misleadingly described
by saying that there is something true about the model. As far as the second item is concerned,
even if we accept the claim that science is for the most part true or approximately true, it does
not follow that we are committed to the entities that it talks about. This would perhaps be the
case if the semantics of truth and approximate truth had essentially the same modus operandi,
but in what follows I suggest that this is not the case.

I will provide an extensive discussion of the way in which approximate truth functions in the
next sections, but let us begin with a very basic example that already suggests that changes to
the “standard” semantic perspective are in order. Despite its simplicity and “toy” character,
it already provides some grounds for doubting two common implicit assumptions made about
approximate truth:

1. Truth-preserving inferences preserve approximate truth.

2. Two propositions with the same truth-conditions have the same approximate-truth-conditions.

To see why this may be problematic, take the following two simple equations:

f(x) = x(
√
x+ 1−

√
x) g(x) =

x√
x+ 1 +

√
x
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It is easy enough to see that f(x) and g(x) are equal for all values of x, so that the functions
f and g are identical. Accordingly, we can substitute g for f (or f for g) in any extensional
proposition (i.e., a proposition not containing opaque contexts) salva veritate. However, if we
perform arithmetic operations in significant-figures arithmetic (as we learn in school), or any
other finite-precision arithmetic (as we do in computer simulations), things change. It might
be that for some readers, the idea behind significant-figures arithmetic has long been forgotten;
fortunately, the idea is easily seen from a Bazooka Joe bubble gum joke. For the younger readers,
each individually packaged bubble gum contained a joke, and few of them were actually funny.
However, one captured the core idea behind significant-figures arithmetic quite well. In the joke,
Bazooka Joe is showing a friend a fossilized bone at a museum. The friend asks how old it is and
Bazooka Joe replies that it is one hundred million and three years old. “How do you know that?”
asks the friend. Bazooka Joe then replied: “The museum expert told me it was a hundred million
years old and that was three years ago.” The point is, of course, that one hundred million was
not known to such precision as to meaningfully be added three. In significant-figures arithmetic,
0.1 · 107 + 3 = 0.1 · 107. For the above example with x = 5.000 · 102 (i.e., 4 significant figures),
we have:

f(500) = 10.00 and g(500) = 11.18

If both the value of the argument and the arithmetical operations were exact, we would have
instead the value 11.17476 · · · . In general, finite-precision arithmetic fails to satisfy all the arith-
metical principles that we usually assume in exact arithmetic, such as associativity, distributivity,
cancellability, etc, applied to complex terms.2 Finite-precision arithmetic is a good first example
since, just as is the case with scientific modelling broadly construed, the source of inexactness
may vary depending on context, but it will never completely go away. Indeed, when applied
mathematicians develop models of complex real-world situations and try to solve them to answer
questions about the system’s behaviour of interest, success usually consists in balancing (1) the
accuracy and completeness of modelling assumptions with (2) tractability of model equations
and experimental limitations (see Fillion, 2016, for a discussion of this tradeoff). It thus appears
doubtful that a semantical framework designed to assess whether sentences or propositions are
strictly true or false will suffice to account for the role of approximate truth in science.

If this is so, then, our main problem—of explaining the success of science via a semantic
characterization of representation and inference—returns with full force. As suggested earlier,
addressing this problem will require that we instead focus on more nuanced forms of semantics.
To do so, as we consider a given proposition P , either on its own or in relation to a premise-set
Σ, it will be important to distinguish three main types of questions:

� Is P true? In what models? Does P follow from Σ?

� How probable is P given Σ? How confident am I in P?

� What are the consequences of varying parameters in P , or what are the consequences of
varying parameters in Σ for P?

2For readers interested in the technical details, here is how it might go. In this example, we first consider
the complete ordered field 〈R,+,×, <〉 as our reference mathematical structure and construct from it a structure
〈R,⊕,⊗, <〉, where ⊕ satisfies the rules of significant-figures addition and ⊗ the rules of significant-figures mul-
tiplication. Up to the standard of accuracy typically employed in significant-figures arithmetic, the field axioms
for ⊕ and ⊗ will be approximately satisfied. Thus, in the sense of ‘approximation’ relevant to this example, the
structure we have constructed approximates the first. However, the important point is that it will not be true of all
terms that are substitutable salva veritate in the real-number structure that they will substitutable salva veritate
approximata. I am not being too rigorous since it is a toy example; an example with floating-point arithmetic and
computing polynomials in different bases would be more typical of the rigorous treatment that we would find in
numerical analysis.
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Somewhat oversimplifying things, we can associate the first type of questions with logic (especially
as it is considered from the limited model-theoretic point of view described above), the second
type of questions with probability theory, and the third kind of questions with perturbation
theory. For this reason, I think of them as the three pillars of scientific rationality, and suggest
that each of them plays a fundamental role in describing what the success of science rests on.
From this point of view, the claim I advance is that the right tools to account for the fact that
science can prosper despite being pervaded with error and uncertainty are those that can be
extracted from perturbation theory. As such, it will be recognized to be as fundamental as
the other two, despite the fact that they are better known to philosophers of science. In that
sense, perturbation-type concepts will be seen to have a philosophical role as fundamental as
others that are more readily recognized as such, e.g., truth (satisfaction), validity, probability,
etc. The objective is thus to develop a more cohesive story about how applied mathematical
reasoning fits within a broader set of good descriptive and inferential practices, and emphasize
the commonalities and differences in themes that can be found with other discussions of sound
scientific reasoning.

2 Perturbative reasoning as a third methodological pillar

Perturbation theory is a branch of applied mathematics that is typically thought of as providing
the tools to find approximate solutions to potentially complex problems encountered in real-
world applications. It certainly does that, but I suggest that it does much more: perturbative
reasoning constitutes a third, largely independent pillar of scientific rationality—alongside logical
and probabilistic reasoning—that essentially captures how to proficiently think like an applied
mathematician. As such, perturbation theory is not only the workhorse of applied mathematics,
but also its soul.

It is important to emphasize that, despite the fact that the word ‘theory’ is in the name,
perturbation theory is not itself a theory, in the sense that it does not have its own axioms,
postulates, or domain. As such, it differs from mathematical theories such as Euclidean geometry,
Dedekind-Peano arithmetic, or Zermelo-Frankel set theory; the difference is similar to the one
between model theory and particular theories, possibly given axiomatization in some symbolic
language. Rather, it is a fairly large collection of methods designed to approximately characterize
functions (including constants) in various mathematical contexts. Thus, perturbation theory is
tailor-made to examine quantitative concepts when inexact representations and inferences are in
order.

In this comprehensive sense, perturbation theory does not study valid or inductively strong
inferences in logical or probabilistic terms, but rather essential strategies to manage error and un-
certainty. It plays an enormous role in science, and yet it has received surprisingly little attention
from philosophers of science and scholars writing on scientific methodology in other disciplines.
Understanding how error and uncertainty operate requires that we answer questions of this type:
if intervening (strictly causal or otherwise) factors were slightly changed or if parameters were
tweaked in various ways, what impact would it have on the accuracy of our description of a sys-
tem’s behaviour of interest? A distinctive aspect of the methods of perturbation theory is that
they are essentially developed to determine the circumstances in which arguments with strictly
false premises (i.e., non-true premises, which may be more or less approximately true) lead to
accurate conclusions. In this way, perturbation methods crucially give us the resources we need
to learn how to live with falsehood in science.

Though it is rare that applied mathematicians explain the fundamental conceptual under-
pinnings of perturbation methods, the literature on the topic is extremely vast: ‘perturbation
theory OR perturbation method’ gets approximately 2.7 million hits on Google Scholar (not far
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behind the 4.3 million hits for ‘probability theory OR probabilistic method’), and Google Books
lists approximately 35,000 books with ‘Perturbation’ and one or more of ‘theory,’ ‘methods’ or
‘techniques’ in the title. There is no doubt that this set of methods occupies a central place in
modern scientific research, and yet this mode of reasoning has not yet permeated general scientific
education. One reason behind this neglect is that perturbative reasoning is typically only intro-
duced in the mathematical curriculum at a relatively late stage of scientific education; it is rarely
if ever included in the lower-division college and university curriculum, and it is typical that
only upper-year applied mathematics and physics students are formally exposed to perturbation
theory (the latter group in relation to quantum mechanics and astronomy). As a result, it is not
particularly widely known even among science students and science teachers. Its knowledge is
unquestionably more widespread among research scientists, but even then its acknowledgement
as a core element of scientific methodology has no common measure with logic and probability
theory.

This lack of recognition as a core component of scientific methodology is partly due to the fact
that no systematic metacognitive vocabulary has been developed to assist practitioners, in a way
that compares to logical and probabilistic thinking. Given the environment and context in which
the theory is first encountered, it is typically introduced as a purely mathematical technique
for extracting approximate solutions, without much regard for the more philosophical side of the
concepts and methods that are introduced. In contrast, from their early introduction, logical and
probabilistic concepts are usually situated in a much broader context of reasoning practices, and
therefore their enormously significant epistemological role is more easily appreciated. Yet, for the
sake of the argument, imagine how different the situation would be if students were first exposed
to the concepts and methods of logic in a course on model theory, or if they were first exposed
to the concepts and methods of probability theory in a course on arbitrary fields of sets with
normalized measures of the desired sort. It is at least possible, and arguably highly probable,
that people instructed along those lines would not distinctly recognize the core significance of the
concepts and methods of logic for rationally justifiable scientific judgement and reasoning, e.g., as
it pertains to the broader practice of argumentation, conceptual analysis, calibrating plausibility
judgements, and inductive inference. Nevertheless, we hope that no competent philosopher would
doubt that those two mathematical theories indeed have the alleged significance, when properly
contextualized. My contention is that the same is true of perturbation theory, and this paper
will make some steps toward articulating the objectives, core concepts, and context associated
with perturbative reasoning along the lines of what is typically done for logic and probability
theory.

One might object that, since perturbation theory is a mathematical theory that is itself
grounded in logic, its concepts and methods can’t possibly be as fundamental as those of logic.
Indeed, they would be in some (literal or looser) sense reducible. Yet, the same could be said of
probability theory, and it is nonetheless widely acknowledged that probabilistic reasoning is its
own thing, above and beyond strictly logical reasoning. That is, we characterize and individuate
this group of concepts and methods in term of their role (or function) in general argumentative
practice, instead of what they may or may not reduce to. I propose that we do the same for
perturbation theory. This approach will be philosophically beneficial, as it provides guidance
concerning how we can adequately rationally reconstruct key aspects of scientific practice, such
as representing, inferring, conjecturing, explaining, idealizing, and perhaps even more metaphys-
ically esoteric activities such as grounding. Rationally reconstructing practices associated with
each type of activity will consist in providing reasons for their success, which will consist in
providing cogent arguments that will draw from concepts associated with each of the pillars of
scientific rationality.

In philosophy, we are used to talking about the cogency of arguments. We do it so much that
for many types of argument we have ready-made spiels about what makes arguments of these

8



types good or bad, as the case may be. Nevertheless, for many kinds of arguments, our ready-
made spiels will not suffice. Indeed, the temptation of extending them without modification
would prove positively harmful. For example, in inquiry, we often justify our belief in the truth
of a proposition by making it the conclusion of an argument with true premises that jointly
entail the conclusion. This is our deductive logic spiel. This spiel deploys a set of concepts to
characterize which arguments of the kind true→ true (henceforth, > → >) are good. We have
identified a set of conditions that are sufficient to justify our belief in the conclusion of arguments
with true premises. It is not my intent to recapitulate this well-known spiel here; see Corcoran
(1989) for a clear and lucid account. But few believe this is the only good type of argumentative
strategy deployed to justify the various activities that we find in scientific practice. Indeed, we
can often only say that the premises are probably true, or that the premises make the conclusion
probable. This is why we also have the inductive logic spiel that relies on probabilistic concepts.
Let ‘probably true’ be represented as the type of premise-set or conclusion >% for short. We try
to find conditions that make arguments, typically of types > → >% and >%→ >%, good, i.e.,
conditions sufficient for justifiably claim that we have reached the right conclusions. Of course,
in the case of inductive arguments of a probabilistic nature, the argument’s strength is more
difficult to characterize, as it may depend on the content of the propositions, on context, on the
availability of evidence that is part of the so-called total evidence, etc. Nonetheless, both are
fairly well understood as familiar truth-conducive inferential practices (see Norton, 2005, for a
good survey of both non-probabilistic and probabilistic spiels on induction).

Now, in light of the brute fact about science emphasized above, we should have a standard
story to tell about arguments with premises that are thought not to be strictly or probably
true. It is natural enough to first turn to a case that is usually assumed to be fairly common in
science: approximate truth. In applied mathematics and science more generally, this concept is
usually known as ‘accuracy’ (not to be confused with precision). Likewise, as we have seen, the
concept plays an important role in many philosophical discussions. Even in common parlance,
various manners of speech such as “as a first-order approximation . . . ” reveal thinking in terms
of approximate truth. If we denote approximately true propositions by >≈, and combine it
with previously identified semantic types, then we can generate combinations corresponding to
many kinds of arguments that are quite common, in addition to the ones already identified,
e.g., > → >≈, >≈ → >≈, >≈ → >, >% → >≈, etc. One could even consider more complex
combinations, such as Valiant’s idea of “probably approximately correct” (perhaps denoted >≈%)
(Valiant, 2013). Philosophers have also considered intriguing combinations, e.g., Barrett’s notion
of “local probable approximate truth” for theory change (Barrett, 2008).

Looking at reasoning from this comprehensive point of view raises the following question for
each type of argument: What conditions are sufficient to justify our belief that we have reached
the right conclusion? Of course, prima facie, it seems that, for each type, the question will
call for a partially different answer, i.e., different criteria will be required to characterize good
arguments of each type. Moreover, if we consider an argument Σ/ϕ, which is just a set of premises
together with a conclusion, it is possible to regard the argument as a token of different types. For
instance, a given argument may be aptly judged to be bad if thought of as a deductive argument,
but the very same argument (same premises, same conclusion) may be aptly judged to be good if
thought of as an inductive argument. This simple observation is essential to explain the success of
scientific inferences: to explain that they are good, we must adequately identify what their type
is. This, in turn, indicates what semantical considerations are relevant and which are irrelevant
to the assessment of an argument. As a result, we see that it would be misguided to use a spiel
developed to assess arguments of type > → > (deductive logic) or of type >%→ >% (inductive
logic) to explain what is good about an argument of type >≈→ >≈. However, this is exactly
what perturbation theory can do for us.

To begin, let us consider what makes arguments involving approximate truth good, when
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they are. Take the type of argument > → >≈. Cases like this are as common as can be, includ-
ing classical approximation theory, and classical perspectives on numerical analysis (sometimes
known as forward-error analysis). A simple example of a good argument of this kind (more pre-
cisely, good in some contexts where this level of accuracy suffice) would be: the circle’s area is
10, so the length of its radius is 1.78. The condition that is here satisfied and making this a good
argument is based on the following principle: The smaller the difference ∆ with the “true value”
of the quantitative concept, the better the argument is. As is the case for logic and probability,
we can assess the quality of concrete arguments, but also the quality of argument schemata.
Consider the following schema: The circle’s area is A, so the length of its radius is L, such that L
is obtained by dividing A by 3.14, then subtracting 1.4, and finally rounding to two digits. The
above argument is seen to be an instance of this schema. And yet, this would be a rather awful
rule of inference. This determination is made by appealing to a condition along those lines: If, for
any contextually possible value of A, ∆ is within a contextually specified threshold τ of the “true
value” of the quantitative concept, the inference rule is good. Using this criterion, we would thus
be in a position to think of a good algorithm to find inexact solutions as a good inference rule.
However, the criterion provided is merely illustrative. For one thing, it is somewhat vague, and
secondly, it could be modified in a number of ways to get other plausible candidate criteria. For
instance, we may want to “satisfice” instead of optimizing, we may want to have variable rules
that can reach accuracy to within any τ (e.g., convergent iterative methods), or we may want to
generalize “contextually possible value” to “any value that the quantitative concept can take.”
That there are such reasonable variations suggests that the goodness of an inference or rule of
that kind depends on the intended use. Moreover, we often don’t seek to approximate a constant,
but instead a function. A typical example is the approximation of an unknown function by a
polynomial function, as for instance happens when we use the perturbation-theoretic method of
series solutions to differential equations (though, of course, the method is not limited to polyno-
mial approximations). In such cases, the given premises are an initial condition x(0) = x0 and
a differential equation dt/dt = f(t, x), and the conclusion is a polynomial function x̂(t) that, if
things go well, will be a good approximation of the exact solution. It is also typical to relativize
one’s judgement of whether the function x(t) is indeed a good approximation to a given interval
of time (e.g., in the transient period, asymptotically, etc.), or to a given region in the phase
space, or to a scale. The phrase ‘local validity ’ is often used to describe such constraints. The
considerations just mentioned stand in sharp contrast with, say, the criteria used to assess the
goodness of arguments and rules in logic.

Arguments of the kind >≈ → >≈ are also quite common. They include so-called “back
of the envelope” calculations, calculation rules with significant figures, shadowing theorems in
dynamical systems theory, and more modern perspectives on numerical analysis, among other
things. First, the following warning must be kept in mind: one might think that truth-preserving
inferences also preserve approximate truth, but this is not in general the case. Some problems in
which we seek a solution to an equation constitute a simple counterexample to this thought. In
such a case, the equation and also perhaps some auxiliary assumptions characterizing the problem
are the premises, and the equation specifying the solution is the conclusion. For instance, consider
the differential equation x′(t) = cos(πxt), with x(0) = x0 being some specific value; those are the
two premises. The situation is depicted in figure 1 for a number of possible values of x0. Suppose
that x0 = 5. Then, the conclusion that validly follows is that x is the highest curve on the graph
(in dark blue). Similarly, for x0 = 3, x is the green curve and, for x0 = 2.75, x is the orange
curve (both close to the middle). As we see, if x0 were instead 2.5, there is a short interval when
the solution would not approximate the solution for x0 = 2.75 or x0 = 3. However, for t > 3,
saying that the solution corresponding to x0 = 2.5 is the orange curve would be approximately
true in the relevant sense. But we see that there is no interval for which it would be correct to
say the same of the green curve. In fact, there is a bifurcation point between 2.75 and 3 where
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Figure 1: An example that can be used to falsify the suggestion that truth-preserving inferences
preserve approximate truth.

the behaviour of the solutions changes significantly. No matter how close to the truth our claim
about x0 is, if it were to cross that point, the resulting solution would not be approximately true.
As we see from this example, truth-preservation is neither necessary nor sufficient to determine
whether an argument of this type is good.

This type of counterexample also suggests that fuzzy logic will not be a particularly helpful
way of thinking about how approximate truth intervenes in scientific reasoning. There are, of
course, numerous approaches to fuzzy logic. Here, I am considering a simple account that works
as follows (see, e.g. Priest, 2008). The set of truth-values is [0, 1] ⊂ R, and furthermore:

� For a given threshold τ ∈ [0, 1], with [0, 1] ⊂ R, define the set of designated values Dτ =
{x : x ≥ τ} that are deemed sufficiently close to the truth.

� We say that the premise-set Σ τ -entails the conclusion ϕ, denoted Σ �τ ϕ iff for all v : L →
[0, 1], if v(σ) ∈ Dτ for all σ ∈ Σ, then v(ϕ) ∈ Dτ .

� Σ � ϕ iff Σ �τ ϕ for all τ .

Now, this logic wouldn’t get quite the right results in the example we discussed above. This
approach is not particularly helpful, due to the fact that it considers the propositions in the
premise-set in isolation, rather than considering the dynamical effect of all propositions in the
premise-set taken jointly. Other accounts of approximation that take descriptive claims separately
will face the same difficulty.

This is perhaps surprising, as this approach to fuzzy logic seems to capture the idea that
arguments of the kind >≈ → >≈ are good when the inference (or rule of inference) is not
making things worse than they already were in the premises. But this idea is expressed in a
rather crude form, and there are many technically more precise ways of refining it. Here are two
possibilities: Require

1. that the conclusion not fall below a threshold of degree of truth lower than that of the
worst premise (as in fuzzy logic).

2. that the conclusion given be as good as the premises warrant, given that they are themselves
not known exactly.
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This second approach significantly differs from the first, and is much more in line with successful
practices adopted by applied mathematicians, be it in computational mathematics, perturbation
theory per se, or modelling more broadly construed. The importance of this second point of view
has been highlighted in the philosophical literature on backward-error analysis (see, e.g., Fillion
and Corless, 2014; Fillion, 2017; Fillion and Moir, 2018), but I won’t go into this in this paper
since it has already been covered.

This discussion suggests that interesting considerations of this kind will also be useful in
assessing arguments of the form >≈→ >. Indeed, the concept of sensitivity under perturbation is
dual to the concept of robustness under perturbation, in which case inaccuracies will be damped.
As a result, we often find arguments of this kind in the context of dynamically modelling long-
term (as opposed to transient), structural behaviour. Indeed, even if the characterization of the
dynamical behaviour of the system in the premises is not strictly true, we may reach strictly true
conclusions about the qualitative behaviour of the system. Thus, it is important to recognize a
type of truth-increasing inference as part of this inferential landscape.

3 Semantic Layering

As we have seen, to assess the types of arguments mentioned above, we have used a collection of
concepts that includes threshold (tolerance), sensitivity and robustness to perturbation (condi-
tioning), uncertainty and error in the modelling context, local validity of descriptions, etc. Each
of those concepts are part of the core methodology of perturbation theory, as opposed to concepts
that are part of the core of logic and probability. Importantly, classificatory concepts characteriz-
ing kinds of entities have not played any role. This is not a surprise, since classificatory concepts
apply in a binary manner (with the possible exception of some trickier vague concepts). The
semantical concepts discussed in this context will therefore have no straightforward implications
concerning kinds, natural or other; rather, they will provide us tools to effectively examine the
semantics used to approximately characterize quantitative concepts and how they apply to vari-
ous systems. In this section, I attempt to describe the different modus operandi that guides the
characterization and the application of those semantic concepts in terms of “semantic layering.”

I call the basic strategy deployed in perturbative reasoning ‘semantic layering’ based on a
common idiom used to describe a manner of clothing in places subject to weather with wildly
varying temperature: dressing like an onion. It seems that this idiom originates from Quebec
French, but it also has some currency in English. Dressing like an onion consists in wearing
multiple layers so as to be able to remove (or add) some as needed, e.g., following a temperature
change, exercise level, etc. This onion fashion stands in contrast with wearing the perfect clothes
for a given situation (this particular jacket for this type of weather, this one type of boots for this
specific temperature range, etc.). When one dresses like an onion, one wears many multi-purpose
layers that are not tailor-made made for particular uses, and adjusts the number of layers worn on-
the-fly as conditions change. When one dresses like an onion, one is never perfectly comfortable,
but one is (almost) always pretty much alright.

Masters of the art of dressing like an onion do not simply wear multiple identical garments
atop one another. Instead, they wear different items of different thickness and warmth, usually
putting them on in some particularly appropriate order (no one in their right mind puts the third
sweater on top of the long coat). The same is the case in semantic layering: one most significant
layer will capture most of the relevant information, and the remaining layers will be organized
so that each layer is more informationally relevant than the subsequent ones (locally at least).
If the procedure is successful, then the first semantic layer will capture most of the information
that contributes to a first rough approximation, and then each subsequent layer will refine the
extent to which the description approximates the truth. For any given descriptive or inferential

12



situation, there will be multiple ways of constructing and superposing such layers; it might turn
out that some are successful, while others are not.

Short of a full-fledged technical characterization of what semantic layering is, let us instead
examine three simple examples that frequently arise in the context of mathematical modelling.
Each of the techniques is among the simplest used in perturbation theory, and each clearly
illustrates the core semantic contribution of perturbation theory which, as I argue, is the charac-
terization of quantitative concepts by semantic layering. The first has to do with organizing the
informational content of matrices in layers and drawing inferences from this information. This
is an important task and the procedure we will examine, known as the singular-value decompo-
sition, has multiple applications in numerical mathematics, image processing, causal modelling,
and statistics. Consider an m × n matrix A and an n × p matrix B (any m,n, p ∈ N will do).
When we are taught matrix multiplication in a first course on linear algebra, we are instructed
to think about the product A×B of two matrices as a matrix C with elements

cij =

p∑
k=1

aikbjk

Though this is what is customarily taken as the definition of matrix product, other perspectives
are frequently more beneficial. For the present purpose, it is beneficial to consider the outer
product view of matrix multiplication, which can be graphically represented as follows:

=A×B = + + +

From this point of view, instead of thinking about each entry in the matrix A × B as a sum of
products, we think of the entire product A×B as a sum of matrices of same dimension. In the
picture above, each term of the sum is the product of a column vector and a row vector, so that
each term is a matrix of A×B’s dimension (specifically, each is a rank-1 m× p matrix). Accord-
ingly, the matrix A × B is regarded as a superposition of matrices, each of which constituting
a layer of the information contained in A × B. So, products can be thought of as a superpo-
sition of layers; but this is also the case for matrices in general, whether they are written as a
product or not, since matrices can be decomposed (factored) into products. The singular-value
decomposition is one such procedure to decompose a matrix into a product of matrices that can
also be regarded as a superposition of layers. However, the nature of the product resulting from
the singular value decomposition has special features that gives rise to an especially valuable
layering. Without entering in the details, the singular value decomposition provides a way of
rewriting a matrix A as a product of three other matrices, UΣV T . The matrix Σ is diagonal,
and thus we can regard the matrix A as a weighted sequence of layers, where the weights are
non-increasing, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn:

A = σ1 + σ2 +σ3 + σ4

As we see, the first layer is the most significant, followed by the second (which is less significant
than the first, but more than the third), and so on. Accordingly, taking the first (or the first
few) layer(s) will give a rough approximation, which will be improved on as we add layers.

To see it at work, let’s turn our attention to image processing (and we’ll take a monochrome
image for simplicity). After all, a monochrome image is nothing but a matrix, each pixel being
characterized by a numerical entry in the matrix. Following the procedure that we have just
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rank=506, stored with 524800 numbers, use 200% of space

(a) Original (506 layers)

rank=250, stored with 256512 numbers, use 98% of space

(b) Top 50% layers (c) Bottom 90% layers

Figure 2: A good and a bad layering of information in a mandrill picture

rank=50, stored with 51712 numbers, use 20% of space

(a) Top 50 layers (≈ 10%)

rank=10, stored with 10752 numbers, use 4% of space

(b) Top 10 layers (≈ 2%)

rank=5, stored with 5632 numbers, use 2% of space

(c) Top 5 layers (≈ 1%)

Figure 3: The mandrill pictures constituted of few layers

discussed, we can decompose the information contained in an image into a series of layers that
are ordered in terms of the importance of their informational content. Consider the images of
mandrills in figure 2. The original image (a) is a 506×506-pixel image, and thus can naturally be
regarded as the sum of its 506 layers. Figure 2 shows two different layer-selections to exemplify
the importance of ordering the layers in order of the importance of the information they contain,
and to produce approximate representations on that basis. To begin with, in (b), half of the
layers have been discarded, retaining only the most significant half. As we see, there is barely a
visible difference between the two images. The image in (c) stands in sharp contrast with what
we have found in image (b). Here, many more layers have been retained. However, even if 90%
of the layers were retained, only the least significant ones were kept in. As a result, we can barely
recognize the original image. With some effort, we can recognize a face, but it would be difficult
to identify what animal is depicted. What has gone wrong? A bad layering method was used.
In this case, the method to produce the layers was good, but the layer-selection method was
bad. When carried out properly, this layering approach can produce stunning results. Figure 3
displays three more versions of the mandrill image, but this time only a very small number of
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layers was retained. As we see, the five most informationally significant layers produce a more
faithful representation of the mandrill than the representation obtained in figure 2(c) with 90%
of the layers.

The same linear algebraic idea is used in many other areas of applied mathematics. The
statistical method of principal component analysis is the exact same as the method described
above; however, in this case the matrix is constituted of data points rather than pixel-values.
As Mulaik (2009) shows, the various methods that fall under the umbrella of factor analysis can
be understood as variations on that scheme. For a different style of application, Corless and
Fillion (2013) show how the study of dynamical systems in terms of their so-called Lyapunov
exponents to determine whether they may exhibit chaos can also be regarded as a particular
case of time-dependent singular-value decomposition. This sort of application belongs to what is
known as perturbation theory for linear operators. Essentially the same methodology has been
employed by Iwasaki and Simon (1994) in an interesting study of the connections between causal
modelling and dynamical systems.3 Many more examples could be given; but it is enough to
show that this is a fundamental and versatile method of approximation in applied mathematics
grounded in a layering process.

One important worry relating to the style of semantic layering that has been described has to
do with (non)monotonicity. In classical logic, where the cogency of inferences is characterized in
terms of truth preservation, if an inference Σ/ψ is valid, so is any inference Σ∪{ϕ}/ψ, i.e., adding
a premise (or multiple premises) will not turn a valid inference into an invalid one. In context of
modelling, however, this is not the case. For a simple example, consider an argument in which the
premises state that two bodies with given masses, positions, and velocities exist, and that they
exert a gravitational attraction upon each other, as would be the case in a two-body problem.
From these premises, we could deduce an equation that would characterize the motion of the
two bodies over time. However, if another premise stating the existence of a third body were
added, then the original conclusion about the motion of the bodies would not follow anymore.
So, inferences drawn in modelling contexts don’t typically satisfy monotonicity. The importance
of this was highlighted by Hempel (1988) in a discussion of the fact that theoretical inferences in
science are always implicitly subject to provisoes. As he explains, a “proviso [. . . ] calls not for
epistemic but for ontic completeness: The specifics expressed by [the premise] must include not
all the information available at the time (information which may well include false items), but
rather all the factors present in the given case which, in fact, affect the outcome to be predicted by
the theoretical inference” (p. 241). In the case of arguments of type >≈ → >≈, it will typically
not be the case that such a requirement is met. In cases like the 2-body problem mentioned
above, the inexactness in the premises will be analysed as a perturbation of the dynamics of the
system. In some cases, the slightest inexact statement of the parameters, or any inaccuracy in
the statement of the proviso will spoil the inference.

Whether this is the case will depend on the sensitivity of the system under perturbation.
However, it is important to emphasize that often some features of a system are sensitive under
perturbation, while others are robust. The approximation will thus warrant an inference with
respect to the latter features, but not with respect to the former. Accordingly, the counterpart
to the notion of proviso whose importance Hempel emphasized for (classically valid) inferences
is the notion of sensitivity under perturbation for arguments involving approximate truth. Since
this notion is not one that is captured by the logical form of an inference, we should thus
not expect that correct inferences of the type >≈ → >≈ will be characterized in this formal
manner. Nevertheless, when the features of the system to which the layering method is applied
are right, then the inference will be monotonic, since the layers generated from the approximate
representation of the system will approximate those of the system itself.

3Thanks to Naftali Weinberger for pointing this out.
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Let us turn to other mathematically simple examples of perturbation methods that illustrate
semantic layering. Though I presented the matrix example first because it is a powerful illustra-
tion of the benefits of thinking in terms of layering, other methods are more widely associated
with perturbation theory. We can also appreciate their semantic contribution in terms of layer-
ing. The most typical and broadly used perturbation method would have to be that of infinite
asymptotic series. It must be pointed that this aspect of perturbation theory has received more
attention in the philosophical literature (e.g. Batterman, 2002, 2021; Wilson, 2006, 2017; Pin-
cock, 2012). In fact, this case is so strongly associated with perturbation methods that it is often
presumed that it is the only thing that perturbation theory is about; I started with the matrix
example to push back against this impression. Among the many asymptotic methods, by far the
most widely used is also in some sense the simplest, i.e., the well-known Taylor series method.
For example, consider the series solution to a differential equation dx/dt = f(x, t). Without
making any assumptions about the smoothness of the solution (which would be an issue if our
concern were the convergence of the series as the number of terms goes to infinity, which in this
context it is not), write its solution x(t) as an asymptotic power series about t0 as follows:

x(t) = x(t0) + x′(t0)(t− t0) +
x′′(t0)

2
(t− t0)2 +

x′′′(t0)

6
(t− t0)3 + · · ·

Each term in the Taylor series is a layer, and furthermore they are organized so that each term
is asymptotically dominating the next one (i.e., in the limit t → t0, the ratio formed by a term
in the denominator and a subsequent term in the numerator is 0). As is the singular value
decomposition example, we have a weighted sum of layers, each more important than the next
one (if things go well). Once again, generating such layers and organizing them in the way
prescribed creates an impression of monotonicity.

In this example, as opposed to the matrix example, the method is striking as the object we
decompose in layers is not known explicitly, but only implicitly via the premises that state a
differential equation. In this way, it is possible to find approximations to the unknown function
x(t) that takes the form of polynomials of given degrees. When the unknown function happens
to have nice smoothness properties, it will also be the case that the approximation will improve
as increasingly higher-degree polynomials are used to approximate the function. However, when
the function does not satisfy the right conditions, this will not be the case; we must then rest
satisfied with a rough approximation containing few layers, use a different layering method, or
repeat the method multiple times about different points. Each of the three options is powerful
and frequently encountered in applied mathematical reasoning. An example that many readers
will have encountered before is the use of marching methods to solve differential equations, the
most elementary of which being the so-called first-order forward Euler method presented in many
elementary calculus courses. In effect, such methods consist in using the Taylor series method
as layering method, and simply retaining the first two layers to generate a coarse approximation
valid on a possibly small region around the point of expansion. Then the coarse approximation
is used to make a time step, and the position resulting from this step is used as a data point
to repeat the same procedure. In this way, we have an iterative method to follow a trajectory
that is approximately tangent to a vector field (see figure 4). As we see, we obtain a better
approximation when small steps are taken, so that the procedure is repeated more often. That is
because all such layered approximations are usually only locally valid. Of course, this is only the
beginning of the story of marching methods, and much more information can be found in Corless
and Fillion (2013). Similar procedures are also common to solve systems of differential equations,
in which case the matrix methods and the series methods of layering are usually combined.

Most real-world problems are not limited to characterizing and studying processes that are
described by univariate functions. As we learn by examining the practice of applied mathemati-
cians, the same kind of semantic idea can be deployed to generate and assess descriptions that

16



0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

x
(
t
)

t

 

 

h=1

h=0.5

h=.1

Exact solution

Figure 4: The simplest marching method: the fixed-step Euler method

involve multivariate functions f(x1, x2, . . . , xn). There is a direct counterpart of the Taylor series
methods for multivariate functions; it looks a bit messier, but it is conceptually as simple as the
former case, once a few technical complications have been dealt with. Once again, this method
represents f(x1, x2, . . . , xn) as an infinite superposition of layers that creates an impression of
monotonicity, but this time we use multivariate gauge functions in our asymptotic series.

Again, let’s examine a simple application; it could easily come from problems in structural
engineering, geology, medical imaging, or computational mechanics. Figure 5 shows a surface on
which points have been sampled. The function exactly characterizing this surface may be quite
complicated, to a point where the processes happening on this surface may be either practically or
theoretically intractable. In such cases, it is common to sample points on this surface (here, the
red dots), and reconstruct a simpler surface that hopefully approximates the first one while being
more manageable. The approximate surface in question will be the result of pasting together
the local approximations that hold on each square of the grid. This is a common procedure that
forms the basis of the finite element methods to solve partial differential equations (for a more
extended discussion, see Fillion and Corless, 2019). In applications, it will also often be the case
that the original surface is not known, but that the sample points are known. This would be the
situation if we had data gathered from a geological survey of a mountain, from which we would
attempt to construct a function describing the surface of the mountain, which could be useful to
examine hydrological features of the region. In both cases, the procedure will be the same. It
will consist is constructing a locally valid multivariate function based on the coordinates of the
sampled points that bound each sub-region; in simple cases, multivariate Taylor polynomials will
be used. Accordingly, each local approximate representation of the surface will itself be composed
of a superposition of layers, which will be assembled in the manner of a quilt. Depending on the
number of layers, the resulting assemblage will vary in quality. Figure 6 displays two cases, where
part (b) has more layers than part (a). The main difference is easy to see: it occurs at the borders
between sub-regions, where the pieces are assembled. In part (a), we observe discontinuities at
the joints, which is an artefact of our layering procedure. Indeed, no such discontinuities are
on the original surface; and even if we have only sample points and the surface were unknown,
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Figure 5: A surface to approximate

we would not expect the surface that we are attempting to characterize to have this property
(except at specific locations). In dynamical applications, this would be quite damaging to our
understanding of the situation, since this inaccuracy would amount to violations of the boundary
conditions. As a result, for such applications, it would be crucial to prefer the surface presented
in part (b). It is not our purpose to review the extremely important and underappreciated role of
boundary conditions here; two excellent recent philosophical discussions of this topic can be found
in Woodward and Wilson (2019) and Bursten (2020). We mention the difficulty to highlight the
fact that an insufficient number of layers may negatively affect the quality of the approximation
in undermining its ability to capture the structural features of the system. This can sometimes,
but not always, be overcome by adding additional layers, but it comes at a computationally
prohibitive cost.

4 Conclusion

This paper has presented a sketch of an idea; it is only a sketch, owing to the difficulty of the
problem that was addressed. The problem is that, though it seems that much of the success of
scientific inquiry requires a thorough understanding of the semantics of approximate truth to be
rationally explained, we are nowhere near having a satisfactory characterization of how such a
semantics operates. Even worst, little attention is being paid to determining the kinds of concepts
that are required to assess inferences involving approximate truth, and how they resemble and
differ from those used to characterize good logical or probabilistic inferences. After observing
that truth-conditions and approximate-truth-conditions may importantly differ, and that truth-
preserving inferences may not preserve approximate truth, it become clear that the semantic
characterization of the way in which quantitative concepts are applied in science deserves special
attention. Accordingly, despite many philosophers’ inclination to treat model-theoretic consider-
ations that focus on the interpretation of classificatory concepts in terms of relational structures
as fundamental, we saw that such concepts take the back seat when it comes to the semantics
of approximate truth. So, instead of referring to individuals and assigning (relational or non-
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(a) Bilinear interpolation (b) Quadratic interpolation

Figure 6: Coarser and smoother interpolation of surfaces

relational) properties to them, the essential part of the work was seen to consist in constructing
approximate representations for operators associated with the quantitative concepts character-
izing the systems studied by scientists. Philosophers expressing a “deep respect for scientific
methodology” thus need to shift emphasis in order to explain the success of the mathematical
sciences.

The suggestion was made that the kind of methodology needed to address the situation will
be better thought of as being essentially similar to that of perturbation theory, understood quite
broadly. From this point of view, the effectiveness of the language of applied mathematics in
science is not a surprise, for it is a language tailor-made to discuss matters of approximation.
Which the rich vocabulary and methods that this branch of mathematics makes available, we
can efficiently develop approximate representations of systems on the basis of what is known
about them, even in contexts where there is substantial uncertainty. As was pointed out, it is
true that perturbation theory may at first appear to be a collection of vaguely related methods
that at best share a family resemblance. However, by focusing on a few simple paradigmatic
methods, it was argued that the notion of semantic layering captures the core strategy deployed in
perturbation theory, thus providing a useful point of view from which its systematic contribution
to semantics can be better appreciated. One can thus understand the rational basis underpinning
successful applied mathematical practices by focusing on the way in which layers are constructed
and superposed to capture the dominant features of various systems. The success of a layering
method in turns relies on paying careful attention to the relative importance of the layers, and
to the sensitivity or robustness of the system thus described under perturbation. Therefore, it is
hoped that the paper has done enough to suggest that semantic layering is indeed a notion that
represents a good basis for further work on the semantics of approximate truth.

The project outlined in this paper opens the door to many interesting questions. Firstly, I
have focused on elementary perturbation methods that are exemplifying semantic layering in a
rather straightforward manner. However, this only skims the surface. Most perturbation meth-
ods are more technically and conceptually intricate, e.g., methods that focus on scaling and
multiscaling, renormalization, boundary layers, global structural properties, asymptotic match-
ing, averaging, etc. Such methods would offer an opportunity to enrich the characterization of
semantic layering provided here, and would also likely necessitate that we characterize other se-
mantic strategies that are at play. Secondly, this paper has briefly sketched how the semantics of
quantitative concepts differs when approximation is involved, in order to enable a more compre-
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hensive philosophical study of representation and inference. Traditionally, this was the domain
of philosophical logic, but emphasizing the multiplicity of types of arguments with distinct modi
operandi calls for a broader discussion that is more representative of current scientific practices.
Thirdly, though I have focused on a threefold distinction between kinds of concepts, it is well-
known from measurement theory that a more fine-grained picture is needed to fully accommodate
the diversity of concepts that play a role in science. Finally, a number of widely discussed topics
in philosophy of science (e.g., realism, scientific representation, inference to the best explanation,
idealization) could benefit from a more realistic appraisal along the lines outlined here. This is
not to deny the value of the work that has been done so far. However, by taking equally seriously
the semantics of all kinds of concepts, we can hope that a more coherent picture of science will
emerge from the recent trends in the philosophy of science literature.
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