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Abstract

Philosophically, one of the most important questions in the enterprise termed
confirmation theory is this: Why should one stick to well confirmed theories rather
than to any other theories? This paper discusses the answers to this question one
gets from absolute and incremental Bayesian confirmation theory. According to
absolute confirmation, one should accept “absolutely well confirmed” theories,
because absolute confirmation takes one to true theories. An examination of two
popular measures of incremental confirmation suggests the view that one should
stick to incrementally well confirmed theories, because incremental confirmation
takes one to (the most) informative (among all) true theories. However, incre-
mental confirmation does not further this goal in general. I close by presenting
a necessary and sufficient condition for revealing the confirmational structure in
almost every world when presented separating data.
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1. Introduction

Philosophically, one of the most important questions in the enterprise traditionally
termed confirmation theory is this: Why should one stick to well confirmed the-
ories rather than to any other theories? In other and more mundane words: What
is the point of confirmation? In what follows I will examine whether and how
absolute and incremental Bayesian confirmation theory answer this question.

According to absolute Bayesian confirmation theory, an agent’sdegree of ab-
solute confirmationof some hypothesis or theoryH by a piece of evidenceE
relative to a body of background informationB equals the probability ofH given
E andB, Pr (H | E ∧B), wherePr : L → < is the agent’s actual degree of belief
function on some languageL (see section 2). According to incremental Bayesian
confirmation theory, an agent’sdegree of incremental confirmationof H by E
relative toB is measured by a relevance measure rPr based on the agent’s actual
degree of belief functionPr; i.e. a possibly partial function rPr : L×L×L → <
such that for allH, E, B ∈ L with Pr (E ∧B) > 0:

rPr (H, E, B)
>
=
<

0 ⇔ Pr (H | E ∧B)
>
=
<

Pr (H | B) .

2. The Point of Absolute Confirmation

The traditional answer to our question is something like this: Science aims at true
theories, and one should accept well confirmed theories, because confirmation
takes one to true theories. Indeed, if arriving at true theories is our (only) goal,
then there is a point to absolute confirmation. In the long run, absolute confirma-
tion almost surely takes one to true theories. This is the content of the following
theorem (Gaifman and Snir 1982, 507):

Theorem 1 (Gaifman and Snir) LetS = {Ai ∈ L : i = 0, 1, . . .} separateModL,
let Aω

i beAi if ω |= Ai and¬Ai otherwise, and let[B] (ω) be 1 ifω |= B and 0
otherwise. Then for everyB ∈ L,

Pr

(
B |

∧
0≤i<n

Aω
i

)
→ [B] (ω) almost everywhere asn →∞.
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Here is the relevant technical background.L is obtained from a first-order lan-
guage for arithmetic,L0, by adding finitely many “empirical” predicates and func-
tion symbols (whose interpretation is not fixed).L0 contains all numerals ‘1’,. . .
as individual constants; countably many individual variables ‘x1’, . . . taking val-
ues in the set of natural numbersN ; the common symbols ‘+’, ‘ ·’, and ‘=’ for
addition, multiplication, and identity, respectively; and the standard quantifiers
and connectives. In addition, there may be finitely many predicates and function
symbols denoting certain fixed relations overN . The set of well formed formulas
of L is denoted by ‘L’, which is also called a language.

A model ω for L consists of an interpretationϕ of the empirical symbols
which assigns everyk-ary predicate ‘P ’ a subsetϕ (‘P ’) ⊆ Nk, and everyk-ary
function symbol ‘f ’ a functionϕ (‘f ’) from Nk to N . The interpretation of the
symbols inL0 is the standard one and is kept the same in all models.ModL is the
set of all models forL. ‘ω |= A’ says that formulaA is true in modelω ∈ ModL.
A [x1, . . . , xk] is valid, |= A [x1, . . . , xk], iff ω |= A [n1/x1, . . . , nk/xk] for all
ω ∈ ModL and alln1, . . . , nk ∈ N . Here, ‘A [n1/x1, . . . , nk/xk]’ results from
‘A [x1, . . . , xk]’ by uniformously substituting ‘ni’ for ‘ xi’ in ‘ A’, 1 ≤ i ≤ k.
‘A [x1, . . . , xk]’ indicates that ‘x1’, . . ., ‘xk’ are the only variables occurring free
in ‘A’.

A functionPr : L → <≥0 is aprobability onL iff for all A, B ∈ L:

1. |= A ↔ B ⇒ Pr (A) = Pr (B)

2. |= A ⇒ Pr (A) = 1

3. |= ¬ (A ∧B) ⇒ Pr (A ∨B) = Pr (A) + Pr (B)

4. Pr (∃xA [x]) = sup {Pr (A [n1/x] ∨ . . . ∨ A [nk/x]) : n1, . . . , nk, k ∈ N}
The conditional probability ofA givenB, Pr (A | B), is defined as

5. Pr (A | B) = Pr (A ∧B) / Pr (B),

providedPr (B) > 0. Pr is regular iff the converese of 2. holds as well,

6. Pr (A) = 1 ⇒ |= A.

A set of sentencesS ⊆ L separatesa set of modelsX ⊆ ModL just in case for any
two distinctω1, ω2 ∈ X there is anA ∈ S such thatω1 |= A andω2 6|= A. The set
of all atomic empirical sentences separatesModL (Gaifman and Snir 1982, 507).1

However, absolute confirmation has long been abandoned in favour of incre-
mental confirmation. Is there another goal for incremental confirmation that is
different from arriving at true theories? If so, what is this goal?
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3. What Is the Point of Incremental Confirmation?

Two popular measures of incremental confirmation are the distance measured
(Earman 1992) and the Joyce-Christensen measures (Joyce 1999, Christensen
1999):

dPr (H, E, B) = Pr (H | E ∧B)− Pr (H | B) ,

sPr (H, E, B) = Pr (H | E ∧B)− Pr (H | ¬E ∧B) .

What do these measures measure? Reformulatingd ands shows thatd increases
with

• theplausibilityof H givenE andB, p = Pr (H | E ∧B), and

• the evidence neglecting or data independent semanticinformativenessof H
relative toB, i0 = Pr (¬H | B).

Similarly, s increases with

• the plausibility ofH givenE andB, p = Pr (H | E ∧B), and

• the evidence based or data dependent semantic informativeness ofH rela-
tive toE andB, i.e. the amount to whichH informs aboutE relative toB,
i1 = Pr (¬H | ¬E ∧B).

This is clearly seen by rewritingd ands as follows:

dPr (H, E, B) = Pr (H | E ∧B) + Pr (¬H | B)− 1,

sPr (H, E, B) = Pr (H | E ∧B) + Pr (¬H | ¬E ∧B)− 1.

p andi0 as well asp andi1 areconflictingin the sense thatp decreases, whereas
i0 andi1 increase with the logical strength of the hypothesis to be assessed. Sod
ands weigh between two conflicting aspects, viz. the plausibility and the infor-
mativeness of the hypothesis to be assessed.

In section 4 I will argue in more detail thati0 andi1 measure two different, but
equally sensible kinds of informativeness. Section 5 provides another argument
for the thesis that (i)d ands do nothing but weigh between the two conflicting
goals of plausibility and informativeness; (ii) that they are exactly alike in the way
they weigh between these two aspects; and (iii) that they differ from each other
just in the respect thatd is based on data independent informativeness whereass
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is based on informativeness about the data. All this suggests the following answer
to the question what goal incremental confirmation is supposed to further: Sci-
ence aims at informative true theories, and one should stick to incrementally well
confirmed theories, because incremental confirmation takes one to (the most) in-
formative (among all) true theories. However, as shown in section 6, incremental
confirmation does not further this goal in general. I close by giving a necessary
and sufficient condition for revealing the confirmational structure in almost every
world when presented separating data.

4. Measuring Semantic Information

In a subjective Bayesian framework it is clear thatp = Pr (H | E ∧B) measures
the plausibility of H in view of E and B. It is still rather obvious thati0 =
Pr (¬H | B) measures the data independent informativeness ofH relative toB.
i0 was already considered by Carnap and Bar-Hillel (1952), Bar-Hillel and Carnap
(1953), Hempel (1960, 1962), and Hintikka and Pietarinen (1966) (for the notion
of semantic information cf. Bar-Hillel 1952, 1955). The second measure that was
discussed in this connection is

i2 = − log2 Pr (H | B) = log2

1

Pr (H | B)
.

i2 is ordinally equivalent toi0, and so does not differ fromi0 in the respects of
interest for the present discussion.

It is less obvious thati1 = Pr (¬H | ¬E ∧B) measures how muchH in-
forms aboutthe dataE relative to backgroundB. Following the above mentioned
literature, one would expect something like2

i3 = Pr (¬H | E ∧B) ,

cont = Pr (E) · Pr (¬H | E ∧B) ,

inf = log2

1

Pr (H | E ∧B)
= − log2 Pr (H | E ∧B) .

As is often the case, a picture says more than a thousand words3:
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The background informationB determines the set of possibilities in the inquiry,
and thus is nothing but a restriction on the set of possible worlds over which
inquiry has to succeed (cf. Hendricks 2004).H is the hypothesis whose informa-
tiveness about the dataE is to be assessed (relative toB). Suppose you are asked
to strengthenH by deleting possibilities verifying it, that is, by shrinking the area
representingH. Would you not delete possibilities outsideE? After all, givenE,
those are exactly the possibilities known not to be the actual one, whereas those
possibilities insideE are still alive options. Indeed,i1 increases whenH shrinks
to H ′ as depicted in the second figure, because it measures how much of¬E is

occupied by¬H.
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As a consequence, the informationH provides aboutE is maximal ifH log-
ically impliesE (in this caseH is completely withinE, and so¬H covers all of
¬E). So according toi1, two hypotheses both logically implying all of the data –
say, a complete theory about the world, and a theory-like collection of the data –
carry the same maximal amount of information aboutE. In a sense, this is odd,
because one would like the complete theory to come out as more informative than
the theory-like collection of the data. This is whati0 yields. Fori0 it does not
matter which possibilities one deletes in strengtheningH (provided all possibili-
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ties have equal weight on the probability measurePr). i0 neglects whether they
are inside or outsideE. The other candidates for measuring semantic information
do rather poorly on this count: they require the deletion of the possibilities inside
E. (Another reason whyi3, cont, and inf seem to be inappropriate in the present
context is presented in the next section.)

The background informationB plays a role different from that of the evidence
E for i0 andi1, but not fori3, cont, or inf. Clearly, there is a difference between
data on the one hand and background assumptions on the other; and this differ-
ence should show up somewhere. Apart from the above mentioned point thatB
determines the set of possibilities over which inquiry has to succeed, whereasE
is gathered in order to indicate which of these possibilities is the actual one, there
is the following difference: Hypothese are supposed to inform about the world,
and hence also about the data, but they are usually not supposed to inform about
the background assumptions. (If one holds there should be no difference between
E andB as far as measuring information is concerned, then one can nevertheless
adopt the above measures by substitutingE ′ = E ∧ B andB′ = > for E andB,
respectively.)

In order to avoid that one has to take sides betweeni0 and i1 let us call a
possibly partial functioni = fi0,i1 : L × L × L → [0, 1] a strength indicator
(based oni0 andi1) if and only if f is non-decreasing in both and increasing in at
least one of its argumentsi0 andi1, andfi0,i1 = 1 for i0 = i1 = 1.

5. Expected Informativeness as One Way of Weighing

Having tried to make plausible thati0 andi1 measure informativenessper seand
informativeness about the data, respectively, let us now turn back to the distance
measured and the Joyce-Christensen measures. The two conflicting goals of
informativeness and plausibility are equally important ford ands – and they are
all what matters for them. Hence, other things being equal – these other things
being the probabilities (plausibility values) of the hypotheses given the dataE and
the background informationB – the overalld- or s-value of hypothesisH relative
to E andB is the greater, the higher the informativeness ofH (in the respective
sense).

Clearly, if one knows the truth values of the theories one is assessing, then
the plausibility of a theory’s being true is of no interest anymore. In this case all
what matters is how informative the theories are. Yet in general we do not know
these truth values. Hence we consider how plausible it is that they are true in the
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world we are in, and how informative they are (about this world). Then we form
their overall value by combining these two parameters in some suitable way. One
such way immediately suggests itself: assignH as its overall value itsexpected
informativeness:

E (i0) = Pr (¬H | B) · Pr (H | E ∧B)− Pr (¬¬H | B) · Pr (¬H | E ∧B) ,

E (i1) = Pr (¬H | ¬E ∧B) · Pr (H | E ∧B)−
−Pr (¬¬H | ¬E ∧B) · Pr (¬H | E ∧B) .

A little bit of reformulation shows that

E (i0) = dPr (H, E, B) and E (i1) = sPr (H, E, B) .

So once again,d ands are exactly alike in the way they combine or weigh between
informativeness and plausibility – which is to form the expected informativeness
(cf. Hintikka and Pietarinen 1966 and Levi 1961, 1963, but also Hempel 1960).
Their sole difference lies in the way they measure informativeness. In this sense,
part of the discussion about the right measure of incremental confirmation is a
discussion about the right measure of semantic information.

The measuresi3, cont, and inf do again poorly:

E (i3) = E (cont) = 0

and

E (inf)
>
=
<

0 ⇔ Pr (H | E ∧B)
>
=
<

Pr (¬H | E ∧B) .

Hence only inf gives a non-trivial answer, viz. to maximize probability. But then
we can simply stick to probabilities and need not employ inf.

6. Revealing the Confirmational Structure

The preceding suggests the following answer to the question what goal incremen-
tal confirmation is supposed to further: Science aims at informative truth, and one
should stick to incrementally well confirmed theories, because incremental confir-
mation takes one to (the most) informative (among all) true theories. The question
is, of course, whether and in what sense this holds true.
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When is one theory at least as informative as another? Well, if the first theory
logically implies the second one, then the first theory is at least as informative as
the second one. When else? In general, there is no further condition that applies
equally to all probability measuresPr. Just as the onlyPr-independent condition
for theoryH1 to be at least as probable as theoryH2 is thatH2 logically implies
H1, so the above is the onlyPr-independent condition forH1 to be at least as
informative asH2.

Hence, given a possible world (possibility, model)ω ∈ Mod (B), H1 is to be
preferred overH2 in ω if H1 is true inω, butH2 is false inω; or if H1 andH2 have
the same truth value inω, andH1 logically impliesH2 but H2 does not logically
imply H1. If H is logically true, thenH is preferred inω over anyH2 which is
false inω. On the other hand, any contingentH1 that is true inω is preferred over
H, because theseH1s are not only true inω; they are also more informative than
H. Similarly, if H is logically false, thenH is worse inω than any theory that
is true inω, but better than any theory that is false inω (because they are all less
informative thanH).

In this way each possible worldω induces a partial order among all theories4:
On the positive side one has all theories that are contingently true inω, and on
the negative side there are all theories that are contingently false inω. In be-
tween there are the logically determined theories. Among the true theories on the
positive side, the most informative, i.e. the complete theory aboutω, is on top,
followed by all true hypotheses it logically implies, partially ordered according to
the logical consequence relation. This order goes all the way down to the least
informative among all true theories, the tautology, which is placed at the bottom
of the positive side. On that same level is the most informative among all false
theories, the contradiction, followed by all contingently false hypotheses, again
partially ordered according to the logical consequence relation. Let us call this
partial orderthe confirmational structure ofω.

For a given possibilityω, we would like a functionf to stabilizeto the correct
answer in the sense thatf gets the confirmational structure ofω right after finitely
many steps (pieces of evidence fromω), and continues to do so forever without
necessarily halting (or giving any other sign that it has arrived at the true answer)
– cf. Kelly (1996). In general, stabilisation to the correct answer is a stronger
requirement than convergence to the correct answer. However, the Gaifman and
Snir convergence theorem actually gives rise to a measure 1 stabilisation result
(assign 1 toH if its probability exceeds.5, and 0 otherwise).

Let e0, . . . , en, . . . be a sequence of sentences all of which are true inω ∈
Mod (B). A possibly partial functionf : L × L × L → < reveals the confirma-
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tional structure ofω when presented(ei)i∈N iff for any contingentH1, H2 ∈ L,
and anyH ∈ L:

1. ω |= H1, ω 6|= H2 ⇒ ∃n∀m ≥ n: f (H1, Em, B) > 0 > f (H2, Em, B)

2.
ω |= H1, ω |= H2

H1 ` H2 6` H1
⇒ ∃n∀m ≥ n: f (H1, Em, B) > f (H2, Em, B) > 0

3.
ω 6|= H1, ω 6|= H2

H1 ` H2 6` H1
⇒ ∃n∀m ≥ n: 0 > f (H1, Em, B) > f (H2, Em, B)

4. |= H or |= ¬H ⇒ ∀m ≥ n : f (H, Em, B) = 0,

whereEm =
∧

0≤i<m ei. An immediate consequence of the Gaifman and Snir
convergence theorem is

Observation 1 For any regularPr on L and any{ei ∈ L : i ∈ N} separating
ModL there isX ⊆ ModL with Pr∗ (X) = 1 such that for allω ∈ X (and
hence for allω ∈ X ∩ Mod (B), for anyB ∈ L): dPr, sPr, andcPr reveal the
confirmational structure ofω when presented(eω

i )i∈N .

Pr∗ is the unique probability measure on the smallestσ-field A containing the
field {Mod (A) : A ∈ L} such thatPr (A) = Pr∗ (Mod (A)). c is the Carnap
measure (Carnap 1962),

cPr (H, E, B) = Pr (H ∧ E ∧B) · Pr (B)− Pr (H ∧B) · Pr (E ∧B) .

However, observation 1 does not extend to all relevance measures. The log-ratio
measurer (Milne 1996) and the log-likelihood ratio measurel (Fitelson 1999,
2001a, 2001b) do not reveal the confirmational structure of almost everyω ∈
ModL when presented separating data.

rPr (H, E, B) = log

[
Pr (H | E ∧B)

Pr (H | B)

]
,

lPr (H, E, B) = log

[
Pr (E | H ∧B)

Pr (E | ¬H ∧B)

]
.

Like all relevance measures,r andl separate contingently true from contingently
false theories. More precisely, for any regularPr on L, any {ei ∈ L : i ∈ N}
separatingModL, anyB ∈ L, anyω ∈ X ∩ Mod (B) (for someX ⊆ ModL
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with Pr∗ (X) = 1), and any two contingentH1, H2 ∈ L such thatω |= H1 and
ω 6|= H2 there existsn such that for allm ≥ n:

rPr (H1, E
ω
m, B) > 0 > rPr (H2, E

ω
m, B) , r = r, l,

whereEω
m =

∧
0≤i<m eω

i . However, althoughr does distinguish between informa-
tive and uninformative true theories, it does not distinguish between informative
and uninformative false theories.l performs even worse on this count, because
it neither distinguishes between informative and uninformative true theories nor
between informative and uninformative false theories.

Which conditions are sufficient for a function to reveal the confirmational
structure of almost every world when presented separating data? Letf = f (i, p)
be a function of, among others,p = Pr (H | E ∧B) and some strength indicator
i = fi0,i1 based oni0 = Pr (¬H | B) andi1 = Pr (¬H | ¬E ∧B). It is clearly
necessary thatf (1, 0) = f (0, 1) = 0. The reason is thatp = 0 andi = 1, if H is
logically false; andp = 1 andi = 0 if H is logically true – and in these casesH
must be sent to0, independently of what the data are.

1. Demarcation:f (1, 0) = f (0, 1) = 0.

In conjunction with Demarcation the following is sufficient:

4. Continuity: Any surplus in informativeness succeeds, if the difference in
plausibility is small enough.

∀ε > 0 ∃δε > 0 ∀s1, s2, t1, t2 ∈ [0, 1] :
s1 > s2 + ε & t1 > t2 − δε ⇒ f (s1, t1) > f (s2, t2) .

(Thesi are possible values ofi, and theti are possible values ofp.) Continuity in
this general form is not necessary. It suffices that Demarcation is conjoined with
Continuity in Certainty.

3. Continuity in Certainty: Any surplus in informativeness succeeds, if plau-
sibility becomes certainty.

∀ε > 0 ∀ti, t′i ∈ [0, 1] : ti, t
′
i →i

{
1
0

∃n∀m ≥ n ∀sm, s′m ∈ [0, 1] :

sm > s′m + ε ⇒ f (sm, tm) > f (s′m, t′m) .

Theorem 2 Let Pr be a regular probability onL, let {ei : i ∈ N} ⊆ L sepa-
rate ModL, let f be a function of, among others,i and p satisfying Continuity
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in Certainty and Demarcation, and letPr∗ be the unique probability measure on
the smallestσ-fieldA containing the field{Mod (A) : A ∈ L} such that for all
H ∈ L: Pr (H) = Pr∗ (Mod (H)), whereMod (A) = {ω ∈ ModL : ω |= A}.
Then there existsX ∈ A with Pr∗ (X) = 1 such that the following holds for every
ω ∈ X, any two contingentH1, H2 ∈ L, and everyH ∈ L:

1. ω |= H1, ω 6|= H2 ⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > 0 > f (H2, E

ω
m)

2. ω |= H1, H1 ` H2 6` H1 ⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > f (H2, E

ω
m) > 0

3. ω 6|= H2, H1 ` H2 6` H1 ⇒ ∃n∀m ≥ n : 0 > f (H1, E
ω
m) > f (H2, E

ω
m)

4. |= H or |= ¬H ⇒ ∀m : f (H, Eω
m) = 0.

However, even Continuity in Certainty is not necessary. The necessary and suf-
ficient condition for revealing the confirmational structure in almost every world
when presented separating data is this:

Definition 1 A possibly partial functionf : L×L×L → < is aGaifman and Snir
assessment functioniff for every probabilityPr on a Gaifman and Snir language
L (as described in section 2) and every{ei : i ∈ N} ⊆ L separatingModL there
is X ∈ A with Pr∗ (X) = 1 such that for allω ∈ X and allm ∈ N :

I.
H1 |= H2 6|= H1

Pr (H1 | Eω
m) →m

{
1
0

⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > f (H2, E

ω
m) .

II. |= H1, |= ¬H2, Pr (Eω
m) > 0 ⇒ f (H1, E

ω
m) = f (H2, E

ω
m) = 0.

Definition 2 Let Pr be a probability on a Gaifman and Snir languageL and let
{ei : i ∈ N} ⊆ L separateModL. A possibly partial functionf : L×L×L → <
reveals the confirmational structure ofPr∗-almost every worldω ∈ ModL when
presented separating(ei)i∈N iff there isX ∈ A with Pr∗ (X) = 1 such that for all
ω ∈ X, all contingentH1, H2 ∈ L, and allH ∈ L:

1. ω |= H1, ω 6|= H2 ⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > 0 > f (H2, E

ω
m) .

2. ω |= H1, H1 |= H2 6|= H1 ⇒ ∃n∀m ≥ n : f (H1, E
ω
m) > f (H2, E

ω
m) > 0.

3. ω 6|= H2, H1 |= H2 6|= H1 ⇒ ∃n∀m ≥ n : 0 > f (H1, E
ω
m) > f (H2, E

ω
m) .

4. |= H or |= ¬H ⇒ ∀m : f (H, Eω
m) = 0.
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f reveals the confirmational structure of almost every world when presented sep-
arating dataiff for any probabilityPr on a Gaifman and Snir languageL and any
{ei : i ∈ N} ⊆ L separatingModL: f reveals the true assessment structure of
Pr∗-almost every worldω ∈ ModL when presented separating(ei)i∈N .

Theorem 3 A possibly partial functionf : L × L × L → < reveals the confir-
mational structure of almost every world when presented separating data ifff is
a Gaifman and Snir assessment function.

One reason why I still opt for the more general Continuity condition is that it
depends on the underlying convergence theorem which conditions are necessary
and sufficient for revealing the confirmational structure in so and so many worlds
when presented such and such data. More importantly, in the context of theory
assessment (Huber 2005) the idea behind the use of these limit considerations is
that they provide a theoretical justification for adopting the proposed conditions
in the here an now. When assessing theories we cannot wait until we have arrived
at the point of stabilisation for these theories. In fact, in general we will not
know when we have reached that point. We need to make our evaluations here
and now, where the probability values are somewhere in between their maximal
and minimal values, and we have no idea in which direction they will eventually
converge (if they do so at all). Hence a theory of theory assessment needs to
answer the question what to do when facing such a situation. Continuity gives an
answer, but Continuity in Certainty does not. However, we also need to justify this
answer – and we do so by appealing to the fact that when we satisfy Continuity
in the special case when the probability values converge, we almost surely reveal
the confirmational structure. As we usually do not know whether our probabilities
have started to converge, we should always satisfy Continuity.

7. Conclusion

I started from the question: Why should one stick to well confirmed theories
rather than to any other theories? The answer we got from absolute Bayesian
confirmation theory is that one should stick to absolutely well confirmed theories,
because absolute confirmation almost surely takes one to true theories. I con-
tinued by looking for an answer from incremental Bayesian confirmation theory.
This answer should be different from the previous one in order for incremental
confirmation to improve on absolute confirmation.

14



It turned out that three popular measures of incremental confirmation, viz. the
distance measured, the Joyce-Christensen measures, and the Carnap measure
c, give an interesting answer: One should stick to incrementally well confirmed
theories, because incremental confirmation almost surely takes one to (the most)
informative (among all) true theories.

However, although all measures of incremental confirmation separate contin-
gently true from contingently false theories, not all of them distinguish between
informative and uninformative true and false theories. The log-ratio measurer
does not distinguish between informative and uninformative false theories, and
log-likelihood ratio measurel neither distinguishes between informative and un-
informative true nor between informative and uninformative false theories. A suf-
ficient condition for revealing the confirmational structure of almost every world
when presented separating data is the conjunction of Continuity and Demarcation,
the core principle of the plausibility-informativeness theory of theory assessment
(Huber 2005).

Notes
1 The Gaifman and Snir framework is not rich enough for proper theory assess-
ment. The reason is that the “theories” whose truth values one converges to by
conditioning on some separating set of data sentences are formulated within the
same “empirical” vocabulary as are the data sentences. So there is no room for
theoretical terms in the sense that the probability of a theory whose formulation
contains theoretical terms not occurring in any data sentence does not necessarily
converge to its truth value (inω) when one conditionalizes on these observational
data sentences (fromω).
2 In Levi (1967),i3 is proposed as, roughly, a measure for the relief from agnos-
ticism afforded by acceptingH as strongest relative to total evidenceE ∧ B. For
cont and inf the reader is referred to Hintikka and Pietarinen (1966).
3 I owe this graphical illustration to Luc Bovens.
4 Here and elsewhere one should, of course, speak of axiomatizations of theories.
I also ignore that for each sentence there are infinitely many distinct, but logically
equivalent sentences.
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