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1 Introduction

Predictive coding is a computational model of cognition. Like other computational

models, it attempts to explain human thought and behaviour in terms of compu-

tations performed by our brains. It diòers from more traditional approaches in at

least three respects. First, it aspires to be comprehensive: it aims to explain, not just

one domain of human cognition, but all of it – perception,motor control, decision

making, planning, reasoning, attention, and so on. Second, it aims to unify: rather
than explain cognition in terms ofmany diòerent kinds of computation, it explains

cognition by appeal to a single computation – one computational task and one

computational algorithm are claimed to underlie all aspects of cognition. hird, it

aims to be complete: it oòers not just part of the story about the computation, but

a model that stretches all the way from the details of neuromodulator release to

abstract principles of rational action governing whole agents.

his is exciting stuò, however understanding precisely what predictive coding says,

and whether it can achieve these ambitions, is not straightforward. For one thing,

the term ‘predictive coding’ means diòerent things to diòerent people. For another,

important features of the view, whatever its name, are liable to change or are under-

speciûed in important respects. In this article and the three that follow it,my aim is

to outline what predictive coding is, or aspires to be, and how it might fulûl these

ambitions.

I claim that predictive coding should be understood as a loose alliance of three

conceptually distinct claims. hese claims, each of which may be precisiûed or
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qualiûed in variety of ways, are made at Marr’s computational, algorithmic, and
implementation levels of description.¹ At Marr’s computational level, predictive

coding suggests that the task facing the brain in cognition is tominimise sensory pre-

diction error. At the algorithmic level, predictive coding suggests that the algorithm
by which our brains attempt to solve this task involves operation of a hierarchical

artiûcial neural network of prediction and error units. his network may, in a

further interpretative step, be understood as running a ‘message passing’ algorithm

for approximate Bayesian inference. At Marr’s implementation level, predictive

coding suggests that some of the physical resources that implement this algorithm

are located in the human neocortex: anatomically distinct areas in the neocortex

implement functionally distinct layers of the abstract hierarchical artiûcial neural

network and anatomically distinct cell populations inside each neocortical area

implement prediction and error units.

Each of these claims is likely to be qualiûed in certain respects or supplemented by

further details. Each needs to be statedmore precisely and ideally associated with a

quantitativemathematical formalisation. A path needs to be forged from the claims

to supporting empirical evidence. Finally, oneneeds to show that the resultantmodel

delivers the kinds of beneûts originally promised – a comprehensive, unifying, and

complete account of cognition. Diòerent researchers within the predictive coding

community have diòerent opinions about how to do all this, andmany of the details

are simply currently le� open. his means that the exact commitments of predictive

coding are, to put it mildly, contentious. For all these reasons, it is more accurate to

think of predictive coding as a research programme rather than as amature theory

that can be fully stated now. he aim of the research programme is to articulate

and defend some sophisticated (likely heavily modiûed, precisiûed) descendent of

the three claims above. As with any research programme, themerits of predictive

coding should be judged in the round and, to some degree, prospectively: not just

in terms of the raw predictive power and conûrmation of what it says now, but also

in terms of its potential future beneûts, and its ability to inspire and guide fruitful

future research.

Before saying what predictive coding is, it is helpful to ûrst say what it is not.

In this article, I outline ûve ideas that are o�en presented alongside predictive

coding, but which should be carefully distinguished from predictive coding. In the

three articles that follow, I focus on the positive content of the view. hese explore

predictive coding’s claims atMarr’s computational, algorithmic, and implementation

levels respectively (Sprevak, forthcoming[a]; Sprevak, forthcoming[b]; Sprevak,

forthcoming[c]). My strategy is to present what, in my opinion, are the ‘bare bones’

of the approach. As we will see, there aremany ways in which these basic ideas may

¹SeeMarr (1982), Ch. 1 for a description of these three levels.
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be subsequently elaborated and reûned. For readers new to this topic, I hope that

this will provide you with a scaòold on which to drape your future,more nuanced

understanding of the literature on predictive coding. Sometimes starting with a

basic sketch is the best way to convey what is going on in a complex scene.

In the remainder of this article, I focus on ûve ideas that feature prominently in

many expositions of predictive coding, but which are not predictive coding. he

ideas are: (i) the brain employs an eõcient coding scheme; (ii) cognition contains

many top-down, expectation-driven eòects; (iii) cognition involves minimising

prediction error; (iv) cognition is a form of probabilistic inference; (v) cognition

employs generativemodels. I argue that, while these ideas are used by predictive

coding, they do not re�ect what is unique about that research programme. hey

are shared by a wide variety of alternative computational approaches to cognition

that have little otherwise in common with predictive coding. If one wishes to know

what is special about predictive coding, then these ideas, whatever their value, can

function as a potential distractors. An important corollary is that empirical evidence

for predictive coding does not necessarily �ow from the empirical evidence that

supports thesemore general ideas. Empirical evidence for predictive coding should

aim to selectively support predictive coding with respect to plausible contemporary

rivals, not to conûrm ideas that are shared by awide variety of alternative approaches.

In both the present article and those that follow, I consider predictive coding only

as a proposedmodel of subpersonal cognitive processing. I do not examine how

predictive coding’s computational model might be adapted, extended, or otherwise

applied to describe personal-level thinking or conscious experience. Modelling

conscious experience with predictive coding is a relatively new development that

is gaining traction among philosophers. But it is a project that assumes we have a

prior understanding of what predictive coding’s computational model is. hat prior

question is the focus of this review.²

As alreadymentioned, some authors use the term ‘predictive coding’ to refer to only

one aspect of the view: for example, the ‘eõcient coding’ strategy of Section 2, or

the artiûcial neural network described in Sprevak (forthcoming[b]). Likewise, some

authors call the larger overarching research programme not ‘predictive coding’, but

‘predictive processing’, ‘prediction error minimisation’, or ‘free energy minimisation’.

In what follows, I choose to use the term ‘predictive coding’ to refer to the entire

research programme, and I disambiguate alternative usages along the way. Readers

should feel free to substitute alternative terms as they please.

²For examples of work that applies predictive coding’s computational model to personal-level

and conscious experience, see Clark (2019); Hohwy (2012); Kirchhoò and Kiverstein (2019); Seth

(2017).
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2 Eõcient neural coding

An important idea that predictive coding employs is that the brain’s coding scheme

for storing and transmitting sensory information is eõcient. Neural activity, or

rather certain aspects of it, should be seen through the lens of compressing inform-
ation (and information should be understood in terms of Shannon information

theory). To compress Shannon information, a system should aim to transmit only

what is ‘new’ or ‘unexpected’ or ‘unpredicted’ relative to its expectations. If the brain

embodies certain assumptions about its incoming sensory data, these could allow it

to predict certain ‘bits’ of that incoming sensory stream. his means that fewer bits

would need to be stored or transmitted inwards from the sensory periphery, yield-

ing a gain in eõciency in storing and transmitting sensory information from the

sensory organs to the rest of the brain. hemore accurately the brain’s assumptions

re�ect its incoming sensory stream, the less information would need to be stored or

transmitted inwards from the periphery. All that needs to be sent is the error with

respect to its predictions. he same idea underlies eõcient coding schemes used

on electronic computers for storing and transmitting images andmovies across the

Internet (e.g. JPEG or MPEG).

he notion that our brains use a coding scheme that is eõcient in this respect dates

back at least to the work of Attneave (1954) and Barlow (1961). hey argued that

the brain uses a compressing, ‘redundancy reducing’ code for sensory data partly

based on the grounds that neurons in the early visual system have very limited

physical dynamic range: the bits they store or transmit are precious and should

not be squandered.³ Predictive coding employs the same basic idea, but elevates

it to a universal design principle that governs all aspects of cognition and neural

functioning. According to predictive coding, the brain is ruled by a single imperative

– to maximally compress its incoming sensory stream. To this, predictive coding

adds a range of assumptions about (i) the particular algorithm and representational

scheme by which the incoming sensory signals are predicted and compressed; (ii)

how the assumptions used for sensory compression aremodiûed during learning;

(iii) where physically in the brain all this takes place.

he idea that brains code sensory information ‘eõciently’ is not unique to predictive

coding. For one thing, predictive coding has rather speciûc views about how its

sensory compression scheme operates – see (i)–(iii) above. For another, predictive

coding holds the rather extreme position that redundancy reduction for sensory

data is the brain’s only goal. As Barlow made clear in his later work, even if one

thinks that sensory compression is one thing the brain does, it is not obvious that it

³See Simoncelli and Olshausen (2001); Sterling and Laughlin (2015); Stone (2018) for reviews of

the contemporary literature on eõcient coding in the sensory system.
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is the only thing. In some circumstances, it may pay the brain not to compress:

he point Attneave and I failed to appreciate is that the best way to

code information depends enormously on the use that is to bemade

of it . . . if you simply want to transmit information to another location,

then redundancy-reducing codes economizing channel capacity are

what you need . . . But the brain is not just a communication system,

and we now need to survey cases where compression is not the best

way to exploit statistical structure. (Barlow, 2001, p. 246).

One can appreciate Barlow’s point by considering what is themost eõcient coding

scheme for image data on an electronic computer. What counts as themost eõcient

coding scheme depends, not just on how many bits one would save during storage

or transmission of the image, but also on what one wishes to do with the image

data. If all one wishes to do is transmit the image across a low-bandwidth channel

(e.g. a slow Internet connection), then compressing it using a scheme like JPEG

makes sense, since it reduces the amount of data you need to transport. Similarly,

if all one wishes is to store the image on a small hard drive, then JPEG may be a

good scheme, since it minimises how much storage would be used.4 However, if

you want to transform the image or perform an inference over it, then a scheme like

JPEG may not be the best or most eõcient coding system. Compressed data are

o�en harder to work with. If you ask your computer to rotate an image 23 degrees

clockwise, the computerwill generally not do thiswith the compressed data. Instead,

it will switch to an uncompressed version of the image (a two-dimensional array

of RGB values at X, Y pixel locations). Image processing algorithms deûned over

uncompressed data tend to be shorter, simpler, and faster than those over their

compressed counterparts.5 Uncompressed images have extra structure, and that

structure can make the job of an algorithm that operates on them easier, even if it

adds extra overhead to store or transmit.6

If the only costs that matter to the brain are the storage and transmission costs of

incoming sensory data, then it may make sense for the brain to exclusively aim

4Other coding schemes are better than JPEG at redundancy reduction. Wavelet-based codes

(Usevitch, 2001) and deep neural networks (Toderici et al., 2016) can both outperform it. Notably

however, these schemes tend to impose higher processing burdens during decoding for inference or

transformation of an image.

5his is an instance of amore general trade-oò in computer science between saving time and

space. Compressing data saves space, but generally has an adverse eòect on the time (computing

cycles) required to manipulate that data for many other tasks. You would have experienced this

trade-oò any time you waited for a ‘.zip’ archive to uncompress before being able to work on its

contents.

6A related point is that uncompressed data are more resistant to noise during storage and

transmission.
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to compress that incoming sensory data. However, if other considerations matter

– e.g. speed, simplicity, and ease in inference – then it may make sense to add or

preserve redundant structure in incoming sensory data.7 Optimising for redundancy

reduction of sensory data is not the only possible objective for an cognitive system

that seeks eõciency.

It is not uncommon for contemporary work on the ‘eõcient coding’ hypothesis in

computational cognitive science to acknowledge this point.8 Predictive coding has

rather strong and unusual views about this: it equates eõcient coding with sensory

redundancy reduction, it claims that the entire brain (not just certain areas in the

sensory cortex) is devoted to this sensory compression, and it claims that this is

accomplished by a speciûc algorithm and representational scheme. he basic idea

that one of the things that the brain does is sensory compression is, however, not

unique to predictive coding.

3 Top-down, expectation-driven eòects in perception

Top-down, expectation-driven eòects in perception are cases inwhichwhat an agent

‘thinks’ systematically aòects what they ‘perceive’. Top-down, expectation-driven

eòects are o�en presented as part and parcel of predictive coding. Predictive coding’s

model is thought to imply that human perception is fundamentally top-down or

expectation-laden: ‘What we perceive (or think we perceive) is heavily determined

by what we know’ (Clark, 2011). Experimental evidence for top-down, expectation-

driven eòects is sometimes presented as evidence that supports predictive coding.

he reasoning here appears to be that if predictive coding is true, then top-down,

expectation-driven eòects are to be expected; they can be predicted and explained in

terms of the two-way �ow of prediction and error signals inside predictive coding’s

computational model.9

However, the relationship between predictive coding and top-down, expectation-

driven eòects in perception is complex.

For one thing, top-down eòects are normally identiûed with a relationship between

an agent’s personal-level states: what an agent believes aòects their perceptual experi-
ence.¹0 Predictive coding is, at least in the ûrst instance, a claim about the agent’s

7Gardner-Medwin and Barlow (2001) list examples in which adding redundancy to sensory

signals increases the chances of fast and reliable inference over sensory data.

8For example, Simoncelli andOlshausen (2001) suggest that the details of the task a cognitive

system currently faces, and not themere imperative for redundancy reduction, should be considered

when calculating the eõciency of a coding scheme (p. 1210).

9For examples, see Clark (2013), p. 190; Lupyan (2015).

¹0SeeMacpherson (2012); Firestone and Scholl (2016).
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subpersonal computational processes. he ‘top’ and ‘bottom’ in predictive coding,

aswewill see, refer to subpersonal computational states. Predictive coding proposes

that ‘high-level’ neural representations (implemented deep in the cortical hierarchy)

have a ‘top-down’ in�uence on ‘low-level’ representations (implemented in the

early sensory system).¹¹ How this kind of subpersonal top-down eòect relates to

personal-level top-down eòects observed in psychology is presently unclear.

Plausibly, the existence of any personal-level top-down eòects requires some inform-

ation �ow at the subpersonal level from high-level cognitive centres to low-level

sensory systems. However, only a tiny fraction of the top-down subpersonal in-

formation processing posited by predictive coding is re�ected in the contents of

personal-level belief or perceptual experience. For predictive coding to say some-

thing speciûc about the existence or character of personal-level top-down eòects, it

would need to say which aspects of that subpersonal information �ow give rise to

which personal-level states (beliefs and perceptual contents). hese assumptions are

not currently to be found in predictive coding’s core computational model. Ideas

about these have been proposed, but exactly how subpersonal states in the compu-

tational model map onto personal-level beliefs and perceptual experiences remains

a highly speculativematter. Absent conûdence in such assumptions however, it is

simply unclear how predictive coding’s computational architecture bears, or if it

bears at all, on personal-level top-down eòects observed in perception.¹²

A separate issue complicating the relationship between predictive coding and top-

down eòects is that positing top-down subpersonal information �ow in a compu-

tational model is not a feature that is unique to predictive coding. Indeed, almost

any computational model of cognition will involve information �owing downwards

from high-level cognitive centres to low-level sensory systems. here is an obvious

need for top-down subpersonal in�uence to account for the action of endogenous

attention and to explain how and why certain sensory processes get suppressed

or enhanced based on the agent’s background knowledge and assumptions.¹³ A

further commonly cited consideration is the huge number of descending neural

¹¹Sprevak (forthcoming[b]), Section 3; Sprevak (forthcoming[c]), Section 2.

¹²SeeMacpherson (2017); Drayson (2017) for in-depth discussion of this line of argument. hey

suggest – for reasons similar to those indicated here – that predictive coding’s computational model

is compatible with no personal-level top-down eòects occurring at all.

¹³As IraHyman observes in his introduction to the reprinting of Neisser’s classic 1967 textbook:

‘Cognitive psychology has been and always will be an interaction of bottom-up and top-down

in�uences’ (Neisser, 2014, p. xvi). See Firestone and Scholl (2016), p. 14, where despite alternative

explanations being sought, attention is introduced as an unavoidable source of subpersonal top-

down in�uence. SeeGregory (1997); Poeppel and Bever (2010); Yuille and Kersten (2006) for appeal

to subpersonal top-down in�uences to explain how the brain resolves ambiguities in its incoming

sensory data, how it handles noise, the persistence of knowledge-based perceptual illusions, and

semantic priming eòects.
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pathways in the mammalian brain that carry information in the cerebral cortex

backwards from higher cognitive areas to lower sensory areas. Hypotheses abound

about the computational function of these neural backwards connections. Even if

onewere to disregard them, there are plenty of other routes by which information in

high-level cognition is likely to systemically in�uence low-level sensory systems. As

Firestone and Scholl (2016) point out, the decision to “shut one’s eyes”, which causes

one’s eyelids to close, has an evident eòect one’s sensory input, thereby opening up

an information-bearing channel (looping out into the world) via which high-level

representations can in�uence low-level sensations.¹4 Finally, even so-called feedfor-

ward computational models – e.g. the account of the early visual system proposed

byMarr (1982), Ch. 3 – are normally qualiûed with a rider that, of course, additional
top-down, expectation-driven subpersonal in�uences exist, even if they have been

omitted from themodel for the sake of simplicity.¹5

When suggesting that it can account for personal-level top-down, expectation-

driven eòects in perception, the case predictive coding has to make is why its

speciûc set of top-down computational pathways is uniquely or best suited to ex-

plain personal-level eòects. here are a vast number of alternative computational

architectures that allow for some degree and manner of subpersonal top-down

in�uence. hese include endless varieties of artiûcial neural network and classical,

symbolic architectures that contain loops. It is presently unclear why predictive

coding’s proposal is the best one to explain personal-level top-down eòects in psy-

chology. To be clear, predictive coding allows for top-down eòects in perception to

occur; it is also broadly suggestive that such eòects will occur. What is not clear is

that it is better suited to account for these eòects than any number of alternative

computational models. For these reasons, it is not clear how empirical evidence of

personal-level top-down selectively conûrms predictive coding.

4 Minimising prediction error

Minimising prediction error is a common objective in modern artiûcial intelligence

andmachine learning. Researchers o�en deûne learning tasks or inference tasks as

problems ofminimising prediction error (about reward or other kinds of data). A

computational system that learns tries to tweak the parameters of its mathematical

¹4Dennett (1991) argues that these kind of top-down ‘virtualwires’ can produce extremely sophist-

icated forms of information processing, including those that are characteristic of high-level human

thought and reasoning (pp. 193–199).

¹5SeeMarr (1982), pp. 100–101: ‘. . . top-down information is sometimes used and necessary . . . he

interpretation of some images involves more complex factors as well as more straightforward visual

skills. his image [a black-and-white picture of a Dalmatian] devised by R. C. James may be one

example. Such images are not considered here.’ (emphasis mine)
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model to ût or predict its data. A computational system that performs inference

o�en tries to make predictions that will minimise error or be as close to reality

(‘ground truth’) as possible.¹6 Diòerent types of computational system diòer in the

kinds of data they try to predict, themathematical model they use, and themethods

they use to ût their model or perform inference.¹7 Prediction error can also be

measured in many diòerent ways. A commonly usedmeasure is themean value of

the squared diòerence between predictions and the actual data – ‘mean-squared

error’. Many computational systems change their mathematical models or their

variables to minimise themagnitude of their mean-squared errors.¹8

he space of possible computational models that attempt to minimise prediction

error is vast. You can get some idea of its size and diversity by opening up any current

textbook on machine learning or statistics.¹9 A relatively simple example of such a

model is one that performs regression. Regression is an attempt to ût a polynomial

function of a certain degree – a smooth curve – to observed data and use that

curve to make predictions about unobserved cases. Classical regression techniques

in statistics tell the computational agent how to ûnd such polynomial functions.

he simplest version of this method is linear regression, which uses a straight line

as its model of the data (a polynomial of degree 1). Minimising prediction error

reduces to the task of ûnding the value of the two numerical parameters (slope and

y-intercept) that deûne a straight line that minimises themean-squared error in

predicting known data.

Deep neural networks oòer examples ofmuch richer andmore complicatedmathem-

atical models that also aim to minimise prediction error. he predictions generated

by a deep neural network may involve stringing together a huge sequence ofmath-

ematical operation with many variables. Learning for these models consists in

ûnding the values, not of just two, but ofmillions of parameters that minimise the

model’s prediction error. Learning techniques for deep neural networks, e.g. vari-

ous versions of backpropagation, attempt to iteratively modify themodel’s many

parameters to produce amodel that does better at minimising prediction error.

¹6Bishop (2006), pp. 1–12 andHohwy (2013), pp. 42–46.

¹7Note that a prediction is not necessarily about the future. It is an estimate of some data the

computational system has not already observed. A prediction in this sensemight well concern past

or present unobserved data. For a helpful review of the relevant sense of ‘prediction’, see de Lange,

Heilbron and Kok (2018), p. 766, Box 2.

¹8More accurately, they aim to minimise a cost function, which describes the overall cost of

a prediction and of which prediction error is one component. A common cost function is the

prediction error plus the sum of the squares of all the model’s parameters. he latter serves as

a ‘regularisation’ that penalises (increases the cost of) learning more complex models. For an

introduction to prediction errors, regularisation, and cost functions, see Russell and Norvig (2010),

pp. 709–713.

¹9For example, Bishop (2006); MacKay (2003); Barber (2012); Matloò (2017).

9



Predictive coding says that the brain aims to minimise prediction error. What

distinguishes predictive coding from other contemporary approaches is that it

makes distinctive claims about the data, model, and algorithm used to minimise

prediction error; a further point of diòerence is that predictive coding makes a

special claim about the role of minimising prediction error in the brain’s overall

cognitive economy.

he data that the brain attempts to predict are, according to predictive coding, the

brain’s sensory signals. Predictive coding claims that the brain aims to minimise its

prediction error over (a weighted average of) its incoming sensory signals.²0 his

should be distinguished from alternative hypotheses about data over which predic-

tions aremade, such as the claim that the brain attempts to minimise prediction

error over its reward signals.²¹ hemodel the brain uses to generate its predictions

consists in a deep artiûcial neural network with a speciûc topology and pattern of

connections between prediction and error units. his artiûcial neural network is or-

ganised in a way that is quite unlike those commonly found in modern commercial

applications of deep learning and artiûcial intelligence. he algorithm predictive

coding ascribes to the brain for ûnding the right parameters of this artiûcial neural

network is also unusual. Unlike in most commercial applications of deep learning –

which rely on some version of backpropagation – predictive coding proposes that

learning occurs viaHebbian learning.²² A special role is also accorded to prediction

error minimisation. Predictive coding claims that minimising sensory prediction

error is not just one objective among many that the brain faces, but its only goal.

Minimising prediction error should be understood as the objective of all aspects

of cognition (and not just, say, something that it does in perceptual learning or

classiûcation).

Many contemporary computational models of cognition advert to the notion of

minimising prediction error. What marks out predictive coding as special is that

it proposes that the brain uses a speciûc dataset, a speciûcmathematical model, a

speciûc algorithm, and it accords this task a special role in cognition. Evidence that

the brain contains prediction errors or that it is sometimes engaged in the task of

minimising prediction error, even if it is compatible with what predictive coding

says, is liable to also ût many other approaches. hesemight also posit prediction

errors, but minimise them in diòerent ways, or not grant them a universal role in

²0Sprevak (forthcoming[a]), Sect XX.

²¹For example, see Schultz, Dayan and Montague (1997); Niv and Schoenbaum (2008). he

relationship between minimising reward prediction error andminimising sensory prediction error

is an active area of research and not yet fully understood. See Friston et al. (2013); Schwartenbeck

et al. (2015) for an attempt to redescribe the task ofminimising reward prediction error as that of

minimising sensory prediction error.

²²Sprevak (forthcoming[b]), Sect XX.
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governing all aspects of cognition. In order to selectively conûrm predictive coding,

one needs further details about the nature, role, and function of these prediction

error signals in the brain – Are they exclusively sensory predictions? How were

they created? How would they revised? What is their role across diòerent cognitive

tasks?

5 Cognition as a form of probabilistic inference

Cognitive systems receive noisy, incomplete, and sometimes contradictory informa-

tion from the world. hey need to weigh this information rapidly and eõciently,

and integrate it with (perhaps con�icting) background knowledge in order to reach

a decision or to generate behaviour. Probabilistic computational models have been

widely adopted in computational cognitive science to help shed light on this.

According to these models, brains represent multiple incompatible possibilities

(e.g. ‘the person facing me is my father,my uncle, his cousin, . . .’) along with some

measure of uncertainty about those various outcomes. Subsequent steps in the

cognitive processing will take each of these diòerent possibilities into account,

weighted somehow by the cognitive system’s degree of uncertainty. he essential

idea is that the brain does not ‘put all its money’ on one outcome at any given

moment, but rather keeps track of many possibilities, along with its degree of

uncertainty about them.

Computational models tend to develop this idea by ascribing mathematical sub-
jective probability distributions to cognitive systems. hese subjective probability

distributions describe the cognitive system’s degree of uncertainty or conûdence

across many possible outcomes. Cognitive processes are modelled as a series of

elementary steps in which one subjective probability distribution conditions, or

updates, another. Cognition might maintain this probabilistic character right until

themoment the cognitive system is forced to plump for a speciûc outcome in action

(e.g. the agent is required to respond ‘yes’/‘no’ in a forced-choice task). he probab-

ilistic rules that govern this processing – the steps by which subjective probabilities

are combined or updated in the brain –may vary between diòerent approaches. It

is important to note however, that the subjective probabilities that are ascribedmay

not be personal-level states of thewhole agent (e.g. as in the classical degrees of belief

discussed by de Finetti, 1990; Ramsey, 1990). Subjective probability distributions are

o�en ascribed to subpersonal parts of the agent (e.g. cognitive subsystems, neural

regions, cell populations, or even individual neurons) (for example, see Deneve,
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2008; Pouget, Dayan and Zemel, 2003).²³

A particularly in�uential example of this approach is the so-called ‘Bayesian brain’

hypothesis. his suggests that Bayes’ rule, or some approximation to it, describes

the rules by which the human brain combines and updates its subjective probability

distributions. Exact Bayesian inference is computationally costly, so most advocates

of the Bayesian brain hypothesis believe that the brain performs some version of

approximate Bayesian inference.²4 here are a vast range of algorithms to choose

from here. Bayesian algorithms tend to fall into two camps: sampling methods
(which aim to follow the trajectory ofmultiple categorical samples through inference

to create a posterior empirical distribution that approximates the true Bayesian

posterior) and variational methods (which use simpliûed, less computationally

demanding subjective probability distributions, varying their parameters to ûnd

an analytical result that is close to the true Bayesian posterior). Both approaches

for approximating Bayesian inference are common in modern artiûcial intelligence

andmachine learning.²5 Advocates of the Bayesian brain hypothesis do not agree

about whether the brain uses a sampling method or a variational method.²6

Predictive coding is one example of a probabilisticmodel of cognition and an in-

stance of the Bayesian brain hypothesis. Predictive coding identiûes the task the

brain faces in cognition is that ofminimising sensory prediction error. If combined

with appropriate simplifying assumptions, this task can be shown to entail approx-

imate Bayesian inference.²7 he numerical values that feature in predictive coding’s

artiûcial neural network can be interpreted as parameters of subjective probability

distributions (namely, as themeans and variances of Gaussian distributions). Pre-

dictive coding’s algorithm can be interpreted as a particular version of variational

Bayesian inference.²8 Predictive coding proposes that these numerical parameters,

hence the subjective probability distributionsmanipulated in cognition, are encoded

in the average ûring rates of neural populations of layers in the neocortex, and the

²³Against this, Rahnev (2017) suggests that brains do not store full subjective probability distri-

butions, but instead only store a small number of samples or summary statistics (e.g. themean and

variance of some distribution). Colombo, Elkin andHartmann (2018) review a number of other

non-probabilistic ways in which the brain might encode uncertainty.

²4Chater and Oaksford (2008); Knill and Pouget (2004).

²5For an introduction to sampling methods (e.g. Markov chain Monte Carlo methods or particle

ûltering), see Bishop (2006), Ch. 11. For an introduction to variational methods, see Bishop (2006),

Ch. 10.

²6For proposals that the brain uses sampling, see Fiser et al. (2010); Griõths, Vul and Sanborn

(2012); Hoyer andHyvärinen (2003); Moreno-Bote, Knill and Pouget (2011); Sanborn and Chater

(2016); Sanborn and Chater (2017). Predictive coding is an example of a proposal that the brain

uses a variational method to approximate Bayesian inference.

²7Sprevak (forthcoming[a]), Section XX; Sprevak (forthcoming[d]), Section XX.

²8Sprevak (forthcoming[b]), Section XX.
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manner in which these subjective probability distributions condition one another

in inference is encoded in the strength of the synaptic connections between distinct

neocortical areas.²9

Someonemight endorse the idea that the brain engages in probabilistic inference,

or even the Bayesian brain hypothesis, but reject some or all of predictive coding’s

speciûc assumptions about how all of this works. hey might, for example, not

accept that all aspects of human cognition involve Bayesian inference, or that every
aspect of cognition involves inference over the same probabilisticmodel, or that

the subjective probability distributions are always Gaussian, or that the brain’s

rules for manipulating these distributions are predictive coding’s speciûc version

of variational Bayes, or that average ûring rates in neocortical layers encode the

parameters of the brain’s subjective probability distributions.³0 he space of possible

computational models that treat cognition as involving some kind of probabilistic

inference is vast. Evidence in favour of a probabilistic approach to cognition cannot

straightforwardly be treated as evidence that conûrms predictive coding as opposed

to any number of other views.

6 Cognition uses a generativemodel

A generativemodel is a special kind of representation that describes how observa-

tions are produced by unobserved (‘latent’) variables in the world. If a generative

model were supplied with the information that your best friend enters the room, it

might tell you about which sights, sounds, smells you would experience. here is a

growing acceptance in computational cognitive science (and AI) that generative

models – and in particular, probabilistic generativemodels – are likely to play an

important role in cognition. his is for at least three (interrelated) reasons.

First, a generativemodel would help a cognitive system solve the problem of distin-

guishing between changes in its sensory data that are self-generated and externally
generated. When our eyes move, the pattern of light projected onto our retinas

changes. How does our brain distinguish these kinds of self-generated change from

the changes that would be produced by themovement of external objects in our

environment? von Helmholtz (1867) suggested that the brain makes a copy of its

motor plans and uses this copy (the ‘eòerence copy’) to predict how its planned

movements are likely to aòect future sensory data. When the cognitive system

issues amotor command (e.g. to rotate its eyeballs), it sends a copy of the command

to a generativemodel (the ‘forwardmodel’ or ‘motor emulator’), which predicts

²9Sprevak (forthcoming[c]), Section XX.

³0Aitchison and Lengyel (2017) considerwhatmight happen if, at the algorithmic level, predictive

coding’s variational methods were replaced by a sampling method (pp. 223–224).
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the sensory consequences that will �ow from that motor command (how sensory

data are likely to change if the eyeballs rotate). hese consequences are then fed

back to the sensory system and the brain uses them to ‘subtract away’ estimated

self-generated changes from the incoming data. A generativemodel could thus help

the brain to distinguish changes to the sensory data wrought by itself from those

that are caused by external objects.³¹

Second, a generative model could help the brain overcome some of the latency,

noise, variability, and gaps in sensory input that potentially cause problems for

motor control. When you execute a complex, rapid motion – e.g. a tennis serve

– your brain needs to have accurate, low-latency sensory feedback. During the

motion, your brain needs to where your limbs are, how its intendedmotor plan is

unfolding, if any resistance is being met, and how the positions of external objects

(like the ball) are changing. Complex, rapidmotor control needs to be regulated
by sensory feedback. he problem the brain faces is that, due to limitations in its

hardware, this sensory feedback tends to arrive late, with many gaps, and a great

deal of noise and variability. A generativemodel would allow the brain to partly

overcome these limitations by introducing regulation based, not on actual sensory
feedback, but on expected feedback. his would mean that the brain would not

need to wait for (slow, noisy, gappy) sensory data to arrive. It could control motion

based on expected sensory data, updating its generative model as and when the

actual sensory data do arrive. Potentially, that updating might take into account

all sorts of background information that the brain has about systematic bias, noise,

or uncertainty in the sensory data or sensory organs. Advocates of this approach

suggest that a probabilistic generativemodel, updated using Bayesian rules, could

allow the brain to make optimal use of its background knowledge and sensory data

to regulatemotor control andmotor learning.³²

hird, a generative model that takes a probabilistic form could, in principle, be

inverted using Bayes’ theorem to yield a discriminativemodel of a domain. Discrim-

inativemodels are of obvious value in many areas of cognition. A discriminative

model tells the cognitive system, given some sensory signal, which state(s) of the

³¹For a description, see Keller and Mrsci-Flogel (2018), pp. 424–425. Blakemore, Frith and

Wolpert (1999) use amodel of this kind to explain why it is diõcult to tickle yourself.

³²See Franklin andWolpert (2011); Grush (2004); Körding andWolpert (2004); Körding and

Wolpert (2006).
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world aremost likely to be responsible for its observations.³³ Discriminativemodels

are needed in visual perception, object categorisation, speech recognition, detection

of causal relations, and social cognition. Whereas a discriminativemodel tells the

cognitive system how make the inferential leap from sensory data to the value of

latent unobserved variables, a generativemodel tells the cognitive system how to

make an inference from the value of latent variables to sensory observations. hat

inverse information might not initially appear to be useful, but if the system applies

Bayes’ theorem, a generativemodel can be �ipped to create a discriminativemodel.

What is more, building a generativemodel of a domain might be a computationally

attractive strategy because generativemodels are o�en easier to learn, easier to up-

date,more compact to represent, and less liable to break as background conditions

change than discriminativemodels.³4 herefore, an eòectivemethod for answering

a discriminative query (what is the value of a latent variable, given my sensory

input?) is sometimes to learn andmaintain a generativemodel of the domain in

question and then invert it as and when needed using Bayes’ theorem to answer the

query. It is common to see this generative strategy used in contemporary machine

learning and computational cognitive science.³5

Nowadays, it is not usual for a computational model of cognition to include a

generativemodel. However, the considerations above do not speciûcally support

predictive coding’s proposal about the nature, content, and function of a generative

model. hey do not, for example, commit to the idea that the brain only has a one

generativemodel, or that computation over that generativemodel is its exclusive

method of inference, or to predictive coding’s ideas about the particular content or

structure of the brain’s probabilistic generativemodel, the algorithms by which it is

updated or used in inference, or where in the brain it is physically implemented.

As far as the points above are concerned, theremay bemultiple generativemodels

in cognition. Distinct models might exist in relative informational isolation inside

diòerent cognitivemodules – theremight, for example, be a domain-speciûc gen-

³³A discriminativemodel is typically deûned as amodel that tells one the conditional probability

of some unobserved target variable Y , given an observation x, P(Y ∣ X = x). A generativemodel is

deûned either as amodel that tells one the likelihood function, i.e. the conditional probability an

observation, X, given some hidden state of the world, y, P(X ∣ Y = y); or, as amodel that tells one

the joint probability distribution, P(X ,Y). In practice, the diòerence between the two does not

matter as the joint probability distribution is equal to the product of the likelihood function and

the system’s priors over those unobserved states: P(X ,Y) = P(X ∣ Y)P(Y), and both likelihood

and priors are needed to invert themodel under Bayes’ theorem.

³4he reasons for this complex and depend on the contingent way our world is o�en structured.

For a brief intuitive explanation, see Russell and Norvig (2010), pp. 497, 516–517.

³5See Bishop (2006), Ch. 4 on creating classiûers using generative models. See Chater and

Manning (2006); Kriegeskorte (2015); Poeppel and Bever (2010); Tenenbaum et al. (2011); Yuille

and Kersten (2006) for various proposals for using generative models to answer discriminative

queries in cognition.
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erativemodel dedicated exclusively to motor control.³6 he considerations above

are also consistent with brain using other methods alongside generativemodels to

solve problems. When faced with a discriminative problem, for example, the brain

might sometimes learn and use a discriminativemodel of that domain directly, or

adopt any number of hybrid generative-discriminative approaches.³7 Finally, there

are endless ways in which the content and structure of a generativemodel might be

ûlled out,methods by which a generativemodel might be updated and used, and

proposals for how it might be physically implemented in the brain.³8

Generativemodels feature in many contemporary computational models of cogni-

tion. Predictive coding employs the idea, but the idea is not unique to predictive

coding. he proposal that the brain uses a generativemodel should not be equated

with predictive coding. One should not assume that empirical evidence that fa-

vours the hypothesis that the brain employs a generative model is also evidence

that supports predictive coding’s speciûc proposal about the character and role of a

generativemodel in cognition.

7 Conclusion

he aim of this paper is to separate ûve in�uential ideas about computational mod-

elling of cognition from predictive coding. Many philosophers ûrst encounter these

ûve ideas in the context of predictive coding. hey should be aware that the ideas

are not unique to that view: they exist in a broader intellectual landscape and they

are employed by approaches that have little or nothing to do with predictive coding.

Endorsement of one or more of the ideas should not be interpreted as an implicit

endorsement of predictive coding. Empirical evidence that supports one or more

of the ideas should not be interpreted as straightforwardly evidence for predictive

coding (rather than evidence for any number of other views). If one wants to un-

derstand the distinctive content of predictive coding, or to evaluate the empirical

evidence for it, one needs to disentangle it from these other ideas.

Of course, there is nothing to stop one from adopting the de�ationary view that

‘predictive coding’ refers to some broad, unspeciûed synthesis of the ûve ideas. On

such a view, one could say, without fear of contradiction, that predictive coding is

³6Wolpert, Ghahramani and Flanagan (2001); Grush (2004) propose this. hey also suggest

that the generativemodel used bymotor control is not implemented in the neocortex, but in the

cerebellum.

³7See Ng and Jordan (2002) for conditions under which learning and using a discriminative

model of a domain is more eõcient than learning a generativemodel and inverting it. For examples

of hybrid discriminative-generative approaches, see Raina et al. (2003); Lasserre, Bishop andMinka

(2006).

³8See Sprevak (forthcoming[b]), Sect XX; Sprevak (forthcoming[c]), Sect XX.
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already widely accepted and experimentally conûrmed. However, there are good

reasons to resist such a move. Advocates of predictive coding are keen to stress

that their view is both novel with respect to contemporary rivals and that it has

testable empirical content. To the extent that these claims are justiûed, an advocate

of predictive coding should be able to show that predictive coding departs from

other views and that it does not make a claim that is so anodyne as to be consistent

with any future evidence. Clark, for example, warns against interpreting predictive

coding as ‘extremely broad vision of the brain as an engine ofmultilevel probabilistic

prediction’ (Clark, 2016, p. 10). Predictive coding should be a ‘speciûc proposal’, not

a ‘broad vision’ (ibid.). Hohwy observes that there can be an ambiguity in how the

view is presented which means that it is ‘both mainstream and utterly controversial’

(Hohwy, 2013, p. 7). Hohwy says that in order to makemeaningful contact with

empirical evidence, a speciûc version of the theory is needed (Hohwy, 2013, pp.

7–8).

What is that speciûc, constrained version of predictive coding? In what follows,

I propose that what distinguishes predictive coding consists in a combination of

three, potentially dissociable, claims, each of which may be further developed or

qualiûed in various ways. hese claims concern how cognition works at Marr’s

computational, algorithmic, and implementation levels.

It is worth tempering what follows with the cautionary note that the content of

predictive coding is in no way a settled matter. Researchers diòer about which

features of the viewmatter, how they should be articulated, whether the resulting

model will have a truly universal applicability to every aspect of human cognition,

and whether the computational, algorithmic, and implementation level claims

should all be asserted together, or packaged into a single framework in the way

proposed. Cutting through this disagreement and uncertainty however, is an idea

that has inspiredmany researchers: a simple, bold, unifying picture of themind,

its computational architecture, and its physical implementation. his (perhaps

deliberately idealised and simpliûed) version of the view will be the primary target

of the next three papers.
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