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1 Introduction

When we encounter a new computing device, we o�en try to describe its computa-

tional characteristics in terms of the task it faces: this shop’s cash register has the

task of adding numbers, this computer programme has the task of sorting names
into alphabetical order, this Excel spreadsheet has the task of calculating expected
losses. As well as asking a how-question about the device – How does it work? – we

might ask a what-question:What is the problem it is trying to solve? What is the

nature of the task the device faces? A theory at Marr’s computational level aims to

provide an answer to this question. It aims to identify the computational problem
that the device faces.¹

What is the computational problem faced by the brain? Conventional approaches

in computational cognitive science tend to start from the assumption that the

brain faces many distinct computational problems. Diòerent aspects of cognition –

e.g. perception,motor control, decision making, language learning – require the

brain to respond to diòerent types of computational challenge. Each challenge has

its own computational nature and is likely to deserve its ownMarrian computational-

¹Marr’s use of the term ‘computational’ here is not meant to imply that his other levels of de-

scription are not computational. His usage of the term derives from mathematical logic, where

a ‘computational’ theory is denotes relationships between tasks that are blind to diòerences in

algorithms or physical implementation (as in the identiûcation of relations of computational equi-

valence).
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level description. On such a picture, it makes sense for computational cognitive

science to adopt a divide et impera strategy to modelling cognition: it should break

up human cognition into multiple constituent computational problems, each of

which should be described in turn.

Predictive coding suggests that this divide et impera strategy, and the assumption

on which it is based, is wrong. At Marr’s computational level, a single, uniûed

story should be told about cognition. During cognition, the brain faces a single
computational problem. Apparent diòerences between diòerent challenges that the

brain confronts in perception,motor control, decision making, language learning,

and so on mask an underlying unity that all these problems share. hey are all

instances of a single overarching task: to minimise sensory prediction error.

Sections 2–4 attempt to unpack what is meant by this claim. Sections 5–8 turn to its

justiûcation. I outline threemain strategies an advocate of predictive coding might

draw on to defend it: the case-based defence (Section 7), the free-energy defence
(Section 8), and the instrumental-value defence (Section 9).

2 Minimising sensory prediction error

What does it mean to say that the brain faces the problem ofminimising sensory

prediction error? As we will see, there are a variety of ways of formalising this task

in mathematical language. However, an advocate of predictive coding o�en starts

with an informal description of the task. Subsequent mathematical descriptions

aim to codify this informal description more precisely and open it up to proposals

that it is tackled by various numerical algorithms. here is currently in predictive

coding some degree of uncertainty about the right way to formalise the task of

minimising sensory prediction error in mathematical terms. However, there is

broad agreement about the informal nature of the problem. We will begin with this

informal description.

he task ofminimising sensory prediction error may be informally characterised as

follows. Brains have sensory organs and their sensory organs supply them with a

continuous stream of input from the outside world. Brains also have complicated

endogenous physical structures and activities that determines how they react to that

stream of input. According to predictive coding, the computational task that a brain

faces in cognition is to ensure that these endogenously generated responses (the

brain’s ‘inference’ over its ‘generativemodel’) cancel out or suppress the incoming

�ux of physical signals conveyed by the sensory organs from the outside world (that

it ‘predicts’ the incoming ‘sensory evidence’). he degree to which this happens, or

fails to happen, is measured by the sensory prediction error. his quantity measures

the discrepancy between the contribution of the brain’s endogenously generated
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activities and the incoming physical signals from the world. According to predictive

coding, the problem that the brain faces, in all aspects of cognition, is to minimise

the diòerence between these two elements. If the brain were to succeed at doing

this then, at the sensory boundary the two opposing forces – the world’s sensory

input (excitatory/stimulating) and the brain’s endogenously generated predictions

(inhibitory/suppressing) –would exactly cancel out. he brain’s anticipatory activity

would ‘quench’ the incoming excitation from the world. In more colourful and

metaphorical language:

. . . this is the state that the cortex is trying to achieve: perfect prediction

of the world, like the oriental Nirvana, as Tai-Sing Lee suggested to me,

when nothing surprises you and new stimuli cause themerest ripple in

your consciousness. (Mumford, 1992, p. 247, n. 5)

Predictive coding, at least in the ûrst instance, is a theory of the subpersonal compu-

tational workings of cognition, not a theory of conscious experience, but the basic

idea described in the quotation is sound. he computational task the brain faces

during cognition is to avoid being perturbed or surprised by incoming sensory

inputs (in the Shannon information-theoretic sense of ‘surprise’, i.e. unpredicted).

he brain’s goal is to arrange itself and its physical responses to anticipate and cancel

its upcoming sensory input. his goal – ‘Nirvana’ in the above quotation – is unlikely

to ever be achieved, or achieved in any sustained way, because the sensory input

supplied by the world is almost always too rich and complicated for our brains to

be guaranteed to predict it with perfect accuracy. Nevertheless, trying to predict it

is the task the brain faces in cognition.

Predictive coders suggest that the various computational problems that the brain

faces during perception, learning,motor control, decision making, and so on are

all instances of this single problem of minimising sensory prediction error. Our

various cognitive capacities (sensing, planning, and so on), which have traditionally

been viewed as individual solutions by our brain to entirely distinct problems (in

perception,motor control, and so on), should viewed as parts of a seamless, uniûed

response by the brain to a single problem. his suggests that we might need to

rethink how we describe and individuate our cognitive capacities, and potentially

blur the boundaries between them. Predictive coding aims to oòer a grand, uniûed

theory of cognition at Marr’s computational level.

To say that minimising sensory prediction error is one of the computational chal-

lenges faced by the brain faces is not novel or unusual. It is common for contem-

porary models to suggest that the brain engages in compression of sensory signals

(Sprevak, forthcoming[a], Section 2) and that certain inference and learning tasks

(particularly, in perception) can be described as minimising sensory prediction

error (ibid., Section 4). What marks out predictive coding as special is that it says
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that minimising sensory prediction error is the brain’s exclusive computational task.

It is not one problem among many faced by the brain, but its only problem. his el-

evated role of the task ofminimising sensory prediction error is the primary feature

that diòerentiates predictive coding from rival paradigms at Marr’s computational

level.

3 Formal and informal descriptions

heories at Marr’s computational level are o�en precise and characterised in math-

ematical language. hey are usually formal and quantitative. Typically, a theory at

Marr’s computational level will ascribe computation of amathematical function

to the brain as well as an explanation of why computing that function would help

the brain solve a problem as informally characterised. For example, in his account

of vision Marr ascribed computation of themathematical function ∇2G ∗ I to the

brain. Marr related this computation to the informally characterised task of edge
detection: ûnding the location of boundaries between objects in the visual ûeld.²

Marr argued that edge detection is an important task that the brain faces in early

vision and that it is a precursor to solving other problems such as object recognition,

depth perception, or binocular fusion. Marr proposed that the informal task of

edge detection could bemore precisely described by formalising it as the task of

computing of this mathematical function.

In Marr’s formal description, I is a two-dimensional matrix of numerical values.

hese numerical values quantify themagnitude of light falling on a two-dimensional

array of photoreceptors on the retina. G is a Gaussian ûlter which is convolved (∗)

with the two-dimensional image (I) and the Laplacian, second-derivative operator

(∇2) is applied to the result. Marr argued that if the brain were to compute the

zero-crossings of this function for various sizes of Gaussian ûlter, it could identify

areas in the retinal image that correspond to sharp changes in light intensity. hese,

Marr argued, tend to coincide with the edges of objects in the visual ûeld. Hence,

the task of computing the zero-crossings of this mathematical function provides

a precise,mathematically codiûed formalisation of the (informally characterised)

problem of edge detection.³

One way in which this relationship is described is that between a ‘what’ and a ‘why’

²Marr (1982), pp. 68–74. he full story about the informal task is complex, and ‘edges’ should be

understood to include not only the boundaries of objects, but also regions of the visual ûeld where

there are changes in re�ectance, illumination, depth, or surface orientation.

³Marr thought that this task was solved by the retinal ganglion cells: ‘Take the retina. I have

argued that from a computational point of view, it signals ∇2
G ∗ I (the X channels) and its time

derivative ∂/∂t(∇2
G ∗ I) (the Y channels). From a computational point of view, this is a precise

speciûcation of what the retina does.’ (Marr, 1982, p. 337).
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element of the computational-level theory.4 he ‘what’ element of a computation-

level theory describes themathematical function that the device needs to compute.

In the above case, this would be ∇2G ∗ I. he ‘why’ element links the task of com-

puting that mathematical function to some informally characterised information-

processing problem. It draws a connection between the abstract numerical values

that feature in the function and physical quantities in the device and the adaptive

problems faced by the embodied device. In the case above, it involves explaining

why computing ∇2G ∗ I would help solve the problem of detecting edges in the

visual ûeld. Marr’s ‘what’ element provides a formal,mathematical characterisation

of the task; the ‘why’ element explains the appropriateness and adequacy of that

mathematical description to the task as informally conceived.5

here aremany possibleways onemight attempt to formalise the task ofminimising

sensory prediction error. Predictive coding has not yet settled on a single canonical

or complete way to formalise it. A simple example of a formalisation is given in

Sprevak (forthcoming[b]), Section XX.6 It is worth stressing that contemporary

attempts to formalise the task typically aim to formalise a deliberately simpliûed

or stripped-down version of the task as informally characterised. For example, it

is normal to only consider systems that only have a few sensory input channels,

that only minimise current prediction error, or that make use of simple generative

models with linear responses. his is in order to keep the formalisation manageable

or in order to illustrate speciûc features of the intendedmodel.

Nevertheless, some generalisations can bemade about predictive coding’s task as

formally characterised. All themathematical formalisations tend to treat the task

as an instance of a numerical optimisation problem. he optimisation problem is

regarded as having two free variables – the generativemodel and the prediction val-
ues. hese should be varied, across diòerent timescales, in order to minimise some

objective function – sensory prediction error. In the simplest case, the generative

model is formalised as a two-dimensional matrix of values. Prediction values are

formalised as a vector that, when combined with the generative model by multi-

plication, produce another vector, the sensory prediction. he sensory input is a

vector with the same dimensionality, each of whose components encode the actual

incoming activity in each separate physical sensory channel. he sensory prediction
error measures how close the prediction is to the sensory input. It is o�en treated as

the (weighted) sum or mean of the squares of the diòerence between the sensory

input vector and the sensory prediction vector. he task the brain faces – as formally

4SeeMarr (1982), p. 22.

5See Shagrir and Bechtel (2013); Shagrir (2010) for a helpful explanation of the ‘what’ and ‘why’

at Marr’s computational level.

6A range of other formalisations can be found in Bogacz (2017); Friston (2003); 1330–1339;

Friston (2005), pp. 819–821; Friston (2009), p. 296; Spratling (2017), pp. 92–93.
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characterised – is to select a set of prediction values and a generativemodel such that

its prediction errors over sensory inputs areminimised. Characterising the problem

in this way allows many existing optimisation algorithms, and in particular the vast

range of algorithms that involve some form of gradient descent, to be brought to

bear as proposals about how the brain attempts to solve its problem.

4 Precision weighting of prediction errors

An important element that has not yet been mentioned is that not all sensory

prediction errors matter equally in the task ofminimising sensory prediction error.

Predictive coding introduces a further variable, precision weighting, which describes

the relative weight of each sensory prediction error with respect to the others. he

brain’s task is to minimise precision-weighted sensory prediction error. Errors that

have a high precision weighting should be prioritised during the optimisation task;

errors that have a low precision weighting should be given a lower priority or even

partly discounted. Precision weighting thus describes a scaling factor or ‘gain’ that

is applied to each component of the sensory prediction error.

Precisionweighting is a critically important part of the task description. It can make

certain sensory prediction errors dominate the optimisation process and others

small enough to be ignored. It can exercise this control in very ûne-grained, nuanced

ways. Precision weighting can potentially modify the gain on prediction errors

associatedwith each individual sensory channel independently. Precisionweighting

is usually treated as a distribution that determines which sensory prediction errors

are boosted and which are dampened at any given moment. he shape of that

distribution may be complicated and it may change radically and rapidly over time

(i.e. within milliseconds). Formally, precision weighting in the simplest case is

represented as a two-dimensional matrix that is multiplied by the raw sensory

prediction error vector to scale its elements.7

Precision weighting plays a number of seemingly distinct roles within predictive

coding. First, under a probabilistic interpretation of predictive coding’s algorithm,

it is assumed to be connected to the brain’s estimation of uncertainty associated
with its sensory predictions. Predictions about which the brain is more conûdent

have a smaller variance, which is equivalent to a greater precision weighting being

associated with their corresponding prediction errors (Friston, 2003).8 Second,

precision weighting is suggested to be connected to the direction of ût of sensory
predictions. Sensory prediction errors that are assigned a high degree of precision

weighting are the ones that the brain is more likely to act on, and hence function

7See Sprevak (forthcoming[b]), Section XX.

8See Sprevak (forthcoming[b]), Section XX.
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as quasi motor commands (see Section 7). Prediction errors that are assigned low

precision weighting can be used to simulate or imagine actions of the agent or of

other agents without generating actual motor responses – they do not meet the

threshold of precision weighting to drive motor responses (Clark, 2016; Friston,

Mattout and Kilner, 2011, Ch. 5; Pickering and Clark, 2014).9 hird, precision

weighting is claimed to be connected to the allocation of attention. When the cog-

nitive system attends to certain features, the components of the sensory signals

associated with those features are the ones for which the corresponding prediction

errors have been assigned a higher weight. When the cognitive system shi�s the

focus of its attention, this entails rebalancing the distribution of precision weight-

ings away from those features (Feldman and Friston, 2010).¹0 Finally, and most

controversially, precision weighting is sometimes by fans of predictive coding as a

kind of ‘fudge factor’ to accommodate data that do not straightforwardly ût into

the prediction-error-minimisation task description. If the brain fails to minimise

a sensory prediction error, then an advocate of predictive coding might interpret

that failure, not as evidence against predictive coding, but as the evidence that

the brain assigns a low precision weighting to that particular error. If one were

to assume an appropriate distribution of precision weightings at each moment

in time, almost any observation can be accommodated under predictive coding’s

task description.¹¹ Some constraints are needed on how theorists assign precision

weightings to the brain. A number of constraints do arise from assumptions made

at the algorithmic and implementation levels (Sprevak, forthcoming[b], Section

XX; Sprevak, forthcoming[c], Section XX), however, ûnding a suõcient number

of empirically motivated constraints on the assignment of precision weightings

remains an open problem for predictive coding.¹²

he distribution of precision weighting intuitively captures ‘what matters’ to the

brain when it is minimising sensory prediction error. No version of predictive

coding can aòord to omit this element: it would simply be implausible to say that

all sensory prediction errors matter equally to the brain during cognition. However,

the introduction of precision weighting into predictive coding’s task description

raises a number of puzzles. It plays many roles within predictive coding’s model

and it is not obvious all how these various roles cohere. It is also not clear where

independent constraints lie on the assignment of precision weightings given its

tremendous power to reshape the computational task facing the brain.

9See Sprevak (forthcoming[b]), Section XX.

¹0See Sprevak (forthcoming[c]), Section XX.

¹¹See Clark (2013a) for examples of how precision weighting can explain a range of otherwise

puzzling cases (e.g. habit-based action and behaviour during model-free learning). See Miller

and Clark (2018), p. 2568 for their response to the objection that precision weighting is a ‘magic

modulator’ that allows predictive coding to accommodate every possible goal.

¹²For further discussion of this problem, see Sprevak (forthcoming[c]), Section XX.
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5 Long-termprediction error and the dark-room objection

A second important element of the task description that has not yet beenmentioned

is that, at Marr’s computational level, the objective should be understood as min-

imising long-term sensory prediction error. hat goal may be glossed in various

ways by advocates of predictive coding with expressions such as ‘global’ prediction

error (Lupyan, 2015), ‘upcoming’ prediction error (Muckli, 2010, p. 137), ‘long-term

average’ of prediction error (Hohwy, 2013, p. 90, 175, 176), or ‘long-term average

surprise’ (Schwartenbeck et al., 2013).

he precise nature of this long-term objective is not entirely clear. Plausibly, it is to

minimise the average of individual (precision-weighted) sensory prediction errors

over time. However, what type of average, and how in the future that time should

extend, is not clear. It is unknown whether, and to what degree, future prediction

errors should be discounted. It is unknown whether the objective should be to

reduce prediction errors relative to the system’s own expectations (its subjective

probability) ofmaking future sensory prediction errors, or relative to the objective

chances (objective probability) of it making such errors. It is unknown whether

the relevant extended period is of the order of hours, days, years, the entire future

lifespan of the organism, or stretches even further to include the lifespan of its

possible descendants and evolutionary successors. It is unknown how the long-term

average (which weights prediction errors over time) interacts with precision weight-

ing (which weights the current error signals) – i.e. whether precision weighting

should be understood as having a prospective component. hese open questions

suggest that alternative formulations of predictive coding could be developed at the

computational level.

Nevertheless, acceptance that the brain aims to minimise a long-term measure

of prediction error plays an important role in clarifying and lending plausibility

to predictive coding’s task description, even if the exact nature of that long-term

objective is not clear. It allows one to understand how predictive coding can respond

to the infamous ‘dark room’ objection. It also suggests that predictive coding is

compatible with inferences and behaviour that tend to drive up short-term sensory

prediction error, such as curiosity, exploration, and novelty seeking.

he dark-room problem is a long-standing objection to predictive coding.¹³ he

problem is to explain why, if predictive coding’s computational-level description is

true, cognitive agents like ourselves do not simply seek out themost predictable

possible environment, such as a dark room, and remain inside for as long as pos-

sible. If the goal of cognition is only to minimise sensory prediction error, why

not maximise the chances of this happening by choosing to stay in a maximally

¹³See Clark (2013b), p. 193 for a statement of the problem.
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predictable environment?

Friston,hornton and Clark (2012) oòered an initial reply to the dark-room prob-

lem.¹4 heir response focused on the idea that our generativemodel and prediction

values, as physically implemented in our neural hardware, are not inûnitely mal-

leable. here are limits to the kinds of predictions we can generate and to how

much our generativemodel and prediction values can be revised – these constraints,

which are assumed to be immune to change by learning or inference, are called

‘hyperpriors’. he kinds of sensory data that a hypothetical cognitive system might

receive inside a dark room may be predictable in some abstract sense but, due to

the peculiar nature of our hyperpriors, that datamight be diõcult for creatures like
us to predict. A diòerent type of organism, one with diòerent hard-wired biases

(maybe a cave-dwelling creature), might have no trouble in generating accurate

predictions inside a dark room. However, humans are strongly biased to predict

sensory changes, and so we are unlikely to minimise our sensory prediction errors

inside a dark room.

his response highlights an important and as yet unmentioned point about predict-

ive coding’s computational-level claim: the task facing the brain is a constrained
optimisation problem. he goal of the brain is to minimise its sensory prediction

errors by varying its generativemodel and its prediction values given the constraints

imposed by our physical hardware about how far and how rapidly that generative

model and those prediction values can vary. he brain aims to minimise its sensory

prediction errors relative a variety of physical constraints. Predictive coding, at

the computational level, tends to leave details about the nature of those constraints

largely unspeciûed.¹5

Even if this reply is correct, one might worry that it does not fully address the

concerns that motivated the dark-room objection. For example, it does not explain

why, even relative to a constrainedmodel, cognitive agents like ourselves still seek out

novelty and surprise. Even if we can accurately predict a situation, we sometimes

choose to shun it for amore surprising alternative. In other words, cognitive agents

like ourselves sometimes prefer novelty and surprise to predictability. How is that

behaviour consistent with what predictive coding says at the computational level?¹6

An alternative reply, which fares better at addressing this kind of objection, is to

¹4See also Hohwy (2013), pp. 87, 185; Clark (2016), pp. 265–268;

¹5Wewill see that some information about the constraints �ows fromwhat predictive coding says

at the algorithmic level and implementation level (Sprevak, forthcoming[b], Section XX; Sprevak,

forthcoming[c], Section XX). However, as will become clear, what predictive coding says at those

levels is by no means either a complete or a settled account of the relevant constraints faced by the

brain in inference or learning.

¹6See Clark (2016), pp. 265–266

9



emphasise the long-term nature of the brain’s prediction-error-minimisation task.

he world in which we live contains both environments that are easy to predict and

environments that are hard to predict. Successfully predicting our sensory inputs

only where we can already do so may not, over the long term, be a good solution to

the brain’s problem. An agent who sequesters itself inside a dark room or a similar

predictable environment leaves itself a hostage to fortune. Unpredictable elements

may impose themselves on the agent in ways that it has not taken the trouble to

learn – light might enter the room, a stranger might enter, food supplies might run

out. To guard against possible unpleasant future surprises and the associated rise in

sensory prediction error, it may be better – in the terms ofmeeting the long-term

goal of minimising sensory prediction error – to leave the dark room now and

engage in some exploration to learn amore comprehensivemodel of the world –

that would allow the agent to predict a broader range of scenarios. Exploring now

might raise sensory prediction errors in the short term, but it is a hedge against

future surprises that an agent who leads an entirely sheltered life would not be able

to predict. here is obviously a balance to strike between the cost of acquiring this

information (in terms of an expected rise in short-term sensory prediction error),

and its potential future pay-oò (in terms of an expected reduction in long-term

sensory prediction error). But that there is a trade-oò between the adaptive value

of exploration and exploitation is to be expected on anymodel of cognition. he

important point is that what predictive coding says at the computational level is

compatiblewith cognitive agents sometimes preferring unpredictable environments

to predictable ones. Curiosity, exploration, and novelty seeking are consistent with

the brain minimising a long-term measure of sensory prediction error, even if they

entail a short-term increase in that error along the way (Schwartenbeck et al., 2013).

6 Evidence for predictive coding

Justiûcation for predictive coding’s computational-level claim o�en rests on one

of three strategies. I call these strategies the case-based defence, the free-energy
defence, and the instrumental-value defence. he case-based defence considers a

range of cognitive tasks and aims to show that all of these tasks can and should

be described as minimising sensory prediction error. he free-energy defence

shortcuts consideration of individual tasks and attempts to establish predictive

coding’s computational-level claim in one fell swoop by appeal to Karl Friston’s

‘free-energy’ principle. he instrumental-value defence focuses on the utility of

predictive coding to computational cognitive science and argues that it provides a

desirable set of heuristics to make sense of, and discern patterns within, themass of

human behavioural and neural responses.
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7 he case-based defence

he case-based defence is an abductive argument. It attempts to show that a num-

ber of tasks facing the brain – for example, during perception, decision-making,

planning,motor control – can and should be thought of as instances of the single

task ofminimising sensory prediction error. Some of those tasks may already have

computational-level descriptions associated with them based on rival or more tradi-

tional computational research programmes. he job of predictive coding is to show

that these should be reconceptualised as instances ofminimising sensory prediction

error. Behavioural and neural responses that might previously have been described

as attempts by the brain to compute some domain-speciûcmathematical function

should be redescribed in themanner predictive coding suggests.

Any case-based argument for predictive coding faces an obvious epistemic hurdle.

Predictive coding makes a universal claim – every problem the brain encounters in

cognition is to minimise sensory prediction error. Showing that this claim holds

in some cases (e.g. for early vision) will not entail that it holds in other, perhaps as

yet unconsidered cases (e.g. for language learning). No consideration of individual

cases entails the conclusion that in every case the problem the brain faces can and

should be described as minimisation of sensory prediction error. Nevertheless,

science is rife with universal generalisations made on the back of observations

about speciûc cases. he non-demonstrative nature of such arguments is not an in

principle objection to using them. However, there are clearlymore and less eòective

ways ofmaking such an argument work.

One plausible strategy for making the universal generalisation credible is to focus

on a diverse range of cases – what one might hope is a representative sample of

what the brain is up to in cognition. Early work on predictive coding focused

on sensory compression in early visual system (Atick, 1992; Rao and Ballard, 1999;

Srinivasan, Laughlin andDubs, 1982). Ideally, predictive coding should seek support

for its claim by showing that other kinds of behavioural and neural response fall

under predictive coding’s task description. If it can be shown that many, diverse

behavioural and neural phenomena that have no obvious connection to each other,

or to the early visual system, can and should fall under predictive coding’s task

description, then that would lend credence to the abductive generalisation that

not just in some cases, but in every case, the problem the brain faces is sensory

prediction error minimisation. Example of ‘non-obvious’ applications of predictive

coding includemusic perception (Koelsch, Vuust and Friston, 2019); formation of

emotions and judgements about bodily ownership (Seth, 2013); binocular rivalry

(Hohwy, Roepstorò and Friston, 2008); formation of judgements about the nature

of the self (Hohwy and Michael, 2017); and the perceptual, doxastic, and motor

characteristics of schizophrenia and autism (Corlett and Fletcher, 2014; Fletcher
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and Frith, 2009; Friston, Stephan et al., 2014; Pellicano and Burr, 2012).

It is worth noting that, for each individual case, a case-based argument requires

one to meet two separate challenges. he ûrst challenge is to show that the case in

question can be described as an instance of sensory-prediction-error minimisation.

he second is to show that it should be described this way. he ûrst challenge

requires one to show that predictive coding’s computational-level description is

consistent with the behavioural or neural data associated with that case. he second

challenge is to show that one should prefer predictive coding’s computational-level

description of that data to rival or traditional accounts. here should be some beneût

to adopting predictive coding’s computational-level treatment of that instance of

cognition – e.g. in terms of increased predictive accuracy, increased explanatory

power, or some other theoretical virtue.

Predictive coding’s �agship example of a ‘non-obvious’ case is motor control.¹7
Traditional approaches tend to categorise perception andmotor control as separate

problems. In perception, the task facing the brain is to use its sensory data and

background knowledge to build an accurate (or adequate) model of the world. In

motor control, the task facing the brain is to use that perceptual model, along with

some set of goals or intentions, to output a sequence ofmotor commands that will

direct muscle actuators towards accomplishing those goals or intentions. Of course,

motor control might partly involve solving a perceptual problem. Motor problems

o�en require an agent to ûrst build an adequate perceptual model to guidemotor

planning. Rapid and complexmotor control might require regulation by sensory

predictions from a forward model (Franklin andWolpert, 2011). However, even

if the problems ofmotor control and perception have some overlap, they remain

separate problems: the objective of perception is to create an accurate model of

the world; the objective of motor control is to use that model to generate motor

commands to fulûl goals.

According to predictive coding, perception andmotor control should be conceptu-

alised as exactly the same problem, namely, to minimise sensory prediction error.

In perception, the brain minimises sensory prediction error by varying its endo-

genous generativemodel and prediction values to yield predictions that minimise

error over its incoming sensory stream. In motor control, the brain minimises

sensory prediction error by varying its bodily position and the external world (via

muscle actuators) to modify its incoming sensory stream to make the endogenously

generated sensory predictions true. In both cases, the objective is the same – to

minimise sensory prediction error. he diòerence lies in themethod the cognitive

system uses to try to achieve it. Advocates of predictive coding call the ûrst method

¹7See Friston (2010), pp. 133–134; Friston, Daunizeau et al. (2010); Clark (2016), Section 4.5;

Hohwy (2013), Ch. 4.
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‘passive’ inference and the second ‘active’ inference. Passive and active inference

(perception andmotor control) are complementary strategies employed by the brain

to addresswhat is fundamentally the same problem. According to predictive coding,

the task of reaching for a glass of water should be reconceptualised as the brain

making the prediction that the hand is already holding the glass of water (along

with all its sensory consequences), and then solving the problem – minimising

its sensory prediction error – by varying its limbs and the glass to make the false

sensory prediction true.¹8

What is mooted here is that perceptual tasks andmotor control tasks can both be
described as instances of sensory prediction error minimisation. Even if this is true

however, it remains a further question whether they should be described this way.

he justiûcation given for this second claim is o�en not obvious. he beneûts of

predictive coding’s task description are not straightforward to calculate and need to

bemeasured relative to a broad range of epistemic standards, interests, and goals in

computational cognitive science. Diòerent research groups may take diòerent views

about the value of the beneûts on oòer.¹9 As we will see, the beneûts are also o�en

conditional on accepting other elements of predictive coding’s research programme

(e.g. the universal scope of its claim, or elements of its proposals at the algorithmic

and implementation levels).

To illustrate how these questions about preferability might be addressed, we will

switch to a simpler case: the early visual system. Twomain strategies have been used

to justify predictive coding’s computational-level description in this context: (i) its

predictive and explanatory beneûts over traditional computational approaches; (ii)

the broader theoretical virtues oòered by the view (e.g. simplicity, elegance, and

unifying power).

he ûrst set of considerations surround predictive coding’s ability to predict and

explain individual behavioural or neural responses that are puzzling or anomalous

on other views. Traditional computational-level characterisations of the early sens-

ory system suggest that its task is to act as a Gabor ûlter bank on retinal images to

extract ecologically salient stimulus features such as orientation, spatial frequency,

colour, direction of motion, and disparity (Carandini, Demb et al., 2005). he

computational problem faced by neurons in the early visual system is to convolve a

matrix of retinal data with a range ofGabor ûlters to, e.g., pick out lines in the visual

¹8Predictive coding also provides an algorithmic-level proposal about howmotor tasks are solved.

As we will see, the suggested algorithms for perception and motor control have a great deal in

common (see Sprevak, forthcoming[b], Section XX).

¹9For the beneûts of predictive coding’s task description of motor control see Friston (2011),

Friston, Daunizeau et al. (2010);Wiese (2017), Pickering and Clark (2014). For beneûts of alternative

approaches, see Kording (2007); Shadmehr and Krakauer (2008).
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ûeld of various orientation and spatial frequency. However,many physical responses

exhibited by the early visual system do not ût this computational-level description

(Olshausen and Field, 2005). One such ‘non-classical’ eòect is end-stopping: neurons
in V1 give a strong response to a line at a particular orientation in the visual ûeld,

but this response is reduced or eliminated if the line extends outside that neuron’s

receptive ûeld. End-stopping is inconsistent with a simple Gabor-ûlter description

of their computational role. A classical Gabor ûlter should continue to ûre regard-

less of whether a line extends outside its receptive ûeld. End-stopping counts as an

unexplained anomaly under traditional computational-level description of the early

visual system.

Predictive coding suggests that the function of the early visual system is to contribute

to minimising the cognitive agent’s sensory prediction error. Under predictive

coding’s task description, the behaviour of neurons within V1 may be reinterpreted

as signalling the diòerence between the current sensory input and the brain’s sensory

prediction (based on its statistically-informed expectations regarding visual input).

In our environment, the statistical norm is for lines in the visual ûeld to extend

beyond the tiny regions covered by individual receptive ûelds. Lines that violate

this expectation are unusual and, everything being equal, should be expected to

cause sensory prediction errors. he behaviour of V1 cells when end-stopping

may be interpreted as signalling such sensory prediction errors (Kok and de Lange,

2015; Rao and Ballard, 1999, p. 232). End-stopping is an anomaly on traditional

computational-level descriptions, but it can potentially be predicted andmodelled

on predictive coding’s computational-level description.²0

A second set of motivations for preferring predictive coding’s task description

surround predictive coding’s general theoretical virtues such as its simplicity, scope,

and unifying powerwith respect to other computational-level approaches. Arguably,

even if predictive coding does no better than alternative approaches in terms of

modelling anomalous behavioural/neural eòects, those general virtues might still

lead one to favour the view. As observed in Section 1, traditional computational-

level approaches to cognition tend to categorise the brain as facing multiple, largely

unrelated computational problems. his may lead one to assume that the brain is

an inherentlymultifunctional device, rather than a device tuned to solve just one

problem.²¹ A description of human cognition at Marr’s computational level may

²0For other examples of non-classical eòects in the early visual system that appear to be predicted

andmodelled by predictive coding, see Jehee and Ballard (2009); Kok, Jehee and de Lange (2012);

Hosoya, Baccus andMeister (2005); Rao and Sejnowski (2002); Muckli (2010); Kok and de Lange

(2015); Spratling (2010); Alink et al. (2010); Murray et al. (2002). For alternative computational-level

accounts of these non-classical phenomena (e.g. in terms of divisive normalisation), see Aitchison

and Lengyel (2017), p. 224; Carandini andHeeger (2012); Schwarz and Simoncelli (2001).

²¹For example, see Allen (2017); Bayne et al. (2019).
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thus be expected to consist in a patchwork of disjoint theories covering each task the

brain faces. Each task facing the brain – perception,motor control, decision making,

language learning –may merit its own computation-level account. Stepping back

from this patchwork, there need be no overarching pattern or unity to cognition

and plenty of gaps in our existing accounts of it. Predictive coding, in contrast,

provides a uniûed, complete, and relatively simple description of the computational

problem the brain faces in all aspects of cognition. hat by itself appears to be a

mark in its favour.

It is the ûrst time thatwe have had a theory of this strength, breadth and

depth in cognitive neuroscience . . . I take that property as a sure sign

that this is a very important theory . . . Most other models, including

mine, are just models of one small aspect of the brain, very limited in

their scope. his one falls much closer to a grand theory. (Stanislas

Dehaene quoted in Huang, 2008)

A uniûed computational-level theory promises to reveal something profound about

the fundamental nature of cognition. It tells us that cognition is not a motley, a

jumble of distinct phenomena, but a response to a single computational problem.

Predictive coding identiûes what the various, seemingly distinct and unrelated

departments of human cognition – e.g. perception,motor control, decision making,

language learning – have in common. It purports to explain why they each count

as instances of cognition. It provides us with information to judge whether new

and perhaps unexpected or previously unconsidered instances of cognition are

genuinely cognitive.²² Moreover, predictive coding suggests that cognition is in

essence a uniûed and simple functional kind. If a theory uncovers fundamental

principles like this, that uniûes and simpliûes an otherwise disordered domain,

then, everything else being equal, that is a reason to favour it. Knowledge about the

essence of things and general patterns into which they enter is surely what science

aspires to.

8 he free-energy defence

Any case-based defence of predictive coding is likely to be a long project and fraught

with diõculties. It requires engaging with the details ofmany diòerent individual

tasks and showing that their distinctive eòects – of which theremay bemany – are

captured or recaptured on predictive coding’s task description. he defence also

has no obvious stopping point at which victory could be declared. A defender of

predictive coding faces a potentially endless sequence of battles: there will always

²²For predictive coding as a potential ‘mark of cognitive’, see Clark (2017); Kirchhoò and Kiver-

stein (2019); Ramstead et al. (2021).
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bemore tasks,more behavioural and neural eòects to consider, in order to argue for

themerits of describing the problem the brain faces in terms of predictive coding.

It is not obvious when enough cases – or a diverse enough array of cases – will have

been considered to warrant the conclusion that not just some tasks, but every task

faced by the brain is sensory prediction error minimisation.

he free-energy defence aims to shortcut this. It tries to establish predictive coding’s

computational-level claim in a single step by appeal to general properties shared

by all cognitive (or living) systems. Friston (2010) presents a defence of predictive

coding along these lines based on his ‘free energy’ formulation of predictive coding.

Friston proposes that the task faced by the brain is that ofminimising free energy.
Minimising free energy can be shown, if appropriate further assumptions aremade,

to be equivalent to the task ofminimising sensory prediction error.

Free energy is amathematical quantity that appears in classical thermodynamics,

statistical mechanics, and information theory. Friston’s central claim is that there is a

relationship between two distinct applications of the free-energy formalisation: vari-
ational free energy and, what I will call, homoeostatic free energy.²³ Variational free
energy is an information-theoretic quantity predicated of agentswho engage in prob-

abilistic inference. If a probabilistic reasoner minimises their variational free energy,

then this can be shown to be equivalent to them approximating Bayesian inference

(see Sprevak, forthcoming[d], Section 1). Granted a number of further assumptions,

minimising variational free energy can also be shown to entail minimising sensory

prediction error (see Sprevak, forthcoming[d], Section 2). ‘Homoeostatic’ free en-

ergy is a distinct quantity which applies the same abstract free-energy formalism

to an entirely distinct set of properties. Unlike variational free energy, it is not (or

at least, not directly) associated with the subjective probabilities that feature in an

agent’s probabilistic inferences. Rather, it is associated with the objective probability

of themacroscopic physical state the agent is in given its physical environmental

conditions. Minimising homoeostatic free energy is associated with the agent’s

survival within a narrow band ofmacroscopic physical states. According to Friston,

these two kinds of free energy – homoeostatic free energy and variational free

energy – are interlinked. Agents who minimise their homoeostatic free energy –

i.e. who survive andmaintain homeostasis and thereby maintain their macroscopic

physical state in response to likely environmental perturbations – also minimise

their variational free energy (and hence, given certain assumptions,minimise their

sensory prediction error).

Friston is clear that the free-energy quantity he has inmind is not the same as thermo-
dynamic free energy. hermodynamic free energy intuitively measures the ‘useful’

work that can be obtained from a physical system. It is usually deûned in terms of

²³Friston does not use these terms. He refers to both as ‘variational’ free energy.
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that system’s ability to exert macroscopicmechanical forces on its surroundings –

its energy that is ‘free’ to perform mechanical work. his is normally formalised as

a diòerence between the physical system’s ‘internal energy’ and its thermodynamic

entropy – its energy that is ‘useless’ for work. Having a reserve of thermodynamic

free energy is generally a useful resource for a cognitive or living creature: having

thermodynamic free energy is a prerequisite for the creature to be able to move or

act in the world. Minimising thermodynamic free energy wouldmake little sense

as a survival strategy or as a way to maintain physiological functioning. Friston

is explicit that his free-energy principle – that all cognitive/living systems aim to

minimise their homoeostatic/variational free energy – is not meant to be somehow

a consequence of thermodynamics or a principle about thermodynamic free-energy.

His free-energy principle is instead justiûed on ‘selectionist’ grounds: all cognit-

ive/living creatures strive to minimise their homoeostatic free energy because if

they did not do so, they would tend to die oò and hence be less likely to reproduce

or to be observed by us.²4 Friston suggests that the only connection between ther-

modynamic free energy and his notion of free energy is their sharedmathematical

form.²5

In outline, the logic of the free-energy defence of predictive coding is as follows.

Its starting point is the observation that all cognitive (and living) creatures face

the problem of surviving and maintaining homeostasis. hat task, according to

Friston, can be formally redescribed as the task ofminimising a free-energymeasure

(what I have called homoeostatic free energy). Friston claims that minimising this

free-energy measure entails that the creature also minimises a second free-energy

measure associated with the creature’s subjective probabilistic guesses (variational

free energy). Minimising variational free energy, given certain further assumptions

(detailed in Sprevak, forthcoming[d], Section 2), entails that the creature also min-

imises its sensory prediction error. Hence, cognitive and living creatures, because

they face the problem of survival andmaintaining homeostasis, face the problem of

minimising sensory prediction error.

here is much to unpack here.

First, the argument relies on a presumed connection between homoeostatic and

variational free energy. However, the justiûcation for that connection is not obvious.

Homoeostatic free energy pertains to how well the creaturemaintains its physical

state within the narrow band associated with survival and homeostasis in the face

of actual and possible perturbations from a changing physical environment. Living

creatures change their microscopic physical state all the time. When they do so, they

risk undergoing a fatal phase transition in their macroscopic physical state. When

²4Friston and Stephan (2007), pp. 419–420, 451; Friston, Kilner andHarrison (2006), p. 85

²5See Friston and Stephan (2007), p. 419.
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living systems resist this tendency – when they survive andmaintain homeostasis –

theyminimise their homoeostatic free energy. Minimising homoeostatic free energy

involves the creature trying to arrange its macroscopic states so as to avoid being

overly changed by likely environmental physical transitions. A physical system that

minimises its homoeostatic free energy strives to maintain its macroscopic physical

state in equipoise with likely environmental changes (Friston, 2013; Friston, Kilner

andHarrison, 2006; Friston and Stephan, 2007). In contrast, variational free energy

is an information-theoretic quantity predicated of an agent’s subjective probability

distributions. It measures how far the agent’s probabilistic guesses depart from the

optimal guesses of a perfect Bayesian observer armed with the same evidence.²6

According to Friston’s formulation, the brain’s task is to minimise this variational

free-energy quantity and so approximate an ideal Bayesian reasoner in inference.

Minimising variational free energy makes the sensory data stream unsurprising (in

the information-theoretic sense), and thereby tends to minimise the agent’s sensory

prediction error (modulo certain assumptions outlined in Sprevak, forthcoming[d],

Section 2).

Homoeostatic free energy and variational free energy have certain features in com-

mon: they are both information-theoretic quantities and they both attach to prob-

ability distributions. However, they are not the same quantity. Homoeostatic free

energy is measured over the objective probability distributions ofmacroscopic phys-

ical states that could occur; variational free energy is measured over the subjective
probability distributions entertained by an agent about what could occur. Vari-

ational free energy attaches to subjective probability distributions; homoeostatic

free energy attaches to chances of various possible (fatal) physical states of the

agent occurring in response to environmental changes. he respective probability

distributions might in principle be deûned over distinct sets of events, their distri-

butions might take diòerent shapes, and they each involvematerially diòerent types

of probability (subjective and objective). heremay be correlations between the

two free-energy measures, but it is not obvious that minimising free energy for one

probability distribution entails minimising free energy for the other.²7

To see this point more clearly, consider the relationship alreadymentioned between

variational free energy and Bayesian inference. An agent who minimises its vari-

ational free energy approximates an ideal Bayesian reasoner. In many circumstances

a Bayesian agent is well placed, and in some circumstances it will be better placed

than a non-Bayesian agent, to survive andmaintain homeostasis. But the precise

nature of the connection between being Bayesian in one’s reasoning andmaximising

²6See Sprevak (forthcoming[d]), Section 1 for the connection between variational free energy

and Bayesian inference.

²7Sprevak (2020), pp. 602–604.
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one’s chances of physical survival and homeostasis is far fromobvious. A non-Bayesian

agent might live in a ‘irrational friendly’ environment that maintains its homeostasis

and physical integrity, even if it does not update its subjective probability distribu-

tions which represent that environment according to Bayesian norms. Conversely,

an ideal Bayesian reasoner might live in a ‘rationality hostile’ physical environment

that changes so rapidly and dramatically that it fails to survive or maintain homoeo-

stasis, even if it updates its subjective probability distributions quickly and represents

the environment accurately according to the Bayesian norms. Bayesian reasoning is

not unrelated to survival, but it is not obvious inwhat sense itwould guarantee it. In

information-theoretic terms, the exact nature of the relationship between Friston’s

two types of free energy – homoeostatic and variational – is unclear and the subject

of ongoing analysis.²8

At least two other aspects of the free-energy defence of predictive coding invite

further scrutiny.

First, the aim of the predictive coding research programme is to defend the claim

that every task that the brain faces can and should be described as minimisation of

sensory prediction error. Survival/homoeostasis is clearly one important task faced

by a brain. If the internal logic of the free-energy defence is correct, then because

the brain faces that task it also faces the task ofminimising sensory prediction error.

But it is not obvious that survival/homoeostasis is the only problem faced by a brain.

Plausibly, the human brain faces other challenges that may be unrelated, or even in

tension with, the human agent’s survival or homoeostasis – e.g. problems ofmate se-

lection, fulûlment of social roles, or arbitrary challenges set in the classroomorwider

social environments. It is not clear how the free-energy defence is intended to handle

these cases. he defence appeals to the connection between survival/homoeostasis

andminimising sensory prediction error, but it is largely silent about how problems

that do not (or do not obviously) contribute to survival/homoeostasis aremeant to

be related to sensory predictive error. Consequently, even if one were to assume that

the internal logic of the free-energy defence is correct, it is unclear how it would

establish predictive coding as a universal claim.

Second, recall that the case-based defence required one to show, not only that

every computational problem faced by the brain in cognition can be redescribed

as sensory prediction error minimisation, but also that it should be described that

way. he free-energy defence only appears to speak to the ûrst issue. It attempts to

establish a connection between the task of survival/homoeostasis and the task of

minimising sensory prediction error. However, even if such a connection exists, it

would say nothing about themerits of one task description over the other at Marr’s

computational level. In order to address that, one would need to go beyond the

²8See Bruineberg, Kiverstein and Rietveld (2018); Colombo andWright (2018); Sprevak (2020).
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relationships between tasks as conjectured by the free-energy defence and consider

the value of predictive coding’s proposed redescription with respect to the wider

standards, interests, and goals in cognitive neuroscience. Why should we describe

the task facing the brain as sensory prediction error minimisation, even if, as the

free-energy defence suggests,we can? hat argument remains to bemade, and doing

so is likely to depend, at least partly, on an examination of the beneûts oòered by

predictive coding’s proposed description at the level of the treatment of speciûc cases

of interest to cognitive neuroscience. his suggests that the free-energy defencemay

not be able to entirely shortcut the exigencies of the case-by-case defence.

9 he instrumental-value defence

he instrumental-value defence has an entirely distinct character from the previous

two. his third strategy for defending predictive coding helps to explain an otherwise

puzzling phenomenon: the widespread adoption of its computational-level claim in

cognitive neuroscience despite what we have seen as the view’s current relatively

slender epistemic support. According to the instrumental-value defence, predictive

coding should be interpreted, not as a passive claim that awaits conûrmation, but as

a discovery heuristic – an assumption that researchers might adopt in order to help

better organise data, guide experimental design and interpretation, and formulate

further,more speciûchypotheses for testing. Predictive coding’s computational-level

description provides a novelway to describe and systematise behavioural and neural

responses. It constrains the way onemight group behavioural and brain responses

into psychologically relevant, computationally-deûned capacities. Furthermore, if

one understands predictive coding as a package that includes proposals at Marr’s

algorithmic and implementation levels, then it provides a rich set of heuristics to

guide and inspire claims about the formal methods and neural mechanisms that

underlie those computational capacities. he focus in the previous two sections was

on whether predictive coding gets the computational-level description of the brain

right or wrong (or whether it fares better than alternative proposals). But onemight

equally well ask the prior question of how one can come up with a computational-

level description of the brain at all. Scientiûc work here can potentially beneût from

what predictive coding says, even if uncertainty remains about the view’s ultimate

epistemic standing.

Individuating behavioural and neural responses into the exercise of a set of well-

deûned neural computational capacities is hard. Cognitive neuroscientists do not

have an agreedmethodology to guide them through this process. Formulating a

computational-level description of the brain usually requires adopting some broad

theoretical orientation about the overall purpose of the brain’s physical activity.

It is not obvious where an empirically minded researcher should look to for this.
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Traditionally, folk psychology has provided one possible source of inspiration. One

might, for example, start by assuming that the brain is trying to use ‘belief ’-like and

‘desire’-like states to produce outcomes that satisfy what it represents as ‘desired’.

Bringing this to bear on empirical datamight motivate a researcher to formulate

more speciûc hypotheses about diòerent kinds of belief-like and desire-like states

inside the brain, the relationships between them, the processes that transform them,

and how sensory and behavioural responses update those beliefs and fulûl those

desires.²9

An alternative source of inspiration might lead a researcher towards a diòerent set

of speciûc, testable hypotheses about the computational tasks the brain faces and

its underlying computational capacities, states, andmechanisms. Machery (forth-

coming) describes how one feature of evolutionary psychology is that, irrespective

of its other epistemic properties, it provides a potentially valuable set of discovery

heuristics. One of those heuristics (the ‘forward-looking’ heuristic) speaks directly

to the problem of coming up with hypotheses at Marr’s computational level. It

suggests that our computational capacities should be identiûed by looking at the

information-processing problems encountered by our ancestors that regularly bore

on their ûtness.³0 he computational capacities that our brains have today should

be inferred from the problems faced by our evolutionary ancestors (Cosmides and

Tooby, 1989). Hypotheses about our computational capacities arrived at in this

fashion of course need to be empirically conûrmed. But even in advance of securing

epistemic support, it may make sense to accept a framework like evolutionary psy-

chology (or folk psychology) as a discovery heuristic, in order to make the problem

of task description tractable at all.

Predictive coding potentially plays a similar role for cognitive neuroscience. It

suggests that neural and behavioural responses should be organised around the

central idea that those responses are all attempts by the brain to minimise (long-

term, precision-weighted) sensory prediction error. Even if the evidential basis for

that idea is relatively slim, it may function as a useful heuristic to guide design of

experiments,measurement, and generatemore speciûc, testable proposals about

physical responses.

For example, Fletcher and Frith (2009), inspired by predictive coding’s

computational-level claim, hypothesise that a range of positive symptoms of

schizophrenia – including hallucinations, delusions, abnormal saliences in

perception, disturbances in low-level motor functioning – should be categorised

as instances of a single, uniûed dysfunction in the computational function to

minimise (precision-weighted) sensory prediction error. hey go on to propose that

²9SeeMachery (forthcoming), Section 1.1.

³0ibid.
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this dysfunction is unwritten by a single, uniûed computational mechanism and

physical basis, again prompted by predictive coding’s claims at those levels.³¹ Such

work suggests novel experimental designs that might attempt to dissociate these

factors, probe how theymight be quantitatively aòected bymanipulating sensory

prediction errors, and explore analogues of schizophrenia in healthy subjects by

looking at regimes that have similar eòects on sensory prediction errors.³² Corlett

and Fletcher (2014) describe how predictive coding could function as a discovery

heuristic for clinicians to ûnd and trial new therapeutic interventions for patients

(including pharmacological treatments). he idea that the brain aims to minimise

sensory prediction error might function as the starting point for any number of

concrete theoretical, experimental, and therapeutic developments.

In contrast to both the case-based defence and the free-energy defence, the focus

here is not primarily on truth, but on predictive coding’s utility. he relevant kind

of utility should be understood as broader than merely a concern with achieving a

narrowly instrumental outcome. Cognitive neuroscientists need to make assump-

tions regarding the overall purpose of neural functioning in order to make any

sense of activity in the brain and behaviour. hose assumptions need to come

from somewhere. It is reasonable that any candidate source for those ideas should

be understood to be uncertain and exploratory; predictive coding provides one

among many possible approaches (distinct from folk psychology or evolutionary

psychology). Its sheer novelty – predictive coding’s ability to depart from traditional

categorisations of behaviour and neural response – is undoubtedly an attraction.

It allows us to see familiar behavioural and neural responses in a new light and

group them together in diòerent ways from previous research programmes. he

central idea that generated these hypotheses may ultimately prove to bemistaken,

but that possibility should not disbar it from being used to guide current thinking

or practice.

Using predictive coding in this way – as a heuristic to guide discovery rather than a

claim that passively awaits conûrmation – does not somehowmagically confer justi-

ûcation on the view. Merely believing something does not make it true. Justiûcation

for predictive coding only accrues if it can predict and explain empirical results

better than alternative theoretical approaches.³³ he instrumental-value defence

does not obviate the need to gather empirical evidence to conûrm predictive coding.

However, it does explain why someonemight be rational to accept what predictive

coding says now, even in advance of such evidence being obtained. It explains

why predictive coding might be adopted in cognitive neuroscience as a working

³¹ibid., pp. 53–55; Corlett, Frith and Fletcher (2009).

³²For example, see Fletcher and Frith (2009), p. 55–56.

³³SeeMachery (forthcoming), Section 3.2 for a similar point regarding evolutionary psychology.
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hypothesis despite its truth remaining in question.

10 Conclusion

his paper has focused on what predictive coding says at Marr’s computational

level. In its boldest form, predictive coding proposes that the only computational

problem that the brain faces in cognition is to minimise its long-term, prediction-

weighted sensory prediction error. his paper has reviewed three strategies to

defend this claim (Sections 7, 8, 9). hese three defences should not be viewed

as mutually exclusive, but as potentially complementary methods for justifying

predictive coding.

It is natural to wonder what would happen if one were to trim predictive coding’s

ambitions.³4 Perhaps it describes some of the problems that the brain faces, but not

all. One might imagine a variety of ways in which its computational-level claim

might be reigned in. At one limit would be the relatively uncontroversial claim

that one thing the brain does, in early vision, is to minimise sensory prediction

error to compress sensory signals. At the other end would be the unqualiûed claim

that minimising sensory prediction error is the only thing that the brain does.

An advocate of predictive coding might wish to adopt a view that falls between

these two extremes. However, it is worth noting that the extent to which caveats

and qualiûcations are introduced, the distinctive scope and unifying power of the

predictive coding framework is compromised. he predictive coding research

programme, if it is to fulûl its original promise, should aim to deliver as broad and

comprehensive as theory of cognition as possible.
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