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Abstract. Since Euclid defined a point as “that which has no

part” it has been widely assumed that points are necessarily unex-

tended. It has also been assumed that this is equivalent to saying

that points or, more properly speaking, degenerate segments, have

length zero. We challenge these assumptions by providing models

of Euclidean geometry where the points are extended despite the

fact that the degenerate segments have null lengths, and observe

that whereas the extended natures of the points are not recogniz-

able in the given models, they can be recognized and characterized

by structures that are suitable expansions of the models.
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1. Introduction

Ever since Euclid defined a point as “that which has no part” it

has been widely assumed that points are necessarily unextended (e.g.

Hellman and Shapiro 2018, 189-190). It has also been assumed that,

analytically speaking, this is equivalent to saying that points or, more

properly speaking, degenerate segments–segments containing a single

point–have length zero (e.g. Hellman and Shapiro 2018, 189-190).1 In

this paper we challenge these assumptions. We argue that neither de-

generate segments having null lengths nor points satisfying the axioms

of Euclidean geometry implies that Euclidean points lack extension.

To make our case, we provide models of ordinary 3-dimensional Eu-

clidean geometry where the points are extended despite the fact that

the corresponding degenerate segments have null lengths, as is required

by the geometric axioms. The first model is used to illustrate the seem-

ingly remarkable fact that extended points can model all of ordinary

3-dimensional Euclidean space and the other two models are employed

to draw attention to the fact that the internal structure of extended

1Hellman and Shapiro appear to take the just-said views about

points to be consequences of Euclid’s characterization (2018, 189),

rather than logical or mathematical consequences of some general con-

cept of point.



ARE POINTS (NECESSARILY) UNEXTENDED? 3

points may assume a variety of distinct forms. Following this, we un-

derscore the fact that whereas the extended natures of the points are

indiscernible in the just-said models and are not reflected by theorems

of Euclidean geometry, they can be recognized as well as characterized

using suitable many-sorted expansions of the given models, expansions

that supplement the models with additional universes and relations

defined thereon that characterize the internal structure of the points.

Thus, one must draw a sharp distinction between what is true in the

model of geometry, on the one hand, and what is true in the expansion

(or outside) of the model, on the other. After providing illustrations

of such expansions we address a pair of philosophical queries that have

been raised about our models, in one case leading us to a discussion of

the relative finitude and infinitude of geometrical magnitude. Finally,

in an Appendix we will draw attention to a little known anticipatory

model of E. V. Huntington (1913) that we learned of long after the ideas

in this paper were fully developed. To establish the consistency of his

postulates for ordinary 3-dimensional Euclidean geometry, Huntington

introduces a “geometry of points of finite size”, where, for example,

“inch-spheres” serve as points (1913, 524, 530). Like the points in our

models, the extended points in Huntington’s models are nondegenerate

convex regions of models of paradigmatic extended geometrical spaces,

and are, as such, natural models of extended spatial regions which

in principle might be nondegenerate regions of physical space. Un-

like the envisioned hypothesized physical counterparts of the abstract

geometrical models that are our primary focus, however, Huntington’s
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just-said models are incompatible with certain scalar aspects of Newto-

nian (physical) space, where the points are assumed to be infinitesimal

relative to the standard inch.

2. Euclidean Geometry

By 3-dimensional elementary Euclidean geometry we mean a system

of axioms that is collectively equivalent to the 3-dimensional analog of

Hilbert’s (1971) axioms for standard Euclidean plane geometry save his

continuity axioms, the latter being the axioms that limit the models to

isomorphic copies of 2-dimensional Cartesian geometry over the ordered

field R of real numbers. For our purpose, it is especially convenient to

employ Tarski’s system, P3 (Tarski 1959, axioms A1 −A12 and note 5;

Schwabhäuser, Szmielew and Tarski 1983, 10-24), which is formulated

as a first-order theory (with the equality symbol “ = ” treated as logical

identity) in which points are the sole primitive individuals and the only

non-logical predicates employed in the axioms are a ternary primitive

predicate B (where “Bxyz” is read y lies between x and z, the case

when y coincides with x or z not being excluded) and a quarternary

primitive predicate ≡ (where “xy ≡ zu” is read x is as distant from y

as z is from u). The line through distinct points a and c in P3 is the

set of all points b such that Babc ∨ Bbca ∨ Bcab and a segment ac is

the set of all points b such that Babc, the segment being degenerate if

a = c.

The conception that bridges the gap between the domains of num-

ber and of Euclidean magnitude is the classical notion of a Cartesian

space over an ordered field. In the latest version of Tarski’s framework
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(Schwabhäuser, Szmielew and Tarski 1983, 16), the 3-dimensional ver-

sion of this familiar concept assumes the following form.

A 3-dimensional Cartesian space over an ordered field 〈F,+, ·, <, 0, 1〉

is a structure C3 (F ) =: 〈AF , BF ,≡F 〉, where the betweenness re-

lation BF and the equidistance relation ≡F are defined on AF =

{(x1, x2, x3) : x1, x2, x3 ∈ F} by the stipulations:

BFxyz if and only if there is a λ ∈ F for which 0 6 λ 6 1 and

yα − xα = λ (zα − xα) for α = 1, 2, 3;

xy≡Fuv if and only if
3∑

α=1

(xα − yα)2 =
3∑

α=1

(uα − vα)2.

The relation between Cartesian spaces and models of P3 is given by

the following well-known result that has its roots in the work of Hilbert

(1899; 1971).

Representation Theorem for P3. P3. M is a model of P3 if and

only if M is isomorphic to C3 (F ), where F is a Pythagorean ordered

field–an ordered field F in which
√
a2 + b2 ∈ F whenever a, b ∈ F .

The central ingredient in the proof of the only if portion of the above

theorem is the result: if l is the line in a model M of P3 containing the

distinct points o and e, then by letting the segments oo and oe serve as

the zero (segment) and unit (segment), respectively, and by appealing

to familiar geometric constructions, one can define operations +l and

·l on, and a relation <l between, the directed segments of l (having o
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as an end point) so that the resulting structure

F l
oe = 〈l,+l, ·l, <l, oo, oe〉 ,

is a Pythagorean ordered field that is within isomorphism independent

of the choices of l, o and e 6= o. Employing F l
oe together with the triple

of mutually perpendicular lines l, l′ and l′′ of M having the point o in

common, one then introduces a system of Cartesian coordinates and

shows that M is isomorphic to C3(F l
oe). Henceforth, we will refer to

F l
oe (or an isomorphic copy thereof) as the characteristic ordered field

ofM.2

To obtain a categorical axiomatization of ordinary 3-dimensional Eu-

clidean geometry one need only supplement P3 with the Dedekind Con-

tinuity Axiom (Tarski 1959, 18). Henceforth we will refer to the ax-

iomatization thus obtained as E3. Since the characteristic ordered field

of a model E3 is isomorphic to R, we now have the familiar

Representation Theorem for E3. M is a model of E3 if and only if

M is isomorphic to C3 (R).

2In place of F l
oe, Tarski (1959, 21-22) employs the isomorphic copy

thereof that results from replacing each of the directed segments ox

and yo of F l
oe with their corresponding endpoints x and y, and other

authors (e.g. Hartshorne 2000, ch. 4) employ an isomorphic copy of

F l
oe based on equivalence classes of congruent directed segments of the

space. For the construction of F l
oe itself, see for example (Lingenberg

and Bauer 1974, 90-91).
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The constructions of our models of E3 make use of a familiar model-

theoretic technique that constructs models vis-à -vis isomorphisms.

Since the Dedekind Continuity Axiom is a second-ordered assertion, the

discussion of these models takes place in classical second-order logic.

3. First Model of E3 With Extended Points

For each point x = (x1, x2, x3) ∈ AR = R3, let x be a copy of

〈AR, BR,≡R〉 = C3 (R) indexed by x; that is, let

x =: C3 (R)x ,

which, on occasion, we will also write as 〈R3
x, Bx,≡x〉. To ensure that

x ∩ y = ∅ whenever x 6= y, we may suppose, for example, that R3
x =:

{ax =: (a, x) : a ∈ R3}. Further let Π = {x : x ∈ R3} and define

betweenness and equidistance relations B and ≡ on Π by stipulating:

for all a,b, c,d ∈ Π,

Babc if and only if BRabc,

ab ≡ cd if and only if ab≡Rcd.

Since the mapping f : R3 → Π defined by the condition f (x) = x =

C3(R)x for all x ∈ R3 is an isomorphism from C3 (R) onto 〈Π, B,≡〉, it

follows from the above construction and the Representation Theorem

for E3 that:

Theorem 1. 〈Π, B,≡〉 is a model of E3, each of whose points is itself

a model of E3.



8 PHILIP EHRLICH

Moreover, since the characteristic ordered field of 〈Π, B,≡〉 is iso-

morphic to R, each segment of 〈Π, B,≡〉 is assigned a non-negative

real-valued length that is zero if and only if the segment is degenerate.

Accordingly, we have

Corollary 1. Despite the fact that each point in the model 〈Π, B,≡〉

of E3 is itself a model of E3, each degenerate segment of 〈Π, B,≡〉 has

length zero in the model.

The reader will notice that if in the above construction and the

arguments for Theorem 1 and Corollary 1, we replace x =: C3 (R)x

with x =: R3
x, the resulting arguments continue to hold and we obtain

the following results:

Theorem 1†. 〈Π, B,≡〉 is a model of E3, each of whose points (together

with the betweenness and equidistance relations defined on it) is itself

a model of E3.

Corollary 1†. Despite the fact that each point in the model 〈Π, B,≡〉

of E3 (together with the betweenness and equidistance relations defined

on it) models E3, each degenerate segment of 〈Π, B,≡〉 has length zero

in the model.

The only difference between the two approaches is that in the first

the points are models of E3 and in the second they are the universes of

the models. In our treatments of the subsequent two models of E3, we

will limit the discussion to the first approach, with the understanding

that the second approach is available in those cases as well. In section 9,
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we will draw attention to a consequence that results from the difference

in the two approaches.

4. Archimedean and Non-Archimedean Ordered Fields

and models of E3

Unlike the above construction, the next construction of a model of E3

containing extended points makes use of a non-Archimedean ordered

field. To prepare the way for the latter construction as well as for

some material in subsequent sections we will recall some of the basics of

Archimedean and non-Archimedean ordered fields and their underlying

ordered additive groups.

An ordered field 〈F,+, ·, <, 0, 1〉 is said to be Archimedean if its or-

dered additive group 〈F,+, <, 0〉 satisfies the Archimedean condition:

whenever a and b are nonzero members of F where |a| < |b|, there is

a positive integer n such that n |a| > |b|. If F is not Archimedean,

it is said to be non-Archimedean. Since every ordered field contains a

unit element, written “1”, an element a of F may be said to be infini-

tesimal if |a| < 1/n for every positive integer n and it may be said to

be infinite if |a| > n · 1 for every positive integer n. An ordered field

is Archimedean if and only if it contains neither infinite nor nonzero

infinitesimal elements. Non-Archimedean ordered fields, by contrast,

contain infinite as well as nonzero infinitesimal elements. Zero is the

sole infinitesimal element of an Archimedean ordered field.

If a and b are nonzero members of the ordered additive group of

〈F,+, ·, <, 0, 1〉, then a is said to be Archimedean equivalent to b (or

finite relative to b) if there are positive integers m and n such that



10 PHILIP EHRLICH

m |b| > |a| and n |a| > |b|. Archimedean equivalence partitions the ele-

ments of F −{0} into disjoint classes called Archimedean classes. The

term “Archimedean class” is intended to indicate that within a given

class the Archimedean condition holds. If a, b ∈ F are not Archimedean

equivalent, then a is said to be infinitesimal (in absolute value) rela-

tive to b and b is said to be infinite (in absolute value) relative to a,

if |a| < |b|. In accordance with these conventions, 0 is infinitesimal

(in absolute value) relative to every member of F − {0}. Given the

absence of a unit element, the notions of infinite and nonzero infinites-

imal members of 〈F,+, <, 0〉 are not well-defined. On the other hand,

the infinite and infinitesimal members of 〈F,+, ·, <, 0, 1〉 are the mem-

bers of the field that are (in absolute value) respectively infinite and

infinitesimal relative to the unit element.

A model of P3 may be said to be Archimedean if and only if its

characteristic ordered field is Archimedean (see section 2). Therefore,

since an ordered field is Archimedean if and only if it is isomorphic

to a subfield of R, every model of E3 is Archimedean. As such, the

nondegenerate segments of a model of E3 are all finite relative one

another and infinite relative to the degenerate segments of the model.

5. The Non-Archimedean Ordered Field L

The construction that underlies our second model can be carried out

using any non-Archimedean Pythagorean ordered field that contains

an isomorphic copy of the ordered field of real numbers. The following

familiar example of such a field was introduced by Tullio Levi-Civita

in the first of his groundbreaking works (1892-93; 1898) that placed
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Giuseppe Veronese’s pioneering investigation of non-Archimedean ge-

ometry (1891) on an algebraic foundation.

Let L be the collection of all power series

∑
α<β

rαt
γα

where {γα : α < β 6 ω} is a (possibly empty) strictly decreasing se-

quence of members of R that is coinitial with R if β = ω, and {rα : α < β}

is a sequence of members of R−{0}. L is a non-Archimedean ordered

field (with the empty series serving as the zero of the field) when the

order is defined lexicographically and the sums and products are de-

fined à la polynomials, with tγ · tγ′ = tγ+γ′ for all γ, γ′ ∈ R. If we

insert “dummy” terms with zeros for coefficients to permit a uniform

representation of members of L, then these conditions (written +L, ·L

and <L) may be stated more formally as follows where +, · and <

designate the standard addition, multiplication and order in R.

∑
γ∈R

aγt
γ+L

∑
γ∈R

bγt
γ =

∑
γ∈R

(aγ + bγ) t
γ,

∑
γ∈R

ayt
γ·L
∑
γ∈R

byt
γ =

∑
γ∈R

 ∑
(µ,ν)∈R×R
µ+ν=γ

aµbν

 tγ,

∑
γ∈R

aγt
γ<L

∑
γ∈R

bγt
γ, if aγ = bγ for all γ > some τ ∈ R and aτ < bτ .
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In virtue of the lexicographical ordering, the infinitesimals of L are

the members of L whose greatest exponent γ0 is negative. Since 0

corresponds to the empty series, this vacuously holds for 0.

6. Second Model of E3 With Extended Points

Let L be defined as above and, henceforth, by R̂, we mean the isomor-

phic copy of R in L consisting of {0}∪{x ∈ L : x = rt0 for some r ∈ R− {0}}

with the addition, multiplication and order inherited from L. First note

that, since L is a Pythagorean ordered field (e.g. Robinson 1973, 92),

C3 (L) is a model of P3. Moreover, since R̂ ⊂ L and R̂ is isomorphic

to R, C3

(
R̂
)
⊂ C3 (L) and C3

(
R̂
)

is isomorphic to C3 (R) .

Let LI be the set of infinitesimals of L, and for each point x =

(x1, x2, x3) ∈ R̂3, let

x =:
{

(x1 + δ1, x2 + δ2, x3 + δ3) ∈ L3 : δ1, δ2, δ3 ∈ LI
}
,

together with the restrictions thereto of the betweenness and equidis-

tance relations BL and ≡L from C3 (L). Thus, for each point x ∈ R̂3,

the universe of x is the infinite set of all points in C3 (L) that are an

infinitesimal distance from x, including x itself. Using this, one may

readily show: x ∩ y = ∅ for distinct x, y ∈ R̂3; and for each x ∈ R̂3,

x is a convex region of C3 (L) in the sense that for all a, b, c ∈ C3 (L),

b ∈ x whenever a, c ∈ x and BLabc. Moreover, x is 3-dimensional,

as is evident from its containment of the three mutually orthogonal

(nondegenerate) segments of C3 (L) having endpoints

(x1, x2, x3), (x1 + δ, x2, x3)
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(x1, x2, x3), (x1, x2 + δ, x3)

(x1, x2, x3), (x1, x2, x3 + δ),

where δ is a nonzero member of LI .

Now let

Π̂ =:
{
x : x ∈ R̂3

}
and define betweenness and equidistance relations B̂ and ≡̂ on Π̂ by

the conditions: for all a,b, c,d ∈ Π̂,

B̂abc if and only if BLabc,

ab≡̂cd if and only if ab≡Lcd.

Also let f : R̂3 → Π̂ be the mapping defined by the condition:

f (x) = x for all x ∈ R̂3. Plainly, f is an isomorphism from C3

(
R̂
)

onto
〈

Π̂, B̂,≡̂
〉

; and so, since C3

(
R̂
)

is isomorphic to C3 (R), it follows

that
〈

Π̂, B̂, ≡̂
〉

is isomorphic to C3 (R). But then, in virtue of the

Representation Theorem for E3 and the just-described construction,

we have

Theorem 2.
〈

Π̂, B̂, ≡̂
〉

is a model of E3, each of whose points is a

convex 3-dimensional region of C3 (L).

Moreover, by invoking the argument employed in section 3 to estab-

lish Corollary 1, we have

Corollary 2. Despite the fact that each point in the model
〈

Π̂, B̂, ≡̂
〉

of

E3 is a convex 3-dimensional region of C3 (L), each degenerate segment

of
〈

Π̂, B̂, ≡̂
〉

has length zero in the model.
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7. hjelmslev’s nilpotent infinitesimalist continuum

As in the second construction of a model of E3 with extended points,

in our third construction the points are convex 3-dimensional regions

of an overarching geometric space. Here the overarching space is an

affine Hjelmslev space over the lexicographically (totally) ordered ring

R[ε] of dual numbers, the 3-dimensional counterpart of the nilpotent in-

finitesimalist geometric continuum introduced by Johannes Hjelmslev

(1923). To prepare the way for the construction, we begin with a brief

overview of the system of dual numbers and the 3-dimensonal affine

Hjelmslev space defined on it.3

The system R[ε] of dual numbers, which was introduced by William

Clifford (1873), is a commutative ring with identity consisting of

{r0 + r1ε : r0, r1 ∈ R}

with sums and products defined in the manner of polynomials, with

ε 6= 0 and ε2 = 0. Thus, for any two dual numbers a0 +a1ε and b0 + b1ε

(a0 + a1ε) + (b0 + b1ε) = (a0 + b0) + (a1 + b1)ε

3Like Hjelmslev geometries, Synthetic Differential Geometry (e.g.

Kock 1981) makes use of nilpotent infinitesimals. However, unlike the

latter theory, whose underlying logic is intuitionistc to avoid outright

inconsistency with classical logic, the underlying logic of Hjelmslev

geometries is classical. For further discussion of these matters, see

(Ehrlich 2021).
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(a0 + a1ε)(b0 + b1ε) = a0b0 + (a0b1 + a1b0)ε.

The element ε in R[ε] is a nilpotent, an element x such that xn = 0

for some positive integer n. The least n for which xn = 0 is the index

of nilpotency of x. The index of nilpotency of ε in R[ε] is 2. Nonzero

nilpotent elements of index n have many applications in algebra, one of

them being a convenient way of representing quantities up to infinites-

imal order n. When nilpotents are thus interpreted, they are referred

to as nilpotent infinitesimals. The number systems we have hitherto

considered have no nonzero nilpotent elements.

Inspired by the view of the pre-Socratic philosopher Protagoras, as

recounted in Aristotle’s Metaphysics (III: 2, 998a), Hjelmslev held that

the axiom that two straight lines always share at most one point is in-

compatible with perceptual experience, as is the assertion that a circle

and a line tangent to it meet at a single point (Hjelmslev 1923, 1-2).

This led him to devise a “geometry of reality” (Hjelmslev 1916) or a

“natural geometry” (Hjelmslev 1923), as he later called it, whose sub-

ject is the lines and circles of perception constructed with real rulers

and compasses. He further devised (Hjelmslev 1923, 12-13) the above-

mentioned abstraction of the latter, coordinated by R[ε], that is a pro-

totype of what are today called affine Hjelmslev geometries. In these

geometries, which are coordinated by affine Hjelmslev rings, while each

pair of distinct points has a line joining them, it need not be unique.

Indeed, a pair of distinct points may lie on a pair of distinct lines;

when this happens the points are said to be neighboring points and the

lines are said to be neighboring lines, the two notions of neighbor being
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equivalence relations. Remote (or nonneighboring) points, by contrast,

are joined by a unique line and remote (or nonneighboring) lines that

intersect, intersect in a unique point. In these geometries a circle and a

line tangent to it intersect in a nondegenerate “infinitesimal segment”

of neighboring points.

Formally speaking, in their standard formulations, affine Hjelmslev

planes are structures 〈P,L, ‖, I〉 (satisfying a set of axioms–see refer-

ences below) where P is a set of points, L is a set of subsets of P

called lines, ‖ is a parallel relation defined on L and I is an incidence

relation defined on pairs (a, b) ∈ P × L. Moreover, and of central im-

portance, the axioms ensure that the geometrical relational structure

〈P∗,L∗, ‖∗, I∗〉, with the induced relations ‖∗ and I∗, obtained from

〈P,L, ‖, I〉 by replacing each p ∈ P and each l ∈ L with the equivalence

classes consisting of all neighboring points of p and all neighboring lines

of l, respectively, is isomorphic to an ordinary affine geometric coun-

terpart in which two points determine a line and lines that intersect

do so in a unique point. In the case of Hjelmslev’s aforementioned

prototype, which is coordinated by R[ε], the affine counterpart is (as

Hjelmslev observed) isomorphic to the standard affine Euclidean plane

over R. It is the existence of this isomorphism that motivates our third

construction.

Hjelmslev’s plane over R[ε], henceforth H2 (R[ε]), consists of all or-

dered pairs (A,B) ∈ R[ε]× R[ε]. As usual, a straight line of H2 (R[ε])

is defined by a first-degree equation

Ax+By + C = 0,
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where now, however, A,B,C ∈ R[ε], it being understood that at least

one of A,B is not in the ideal R[ε]I = {0 + rε : r ∈ R} of nilpotent

infinitesimal elements of R[ε]. In H2 (R[ε]), a pair of points (a1, a2) and

(b1, b2) are neighbors if and only if b1 − a1 and b2 − a2 are elements of

R[ε]I .

R[ε] admits a relational expansion to a non-Archimedean totally or-

dered ring, where the order < is defined lexicographically by the con-

dition: a0 +a1ε < b0 +b1ε if a0 <R b0 or a0 = b0 and a1 <R b1. In virtue

of the just-said ordering, the points on a line of H2 (R[ε]) are them-

selves totally ordered and admit a natural betweenness relation BR[ε]

defined by the condition: for all points x, y, z on a line l of H2 (R[ε])

totally ordered by <l, y lies between x and z if either x <l y <l z or

z <l y <l x.4

Examples of neighboring lines in H2 (R[ε]) are

y = 0 and y = εx,

which intersect at all neighboring points (rε, 0) where r ∈ R. And

similarly, the circle defined by the equation

Ax2 +By2 = 1

4For details, see (Baker, Lane, Lorimer, and Laxton 1984, 25).

Without loss of generality, a non-strict betweenness relation (à la

Tarski) may also be defined on R[ε] by replacing <l with ≤l in the

above definition. However, since we will later appeal to a result from

the literature on affine Hjelmslev geometries that is formulated in terms

of the strict betweenness relation, we have adopted the latter relation.
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intersects the line defined by the equation

y = 1

at all neighboring points (rε, 1) where r ∈ R. In each of these cases,

the set of neighboring points constituting the segment of intersection

is isomorphic to R considered as an ordered set (Hjelmslev 1923, 13).

Inspired by these and related ideas of Hjelmslev (1923; 1929), the

axiomatic theory of Hjelmslev planes (and corresponding theory of

Hjelmslev rings) was developed by Klingenberg (1954; 1954a; 1955)

and was extended to higher dimensional spaces by Kreuzer (1987;

1988). Our third construction, to which we now turn, makes use of

the 3-dimensional analog of H2 (R[ε]), henceforth denoted H3 (R[ε]),

where the basic ideas and concepts of H2 (R[ε]) readily extend to the 3-

dimensional case. In particular, in H3 (R[ε]), a pair of points (a1, a2, a3)

and (b1, b2, b3) are neighbors if and only if b1−a1, b2−a2 and b3−a3 are

elements of R[ε]I , and given a point and a line in a plane of H3 (R[ε])

there is one line perpendicular to the line through the point (Kreuzer

ibid.).

8. Third Model of E3 With Extended Points

Let R̃ be the isomorphic copy of R in R[ε] consisting of {r + 0ε :

r ∈ R} with the addition, multiplication and order inherited from R[ε],

and for each x = (x1, x2, x3) ∈ R̃3, let

x =:
{

(x1 + δ1, x2 + δ2, x3 + δ3) ∈ R[ε]3 : δ1, δ2, δ3 ∈ R[ε]I
}
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together with the restriction thereto of the aforementioned between-

nesss relation BR[ε] defined on H3 (R[ε]). Finally, let

Π̃ =:
{
x : x ∈ R̃3

}
.

For each x ∈ R̃3, x is the (infinite) set of all points in H3 (R[ε])

that are neighbors of x, including x itself. Since the neighbor relation

on points is an equivalence relation that partitions R[ε]3 into disjoint

classes, it follows that for distinct x, y ∈ R̃3, x ∩ y = ∅ and

⋃
x∈Π̃

x = R[ε]3.

Moreover, by a result of Baker, Lane, Lorimer and Laxton (1984, 20-

22)5, for each x ∈ R̃3, x is a convex subclass of H3 (R[ε]) in the sense

defined in section 6. Furthermore, x is 3-dimensional, in virtue of its

containment of triples of mutually orthogonal nondegenerate segments

of H3 (R[ε]), such as:

{
(x1 + δ, x2, x3) ∈ R[ε]3 : 0 ≤ δ ≤ ε

}
{

(x1, x2 + δ, x3) ∈ R[ε]3 : 0 ≤ δ ≤ ε
}

{
(x1, x2, x3 + δ) ∈ R[ε]3 : 0 ≤ δ ≤ ε

}
.

5H2 (R[ε]) together with the betweenness relation BR[ε] defined

thereon is an example of a preordered affine Hjelmslev plane and Baker,

Lane, Lorimer and Laxton (1984) have shown that every neighbor class

of such a structure is convex in the sense defined in section 6. Their

proof readily extends to the 3-dimensional case.
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By now mimicking the constructions employed in sections 3 and 6,

we define betweenness and equidistance relations B̃ and ≡̃ on Π̃ by the

conditions: for all a,b, c,d ∈ Π̃,

B̃abc if and only if BRabc,

ab≡̃cd if and only if ab≡Rcd;

and by essentially repeating the arguments employed in the just-said

sections we obtain the following analogs for
〈

Π̃, B̃, ≡̃
〉

of the results

for 〈Π, B,≡〉 and
〈

Π̂, B̂, ≡̂
〉

.

Theorem 3.
〈

Π̃, B̃, ≡̃
〉

is a model of E3, each of whose points is a

convex 3-dimensional region of H3 (R[ε]).

Corollary 3. Despite the fact that each point in the model
〈

Π̃, B̃, ≡̃
〉

of E3 is a convex 3-dimensional region of H3 (R[ε]), each degenerate

segment of
〈

Π̃, B̃, ≡̃
〉

has length zero in the model.

9. Mathematico-Philosophical Reflections

Whereas the notions of length, area and volume measure were intro-

duced to quantify our preanalytic notions of 1-dimensional, 2-dimensional

and 3-dimensional spatial extension, the relation between the standard

geometrical notions and the preanalytic, metageometric/metaphysical

notions are not quite what is often assumed. Indeed, what our models

illustrate is that, it is merely the infinitesimality of degenerate segments

relative to their nondegenerate counterparts (see section 4), rather than

the absence of extension of points, that is implied both by the axioms of
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ordinary Euclidean geometry and these segments’ null lengths.6 Thus,

from a contemporary standpoint, contrary to Euclid’s intuition, a point

of Euclidean geometry may very well have parts, indeed even proper

parts. Moreover, as the above remarks suggest, the number zero func-

tions quite differently as a cardinal number than as a measure number

in the system of reals. So, for example, whereas a set containing zero

members has no member at all, an event having probability zero–such

as a randomly thrown point-tipped dart landing on a specified point of

the unit interval of R–may very well transpire, and perhaps more sur-

prisingly still, a degenerate segment having length zero may contain a

point having an internal structure that models all of Euclidean space.7

6Beginning with Paul du Bois-Reymond (1882, 66), there has been

a string of authors who have argued that the now standard conception

of a continuum as a point-set is incoherent because it is impossible

for an extended segment to be composed of unextended points. In

(Ehrlich 2014), without appealing to the possibility of extended points,

attention is drawn to the misguided nature of such arguments. Still, it

is interesting to note that the very assumption these authors take to

lead to the incoherence of the standard view is not necessitated by the

standard view at all.
7Already by 1911, Federigo Enriques (1911, 101-103) pointed out

the possibility of assigning nonzero infinitesimal probabilities to a ran-

domly thrown point-tipped dart landing on a specified point of the

unit interval R, and thereby distinguishing measure theoretically be-

tween impossible events having probability zero, on the one hand, and

certain possible though infinitely unlikely events, on the other. This
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On the other hand, as we mentioned above, whereas the axioms

of E3 make assertions about points, they are entirely reticent about

what internal structure, if any, the points themselves have. Indeed,

this is simply not the province of Euclidean geometry, at least not in

its contemporary guise. Any additional assumptions about the nature

of the points other than those derivable from the axioms for E3 are by

their very nature extra-Euclidean. However, as we also previously men-

tioned, this is not to suggest that it would be impossible to suitably

expand models of E3 that would have provable consequences about any

internal structure the points might have. In the case of the models

of E3 discussed above this can be carried out in a variety of fashions,

including the following two in which the models are expanded to suit-

able many-sorted structures with supplemental universes and relations

defined thereon. Since the constructions are similar in all three cases,

we will simply illustrate them with 〈Π, B,≡〉.

In the first approach, which is also the approach that more liter-

ally captures the ideas expressed in Theorem 1 and Theorem 1†, one

idea was later taken up (without reference to Enriques) by Bernstein

and Wattenberg (1969) in the context of nonstandard analysis, and

again by Benci, Horsten and Wenmackers (2013; 2018) using their

non-Archimedean probability theory. However, since the null lengths

of degenerate segments is a consequence of E3, an analogous treatment

of assigning nonzero measures to degenerate segments containing ex-

tended points is not available unless one ignores the Euclidean nature

of the model.
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expands the Euclidean structure 〈Π, B,≡〉 to the extra-Euclidean struc-

ture 〈
Π, B,≡,(

〈
R3
x, Bx,≡x

〉
)x∈R3

〉
,

and in the second approach, one expands 〈Π, B,≡〉 to the extra-Euclidean

structure

〈Π, B,≡,Π∗, B∗,≡∗〉 ,

where

Π∗ =
⋃
x∈R3

R3
x, B

∗ =
⋃
x∈R3

Bx , and ≡∗ =
⋃
x∈R3

≡x .

Thus, whereas in the first approach one adds for each point x ∈ Π

a distinct universe R3
x and distinct betweenness and equidistance re-

lations Bx and ≡x defined thereon, in the second approach one adds

a single composite universe together with the corresponding compos-

ite betweenness and equidistance relations defined on it. While the

structures emerging from the two approaches are formally distinct, the

difference is largely a difference in methods of bookkeeping, since each

individually adjoined structure in the first approach constitutes a rec-

ognizable convex substructure of 〈Π∗, B∗,≡∗〉 in the second. Moreover,

whether one interprets Π as a set of models of E3, as in Theorem 1, or

as the set of the universes of the just-said models, as in Theorem 1†, the

above two expansions of 〈Π, B,≡〉 are alternative ways of formalizing

the extra-Euclidean structures implicit in each of those theorems.

If we adopt the first and more literal approach, then Theorem 1 and

Theorem 1† assume the following explicit forms:
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Theorem 1. The structure 〈Π, B,≡,(〈R3
x, Bx,≡x〉)x∈R3〉 is an expan-

sion of the model 〈Π, B,≡〉 of E3 each of whose points 〈R3
x, Bx,≡x〉 is

itself a model of E3.

Theorem 1†. The structure 〈Π, B,≡,(〈R3
x, Bx,≡x〉)x∈R3〉 is an expan-

sion of the model 〈Π, B,≡〉 of E3 each of whose points R3
x together with

the betweenness and equidistance relations Bx and ≡x defined on it is

itself a model of E3.

The above-described many-sorted expansions of 〈Π, B,≡〉 shed light

on the internal structure of the points in Π while leaving the model

and, in particular, its points in place. Loosely speaking, whereas

〈Π, B,≡〉 provides the macro-perspective of the geometric frame-

work, 〈Π, B,≡,(〈R3
x, Bx,≡x〉)x∈R3〉 and 〈Π, B,≡,Π∗, B∗,≡∗〉 provide

macro/micro-perspectives. There is also a complementary one-sorted

structure that sheds further light on the micro-perspective without ex-

panding the model itself. Since the basic construction is applicable to

all three of our examples, again we will only illustrate it for the case of

〈Π, B,≡〉.

Instead of expanding the structure 〈Π, B,≡〉 with the universe Π∗

and the relations B∗ and ≡∗ defined thereon, one begins with the struc-

ture 〈Π∗, B∗,≡∗〉 and expands it to the structure 〈Π∗, B′,≡′, B∗,≡∗〉,

where B′ and ≡′ are defined by the stipulations:

B′axbycz if and only if BRxyz,

awbx ≡′ cydz if and only if wx≡Ryz,
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where w, x, y, z range over R3 and aw, bx, cy and dz range over

R3
w,R3

x,R3
y and R3

z, respectively. Unlike the tuples that comprise B∗

and ≡∗, those that comprise B′ and ≡′ do not solely relate members of

individual R3
x’s. Moreover, as is evident from the construction, there is

an epimorphism (i.e. a surjective homomorphism) f from 〈Π∗, B′,≡′〉

onto 〈Π, B,≡〉, and, hence, 〈Π, B,≡〉 is isomorphic to the quotient

structure 〈Π∗/R,B′R,≡′R〉 defined by the congruence relation R gener-

ated by f ; that is, the structure 〈Π∗/R,B′R,≡′R〉 where Π∗/R is the

set of all equivalence classes [x] = {y ∈ Π∗ : f(y) = f(x)}, B′R is the

set of all triples ([x], [y], [z]) for which (x, y, z) ∈ B′ and ≡′R is the set

of all quadruples ([w], [x], [y], [z]) for which (w, x, y, z) ∈≡′ (e.g. Monk

1976, 385-386). Since f is not 1-1, unlike 〈Π, B,≡〉, 〈Π∗, B′,≡′〉 is

not a model of E3. On the other hand, 〈Π∗, B′,≡′〉 may be regarded

as a pre-Euclidean geometry in the sense that the quotient structure

〈Π∗/R,B′R,≡′R〉 is a model of E3. Analogously, the members of Π∗ may

be regarded as micro-points, though they are not points in 〈Π, B,≡〉.

Moreover, the members of Π∗/R are the universes of the models of E3

contained in Π, if Π is understood as in Theorem 1, and they coincide

with the members of Π, if Π is understood as in Theorem 1†. Accord-

ingly, if 〈Π, B,≡〉 is understood as in Theorem 1†, then 〈Π∗/R,B′R,≡′R〉

is not merely isomorphic to 〈Π, B,≡〉, it is identical to 〈Π, B,≡〉.

In his mathematico-philosophical correspondence with Frege on the

nature of the Euclidean axioms, Hilbert argued that the axioms con-

stitute “only a scaffolding or schema of concepts together with their

necessary relations to one another, and that the basic elements [such
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as points] can be thought of in any way one likes...provided only that

the requisite axioms are satisfied” (December 12, 1899/1980, 40-41).

To illustrate this he notes: “If in speaking of my points I think of

some system of things, e.g. the system: love, law, chimney-sweep...and

then assume all my axioms as relations between these things, then my

propositions, e.g. Pythagoras’ theorem, are also valid for these things”

(December 29, 1899, 40). This view, which was championed by Hilbert

and a number of other late nineteenth- and early twentieth-century

geometers, has emerged as the standard construal of these matters of

our day. Be that as it may, following longstanding tradition points are

still typically envisioned as unextended locations, or as locations hav-

ing “no length, breadth or thickness” as Veblen (1911, 4) expressed it.

The purpose of this paper has been to demonstrate that, longstand-

ing tradition aside, the purported unextended nature of points is not

implied by the axioms of E3. Models of E3 whose universes consist

of extended points do indeed exist, though one has to go outside the

Euclidean model to recognize and characterize their extended nature.

On occasion it has been suggested to the author that the construc-

tions of models of E3 with extended points presented above are simply

the workings out of the details of instances of Hilbert’s quip about love,

law and chimney-sweeps8 or his less well developed quip of 1882 where

he maintains: “one must be able to say “tables, chairs, beer-mugs”

each time in place of “points, lines, planes” (Blumenthal 1935, 402-

403). While this was certainly not our intension, there is an inkling

8This observation was first made by Patricia Blanchette.
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of truth in this contention, but only an inkling. As we noted in the

Introduction, and as our models make clear, the extended points in

our models are nondegenerate convex regions of models of paradig-

matic extended geometrical spaces, and are, as such, natural models

of extended spatial regions–spatial regions which in principle might be

nondegenerate regions of physical space. The same cannot be said of

tables, love or the like. As such, unlike the hypothesized playful mod-

els in Hilbert’s quips, our models go well beyond simply pointing out

that points in a model of E3 may have unintended interpretations, they

challenge the deep-seated and long standing geometric shibboleth that

points are necessarily unextended, and as such are necessarily devoid

of internal structure.

Nevertheless, could it be that our models of E3 with extended points,

particularly the first where the extended points are themselves models

of E3, may exist only in a formally stipulated sense; that, for example,

we lack any geometric or spatial conception of what constitutes the

“betweenness” and “equidistance” between such extended points?9 We

believe the answer is no, though for the sake of space we will only touch

on the matter here, leaving a more detailed historical and mathematico-

philosophical response for another occasion.

To help motivate our negative response it will be useful to first con-

sider a non-Archimedean model M of P3 having characteristic ordered

field F l
oe containing an isomorphic copy Roe of R, oo and oe being the

zero and unit segments of F l
oe and hence Roe (see sections 2, 3 and

9This query was posed by Geoffrey Hellman.
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5). Then M is isomorphic to C3(F l
oe), the latter of which contains

a subspace C3(Roe) that is isomorphic to C3(R). Moreover, since M

is non-Archimedean, there are nondegenerate segments oe′ and oe′′ of

l such that oe′ is infinitesimal relative to oe and oe′′ is infinite rela-

tive to oe. Furthermore, insofar as the characteristic ordered field of

a model of P3 is (to within isomorphism) independent of the choice of

unit segment, for each such pair oe′ and oe′′ there are isomorphic copies

C3(F l
oe′) and C3(F l

oe′′) of M , whose characteristic ordered fields F l
oe′ and

F l
oe′′ respectively contain isomorphic copies Roe′ and Roe′′ of R. Anal-

ogously, C3(F l
oe′) and C3(F l

oe′′) respectively contain subspaces C3(Roe′)

and C3(Roe′′) which are isomorphic to C3(R). Thus, despite the fact

that the nondegenerate segments in Roe′ are infinitesimal relative to the

nondegenerate segments in Roe which in turn are infinitesimal relative

to the nondegenerate segments in Roe′′ ,
10 the ordered fields Roe, Roe′

and Roe′′ are all isomorphic to R, and likewise for their corresponding

Cartesian spaces C3(Roe), C3(Roe′) and C3(Roe′′) with respect to C3(R).

While the above excursion is directed to non-Archimedean struc-

tures, it brings into focus the underappreciated fact that if M and M ′

are models of E3, it is logically possible for the nondegenerate segments

of M to be infinitesimal relative to the nondegenerate segments of M ′.

10Note that the distinct though isomorphic ordered fields F l
oe, F

l
oe′

and F l
oe′′ have a common underlying ordered additive group Gl

o =

〈l,+l, <l, oo〉, and as such the ordered additive groups of Roe, Roe′ and

Roe′′ are all subgroups of Gl
o whose nonnull elements are comparable

with respect to relative finitude and relative infinitude.
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Accordingly, there is no logical difficulty in envisioning that the ex-

pansion 〈Π, B,≡,(〈R3
x, Bx,≡x〉)x∈R3〉 of our first model of E3 models

a hypothesized enriched Newtonian space in which the nondegenerate

macro-segments–the nondegenerate segments modeled by the nonde-

generate segments of 〈Π, B,≡〉–are finite relative to the standard me-

ter and the nondegererate micro-segments–the nondegenerate segments

modeled by the nondegenerate segments of the 〈R3
x, Bx,≡x〉’s–are in-

finitesimal relative to the standard meter. Indeed, whereas Hamlet

figuratively proclaimed “I could be bounded in a nutshell and count

myself a king of infinite space,” a denizen of the hypothesized micro-

space modeled by 〈R3
x, Bx,≡x〉 could literally make the same claim

with “nutshell” replaced by “point of (enriched) Newtonian space”!

Of course, in this scenario the denizen of the micro-space would be

infinitesimal relative to the standard meter despite the fact that the

points of the micro-space together with the betweenness and equidis-

tance relations defined thereon model all of E3. In this setting there is

plainly no reason to believe the spatial betweenness and equidistance

relations defined on the macro-points–the points of the enriched Newto-

nian space–would be other than the familiar ones. Indeed, it is difficult

to see why this would not be the case whether the nondegenerate seg-

ments of the 〈R3
x, Bx,≡x〉’s model segments that are finite, infinite or

infinitesimal relative to the standard meter; after all, in each such case
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the segments whose sole members are the 〈R3
x, Bx,≡x〉’s would be the

degenerate segments of 〈Π, B,≡〉.11

Besides the models of E3 with extended points constructed above,

there is a wealth of other types of such models including the afore-

mentioned ones due to Huntington. We will bring the main body of

the paper to a close by drawing attention to a rather distinctive one,

motivated by its inherent historical and mathematico-philosophical in-

terest.

Since the time of Euclid it has been widely held that atomistic space

and continuous space are incompatible (e.g. Hellman and Shapiro 2018,

11In his aforementioned pioneering work on non-Archimedean geom-

etry, Veronese (1891, 56, §9) introduced the notion of a nondegenerate

segment that is indivisible relative to a system S of nondegenerate seg-

ments. In essence, a nondegenerate segment ab is indivisible relative

to S if ab cannot be decomposed into nondegenerate segments ac and

cb in S. For example, in a non-Archimedean model of P3, each non-

degenerate segment is indivisible relative to the class of segments that

are infinite relative to it. One might also interpret this by saying that

a nondegenerate segment in a non-Archimedean model of P3 is unex-

tended relative to the class of segments that are infinite relative to it.

There is an analogous notion of relative unextendedness that can be

applied to the points in our models of E3 with extended points (as well

as to hypothesized physical realizations thereof) that raises a number

of interesting questions in the epistemology of geometry. We hope to

address these at a later time.
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190). After all, lines of atomistic space have been assumed to be dis-

cretely ordered–one space atom immediately following another–rather

than densely ordered. However, if in our first construction of a model of

E3 one replaces the copies of models of E3 indexed over R3 with copies of

extended indivisible spatial atoms indexed over R3, one obtains a model

of E3 whose points are extended indivisible spatial atoms. That is, one

obtains a 3-dimensional Euclidean continuum of extended indivisible

spatial atoms!

10. Appendix: Huntington’s Anticipation

As was noted in the Introduction, to establish the consistency of

his postulates for ordinary 3-dimensional Euclidean geometry Hunt-

ington introduces a “geometry of points of finite size” (1913, 524).

Huntington’s formulation is based on two primitives: the notion of a

sphere–spheres being the members of a class K–and a (transitive, ir-

reflexive) binary relation R of inclusion (1913, 537). Points are defined

as a spheres which do not include any other sphere (1913, 529).

Following his definition of point, Huntington goes on to add: “It

may be noticed that there is nothing in this definition, or in any of our

work, which requires our ‘points’ to be small; for example, a perfectly

good geometry is presented by the class of all ordinary spheres whose

diameters are not less than one inch; the ‘points’ of this system are

simply the inch-spheres” (1913, 529-530).

After developing the remainder of his theory, Huntington constructs

a class of models for his postulates making use of the just-said idea as

follows:
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[L]et S(a, b, c, r) denote the class of all triads of real

numbers x, y, z, which satisfy the equation

(x− a)2 + (y − b)2 + (z − c)2 ≤ r2,

where a, b, c, r are real numbers, and r is not less than

a certain fixed number g (positive or zero).

We take as our class K the totality of all such S’s,

and we define the relation R between any two of these

S’s by agreeing that

S(a′, b′, c′, r′) R S(a′′, b′′, c′′, r′′)

when and only when r′ 6= r′′ and every triad x, y, z which

satisfies the relation

(x− a′)2 + (y − b′)2 + (z − c′)2 ≤ r′2

satisfies also the relation

(x− a′′)2 + (y − b′′)2 + (z − c′′)2 ≤ r′′2.

In this system (K,R), the ‘points’ are the elements of

the form S(a, b, c, g); and it is not hard to show that all

the postulates are satisfied.

Moreover, as he goes on to add: “In the language of analytic geom-

etry, this system is simply the system of spheres whose radii are not

less than g, where, in the most familiar case, g = 0. It is interesting
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to observe that any other value of g is equally legitimate, so that we

may speak of a perfectly rigorous geometry in which the ‘points’, like

the school-master’s chalk-marks on the blackboard, are of definite, fi-

nite size, and the ‘lines’ and ‘planes’ of definite finite thickness” (1913,

540).

Huntington’s system is the first in a long line of axiomatizations

of ordinary 3-dimensional Euclidean geometry in which the concept

of a point is treated as a defined term, as opposed to a primitive

(e.g. Hellman and Shapiro 2018; Gerla 2021), and with the sole ex-

ception of (Torretti 1984, 243–246), from which we recently learned of

Huntington’s extended points, all of the references to it we had been

aware of, including (Tarski 1929/1983, 26; Menger 1940, 84; Gerla and

Gruszczyński 2017; Varzi 2021, 348), refer to it primarily for this rea-

son. Unfortunately, as Torretti (1984, 244) aptly notes, Huntington’s

system, especially his half page (!) definition of congruence, is “un-

pleasantly complicated”, and we suspect it is for this reason that the

details of Huntington’s system, including his “points of finite size”,

have been largely forgotten.

Readers seeking an overview of Huntington’s system may consult

(Torretti 1984, 243–246). Given the limitation of space we will merely

introduce Huntington’s notions of line segment and line, show how a

betweenness relation may be defined thereon and specify the relations

that exits between the betweenness and congruence relations in Hunt-

ington’s system and those in C3 (R) = 〈R3, BR,≡R〉.
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For any two points a and b as defined above, Huntington defines the

line segment [ab] (or [ba]) as the set of all points x such that every sphere

that contains points a and b also contains x, and he further defines the

corresponding line ab as the union of [ab] and its two prolongations :

{x : x is a point and a ∈ [xb]} and {x : x is a point and b ∈ [ax]} (1913,

530-531). In the Cartesian space C3 (R), a line so defined having points

with fixed radius r > 0 consists of the set of all spheres of radius r whose

centers lie on a standard line in C3 (R), and, for the case where r = 0, it

coincides with a standard line itself.12 Accordingly, if we let ≡∗ denote

Huntington’s congruence relation on segments and define a non-strict

betweeness relation B∗ (à la Tarski) on triples of points a, b, c by the

condition: B∗abc if and only if b ∈ [ac], then the relation between these

constructs and their Cartesian counterparts is given by the following

conditions for all points a, b, c, d:

B∗abc if and only if BRa
′b′c′,

ab ≡∗ cd if and only if a′b′≡Rc
′d′,

where a′, b′, c′, d′ are the centers of the points (i.e. spheres) a, b, c, d

when r > 0, and coincide with a, b, c, d when r = 0.

12If we assume a standard point is a sphere that coincides with its

center, then for r ≥ 0 this follows from the simple fact that, a point X

is not on the segment joining the centers of spheres S ′ and S ′′ of radius

r if and only if there is a sphere S of radius r with center X and a

sphere S∗ containing S ′ and S ′′ but not S (Huntington 1913, 530: Fig.

1).
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As our earlier remarks would suggest, and as Huntington makes clear,

all of the points in his models of 3-dimensional Euclidean geometry,

even those with extended points, are assigned null lengths, and all

nondegenerate segments are assigned positive real lengths (Huntington

1913, 535, 546-547). The standard points inside Huntington’s extended

spherical points and the betweenness and congruence relations defined

thereon are, of course, not part of Huntington’s models. However, using

many-sorted expansions of his models (analogous to those employed in

section 9), they can be brought to light.
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