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A Paradox about Sets of Properties1 

Nathan Salmón 

 
A paradox about sets of properties is presented. The paradox, which invokes an impredicatively 

defined property, is formalized in a free third-order logic with lambda-abstraction, through a 

classically proof-theoretically valid deduction of a contradiction from a single premise to the effect 

that every property has a unit set. Something like a model is offered to establish that the premise is, 

although classically inconsistent, nevertheless consistent, so that the paradox discredits the logic 

employed. A resolution through the ramified theory of types is considered. Finally, a general 

scheme that generates a family of analogous paradoxes and a generally applicable resolution are 

proposed.  

 
I. The Paradox of Sets of Properties 

I here present a paradox (antinomy) about sets of properties.2 The paradox is related to Grelling’s 

paradox about ‘heterological’. Where the latter concerns properties lacked by an adjective that 

                                                 
1I am grateful to C. Anthony Anderson, Harry Deutsch, Saul Kripke, Romina Padro, and especially 

Teresa Robertson Ishii for discussion and comments. I am profoundly indebted to the late Alonzo Church for 

his superb tutelage on many of the topics of the present essay. The essay encountered an inordinate amount 

of intellectually improper resistance. I am grateful to Julien Murzi and the other Synthese editors for their 

uncommon academic integrity. 

2 Throughout I use ‘property’ in the sense of a (singulary) ‘attribute’, ‘feature’, or ‘trait’, in their 

ordinary senses. It is arguable that there are distinct but necessarily co-extensive properties in the relevant 

sense (e.g., triangularity and trilaterality, or being a valid formula of first-order logic and being a theorem of 

first-order logic), so that properties are not determined by their metaphysical intensions, i.e., by their 

associated functions from possible worlds to extensions.  
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expresses it (e.g., ‘monosyllabic’ is not itself monosyllabic), the paradox of sets of properties instead 

concerns properties that are lacked by their unit set (e.g., the unit set of being a penguin is not a 

penguin). Like Russell’s paradox, the present paradox concerns sets rather than linguistic 

expressions, and is thus non-semantic. Like Grelling’s, however, it invokes impredicative definition 

of an attribute, i.e., the introduction (“definition”) of an attribute, in this case a property, by 

abstraction from an interpreted open formula (a “condition”) that quantifies over a totality that 

purportedly includes the abstracted attribute.3 Formal paradoxes have been used to demonstrate 

that certain initially attractive theoretic assumptions must be restricted, for example naïve set 

                                                 
3 Here by ‘attribute’ I mean an n-ary relation-in-intension for n  1 (including a property regarded 

as a singulary relation-in-intension), an n-ary propositional function for n  0 (including a proposition 

regarded as a 0-ary propositional function), or any similarly intensional entity, such as a corresponding 

concept. (Impredicative definition of an extensional entity, such as a class or a truth value, does not pose the 

same difficulty.) This notion of impredicativity is a special case of, but stricter than, the broader notion, 

largely based on Henri Poincaré’s vicious-circle principle (1906), to wit, that of introducing (“defining”) a 

particular element of a class by quantifying over the elements of that class. Although it is not impredicatively 

defined in the stricter sense, in this broader sense the putative set involved in Russell’s paradox (the set of 

all and only those sets that are not elements of themselves) is said to be “impredicatively defined.” However, 

as F. P. Ramsey pointed out (1925, p. 204), so also is the idea of “fixing the reference” (Kripke) of a name by 

a superlative definite description, e.g., ‘the shortest spy’, ‘the first child to be born in the 22nd Century’, ‘the 

second shortest spy’, etc. (I thank C. Anthony Anderson for supplying this reference.) Compare Gödel 1944. 

See note 18 below. The stricter sense of ‘impredicative’, which is likely what is usually meant in the relevant 

literature, is uniformly adhered to throughout the present essay. 

The notion of definition by abstraction involved in the stricter notion of impredicativity is to be 

sharply distinguished from the distinct notion that goes by the same moniker (and which, as Frege showed, 

is in fact fictitious) of purportedly defining a function (e.g., the cardinality function) by defining what it is for 

arguments to the function to yield the same value. See my (2018). 
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comprehension or the assumption that a classical language can serve without limitation as its own 

metalanguage. Whitehead and Russell (1927) cited paradoxes of impredicativity to argue that 

impredicative definition is logically illegitimate. I shall invoke the present paradox to make a 

stronger argument for a weaker but still highly significant conclusion: Classical applied higher-

order logic under an intensional interpretation of predicates as standing for attributes is incorrect, 

in that (although it is consistent) the classical liberal method of abstraction of an attribute from an 

open formula, as typified by classical lambda-expansion, is formal-logically fallacious (a non 

sequitur).4 On the other hand, repair does not require a ban on impredicative definition (let alone 

ramified type theory).  

There are properties. If there are properties, then there are sets of properties. The 

property of primality, for example, conjoins the particular property set {being a natural number, 

being greater than one, not being the product of two natural numbers smaller than it}. This would 

not normally be subject to serious dispute. Some readers have proposed resolving the present 

paradox by embracing properties while rejecting the possibility of a set of properties. This 

reaction is scarcely credible. There are sets of a variety of things. There are sets of material 

objects, sets of expressions, sets of propositions, sets of colors, sets of real numbers, sets of laws. 

There are even sets of sets. Given that there are properties, another kind of thing of which there 

                                                 
4 A logician objects that in order to establish that a particular rule of inference is logically fallacious 

one must show that it generates actual inconsistency. This objection confuses formal fallaciousness (e.g., 

satisfiability of the negation) and inconsistency (unsatisfiability). The sentence ‘xy(x  y)’ has models and 

also has counter-models, and is thus both consistent and (taken as an axiom) fallacious, indeed classically 

invalid. Arguably, derivation of the classically valid ‘xFx  xFx’ and proofs of certain classical theorems 

(‘x(Fx  Fx)’, ‘x(x = a)’, and the like), although consistent, also involve intuitively fallacious inference 

rules (classical UI, etc.).  
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are sets is a property. Sets of properties are employed in a variety of contemporary metaphysical 

theories: theories of supervenience; theories of plenitude; Meinongian theories of objects; theories 

of “hylomorphic embodiments”; some theories of propositions; other theories of semantic 

contents; and more. The present paradox does not present a compelling reason to doubt that there 

are sets of properties. We here seek a resolution that is neither theoretically disruptive nor 

offensive to intuition.  

Some sets of properties have (in the sense of ‘possess’, ‘exemplify’, or ‘instantiate’) one of 

their own elements, for example, {primality, having exactly two prime factors, having exactly three 

elements}. Others do not. These latter sets have something in common: they each lack at least one 

of their property elements. Let R be their shared property, being a set at least one element of which 

is a property the set itself lacks. Its unit set {R} (pronounced ‘singleton R’) either has R or else it 

does not. Which is it? Suppose {R} has R. Then by definition some element or other of {R} is a 

property that {R} itself lacks. Since the only (and hence every) element of {R} is R, it follows that R 

is a property that {R} itself lacks. Therefore, {R} lacks R. Since R is the only (and hence an) element 

of {R}, R is a property element of {R} that {R} itself lacks. In that case, {R} is a set at least one 

element of which is a property that the set itself lacks. By definition, therefore, {R} has R. This is a 

paradox.5 

                                                 
5 The paradox of property sets is not to be confused (as several readers have) with the unit-set 

variant of Russell’s paradox, to wit, the paradox of the set r = {{x}| {x}∉x}. Assuming that r exists, {r} is an 

element of r iff it is not. This variant of Russell’s paradox (which has been employed to refute Frege’s 

insufficient weakening of his Basic Law V in response to Russell’s original paradox) is a garden-variety set-

theoretic paradox that turns on the inconsistency of naïve unrestricted set comprehension. By contrast, the 

paradox of property sets explicitly invokes sets of properties (not sets of sets), and is independent of naïve 

unrestricted set comprehension. Significantly, the property-sets paradox invokes no comprehension 

principle not sanctioned by applied classical logic as based on the simple theory of types.  
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That there is a Russellian paradox about sets of properties is entirely to be expected. What 

is notable is how little is involved in its derivation, and therefore how little room there is for a 

philosophically compelling resolution. This is brought out by formalization. Although R is arguably 

a purely logical property, the paradox is not formalizable in standard pure higher-order logic, i.e., 

in standard higher-order logic without extra-logical constants. For consider how R would be 

represented in pure higher-order logic. Let the logic be a two-sorted logic in which the second-

order monadic-predicate variables— say ‘X’, ‘Y’, etc.—range over properties of individuals rather 

than classes of individuals, while the third-order monadic-predicate variables—say ‘’, ‘’, etc.—

range over classes of properties of individuals rather than properties of properties of individuals. 

Now one might hope to represent ‘ has R’ (in which the third-order variable ‘’occurs free) by 

means of the string of symbols ‘X(X & ~X)’. However, the component string ‘X’ involves a 

clash of logical types (‘’ is of higher type than ‘X’) and is consequently ill-formed. Standard pure 

higher-order logic thus pre-empts the paradox of sets of properties by having no means to 

represent the property R, which is deemed ill-formed nonsense, a kind of logical mirage. This 

however is unsatisfactory. It is like purporting to resolve Russell’s paradox not by declaring that 

there is no set of exactly those sets that are not elements of themselves—this would be at least the 

beginning of a genuine resolution—but instead by banning the term ‘{x| xx}’ from the language of 

set theory, as when in The Ten Commandments Pharaoh pretends Moses never existed by 

prohibiting the utterance of his name. Preempting the formulation of a paradox is not the same 

thing as resolving it. The English gerund phrase ‘being a set at least one element of which is a 

property that the set itself lacks’ evidently designates a definite property R of sets of properties. It 

seems clear, for example, that the set of penguins lacks the property R whereas the unit set {being 

a penguin} has R. It is desirable to have some means for representing R. Even if the correct 

resolution of the property-sets paradox is to deny that R exists, then that very claim—that there is 
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no such property as R—should be at least expressible. Standard pure higher-order logic is 

evidently not up to the task. 

This is not to say that higher-order logic preempts the paradox of property sets. Rather, 

the paradox is suitably formalized in applied logic of third order, i.e., in third-order logic with 

extra-logical constants (or on an alternative count, in applied logic of second order), by including 

sets of properties of individuals in the universe over which the individual variables range and by 

introducing a dyadic predicate constant for the membership relation to property sets. In 

particular, including sets in the universe of individuals permits a compound extra-logical 

expression for the putative property R. If R exists, then it can be designated. And if it does not, 

then at least we can say so.  

For this purpose, logic of third order with lambda-abstraction is here adopted under an 

intensional interpretation whereby monadic-predicate variables ‘X’, ‘Y’, etc. range over properties 

(alternatively over unary propositional functions) of the individuals over which the individual 

variables ‘x’, ‘y’, and ‘z’ range, rather than classes (or characteristic functions), and whereby 

monadic-predicate constants designate such properties. Finite sets of properties are included in 

the universe over which the individual variables range. We introduce an extra-logical, third-order, 

dyadic predicate, ‘3’, as a term for the binary relation between a property of individuals and a set 

of which the property is an element. We assume that this relation is governed by axioms exactly 

analogous to those of a suitable theory of sets of ur-elements. 6 We also include a definite-

                                                 
6 The non-logical predicate ‘3’ is not the ‘’ of standard set theory, which is of altogether 

different type. It is not uncommon for philosophers to employ set-brace notation in combination 

with predicate letters to represent a set of properties, as in ‘{F, G, H}’. This notation implicitly 

employs ‘3’. The standard membership predicate ‘’ may be used instead of ‘3’ to formalize the 

property-sets paradox, by postulating that properties of individuals are special individuals 
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description operator ‘𐐻’, the logic of which validates the schema ⌜(… 𐐻 …)  [(   = 

) & (…  …)⌝ where  and  are distinct individual variables and  is a simple monadic or poly-

adic predicate. To facilitate the exposition it is assumed contrary to Russell that definite 

descriptions are designators, and a free logic is employed in connection with them. These 

assumptions about ‘𐐻’ are entirely immaterial to the paradox.7 We let ‘R’ be our abbreviation for 

‘(y[X(X3y & Xy)])’.8  

                                                 
governed by a property-comprehension schema sufficient to generate R—insofar as this can be 

achieved without also generating inconsistency. The present essay investigates the ramifications 

of the property-sets paradox for the more familiar higher-order intensional logic with -

abstraction and is therefore formalized using that apparatus. 

7 The logic of ‘𐐻’ may be taken to be essentially that of Whitehead and Russell 1927, giving 

descriptions the narrowest possible scope, with the exception that definite descriptions are taken to be 

designators and a free logic is employed in connection with them. First-order free-logical UI (-Elim) 

licenses the inference from ⌜⌝ and the supplementary premise  ⌜( = )⌝ to , where the variable  

does not occur free in the singular term  and  is the result of uniformly substituting free occurrences of  

for the free occurrences of the variable  in . First-order free-logical EG (-Intro) licenses the inference 

from  and the same supplementary premise ⌜( = )⌝ to ⌜⌝. (First-order free-logic involves 

similar modifications of -Intro and -Elim, but these are not relevant in connection with definite 

descriptions.) Stricter adherence to Whitehead and Russell would also serve the present purpose but 

introduces needless complexity. 

8 If the property R is identified with its corresponding propositional function, the lambda-abstract 

that ‘R’ abbreviates may itself be defined by means of the third-order definite description ‘𐐻Zy[ Zy =2 

X(X3y & Xy) ]’, where ‘=2’ is a dyadic logical predicate for identity between propositions (as well as 

between properties of individuals). See (Church 1974), pp. 29-30. Alternatively, the definite-description 
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It might be objected that sets of properties cannot be included among the individuals 

because of the special relationship of a set to its property elements, which are of higher logical 

type than individuals. This, however, is not a good reason not to include sets of properties in the 

universe of individuals. Logical types (singular term, first-order monadic predicate, second-order 

monadic predicate, etc.) are semantically-based syntactic categories of expressions. To be sure, 

these syntactic categories of expressions generate metaphysical categories of designated objects 

(individual, property of individuals, property of properties of individuals, etc.). First-order monadic 

predicates are indeed of higher logical type than singular terms. Something that is neither a class, 

nor an attribute, nor a function, nor a proposition is not the right sort of entity metaphysically to 

be a suitable value for a higher-order variable. This does not mean, however, that an entity that is 

an appropriate value of a higher-order variable (e.g., a set of properties) cannot be included in the 

universe over which the individual variables range. As Alonzo Church remarks (1976, p. 751), “any 

well-defined domain may be taken as the individuals.” If the predicate variables of monadic logic 

of order  are interpreted as ranging over sets of ascending ranks rather than properties, the 

universe of individuals of logic of first order can include those very same sets. When an extra-

logical dyadic predicate for set-membership is added to the language—representing what 

juxtaposition of subject and predicate represents in standard monadic-logic notation—together 

with axioms governing the predicate, what results is a set theory with ur-elements whose 

underlying logic is of first order. The “individuals” of first-order set theory with ur-elements 

includes not only the ur-elements, but sets of them, sets of those sets, and so on for ascending 

ranks—the same “higher-order” entities of the relevant monadic logic of order —with no 

                                                 

operator ‘𐐻’ is definable in terms of lambda-abstraction together with the higher-level function that assigns 

to any property the only object that has that property if such exists, and is undefined otherwise. Lambda-

abstraction underlies all variable binding and is therefore more basic than definite-description formation.  
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resulting clash of logical types. (Others have also employed individuals that incorporate properties 

of individuals as components, for example Fine (2008).)9  

With unit sets of properties included in the universe of individuals, they are evidently 

subject to the following very weak condition: 

 
Ex: Xy(y = {X}). 

 
The notation ‘{X}’ is a first-order singular term for a set. The term is defined by the third-order 

definite description ‘𐐻zY(Y3z  X =2 Y)’, where ‘=2’ is a dyadic logical predicate for identity both 

between properties (or propositional functions) of individuals and between propositions.10 

                                                 
9 I thank C. Anthony Anderson, Saul Kripke, Romina Padro, and Teresa Robertson for discussion of 

the issues in this paragraph. 

There is an alternative way of looking at the matter. Like the unit set of a property, which bears a 

special relationship to its property element, any meaningful English adjective bears a special relationship to 

the property it expresses. Yet adjectives are to be treated as individuals rather than as entities that are of 

higher logical type than properties of individuals (whatever that would mean). The relation between an 

English adjective and the property it expresses is relevantly analogous to the relation between the unit set of 

a property and its element. The analogy is sufficient to support permitting the inclusion of sets of properties 

among the entities over which ‘x’, ‘y’, and ‘z’ range. In fact, sets of properties can simply be replaced by their 

canonical expressions, in combination with a suitably adjusted reinterpretation of set-theoretic notation 

(the predicate ‘’ for set-membership, set-theoretic braces, etc.)—so that for example ‘{R}’ is taken to 

designate itself. So interpreted there is no legitimate objection to letting ‘{R}’ designate something in the 

universe of individuals.  

 It is worth noting also that it is critical to the proof of Frege’s theorem to treat classes of concepts X 

under which individuals fall as themselves individuals. 

10 Alternatively, Ex may be taken to be ‘Xy(Z[Z3y  X =2 Z])’. See note 7. 
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Despite appearances Ex is not a truth of logic.11 However, Ex is a trivial set-theoretic consequence 

(via Separation) of the apparent truism that every property is an element of some set or other. 

Although not a logical truth it is evident that Ex is true.  

The deduction of the property-sets paradox proceeds as follows: 

 
1. z[ X(X3z & Xz)  X(X3z & Xz) ] third-order logic 

2. z[ Rz  X(X3z & Xz) ] 1, lambda-expansion 

3. y(y = {R}) Ex, UI/‘R’ 

4. R{R}  X(X3{R} & X{R}) 2, 3, UI/‘{R}’ 

5. R{R} 4, def. of ‘{X}’, logic 

6.   R{R} 4, 5, Ex, def. of ‘{X}’, logic 

 
The inference at line 4 requires line 3 because the term ‘{R}’ might otherwise fail to designate, in 

which case instantiation of line 2 to that term would be illegitimate. (See note 7.) 

 
II. Is the Premise Inconsistent? 

The primary lesson of the property-sets paradox is that there is no unit set of the putative 

property of being a set one element of which is a property that the set itself lacks. The supposition 

                                                 
11 In particular, ‘{F} = {F}’ fails if ‘{F}’ is an improper description. See note 7. More surprising, as we 

shall see the negation of Ex is a truth of classical third-order logic with free logic for definite descriptions.  

By Cantor’s theorem, if the universe of individuals is a set, then there are more sets of individuals 

than there are individuals. There are at least as many properties of individuals as sets of individuals, since 

for each set there is the unique property of being an element thereof. But Ex entails that there are at least as 

many individuals as there are properties of individuals, since according to Ex for each property of 

individuals a unique individual is the unit set thereof. Thus Ex has the unsurprising consequence that the 

universe of individuals is a proper class. 
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of the unit set of R is inconsistent. In fact, the deduction above is a reductio ad absurdum disproof 

of the claim that {R} exists.  

Since the deduction is classically proof-theoretically valid and makes no use of any special 

(extra-logical) postulates beyond Ex, it is extremely tempting to regard the deduction as a disproof 

of Ex. And indeed, this is the classical resolution. (See note 10.) It appears as if although R exists, 

its unit set does not. But this overlooks that the puzzle is a genuine paradox. As noted above, to 

reject {R} is to reject that R is an element of any set. To adopt the classical resolution without 

further ado is to miss the lesson of the paradox. 

The situation is more problematic than so far observed. The deduction constitutes a valid 

disproof of Ex in applied classical third-order logic with lambda-abstraction (and with free-logical 

UI and EG for definite descriptions). Under an extensional interpretation of higher-order logic, on 

which first-order monadic predicates are taken as designating classes rather than properties 

(hence with suitable axioms of extensionality), Ex is at least arguably false. The same logical 

apparatus under the present interpretation, on which first-order monadic predicates instead 

designate properties, embraces R as a genuine property and thereby precludes Ex. In an important 

sense, this apparatus itself (so interpreted) is the problem. Classical logic is an artificial 

idealization. For example, ‘x[x = f(a)]’ is classically valid, although if ‘a’ designates France and ‘f’ is 

a symbol for the partial king-of function, which assigns to any kingdom its ruling monarch, the 

classically valid sentence is indisputably untrue. Classical logic artificially disallows functors for 

partial functions. First-order free logic is more realistic than classical first-order logic, hence more 

widely applicable. As I use the term here, free third-order logic modifies the classical logic of the 

third-order universal and existential quantifiers to take account of predicates and other functional 
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expressions that do not designate any element of their appropriate universe.12 Just as the presence 

of the set-theoretic braces requires a free logic with respect to terms formed by their means, the 

presence of lambda-abstraction recommends that a free third-order logic be adopted in 

connection with compound predicates. Lambda-abstracts are sufficiently like definite descriptions 

that the logic must take account of the possibility that they are improper. (See note 8.) 

Despite being inconsistent in classical third-order logic, Ex is like ‘~x[x = f(a)]’ in that 

insofar as it is meaningful, it is obviously consistent in some more appropriate sense: consistent in 

real logic. There is something very much like a model-theoretic proof that insofar as Ex is 

meaningful it is consistent if ZF set theory is. We consider what I shall call the pure-set 

interpretation of Ex. This interpretation is obtained from an intermediate interpretation, the pure-

class interpretation. On the pure-class interpretation the individual variables range over the pure 

sets, while the monadic-predicate variables range over classes of pure sets, including proper 

classes. Accordingly, ‘’ is interpreted as an operator for class abstraction. On this interpretation 

predicates designate their semantic extensions. A monadic-predication formula ⌜⌝ where  is 

a singular term and  is a monadic predicate is interpreted in the normal way, so that it is true iff 

the designatum of  is an element of the semantic extension of . The predicate ‘=2’ is interpreted 

as a term for identity between classes, whereas ‘3’ is interpreted as a term for membership 

between pure sets and the braces are interpreted as a symbol for the unit set operation. (See note 

10.) At this intermediate stage a term ⌜{}⌝ does not designate when the monadic predicate  

designates a proper class, since proper classes are not elements. The pure-class interpretation 

accommodates classical lambda-expansion, whereas Ex fails for any instance in which ‘X’ is 

                                                 
12 Third-order free logic analogously modifies the classical logic of the quantifiers to take account of 

monadic predicates that do not designate any element of the universe over which the monadic-predicate 

variables range. 
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assigned a proper class. In particular, on this intermediate interpretation ‘R’ designates the class 

of pure sets y that include as an element a pure set of which the set y is not itself an element. Given 

Regularity, this is simply the class of non-empty pure sets. 

The pure-set interpretation is a modification of the pure-class interpretation. The proper 

classes are excised, so that the monadic-predicate variables now range over “small classes” (sets) 

of pure sets. Also any lambda-abstract that designates a proper class on the pure-class 

interpretation is stripped of its designatum and therewith of its semantic extension. On the pure-

set interpretation both the individual variables and the monadic-predicate variables range over 

the pure sets. Accordingly, ‘’ is reinterpreted as an operator for pure-set abstraction. The 

predicates ‘=2’ and ‘3’ are now taken as synonyms for their un-subscripted counterparts. 

On the pure-set interpretation Ex expresses the truism that every pure set has a unit set. 

Although Ex is true on the pure-set interpretation, that interpretation is not a model of Ex in the 

set-theoretic sense. The deduction of the contradiction establishes that Ex has no classical model; 

on every classical model with respect to ‘3’, and allowing for improper definite descriptions as 

non-designating, the lambda-abstract abbreviated by ‘R’ designates while ‘{R}’ does not. As with 

the intended interpretation of ZF, the universe of the pure-set interpretation is (standardly) a 

proper class rather than a set. More germane to the present inquiry, the pure-set interpretation is 

also not a classical interpretation (with the exception for improper definite descriptions). In 

particular, the interpretation does not conform to the classical requirement that every predicate 

have a semantic extension, even if only the empty set. On the pure-set interpretation some 

monadic predicates fail to designate anything in the universe over which the monadic-predicate 

variables range. Specifically, if the extension of a predicate  on the pure-class interpretation is a 

proper class—as for example, ‘(y[yy])’ and ‘(y[y = y])’—then  does not designate on the pure-

set interpretation and has no semantic extension. In particular, ‘R’ does not designate and has no 

extension. (The putative corresponding set r = {y| z(zy & yz)} does not exist. See note 5.) 
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Whereas Ex has no classical set-theoretic model, the pure-set interpretation is, in effect, a model of 

Ex in free third-order logic. The paradox thus discredits the logic employed in the deduction.  

On the free third-order logic underlying Ex, besides the classical inference rules governing 

quantification, classical lambda-expansion is also invalid and is replaced by a more widely 

applicable version. The relevant version of lambda-expansion requires the comprehension schema 

⌜[ =2 ()]⌝ as a supplementary premise (where  is an individual variable and  is a 

formula in which the monadic-predicate variable  does not occur free). The situation is similar to 

the first-order free-logical version of EG. (See note 12.) In both cases the required supplementary 

premise is valid in classical logic but not in a suitable free logic. Insofar as the -abstract that ‘R’ 

abbreviates fails to designate a property and has no semantic extension, lines 2 and 3 of the 

deduction are both invalid. In particular, each line requires ‘X(X =2 R)’ as a supplementary 

premise. In fact, the deduction thus yields a free third-order-logical deduction from Ex of the 

negation of this needed supplementary premise.  

 
III. Russellian Resolution of the Paradox 

The pure-set interpretation is not isomorphic to the intended interpretation, under which 

monadic predicates are terms for properties (or propositional functions) rather than sets (or 

characteristic functions). On the intended interpretation the monadic predicates ‘(x[xx])’ and 

‘(x[x = x])’ designate properties despite not having a set as semantic extension. Ex is not merely 

consistent in free third-order logic; insofar as it is meaningful it is a truism about properties. Ex 

precludes {R} by precluding the putative property R itself, not on the ground that the extension is 

not a set but on pain of contradiction with Ex. Perhaps the most satisfying resolution of the 

paradox is to reject R, along with lines 2 and 3 of the deduction, while retaining Ex.  

A full Ex-friendly resolution of the property-sets paradox must provide a principled 

ground for rejecting R. There is a philosophically respectable and principled rationale for rejecting 
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R: The putative property is impredicatively defined, that is, it is abstracted from an open formula 

(interpreted as intended) that quantifies over a totality of properties that purportedly includes R 

itself. Impredicative definition smacks of circular definition. (See note 3.) For over a century, since 

Poincaré (1906) advanced his vicious-circle principle, many (and not only mathematical 

constructivists) have looked upon impredicative definition with profound suspicion.  

Whitehead and Russell’s ramified theory of types with axioms of reducibility is a logical 

apparatus tailor-made for theorizing about such things as propositions about propositions and 

properties that generalize over properties. Ramified type theory repudiates impredicative 

definition, replacing it with stratification of propositions, properties or propositional functions, 

and other functions (such as the unit set operation). For example, the impredicative abstraction of 

a property (or propositional function) F of individuals through quantifying over a plurality of 

properties including F is replaced with abstraction of a level n+1 property Fn+1 through quantifying 

over properties Gn of level n, n  1. Given that the property of being blue in color is level 1, the 

property of being the same color as the sky is level 2. The property of having some level 2 

property or other in common with Napoleon is level 3, and so on.13 

Ramified type theory requires that Ex be replaced with its ramified counterparts:  

 
Exn+1: Xny(y = {Xn}n), n  1. 

 

                                                 
13 See Church 1976; Russell 1908; and Whitehead and Russell 1927, *12, pp. 161-167. Church’s 

formulation of ramified type theory is followed here. The axioms of reducibility of Whitehead and Russell 

1927 entail that every level n property for n  1 is co-extensive with a level 1 property. It is often said—

following Chwistek (1921), Copi (1950), and Quine’s commentary on Russell 1908 (Quine 1967, p. 152)—

that the axioms of reducibility defeat the purpose of ramified type theory by reinstating the paradoxes of 

impredicativity. The claim is incorrect, however, and Russell had explicitly noted as much in 1908 (last 

paragraph of section V). See also Church 1974b, p. 356; Church 1976, p. 758; and Myhill 1979. 
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This modification amounts to treating Ex as ‘typically ambiguous’ (Whitehead and Russell 1927, 

*65), i.e., as a schema for which it is to be taken that its instances at each level are asserted. 

Impredicative -expansion sanctions the postulation of R as an un-leveled property of sets of 

properties. Instead ramified-type theoretic -expansion sanctions the postulation of a property 

Rn+1, for each level n  1, which is the level n+1 property of being a set one element of which is a 

level n property that the set itself lacks. On this conception un-leveled R is not a legitimate 

property. Ramified type theory blocks the simple-type theoretic deduction of line 4, replacing it 

with the following innocuous logical consequence of Exn+2: 

 
Rn+1{Rn+1}n+1  Xn({Xn}n3{Rn+1}n+1 & Xn{Rn+1}n+1 ], n  1. 

 
where Rn+1 abbreviates the level n+1 lambda-abstract ‘(y[Xn({Xn}n3ny & Xny)])’. Insofar as 

‘~Xn(Xn =2 Gn+1)’ is a theorem of Russellian ramified type theory, ‘~Rn+1{Rn+1}n+1’ (or rather, what 

this abbreviates) is a straightforward consequence of Exn+2. Likely no contradiction ensues.14  

The ramified-type theoretic modification to Ex retains the spirit of the original principle, 

whereas the modification to lambda-expansion has the intended effect of banishing 

impredicatively defined properties like R. As an alternative to ramified type theory, the putative 

                                                 
14 Ramified type theory does not provide the only possible resolution of the paradox that employs 

stratification. An alternative resolution is to stratify just the set-membership relation. This theory posits a 

hierarchy of levels of sets: level 1 sets, whose elements that are properties are restricted to predicatively 

defined properties; level 2 sets, whose elements that are properties are restricted to ordinary properties 

and level 1 properties; level 3 sets, and so on. Presented with a choice between the two ramified resolutions, 

the present author believes that the ramified-type theoretic resolution is decidedly preferable on 

philosophical grounds. The rival resolution is part of a more piecemeal approach to paradoxes like that of 

(Russell 1903) and others of that ilk. Furthermore, the limitation it imposes on collecting properties into 

ordinary sets has little or no intuitive support. 
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property R may be admitted while its unit set is rejected. The principle Ex would need to be 

restricted in such a way as to preclude {R}, perhaps by restricting the range of the variable ‘X’ to 

predicatively defined properties. This approach retains impredicative lambda-expansion as a rule 

of inference. However, the limitation imposed on collecting properties into sets has significantly 

less intuitive appeal than simply banishing impredicatively defined properties (and with it 

impredicative -expansion) while retaining Ex as a typically ambiguous schema. It is arguable that 

things of a particular sort (e.g., proper classes) cannot be collected into sets. There is no plausible 

ground for holding that properties cannot. Indeed, sets of properties are commonplace (as 

bachelorhood conjoins {being a man, not having been married}). In particular, it seems beyond 

reasonable doubt that if R exists, then so does {R}. But it is provable that {R} does not exist. I do 

not endorse ramified type theory or a ban on impredicativity. I know of no compelling reason, for 

example, to disallow the employment of impredicative constructions in class abstraction or in the 

formalization of mathematics. However, the paradox of property sets indicates that classical 

applied third-order logic with property (or propositional-function) abstraction is incorrect. Contrary 

to that apparatus, there is no R. What I do advocate is a free higher-order intensional logic with λ-

abstraction. 

There is a position worthy of consideration that broadens the combination of ramified 

type theory with lambda-abstraction (with axioms of reducibility), through a significant 

concession to simple type theory. As with ramified type theory, on this intermediate position, 

properties are stratified and impredicative definition of propositions and properties is prohibited. 

On the other hand, univocal quantification over propositions and properties of all levels is 

permitted, with un-superscripted propositional variables and monadic-predicate variables. The 

un-superscripted monadic predicate ‘F’ is to be understood as meaning F-at-some-level or-other, 

and the un-superscripted propositional letter ‘p’ is to be understood as meaning p-at-some-level 
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or-other.15 Accordingly, abstraction of properties or propositions from constructions involving 

bound un-superscripted variables is not permitted. Thus, while it is possible to assert that 

Napoleon had all of the properties, at each level, of a great general, this assertion is not to be 

regarded as generating a new, un-leveled property of a great general: that of having all of the 

properties at each level of a great general. This variant of ramified type theory supports the 

intuition (for those who harbor it) that if Napoleon and George Patton each had some but not all of 

the properties of a great general—including level 1 properties, level 2 properties, and so on—it 

does not logically follow that they had some property of a great general in common: that of having 

some property at some level or other of a great general. This intermediate position has the virtue 

that it can retain Ex intact (not merely as typically ambiguous) while still disallowing R, and 

therewith {R}.16 

 
IV. A Family of Paradoxes 

The paradox of property sets belongs to a broad Russellian family of paradoxes, which 

includes both set-theoretic paradoxes and semantic paradoxes. The family can be characterized in 

terms of classes rather than properties, but the latter approach better reveals significant features 

of the role of impredicativity. The paradoxes exemplify a pattern or scheme having four 

                                                 
15 Thus un-superscripted ‘F’ could be taken as shorthand for ‘(x[nFnx])’ and un-superscripted ‘p’ 

as shorthand for ‘npn’, except that the meanings of such expressions in ramified type theory with ‘’ involve 

vacuous quantification and are not what is intended here. 

16 The intermediate position has the further advantage that neither the liar sentence l = ‘p(l 

expresses p & ~p)’ nor the truth-teller sentence t = ‘p(t expresses p & p)’ can be said to express any 

proposition, since neither sentence expresses any proposition of any particular level. The position also has 

the significant disadvantage that, although Ex can be maintained, it cannot be said that Ex expresses any 

proposition, since it too does not express any proposition of any particular level. 
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components. Let us call it the encoding scheme. First is a particular kind K, e.g., the kind set. Second 

is a particular binary relation between entities of kind K and properties of such entities. We shall 

use the generic term ‘encode’ for this relation. Third is the particular putative property, being 

something of kind K that encodes some property that it itself lacks. Where the universe is the class of 

entities of kind K, this paradox-generating property is designated by ‘(y[X(y encodes X & ~Xy)])’. 

We shall use ‘’ as an abbreviation for this lambda-abstract. Finally is a particular putative entity 

 of kind K that encodes  and does not encode any property not co-extensive with . The 

paradoxical conclusion generated by the encoding scheme is that  has  if and only if  lacks .  

The encoding scheme generates Grelling’s paradox as follows: let K be the linguistic 

category meaningful English adjective; let the encoding relation be that of semantically expressing; 

let  be the word ‘heterological’. In this case  is heterologicality. (See note 9.) Structurally 

analogous paradoxes are similarly generated. The paradox of property sets is obtained as follows: 

Let K be the kind set of properties, and let the encoding relation be that between a set of properties 

and any one of its property elements. Let  be {}. The Russell-Myhill paradox in Russell 1903 

receives an analogous analysis. Let K be the kind proposition. Say that a proposition q encodes a 

property  of propositions iff q is the proposition (about ) that p(p  p). Then  is the 

impredicatively defined putative property (q[([q = p(p  p)] & ~q)]) , i.e., being, for some 

property or other, the proposition that every proposition with that property is true, while itself 

lacking that same property. Finally, let  be the paradoxical proposition that p(p  p).17 

Interestingly, Russell’s paradox about sets can also be regarded as an instance of the 

encoding scheme: Let K be the kind set; let the encoding relation be that between a set and any 

                                                 
17 This analysis reveals that the paradox need not be regarded as invoking the notion of logical 

product (conjunction). Cf. Salmón forthcoming and Robertson Ishii and Salmón 2019. The two “stone caster” 

paradoxes discussed there have an analogous analysis in terms of the encoding scheme. 
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property shared by all and only its elements; let  be the Russell putative set. Assuming 

(erroneously) that the Russell putative set exists, it encodes the property (y[yy]). This paradox-

generating property is predicatively defined. However,  is not this property. It is (y[X(y = 

{z| Xz} & ~Xy)]), i.e., being, for some property or other, the set of things with that property, while 

itself lacking that same property. This impredicatively defined property is equivalent to (y[yy]). 

It thus emerges on the present analysis that Russell’s paradox may legitimately be regarded as 

invoking an impredicatively defined property equivalent to (y[yy]), albeit perhaps only 

implicitly.18 

The paradox about time and thought in Kripke 2011, although more complicated, similarly 

exemplifies the encoding scheme. We assume first that to think of a set s is exactly to invoke some 

property X had by all and only the elements of s and to entertain the particular set-concept the set 

of things y such that Xy, which directly concerns the property X. As Kripke formulates this 

assumption, “one must think of a set of instants by virtue of thinking of it through a defining 

property” (2011, p. 377). This may be taken as a consequence of a definition of ‘thinks of’. We also 

assume that Kripke thinks of no more than one set at a time. Now let K be the kind instant of time 

at which Kripke thinks of a set of times; and let the encoding relation be that between such a time t 

and any property X shared by all and only the elements of the time-set Kripke thinks of at t. Then 

as in the previous case, although it is impredicatively-defined  is equivalent to a predicatively-

                                                 
18 See note 13. The axioms of reducibility entail that in each case the property  is co-extensive with 

a level 1 property. 

See note 3. The dyadic predicate ‘’ for set-membership is a primitive of the language of set theory. 

It is arguable, however, that set-abstraction (the set of individuals z such that) is conceptually prior to set-

membership. If it is, then set-membership is properly analyzed as (xy[Z(Zx & y = {w| Zw})]). This would 

have the result that (y[yy]) is itself impredicatively defined (in the stricter sense used here).  
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defined property: being a time at which Kripke thinks of a set of times, which time-set excludes the 

very time of his thinking, i.e., (t [t  the time-set that Kripke thinks of at t]). Finally, let  be a 

particular time t0 at which Kripke purportedly thinks of {t | t}.  

The primary lesson to be drawn from paradoxes of the relevant family is in each case that 

there is no such entity of kind K as . Specifically, there can be no such adjective as Grelling’s is 

supposed to be, no time at which Kripke thinks of the relevant putative set of times, no such set as 

Russell’s, not even such a set as {R}. It is often said that Russell’s putative set does not exist 

because the class of non-self-membered sets is “too large” (to be a set). But Russell’s putative set 

of sets, Kripke’s putative set of times, and the unit set {R} all fail to exist for a common reason. By 

any standard the class {R} is sufficiently small to be a set. Even the class of times at which Kripke 

thinks of a set is a “small class” and, in fact, a relatively small set. 

One correct explanation for the non-existence of  that is applicable to each of the 

paradoxes is a simple but remarkably munificent theorem of first-order logic, which I 

(forthcoming) call ‘Russell’s law’:19 

 
~xy[R(xy)  ~R(yy)]. 

 
This law holds for any universe of individuals and for any relation R on that universe. To see how 

it applies to the relevant family of paradoxes we let the universe of individuals be entity of kind K, 

and where x and y are both of kind K we say that x encompasses y iff x encodes some feature of y. 

The following rock-hard result is then a schematic instance of Russell’s law: 

 
No individual of kind K encompasses all and only those individuals of kind K that do not 

encompass themselves.  

 

                                                 
19 For a contrasting view of the matter see Martin 1977. 



A Paradox about Sets of Properties  22 
 
 

The exact sense of ‘encompass’ depends on the chosen sense for ‘encode’. In the sense relevant to 

Russell’s paradox, a set “encompasses” exactly those sets that are its elements. In the sense 

relevant to Grelling’s paradox, an English adjective “encompasses” exactly those English adjectives 

to which it correctly applies. In the sense relevant to the property-sets paradox, a property set s 

“encompasses” exactly those property sets that have one or more of s’s property elements. In the 

sense relevant to Kripke’s paradox, an instant t “encompasses” exactly those instants that are 

elements of the time-set Kripke thinks of at t.  

It is to be noted that Russell’s law does not itself invoke impredicativity. It does, however, 

preclude the existence of any individual that encodes the particular impredicatively defined 

putative property  and does not encode any property not co-extensive with . A compelling 

explanation that  does not exist is simply that the supposition of such an entity is logically 

inconsistent. Just as the supposition of {R} is precluded by logic, so too is the supposition of 

Russell’s putative set. More surprising, so too is the supposition that ‘heterological’ means in 

English what it is supposed to mean. More surprising still, so too is the supposition of a time at 

which Kripke thinks of the set of times at which he thinks of a time-set that excludes the very time 

of his thinking. It may be that though  exists nothing of kind K encodes it; it may be instead that 

there is no such property to be encoded.20 The matter of which of the possible explanations 

obtains is part of a full resolution of the paradox, and in fact varies from one paradox to the next. 

Grelling’s and Kripke’s paradoxes are of the former sort. Heterologicality in German is expressible 

in English. If at a particular time t0 Kripke entertains the concept {t | t}, he does not thereby think 

                                                 
20 Typically (not always), the third logical possibility, that whatever encodes  also encodes some 

property not co-extensive with it, can be stipulated not to obtain. 
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of {t | t}. For in that case {t | t} is not a concept of any set, and therefore there is in that case no 

such set for Kripke to think of. (Cf. Salmón 2013.) The property-sets paradox is of the latter sort.21 

Whatever is defective with circular definition, it is not contradiction. Impredicativity is a 

kind of circularity; it is not in itself a kind of inconsistency. Russell’s law suggests that the ultimate 

source of contradiction in the relevant impredicativity-invoking paradoxes is not the 

impredicativity per se, but rather the tempting supposition that something encompasses all and 

only those things that do not encompass themselves. Impredicativity is a genus of a particular 

species of purported properties which are posited by certain unrestricted forms of property 

comprehension, and the encoding of which, along with that of some properties not of the same 

genus, is typically precluded by Russell’s law.22 

 
Appendix: Russell’s Alternative Scheme 

Russell (1907, p. 35; reprinting p. 142) provides the following scheme that is even broader 

in scope than the encoding scheme: (in addition to a particular kind K) (i) a putative property ; 

(ii) its corresponding putative set w =df {y| y}; and (iii) a function  purportedly from the power 

                                                 
21 Meinongian theories face a problem, discovered by Romaine Clark, analogous to the property-sets 

paradox. See (Rapaport 1978). A resolution proposed by Alan McMichael and adopted by Edward Zalta, 

when adapted to the present paradox, bans the abstraction of any property that involves the membership 

relation 3 between a property and a set. See (Zalta 1983), p. 160. The purported resolution allows one to 

assert that the property of primality itself has specific properties and is an element of {primality}, while 

leaving no means for expressing (let alone inferring) that primality has the particular property of being an 

element of {primality}. This move is an evasion of the paradox rather than a genuine resolution.  

22 Although no such characterization has been attempted here, it would be useful to have an 

independent specification of exactly which subclass of impredicatively defined attributes must be rejected 

to avoid inconsistency. (Feferman 2005) provides a comprehensive survey of impredicativity. 
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set P(w) to w and such that z[z  w  (z)z]. (As stipulated,  is surjective, i.e., onto w, since 

every element x of w is the value of  for w{x}.) The paradox is that (w) “both has and has not 

the property .” The resolution is that (w) does not exist; hence either w does not exist, or else it 

does but  does not exist as stipulated (e.g., the stipulation that  is into w must be weakened so 

that z[z  w  (z)w]). Some cases go one way, some the other.23  

Russell asserts that “this generalization is important, because it covers all the 

contradictions that have hitherto emerged in this subject.”24 Russell’s paradox emerges on this 

scheme as follows: Let K be the kind set. Let  be the property (y[yy]), so that w is the putative 

Russell set. Let  be the identity function. Then (w) is also the putative Russell set.25 Though 

Russell does not mention it, the Russell-Myhill paradox is obtained on this scheme as follows: Let 

K be the kind proposition; let  be the putative property (q[(q = p(p  p) & ~q)]); and let 

(x) = p(px  p). The putative proposition that p(pw  p) both has  and lacks . The 

property-sets paradox does not fit as neatly into Russell’s scheme, but a close relative emerges as 

follows: Let K be the kind set of properties. Let  be the putative property R. Let  be the putative 

function that assigns to any set x of sets having R the particular unit set {(y[y3x])}. Then (w) = 

{(y[y3w])}, whose sole element is an equivalent surrogate for R. Like {R}, assuming it exists 

{(y[y3w])} both has and lacks R.  

                                                 
23 Russell says that either  is impredicative or  does not exist, although “it may often be difficult to 

decide which of them to choose” (p. 35; p. 143). 

24 Priest 1994 and 1995 demonstrates, through judicious selections to fill the roles of  and —and 

in some cases with some finesse—that the range of paradoxes exemplifying generalizations of Russell’s 

scheme is remarkably broad. (I thank C. Anthony Anderson and Graham Priest for alerting me to this.) 

25 Since the identity function exists, Russell concludes that (y[yy]) is impredicative. See notes 3, 

18, and 23. 
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Many paradoxes that exemplify Russell’s scheme, although not all, also exemplify the 

encoding scheme. This is generally accomplished through the following definitions:  

 
Dencode*:  y encodes* X =df z(Xz  z) & y = ({z| Xz}).  

D*:   * =df (y[X(y encodes* X & ~Xy)]).  

D*:   * =df (w) 

Dencomp*:  x encompasses* y =df Z(x encodes* Z & Zy).26  

 
By Denc, an entity of kind K encodes* every property co-extensive with any property it encodes*. 

Also by Denc, (w) encodes*  (assuming both exist). Furthermore, (w) does not encode* any 

property not co-extensive with . For let F be a property such that x(Fx  x) but ~x(x  Fx). 

By the stipulations on , ({x| Fx})w whereas (w)w. (This remains true even if the stipulations 

                                                 
26 An interesting exception is Berry’s paradox, presented in Russell 1906. It may be set out as 

follows. Say that something is concisely English-definable iff it is designated in unaltered English by a non-

indexical definite description consisting of twelve words or less (e.g., as three is designated in English by 

‘the third positive integer’). Since the English lexicon is finite, there are finitely many concisely English-

definable positive integers. The paradox is that the smallest positive integer not concisely English-definable 

is evidently concisely English-definable by d = ‘the smallest positive integer indefinable in twelve English 

words or less’. See note 24. Priest 1994 (p. 29) shows how Berry’s paradox may be regarded as exemplifying 

Russell’s scheme, and asserts (p. 33) that Russell’s law is inapplicable. It should be noted, however, that a 

variant of Grelling’s paradox shows that there is a problem forming English descriptions that, like d, invoke 

designating in English. Cf. Church 1976, pp. 756-757. Russell’s law solves paradoxes of the relevant family by 

precluding . By contrast, insofar as the English lexicon is finite, then (as may be expressed in a suitable 

metalanguage for English) there does exist a smallest positive integer not concisely English-definable. 

However, it cannot be correctly said of that integer in English that it is designated in English in the manner 

proposed.  
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on  are made consistent as long as z[z  w  (z)w] and z[z  w  (z)z].) It follows that 

(w)  ({x| Fx}), so that (w) does not encode* F. Given the stipulations on , * is co-extensive 

with (y[z(y = [z])]), which is co-extensive with  (assuming all three properties exist). It 

follows that * encodes* * and does not encode* any property not co-extensive with *.   

 On Russell’s scheme a variant of encoding is explained in terms of a variant of , whereas 

on the encoding scheme  itself is directly defined in terms of encoding. For example, on Russell’s 

scheme a broad semantic or semantic-like relation of expressing* between heterological adjectives 

and properties is explained in terms of heterologicality, whereas on the encoding scheme 

heterologicality is defined in terms of semantically expressing. Unlike Russell’s scheme, the 

encoding scheme reflects how paradoxes of the relevant family arise.  
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