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Abstract. In recent publications in physics and mathematics, concerns have been raised
about the use of real numbers to describe quantities in physics, and in particular about
the usual assumption that physical quantities are infinitely precise. In this thesis, we dis-
cuss some motivations for dropping this assumption, which we believe partly arises from
the usual point-based approach to the mathematical continuum. We focus on the case of
classical mechanics specifically, but the ideas could be extended to other theories as well.
We analyse the alternative theory of classical mechanics presented by Gisin and Del Santo
[34], which suggests that physical quantities can equivalently be thought of as being only
determined up to finite precision at each point in time, and that doing so naturally leads
to indeterminism. Next, we investigate whether we can use intuitionistic mathematics to
mathematically express the idea of finite precision of quantities, arriving at the cautious
conclusion that, as far as we can see, such attempts are thwarted by conceptual contra-
dictions. Finally, we outline another approach to formalising finite-precision quantities in
classical mechanics, which is inspired by the intuitionistic approach to the continuum but
uses classical mathematics.
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CHAPTER 1

Introduction

For centuries, the intimate symbiosis between mathematics and physics has formed
a great source of inspiration for both fields. Their mutual independence, however,
has proven to be an important factor in this relationship: over the years, many

abstract mathematical structures that were developed completely independently of physics
have turned out to be surprisingly suitable for applications in physics, while conversely,
many of modern mathematics’ most important research directions were directly or indirectly
inspired by findings in physics. Mathematics has long proven its unreasonable effectiveness
in the natural sciences, at least by its success in making empirical predictions. However,
precisely because much of the mathematical formalism used in physics today has originated
independently of physics, it might be questioned whether this formalism also provides the
best candidate to describe physical reality from an ontological perspective.

One example of an originally purely mathematical structure used everywhere in physics
today is the real number system. The formalisation of the continuum in terms of real
numbers in the late nineteenth century was accompanied by the emergence of paradoxes
about uncountable infinities, and this played an important role in the motivation for the
development of more constructive and ‘intuitive’ approaches to the continuum. One of
these approaches was developed in the early twentieth century by the Dutch mathematician
Luitzen Egbertus Jan Brouwer (1881–1966), founder of intuitionistic mathematics. The
differences between intuitionistic mathematics and classical mathematics, as Brouwer called
the usual approach to mathematics that we still use today, eventually led to one of the
greatest debates in the foundations of mathematics, of which classical mathematics was the
clear winner [31].

Somewhat surprisingly, however, physical considerations played a very insignificant role
in this foundational crisis of mathematics.1 As a result, the mathematical real number
system was not designed to accurately represent the ‘physical continuum’, i.e. the number
line representing the possible values of physical quantities. Still, this mathematical formalism
is widely applied in contemporary mathematical physics.

In recent years, however, multiple publications in physics and mathematics have ex-
pressed doubts as to whether the ‘real’ numbers do indeed deserve a place in physical reality.
The authors of these publications are mainly concerned that, informally speaking, real num-
bers are infinitely precise and contain an infinite amount of information, and that this could
imply that real numbers do not accurately represent physical quantities. Several alternative
number systems have been proposed; in particular, Nicolas Gisin and Flavio Del Santo have
proposed a different view on physics in which physical quantities are, at each point in time,

1Einstein, who was a figure of great influence at this time, remained stubbornly neutral in the conflict
between intuitionistic and classical mathematics and wrote to Born: “I do not intend to plunge as a champion
into this frog-mice battle (Frosch-Mäusekrieg) with another paper lance” [31].
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2 Ch. 1 Introduction

only finitely precise and can be described with finitely much information [33, 34, 45–48]. We
will refer to such theories under the broad term finite-precision theories.

In addition, the question arises whether the continuum of intuitionistic mathematics
might be more suitable to represent physical quantities; this continuum, after all, ought to
be more ‘intuitive’ than the classical one. However, also the development of intuitionism was
not carried out with physical applications in mind; as we will see in this thesis, its philosophy
might even be so human-centred that application to physics would not make much sense.

The aim of this thesis is to give an account of some of the motivations for and con-
sequences of finite-precision theories of physics, to discuss the appropriateness of intuition-
istic mathematics to formulate such theories and to propose a new mathematical formalism
for finite-precision classical physics. Note that many of the considerations in this thesis
can be viewed as regarding either the epistemology or the ontology of physics; our focus,
however, will be throughout on the ontology.

We start in Chapter 2 by discussing the motivations for finite-precision physics in more
detail. We argue that one cannot empirically decide whether physical quantities are finitely
or infinitely precise. In Chapter 3, we summarise Gisin and Del Santo’s approach to finite-
precision classical mechanics and give some comments about it. In Chapter 4, we explore
some of the motivations for using constructive or intuitionistic mathematics for physics in
general; we will see that applying intuitionistic philosophy to physics is not straightforward
and perhaps even impossible. Nevertheless, we will try to use the language of intuitionistic
mathematics to formulate a finite-precision physics, an attempt which suffers from a variety
of problems. In Chapter 5, an alternative formulation of finite-precision classical mechanics
is proposed, which uses classical mathematics. Chapter 6 presents some open questions and
suggestions for future research on finite-precision theories of physics. Appendix A contains
very brief introductions to the mathematical formalism of classical mechanics (which can
be skipped by those acquainted with classical mechanics, but also introduces notation used
in Chapter 5) and to determinism. Finally, Appendices B and C contain preliminaries from
intuitionistic mathematics and computability theory, respectively.



CHAPTER 2

Are physical quantities finitely precise?

In recent years, multiple authors have raised concerns about the use of the classical
real number system in physics. More specifically, they question what we will call the
orthodox interpretation of physical theories,2 namely the interpretations according to

which physical quantities have infinitely precise (point-like) values and can be represented
by arbitrary real numbers. See for example Gisin and Del Santo [33, 34, 45–48], Dowek [35],
Visser [93], Drossel [37], Chaitin [28] and Lev [67]. Most concerns given in these articles have
to do with either the fact that real numbers are infinitely precise, or the fact that almost all
real numbers are uncomputable, which, in a certain sense, means that they contain infinitely
much information—while actual infinities are in many cases considered non-physical (see also
Ellis, Meissner and Nicolai [40]). In section 2.1, I outline (a version of) the main argument
from Gisin [46] and an alternative interpretation of real numbers emerging from it. In
section 2.2, we investigate some other commonly used physical arguments against the real
numbers, which I believe are not correct or at least incomplete.

Note that the question whether real numbers accurately describe ontological reality as-
sumes a realistic attitude; although some of the arguments presented below are based on
the in principle limitations of measurement, we always assume that a theory should be able
to describe the perfect-information state of the Universe, and not just that which is known
to observers.

Although many of the arguments presented in this chapter are applicable to a large range
of physical theories (indeed, all theories that use the real numbers), following Gisin [46], we
will largely focus on classical mechanics, which is a simple example of a physical theory
using the real numbers. We will discuss the reason for this in section 2.1.6. Appendix A.1
introduces the mathematical formalism of (the orthodox interpretation of) classical mech-
anics.

2.1 Chaotic systems and finite-precision physics
In the orthodox interpretation, a classical physical system is thought of as being represented
by a single real vector indicating a point in phase space, which causes the time evolution
of the system to be completely determined by the initial conditions (see Appendix A.1).
This also applies to classical chaotic systems, which are, loosely speaking, systems whose
behaviour over time is very sensitive to the initial configuration. The ubiquity of these
chaotic systems in physics was only recognised during the previous century, when it became

2We will sometimes just say ‘orthodox theories’. The use of the term ‘orthodox’ is inspired from Del Santo
[33]; the term ‘classical’ might also be possible, but we already use that to distinguish between classical and
quantum theories (in either orthodox or non-orthodox interpretations).

3



4 Ch. 2 Are physical quantities finitely precise?

clear that e.g. the long-term outcome of weather predictions is drastically influenced by
only small changes to the initial condition [13, 69]. A simpler example of a chaotic system,
however, is a double pendulum (see e.g. the figure).

Double pendulum

Let us consider a double pendulum whose configuration at time t = 0
is specified by a set of real numbers, containing the real number x0, say,

x0 = 0.36824317 . . . ,

which represents e.g. the distance between the point of suspension and the
tip of the pendulum, where the length of the upper arm of the pendulum
is taken as the length unit. According to the orthodox interpretation, all
digits in the infinite decimal expansion of x0 are determined at t = 0; that
is, in order to fully describe the system at t = 0, all digits in the decimal
expansion should be given, even if the very far-away digits might not be

physically relevant (i.e. have a physically insignificant influence on the configuration of the
system). Furthermore, because the system is chaotic, every digit in the decimal expansion of
x0 is relevant to the behaviour of the double pendulum over time; that is, for every n, there
exists a timepoint t at which the value of the n-th digit of x0 influences the configuration of
the pendulum on the order of magnitude of the pendulum itself. The orthodox interpretation
therefore seems right to the extent that all digits in a real number should exist (i.e. have a
well-determined value) at least at some point in time, even if they have no physical relevance
at t = 0, because they can obtain physical relevance as time progresses (at least in a chaotic
system).

However, the orthodox interpretation makes the additional assumption that all digits
of x0 (and all other relevant real numbers characterising the initial condition) are already
determined at t = 0, even if they only obtain physical relevance in the far future. This
assumption cannot be empirically verified, nor falsified, because the moment one performs
a measurement, the measured (digits of) quantities become physically relevant. That is to
say, we cannot empirically decide whether physically irrelevant digits have a well-determined
value without making these values physically relevant and thereby forcing them to having a
well-determined value.3

Gisin [46] uses a similar argument and suggests that an alternative theory of classical
mechanics, and of real numbers in general, is possible. In this theory, not all digits have
a well-determined value at t = 0; instead, digits only attain a determined value once they
become physically relevant (and this happens by an indeterministic process, as will become
clear below). He argues that this theory is empirically equivalent to the orthodox inter-
pretation of real numbers, that is, the theories yield the same measurement results and can
therefore not be distinguished empirically.4 Let us call such theories in which, as opposed
to orthodox theories, quantities are only finitely precise finite-precision theories. These
finite-precision theories form the main subject of this thesis.5

What exactly ‘physically relevant’ means in this context, and where the border between
relevant and irrelevant lies, is of course unclear. The reasoning above suggests that, in
order for the finite-precision and orthodox theories to be empirically equivalent, a minimum
requirement is that quantities should at least be physically relevant if they are or have been
measured by intelligent beings. This suggests that the action of measurement might play an

3In this section, we focus on the decimal expansion of real numbers because it is intuitive and intuitively
brings across the current argument; however, the argument does not depend on this particular representation
of the reals. As we will see later in this thesis, identifying physical quantities with their decimal expansion
poses some problems.

4For this reason, we sometimes call these theories merely interpretations of the same theory; however,
because the two approaches give very different philosophical accounts of reality, a scientific realist would
certainly regard them as two distinct theories.

5Although the term ‘finite precision’ might be associated to the finite precision of measurements, this
meaning is not intended here. Instead, finite precision of a physical quantity means that the quantity is
inherently determined up to only finite precision; Nature simply has not yet determined a more precise
value. This can (but in many other ways cannot) be compared to the term uncertainty used in quantum
mechanics; however, also this term misleading, even in quantum mechanics, as it suggests that it depends
on human knowledge about physical quantities, while it is actually a property of the physical system itself.



2.1 Chaotic systems and finite-precision physics 5

important role in finite-precision theories, and that a ‘classical measurement problem’ exists,
similar to the measurement problem of quantum mechanics. We will discuss the classical
measurement problem in more detail in section 3.1.1. Note, however, that limitations on
human measurement, even in principle ones, are not used as an argument in favour of
finite-precision theories by Gisin or by me; in our view, these limitations do not tell us
anything about the inherent (ontological) determinateness or preciseness of values of physical
quantities themselves.

2.1.1 Randomness and indeterminism

Because the orthodox and finite-precision theories are empirically equivalent, one can give
arguments for either of the two only on the basis of naturalness or elegance. We will now
discuss one such argument, which I think speaks in favour of the naturalness of finite-
precision theories and is based on the fact that almost all real numbers (with respect to the
Lebesgue measure) are uncomputable. In brief, this means that the decimal expansions of
these numbers cannot be computed by an algorithm (as opposed to the decimal expansions
of computable numbers like 1,

√
2 and π). (See Appendix C for more details on computable

numbers.) In fact, almost all real numbers are 1-random, which is a much stronger mathem-
atical definition of randomness which intuitively captures that the decimal expansions are
incompressible, unpredictable and patternless.6

As a result, x0 is 1-random with probability one,7 which means that the behaviour of the
double pendulum over time is seemingly random and unpredictable (in the informal sense).
Still, in the orthodox interpretations of chaotic systems like the classical double pendulum,
it is assumed that the behaviour of the system over all time is completely encoded in the
configuration of the system at t = 0 only, which is why one speaks of deterministic chaos.
This apparent coexistence of chaos and determinism, which manifests itself in the emergence
of randomness from simple physical laws, can be considered counterintuitive or unnatural.

In the finite-precision theory as introduced above, on the other hand, digits of physical
quantities only attain a well-determined value once they become physically relevant. The
existence of chaotic systems, whose behaviour at least appears random, suggests that it
is reasonable to assume that the process by which these new values become determined
is indeterministic.8 As a result, the time evolution of a chaotic system is not completely
encoded in the initial condition. In this way, finite-precision theories bridge the gap between
the mathematical and physical notions of randomness, namely by promoting 1-randomness
of real numbers to physical indeterminism.

While I believe that these observations speak in favour of finite-precision theories, whether
the orthodox theories or the finite-precision theories are more natural is partly, of course,
a matter of personal taste. Let me stress once more, however, that the theories are em-
pirically equivalent, so that the assumption that physical quantities are determined with
infinite precision is empirically both unverifiable and unfalsifiable. This means that physical
quantities could just as well be determined up to only finite precision9 at each point in time,
and consequently, that classical physics could just as well be indeterministic as deterministic
(which also holds for physical theories in general, as remarked in section A.2). It is therefore
surprising that the finite-precision interpretation of real numbers has barely been studied
before and has only so recently been brought forward by Gisin.

6For an introduction to the mathematical theory of 1-randomness (or algorithmic randomness), see e.g.
Terwijn [86] or Dasgupta [32].

7Here, the meaning of probability one is that among the set of all possible initial conditions of the double
pendulum, the set of initial conditions where x0 is 1-random has full measure; that is, when ‘drawing’ an
initial condition ‘at random’ from this set, the value of x0 is almost surely 1-random.

8One might also argue for this by noting that if the new values were completely fixed by the physical
laws and the finitely many digits defining the initial state, this would probably mean that the resulting real
numbers would not be 1-random. This is a heuristic argument, however, since we cannot simply identify
physical laws with mathematical algorithms.

9See footnote 5.



6 Ch. 2 Are physical quantities finitely precise?

2.1.2 Intuitionistic mathematics
The view that at each point in time, only a finite number of digits in the decimal expansion
of a physical quantity have a well-determined value very closely resembles the philosophy of
infinite sequences in intuitionistic mathematics, in which time plays a central role (see e.g.
sections B.3 and B.6). This puts forward the idea that intuitionistic mathematics might be
the right language to express finite-precision theories of physics, as has been suggested in
Gisin [48] (see also the popular account by Wolchover [99]). This is investigated further in
Chapter 4.

2.1.3 How have we come to the orthodox interpretation?
I think that the widespread acceptance of the orthodox interpretation can be attributed to
at least two factors.

Precision of measurements The precision of human measurements has rapidly increased
over the past few centuries. This might have led us to believe that we can in principle measure
quantities with arbitrary but finite precision,10 and that therefore, physical quantities have
to be determined with infinite precision (because otherwise, measurements of quantities with
a lower level of precision than the level of the measurement apparatus would be inconsistent
and irreproducible). However, in this reasoning, ‘arbitrary but finite precision’ is too readily
extrapolated to ‘infinite precision’, because it is not taken into account that when performing
multiple measurements with increasing precision on the same physical quantity, the precision
to which the quantity is determined can increase in the time between the measurements (but
still be finite at each point in time). Moreover, it is not taken into account that the very act of
measurement might cause the physical quantity to acquire a more (but still finitely) precise
value. As we have argued above, this is not a far-fetched suggestion, since measurements
naturally increase the physical relevance of the measured quantities; moreover, note that
measurements also play a central role in the (widespread) Copenhagen interpretation of
quantum mechanics.

Note (again) that I do not use the in principle limitations on human measurement as
an argument for finite-precision theories as opposed to orthodox theories, but only that it
follows from these limitations that the theories are empirically equivalent.11

In this answer to the question in the section title, we once again see a connection to
intuitionistic mathematics, for Brouwer suggested that the law of the excluded middle, and
the limited principle of omniscience (LPO) in particular (see Appendix B), is accepted by
classical mathematicians because they tacitly extrapolate reasoning about finite sequences
to reasoning about infinite sequences (see section B.2).

This observation suggests that infinitely precise real numbers are merely an idealisation,
a limit case, of physical reality. Indeed, Gisin has suggested that the orthodox theory
describes a ‘view from the end of time’ (i.e. a view of the system in the limit t→∞). This
can also been seen as the reason that the orthodox theory is deterministic.

The mathematical continuum Another explanation for the widespread adoption of
the view that physical quantities are infinitely precise is the mathematical formalisation of
the continuum in the nineteenth century. While the notion of the continuum goes back
to Ancient Greece, only in the nineteenth century was it formalised as being built up of
an infinite set of points. Although viewing the continuum as a set of points is a logical
consequence of the central place of set theory in classical mathematics, it does not corres-
pond to the intuition behind the continuum. This inspired the development of continua in

10Note that we are talking about real physical quantities, and not about quantities such as expected
position and momentum in quantum mechanics.

11One could say that a finite-precision theory carries some of the arguments against predictability over
to determinism, by introducing finite precision, which is frequently associated with empiricism only, to the
ontological level. See also section A.2. Finite-precision theories are (in my view) not intended to identify
predictability with determinism, however!
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constructive mathematics,12 and in particular intuitionistic mathematics, where not points
but ever-shrinking rational intervals are central to the continuum. Also in nonconstruct-
ive mathematics, approaches have been developed to formalise the continuum using regions
(e.g. open sets) instead of points; see e.g. Hellman and Shapiro [56] or Johnstone et al. [60].
It might have been that the widespread acceptance of the usual classical definition of the
real numbers has led to the view that also physical quantities are given by infinitely precise
points. However, while the notion of the continuum is essential to physics, it is question-
able whether physics needs it to consist of points. Accordingly, the finite-precision theories
discussed in Chapters 4 and 5 make use of regions (which we shall later call domains of
indeterminacy) instead of points.13

2.1.4 Indeterministic classical physics
Historically, deterministic theories have generally been regarded as more natural or intuitive
than indeterministic theories. This can among other things be attributed to the fact that
many macroscale phenomena like the falling of an apple or the motion of the planets around
the sun look deterministic. The preference for deterministic theories led to historic debates
at the advent of quantum mechanics in the early twentieth century, and to the development
of deterministic quantum theories, notably Bohmian mechanics (see also Appendix A.2),
which remain to be developed to this day [58], and might be said to try to ‘bring quantum
closer to classical’.

However, the possibility that even classical mechanics need not be deterministic (and that
viewing it as indeterministic might even be more natural than viewing it as deterministic)
shows us that quantum mechanics is not necessarily the only or the first theory to introduce
indeterminism to physics. An indeterministic interpretation of classical mechanics as the
one outlined in this section might therefore cause the community to be more at ease with the
concept of indeterminism and, accordingly, with quantum mechanics, by ‘bringing classical
closer to quantum’ instead of the other way around. This was one of the main motivations
for Gisin to develop his theory.14 He has suggested that the real numbers can be seen as the
hidden variables of classical mechanics [47], comparing them to the hidden variables which
are supplemented to quantum theory by Bohmian mechanics in order to make quantum
theory deterministic. See also Del Santo [33] for more historical discussion on this issue.

The finite-precision interpretation, being time-irreversible, also influences the relation-
ship between classical mechanics and thermodynamics. This is discussed in more detail in
section 6.2.

2.1.5 Parmenides and Heraclitus time
It is useful to distinguish two notions of time in finite-precision physics. The first, which
Gisin [45] calls Parmenides time, corresponds to time evolution as given (in the case
of classical mechanics) by the Hamiltonian differential equations of motion. Parmenides
time could also be called ‘boring time’ [45], as its evolution is completely determined on
the basis of the initial condition (i.e. it is deterministic); no new information is generated
as Parmenides time passes. It has no preferred direction but is just another parameter of
spacetime. (Parmenides was an Ancient Greek philosopher according to whom existence is
timeless and change is deceptive). On the other hand, we have what Gisin calls Heraclitus
time, the evolution of which is indeterministic and which corresponds to generation of new
information and to the change from potential to actual (and, perhaps, to free will [45]);
it could also be called ‘creative time’. In the current setting, it refers to the process of

12Both Brouwer and Weyl spoke of the ‘intuitive continuum’ van Atten, van Dalen and Tieszen [7] and
Weyl [97], while Borel spoke of the ‘geometric continuum’ [88, §1.4.2].

13Ideally, we should try to make a clear distinction between the ‘mathematical continuum’ and the ‘physical
continuum’; for example, even if physical quantities should be expressed by regions instead of points, numbers
like 1 and π can still be said to be correspond to an infinitely precise point on the mathematical continuum.
However, making this distinction is difficult because, for example, the relation between physical quantities
can depend on point-like mathematical constants like π.

14Personal communication.
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determination or ‘actualisation’ of new digits of physical quantities. (Heraclitus was an
Ancient Greek philosopher who believed, on the other hand, that existence is constantly
changing; πάντα ῥεῖ (‘everything flows’)).

Parmenides time and Heraclitus time could be compared with propagation of the wave
function via the Schrödinger equation and indeterministic wave function collapse in quantum
mechanics, respectively.

In some sense, Parmenides time and Heraclitus time are perpendicular, since the Hamilto-
nian differential equations can be solved using finite-precision quantities as initial conditions
(i.e. Parmenides time evolution can be calculated within one Heraclitus time slice). How-
ever, if the actualisation of digits is indeed triggered by measurements or by them becoming
‘physically relevant’ over the course of Parmenides time, then it seems that Parmenides time
and Heraclitus time must be inextricably linked. We will return to this issue later.

2.1.6 What about theories besides classical mechanics?
A natural question to ask is why we focus on the example of classical mechanics, as we already
know that precisely on the small scale, classical mechanics does not accurately represent
reality. We do this first of all because classical mechanics, in its orthodox interpretation,
is an archetype of a deterministic theory, and as explicated in section 2.1.4, we think it is
useful to show that even this theory can be interpreted indeterministically. But indeed, most
motivations for questioning that physical quantities are infinitely precise can be generalised
to any other physical theory that uses the real numbers. Moreover, similarly to classical
physics, the idea that quantities get more precisely determined over time would introduce
(another level of) indeterminism to these theories, by promoting mathematical randomness
to physical indeterminism. Classical mechanics, by virtue of being a simple theory which is
usually regarded as deterministic, allows us to explore this particular indeterministic process.

2.2 Infinite information
Many of the publications mentioned in the beginning of this chapter are in particular con-
cerned with the aforementioned fact that most real numbers are uncomputable, which (can
be and) is frequently described as them ‘containing infinitely much information’, and that
this in conflict with the alleged principle that the Universe should have a ‘finite information
density’, i.e. that a finite volume of space ‘contains at most finite information’. I am not
convinced by the validity of this finite-information principle and believe that the question
whether it holds or not is empirically underdetermined. In this section we will try to analyse
some of the arguments used in favour of this principle.

Before doing that, however, we must have clarity on what exactly is meant by the
information ‘contained’ in a physical system. It makes sense to define it as the minimal
amount of information necessary to completely specify the configuration of that system.
Since completely specifying the configuration of a system requires the system to be isolated,
this definition is limited to isolated systems, and it is therefore questionable whether it
makes sense to speak about the information contained in a particular finite region of space.
Indeed, we cannot say that the information in a single real number representing, say, the
x-coordinate of a particle, is ‘stored’ at the location of that particle, for that information
depends on our description of the system (e.g. we can always choose a coordinate system in
which this physical quantity is a rational number).15 The only well-posed question seems
to be whether all physical quantities relevant to describing the entire system can together
be described using finitely much information (i.e. can be expressed by a finite algorithm).
Therefore, let us from now on only consider isolated systems of finite spatial extent. The
Bekenstein bound indeed only applies to such systems [77].

15In classical mechanics, in the presence of forces with infinite range like Newtonian gravity, a change in
the location of the particle immediately affects the behaviour of the system at arbitrarily large distances;
therefore, in this case we cannot even say that the physical quantity in question is ‘localised’ at the location
of the particle, let alone the information in the real number representing its value.
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2.2.1 The Bekenstein bound
Some of the earlier stated papers [28, 33, 35, 46] in particular mention the Bekenstein bound
as an argument against the infinite information in real numbers. Derived first in 1981 by
Jacob Bekenstein in the context of black hole physics [10], it provides an upper bound on
the ratio between the entropy and energy in an isolated system enclosed in a sphere of finite
radius R:

S

E
≤ 2πkR

~c
, (2.1)

where k is Boltzmann’s constant, ~ is Planck’s constant and c is the speed of light.
Entropy is often used as a measure of information, so that the infinite information in

real numbers would contradict this bound. However, I think this link between entropy and
information is too readily made. First of all, there exist many different notions of entropy,
which should not thoughtlessly be identified with each other. What complicates matters even
more is that entropy is not a property inherent to a physical system; rather, it is a property
of our description of the system [24, 95]. Hence, there is no such thing as ‘the’ entropy of
the system. For this and other reasons, the domain of applicability of the Bekenstein bound
is unclear (it is often ambiguously stated as in Equation (2.1) without specifying the specific
entropy notion that is meant) [77].

The entropy involved in black hole thermodynamics, for example, which is the context
that the Bekenstein bound was first derived in, is very different from entropy in statistical
mechanics. In order to pass from thermodynamic entropy to statistical mechanical entropy,
one needs to, at least in continuous systems,16 coarse-grain the system [95], i.e. divide
state space into countably many compartments; this means that microstates are already
assumed from the start to correspond to a region of state space, instead of a point. In doing
so, all information relevant to the current discussion, namely the information contained in
uncomputable, infinitely precise real numbers, is lost.

Furthermore, while there has been much work on the connection between (statistical
mechanical) entropy and the algorithmic information contained in finite binary strings (i.e.
the Kolmogorov complexity; see e.g. Grunwald and Vitányi [52], Tadaki [84]), whether and
how this generalises to a link with uncomputability of infinite strings corresponding to real
numbers is yet unclear (but would be interesting to investigate in more detail).

2.2.2 What information?
Gisin [46, section IV] outlines another argument for the principle of finite information density,
based on the observation that although the information storage capacity has dramatically
increased over the past century, there will always remain a certain minimal amount of energy,
mass or space that is needed to encode one bit of information. This refers, however, to
information that is stored by human beings in a digital format, which, almost by definition,
does indeed have a finite density; in my view, the argument does not apply to the information
necessary to completely describe the state of the system itself.

In addition, arguments based on thought experiments known as Landauer’s principle or
Szilard’s engine [72] are sometimes used to make the connection between thermodynamic
entropy and information (not requiring coarse-graining by passing through statistical mech-
anics) [33]. However, Landauer’s principle deals with information processing carried out
within the Universe, so it can again be questioned whether it applies to all information
necessary to describe the system; similarly, Szilard’s engine involves an intelligent being
(“Maxwell’s demon”) knowing the state of the system and actively interacting with the
system from within.

In [68], Lloyd calculates an upper bound on the number of logical operations performed
and numbers of bits registered within the Universe in its lifetime, using the Bekenstein
bound and the Margolus-Levitin theorem. He argues that these numbers also provide a
lower bound on the number of logical operations and bits required to simulate the entire

16It is true that some (quantum) theories allow the existence of discrete systems; however, if we only
consider discrete systems (i.e. systems with a countable number of possible microstates), I do not see why
there is a problem of infinite information in the first place.
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Universe on a (quantum) computer. He notes correctly, however, that whether it is also
equal to the minimum amount necessary to run such a simulation is a controversial question
which cannot be decided on the basis of only these physical principles.

I agree with Lloyd and stick with the conclusion of section 2.1 that it cannot be decided,
in particular not by the arguments discussed in this section, whether the real numbers can
be used to accurately represent the values of physical quantities, but that it is interesting
to explore the possibility of finite-precision and finite-information physics.

As a final note, it is of course possible to argue against the real numbers from an epistemic
or operationalist17 perspective, since the real numbers do not represent our knowledge of a
physical system and there is no method to measure a quantity with infinite precision, nor a
method to store a measurement result that contains infinite information. Most discussions
in this thesis, however, assume an ontological perspective.

17Operationalism is the view that a concept is only meaningful when we have a method of measurement
for it; more abstractly, it views any concept as nothing more than a ‘set of operations’ [30].



CHAPTER 3

Gisin’s alternative classical mechanics

In a series of publications from 2017 to 2020, Nicolas Gisin and Flavio Del Santo,
motivated by the arguments given in Chapter 2, propose a candidate alternative in-
terpretation of classical mechanics which is indeterministic and uses only finitely much

information for each physical quantity [33, 34, 45–48]. In section 3.1, we summarise this
theory and discuss two more aspects of their publications; in section 3.2, we discuss some
apparent problems arising from their approach.

3.1 Finite-information quantities
The idea of indeterministic classical mechanics as first outlined in Gisin [46] was already
discussed in section 2.1. The theory is worked out in greater detail in Del Santo and
Gisin [34]. Instead of the decimal expansion as in section 2.1, the authors consider the
binary expansion of a real number γ, without loss of generality situated in the interval [0, 1],
which represents some (dimensionless) physical quantity (e.g. a ratio of distances between
particles):

γ = 0.γ1γ2γ3 . . . ,

where γj ∈ {0, 1} for each j > 0. Instead of assuming, as is done in classical mathematics
and orthodox physics, that all binary digits of γ are given at once, i.e. at each point in time
all digits are either 0 or 1, they propose that at each point in time only finitely many digits
are 0 or 1. The other digits take a value between 0 and 1, defined as the propensity of that
digit at time t. This propensity can be seen as the tendency of the digit to take the value 1
at a later stage. More specifically, the authors define:

Definition 3.1. A finite-information quantity is an infinite sequence of propensities
(q1, q2, . . . ) such that:

(i) qj ∈ Q ∩ [0, 1] for all j > 0;
(ii) (necessary condition)

∑∞
j=0(1−H(qj)) <∞, where

H(qj) = −qj log2 qj − (1− qj) log2(1− qj)

is the base-2 entropy of the probability distribution corresponding to qj .

Both conditions (i) and (ii) are imposed to make sure that FIQs contain only finitely
much information. Gisin and Del Santo also give a sufficient condition for (ii):

11
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(sufficient condition) For each time t, there exists M(t) ∈ N such that qj = 1
2

for all j > M(t).

Let us for the moment restrict our attention to finite-information quantities γ satisfying
this additional constraint, as Del Santo and Gisin also mostly do. For each t, let N(t) be
the largest n such that at time t, qj ∈ {0, 1} for all j with 0 < j ≤ N(t). Then N(t) ≤M(t),
and the sequence of propensities associated with γ can be divided into three sections.

In the first section, 0 < j ≤ N(t), all propensities qj are either 0 or 1. This means that
the corresponding digits γj have a well-determined value, equal to the propensity.

In the second section, N(t) < j ≤M(t), the propensities qj take a rational value between
0 and 1.18 These propensities are taken to be objective, ontological properties of the physical
quantity. Over time, they undergo a dynamical evolution which moves them closer to either
0 or 1. When one of these numbers is reached, the bit γj changes from potential to actual.

The third group of propensities, j > M(t), satisfy qj = 1
2 . According to the authors, this

means that the outcome of the bit γj is totally random.

3.1.1 The classical measurement problem
In section v, Del Santo and Gisin [34] discuss the question of under what circumstances
a bit value is changed from potential to actual, i.e. a propensity becomes either 0 or 1.
The authors present two possible answers: (i) The actualisation happens spontaneously as
time passes, i.e. the process of actualisation (but not the outcome) only depends on the
theory itself, and is not influenced by e.g. strong emergence.19 (ii) The actualisation occurs
when a higher level requires it. This means that a (strongly) emergent process influences a
lower-level one: this is referred to by top-down causation. The higher level process can be a
macroscopic measurement apparatus, for example, which might require a finite-information
quantity to take on a more definite value.

The situation can be compared to that of the measurement problem in quantum mech-
anics, which has been described as the problem of “explaining why a certain outcome, as
opposed to its alternatives, occurs in a particular run of an experiment” [22] and, in par-
ticular, why, when, how and whether collapse of the wave function to an eigenstate occurs
[76]. The question of why, when, and how actualisation of digits occurs in finite-precision
classical mechanics and how this process relates to measurements could accordingly be called
the ‘classical measurement problem’ [33, 34]. Del Santo and Gisin [34] suggest that of the
approaches to the classical measurement problem discussed above, option (i) is reminiscent
of the objective or spontaneous collapse models of quantum mechanics such as the continu-
ous spontaneous localisation (CSL) model [42], which describe a process of wave function
collapse which is integrated into quantum theory itself; while option (ii) can be compared to
the Copenhagen interpretation, according to which it is the act of measurement itself that
induces wave function collapse [34, 76]. The classical measurement problem will remain
unresolved, however, just as its quantum counterpart.

The classical measurement problem is also closely related to the nature of the relation
between Parmenides time and Heraclitus time (cf. Schrödinger propagation and wave func-
tion collapse, respectively). We will return to this in section 3.2.3 and later in this thesis.

3.2 Discussion
Gisin and Del Santo’s proposal sets the stage for an interesting discussion on the relation
between real numbers and indeterminism and their role in classical physics. While the

18In Del Santo and Gisin [34] and Del Santo [33] the additional assumption seems to be made that qj

cannot be equal to 0 or 1 for j > N(t).
19A high-level phenomenon is said to be strongly emergent from a lower-level domain if the phenomenon

arises from the lower level, but not all truths about the phenomenon can be deduced, even in principle, from
the lower level. This opposes reductionism, which is roughly the view that a higher-level object is nothing
more than its constituent parts.
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Figure 3.1: (a) Example of a probability distribution on [0, 1] arising from a sequence of
independent propensities (qi)∞i=1. (b) Example of a probability distribution on [0, 1] which
does not arise from a sequence of independent propensities. A random variable γ ∈ [0, 1]
distributed according to this distribution has the property that for all bits in its binary
expansion 0.γ1γ2 . . ., P (γi = 1) = 1

2 ; but these propensities are dependent. (c) The distribu-
tion of (b) cannot be reconstructed from a sequence of independent propensities, since this
would yield another probability distribution. We see that propensities do not completely de-
scribe the probability distribution and hence the ontology associated with finite-information
quantities.

formalism presented in Del Santo and Gisin [34] succeeds in describing intuitively what
it would mean for physical quantities to be inherently uncertain, the theory is still in its
infancy and there seem to be some problems that limit its potential to become a more
complete mathematical theory which represents objective reality.

3.2.1 Base-2 dependence and interdependence of propensities
First of all, if the indeterminacies of physical quantities are indeed ontological, objective
properties of the system, it is unnatural to describe them in terms of the base-2 expansion
of the reals, and doing so would lead to an incomplete theory, as we will see now.

Gisin and Del Santo do not go into the question whether the propensities associated
with a FIQ are dependent or independent random variables.20 However, it follows from
a reasonable argument that they must in general be dependent. Namely, note that if the
propensities are assumed independent, then every FIQ induces a probability density function
on the continuum via the joint probability of the propensities, as exemplified in Figure 3.1(a).
However, not all probability distributions can be reconstructed by taking the joint probab-
ility distribution in this way, as shown in Figure 3.1(b).21 This would mean that the set of
possible probability distributions that appear in FIQ-theory depends on properties inherent
to the description of the system, such as the chosen unit and coordinate system; as a result,
the theory cannot describe objective ontological reality.

Therefore, the propensities must in general be dependent. This means, however, that not
all information present in the physical system is encoded in the values of the propensities,
so that FIQs do not provide a complete description of reality. Figures 3.1(b) and (c),
for example, show examples of differing probability distributions associated with the same
sequence of (dependent) propensities.

In fact, the conclusion that the binary expansion of reals cannot be used to formulate
a complete theory of finite-precision quantities is exactly analogous to the problem that
prohibits defining the real numbers in intuitionism on the basis of their binary expansion
(or expansion in any other base), as discussed in section B.4 on page 54. A similar result also
follows from considerations in computable analysis (see the discussion below Definition C.10

20The usual theory of random variables can perhaps not be applied to propensities, as Gisin notes that
propensities are not probabilities as in the usual sense of the word; in particular, they do not satisfy
Kolmogorov’s axioms of probability theory [44]. However, it seems reasonable that also for propensities
there must be some notion of dependence or independence. Two propensities can be said to be dependent,
for example, if the sole process of the transition of the value of γj from potential to actual causes a change
in the value of the propensity qi, with i 6= j.

21In particular, if f(x) is a probability density function on the continuum induced by independent
propensities (q1, q2, . . . ), then for all x ∈ (0, 1

2 ), we must have f(x+ 1
2 ) = q1

1−q1
f(x).



14 Ch. 3 Gisin’s alternative classical mechanics

on page 66).
Indeed, it is arguably not the indeterminacy of the binary digits of real numbers that

matters physically, but the indeterminacy of the location of the physical quantity on the
continuum line itself. This suggests that the theory would be improved if not the binary
representations of real numbers were taken as a starting point in representing the indeterm-
inacy in quantities, but instead more geometrical properties of the continuum were used.22

In section 4.2, we will take a first look at an approach to finite-precision physics that uses
shrinking rational intervals instead of the binary expansion of the reals; in section 5.2, we
will consider a more consistent formulation of finite-precision classical mechanics.

3.2.2 Measuring information

To ensure that the information contained in (or ‘encoded by’) the physical system per unit
volume is finite, Gisin and Del Santo require that the propensities qj of a FIQ be rational
numbers, and that the sum of their negentropies is finite:

∑
j(1−H(qj)) <∞ (the necessary

condition). These are two different notions of information: the former is concerned with the
algorithmic information in a description of the perfect-information state of the system, while
the latter is associated with the amount of information required to communicate the outcome
of an actualisation of a digit of the FIQ. It is not clear whether the sum of negentropies
provides the correct measure of information in a FIQ. We can see, for instance, that this
choice does not guarantee a bound on algorithmic information: it is not difficult to construct
a sequence (q1, q2, . . . ) of rational propensities for which

∑
j(1−H(qj)) converges, but which

is uncomputable.23

A first attempt to a solution could be to replace the necessary condition by the sufficient
condition, as all propensity sequences that satisfy the sufficient condition are computable.
However, the probability distributions on the continuum induced by such sequences are
necessarily discrete and show discontinuities only at dyadic numbers (as in Figure 3.1),
which makes the theory even more dependent on the choice of unit and coordinate system.
Another potential solution could be to replace the necessary condition by the requirement
that the sequence of propensities associated with a FIQ is computable.

In addition, the measure of information proposed in the formulation of the necessary
condition, namely a sum of negentropies of individual propensities, seems to require that
the propensities are independent, which they, as discussed in the previous section, are most
likely not.

Finally, also the requirement that propensities are rational is not free of problems. Del
Santo and Gisin [34, section III-B] remark that replacing the reals by rationals in physics
leads to what they call ‘Pythagorean no-go theorems’: for example, three particles cannot be
placed on the vertices of a right-angled triangle, since the distance between the two particles
on the hypotenuse would be irrational. However, this also holds for propensities: if the
distance between two particles A and B is represented by a FIQ with rational propensities,
and the same holds for the distance between A and another particle C, then the distance
between A and C is in general not expressible in terms of rational propensities.

A potential solution could be to let propensities take values in the set of computable
numbers. Together with our previous suggestion, this would mean that FIQs are defined as
computable sequences of computable numbers. However, as noted earlier, the approaches
developed in the next sections will be based on the geometry of the continuum as a whole,
rather than on the base-2 expansion of individual points.

22Perhaps, the mathematical idea that the continuum is built up of individual points (which can then be
expressed by their binary expansion) has led Gisin and Del Santo to their current formulation. As I remarked
in section 2.1.3, however, there might be no physical motivation for viewing the continuum as consisting of
points.

23Namely, construct such a sequence (qj)j that converges to 1
2 fast enough such that

∑
j
(1 − H(qj))

converges, while making sure that the sequence is not computable; the latter is possible because the set of
uncomputable rational sequences is dense in the set of all rational sequences.
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3.2.3 Connection to Hamiltonian time evolution
While Gisin and Del Santo do discuss the possibilities for the mechanism behind the evolution
of propensities qj which is involved in the transition of bit values γj from potential to actual,
they do not discuss how this evolution is incorporated in the dynamical evolution of FIQs
through the Hamiltonian equations of classical mechanics. In the terms of section 2.1.5, they
do not discuss how Heraclitus time and Parmenides time are linked. Here, the rationals again
seem problematic: when FIQs undergo Hamiltonian evolution, rational propensities do in
general not stay rational. Understanding the connection between Parmenides time and
Heraclitus time turns out to be a difficult problem, which we will revisit later in this thesis.





CHAPTER 4

Intuitionistic physics?

The main aim of this chapter is to explore the motivations for and problems of using
intuitionistic or constructive mathematics for physics. The discussion in section 4.1
applies to physics in general, while in sections 4.2 and 4.3, an intuitionistic interpret-

ation of finite-precision physics in particular is attempted and debated. Our conclusion is
that the usefulness of constructivism and intuitionism in describing an ontological physical
theory is questionable. Finally, section 4.4 attempts to investigate the relation between phys-
ical indeterminism and Kreisel and Troelstra’s definition of lawless sequences (introduced in
section B.7). This section has a similar negative conclusion.

4.1 Constructivising physics
While constructive mathematics was originally developed for pure mathematics, the past
century has seen multiple debates on the justification of using nonconstructive or construct-
ive methods in applied mathematics and physics in particular. One important debate in
the 1990s was between philosopher Geoffrey Hellman and constructivist Douglas Bridges
[17, 54, 55, 80]. More recently, alternative quantum logics have been proposed that are
intuitionistic [64]. Also Gisin has suggested that his alternative classical mechanics might
best be expressed in the language of intuitionism [48]. In this section, we review and analyse
a number of arguments or motivations to use either constructive or nonconstructive math-
ematics in physics that can be found in the literature. These motivations can be roughly
divided into three categories: purely mathematical motivation, technical considerations, and
physical motivation, the latter of which can be subdivided into epistemic and ontological
motivations. Of course, there is some overlap between these categories.24 The discussion in
this section is not specific to finite-precision theories but applies to physics in general. Also
note that this section focuses on (mainly Bishop’s) constructive mathematics, and less so
on intuitionistic mathematics, which are not the same thing (see section B.1).

4.1.1 Purely mathematical motivation
Ask any ‘radical constructivist’ whether to use classical or constructive mathematics in
physics, and they will most likely answer that constructive mathematics is best to use in all
cases. They might give the same arguments as they would for defending pure constructive
mathematics: ‘What purpose does it serve to say that something exists, when it cannot be

24Another topic which touches on the applicability of constructive mathematics to physical sciences, but
which I do not discuss here, is on the physical meaning of classical undecidability and incompleteness results.
See e.g. Svozil [82].

17
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constructed? How do you know that the time axis is totally ordered, when the relation <
on R is not decidable?’ To me, these arguments are not convincing, for the simple reason
that mathematics is not physics. The largest part of the debate between constructive and
nonconstructive mathematics takes place entirely within mathematics. The BHK (Brouwer-
Heyting-Kolmogorov) interpretation, for example, is an interpretation of what it means to
have a constructive proof of a mathematical statement (see section B.1), and has little to
do with physics. While pure mathematics is practised, the goal of theoretical physics is to
describe physical reality (be it empirical or ontological reality);25 hence, motivations to use
constructive mathematics for physics should take into account which mathematics has the
best representational capacity. Hellman draws the same conclusion:

Why should there be any restrictions a priori on the character of the math-
ematics that may be used to describe real or idealized physical systems? [. . .]
In general, in scientific applications of mathematics, the goal of explaining and
understanding natural phenomena is paramount, not achieving a constructive
interpretation of results. [55]

4.1.2 Technical considerations
When it comes to the power of proving results, constructive mathematics is usually thought
of as lagging behind classical mathematics. But is that a bad thing? It might be, if this
means that certain mathematical results that seem essential to the development of physics
cannot be proven constructively. An example of such a result is Gleason’s theorem, which
lies at the foundations of quantum mechanics. It also has deep physical significance, as it
rules out a certain class of hidden variable theories. As was shown by Hellman in 1993 [54],
Gleason’s theorem is not constructively provable; in fact, it implies LLPO [17] (a principle
which, similarly to LPO, does not hold constructively, and is even false in intuitionistic math-
ematics; see section B.2).26 However, as with many classical analytic theorems, alternative
formulations which are classically equivalent to Gleason’s theorem can be proven construct-
ively. Helen Billinge [11] proved a number of such alternatives to Gleason’s theorem. In
addition, Fred Richman and Douglas Bridges noted that Gleason’s theorem as formulated
in Hellman’s 1993 paper was classically but not constructively equivalent to Gleason’s ori-
ginal formulation, upon which Richman proved that Gleason’s original formulation is in fact
constructively provable [80].27

More generally, the discussion of whether constructive mathematics has the required
technical capacity to formulate modern mathematical theories of physics seems inconclus-
ive: many classical theorems remain constructively unproven,28 but history (and, in partic-
ular, Bishop’s Foundations of Constructive Analysis [12]) have shown that many useful and
classically equivalent alternatives to these theorems can be proven constructively.29,30

25According to Brouwer: “Het gebouw der intuitieve wiskunde [is] zonder meer een daad, en geen
wetenschap” [19, p98] (“The construct of intuitive mathematics is simply a deed, and not a science”).

26Gleason concluded that this was a profound shortcoming of constructive mathematics: “The work of
Bishop and others [. . .] can be said to have breathed new life into constructivist mathematics: it shows that
a great deal of applicable mathematics can indeed be constructivized. A great deal, however, is not all, and,
if our assessment is sound, it is in any case not enough.”

27There were similar discussions about unbounded and uncomputable operators (see Bridges [17] for
an overview) and the singularity theorems of Hawking and Penrose, which also have profound physical
significance because they prove the big bang (from assumptions) [55]. See also [27, section I].

28Hermann Weyl, in whose opinion “it is the function of mathematics to be at the service of the natural
sciences” [98, p61], was initially fascinated by Brouwer’s intuitionism but later realised its impractical nature:
“Mathematics with Brouwer gains its highest intuitive clarity. [. . .] It cannot be denied, however, that
in advancing to higher and more general theories the inapplicability of the simple laws of classical logic
eventually results in an almost unbearable awkwardness. And the mathematician watches with pain the
greater part of his towering edifice which he believed to be built of concrete blocks dissolve into mist before
his eyes.” [98, p54] This was before Bishop published his Foundations of Constructive Analysis.

29Constructive mathematics is indeed more versatile than classical mathematics, in the sense that it
distinguishes between statements that are classically equivalent (such as classical and approximate variants
of theorems like the intermediate value theorem discussed in section B.5).

30Note that the discussion here is on constructive mathematics, not intuitionistic mathematics; the case
for intuitionistic mathematics is more sophisticated as it also has theorems that do not hold classically.
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An interesting note in the discussion on constructivism is that while classical math-
ematicians usually see the restrictiveness of intuitionistic logic as a weakness, constructive
mathematicians tend to stress that their theories admit more models. That is, every the-
orem proved in Bishop’s constructive mathematics (i.e. proved with intuitionistic logic) is
also true within a plethora of other theories, such as recursive function theory, Weihrauch’s
type-two effectivity theory (Appendix C.1), intuitionistic mathematics and classical math-
ematics [17]. Hence, in this sense constructive mathematics is not more restrictive at all;
instead, it leaves open more possibilities than classical mathematics. However, it is ques-
tionable whether this property is also to the benefit of physical theories, rather than purely
mathematical and recursive theories such as the ones listed above.

Finally, an observation sometimes made by constructivists is that in a way, physicists
already use constructive mathematics in everyday practice without knowing it [9]. They
refer to the theory of Smooth Infinitesimal Analysis (SIA), which formalises the use of in-
finitesimals in analysis (replacing the ε, δ-formalism introduced by Cauchy and Weierstraß).
Here a quantity dx is called an infinitesimal (of second degree) if its square (dx)2 is zero.
While in classical mathematics all such infinitesimals would be zero, using intuitionistic logic
we can only prove that ¬¬(dx = 0) for any infinitesimal dx, that is, they are potentially
zero. An axiom of SIA which physicists tend to use on a daily basis is the principle of
micro-affinity, stating that an infinitesimal change in the variable of a function causes a
linear change in the value of the function.

However, the simple observation that physicists sometimes use infinitesimals in their
derivations cannot be used as an argument in favour of using constructive mathematics for
physics, for these infinitesimals could easily be replaced by ε, δ-arguments in all cases, as
Hilbert [57] has already argued. (Alternatively, classical theories of infinitesimal analysis
can be constructed by using nonstandard models of the real numbers [49].) Furthermore, to
decide which mathematics to use for physics, we should not focus on the everyday work of
the typical physicist, but instead on the more formal formulations of physical theories.

4.1.3 Physical motivation
While the arguments discussed above mostly focus on the mathematical practices of the
physicist, the philosophical aspect of physical theories should also be taken into consid-
eration. When doing this, the question arises which type of mathematics has the largest
representational capacity, i.e. the largest capacity to represent physical reality. Attempts to
answer this question can be divided into roughly two camps: those that are concerned with
epistemic physical reality and with ontological reality, respectively.

Epistemic perspective

Some convincing arguments can be given that seem to show that constructivism reflects our
knowledge about the physical world better than nonconstructivism. The general invalidity
of the principle of the excluded middle (PEM) in constructive mathematics, for instance,
could reflect our uncertainty about the existence of physical objects or values of physical
quantities.

Consider the statement ϕ given by31

ϕ = ‘There exists a particle which does not interact with anything in the Universe.’

The statement cannot be falsified, viz. negative evidence would lead to a contradiction,
which means that ¬¬ϕ holds. On the other hand, no evidence of the particle exists, nor can
it ever be given, which means we will never be able to conclude ϕ. The distinction between
¬¬ϕ and ϕ, which seems important to an epistemic approach to physics, can only be made
by using constructive mathematics.

31Example taken from Bauer [8].
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The argument for constructivism is particularly strong from the stance of operational-
ism.32 See Cattaneo, Dalla Chiara and Giuntini [27] for an example. The same can be said
about intuitionism: Bauer [8], for instance, gives an operationalist motivation for Brouwer’s
continuity principle in physics, based on the fact that we can only use a finite amount
of resources to arrive at a conclusion about the physical world (we will see in section 4.2
that there is also an ontological motivation for the continuity principle, when accepting a
finite-precision interpretation).

In these epistemic approaches, the existential quantifier is probably interpreted as say-
ing that ‘we have physical (positive) evidence’, or at least that ‘we must be able to obtain
physical evidence using a finite amount of resources’. This sounds much like the constructive
(BHK) interpretation of ∃ in mathematics (section B.1). However, as a modest scientific
realist myself, I think we should at least be able to consider the possibility that a theory rep-
resents physical reality, and using constructive mathematics for physics on purely epistemic
grounds either deprives us of that possibility, or, in the best case, it leaves open the ques-
tion whether ontological theories should follow the same approach and adopt constructive
mathematics as their foundation.

Ontological perspective

PEM can also be rejected from an ontological perspective of physics, in this case not be-
cause of our lack of knowledge about a physical system, but because of either physical
indeterminism (for statements about the future) or indeterminacy (for statements about the
present). Indeterminacies can arise from, for example, superpositions in quantum mechanics
(‘Is Schrödinger’s cat alive?’) [64] or from the (ontological) property of finite precision of
physical quantities in Gisin’s alternative classical mechanics—so that statements about, for
example, the relation between two physical quantities need not have a well-determined truth
value. Gisin himself has proposed that intuitionism might indeed better reflect physical on-
tological reality [48]. Indeterminism of the physical world is also closely related to PEM,
because the truth of statements about the future need not be decided in the present.33,34

Intuitionistic mathematics in particular could be seen as a promising candidate to formulate
indeterministic theories of physics, because of the central importance given to the notion of
time (see section B.6).35 It is tempting to somehow ‘couple’ the physical and intuitionistic
notions of time. We will investigate an approach which is based on this idea in the follow-
ing sections. However, the fact that intuitionistic time is an ‘intuitive’ or ‘subjective’ notion
while time in an ontological theory of physics should ideally be objective indicates that these
concepts of time are fundamentally different and that any attempt to equate them might be
fruitless. This is discussed in more detail in sections B.6 and 4.3.1.

A similar problem emerges when using constructive mathematics in general (not intu-
itionism specifically) to describe an ontological theory of physics. Namely, instead of a clash
between ‘intuitive’ and ‘objective’ time, we see a clash between constructivism and scientific
realism. From a realistic perspective, for example, it should (sometimes) be possible to say
that something (physical) either exists or does not exist, independent of our knowledge—
the statement ϕ from the previous section, for example, should satisfy ϕ ∨ ¬ϕ. This is
most likely the reason that the ontological motivation for using constructive mathematics in
physics is heavily underrepresented in the literature compared to the technical and epistemic
considerations. Perhaps one would ideally want to have a theory in which PEM does not
hold for certain statements about the future (in order to express indeterminism), but does
hold for those statements for which PEM is physically justified. Because the latter class
contains statements, such as ϕ, which are not constructively decidable, it seems unlikely
that constructive mathematics can be consistently used to describe such a theory.

32See footnote 17 on page 10.
33One might argue that PEM should be associated with fatalism rather than determinism. We will not

make this subtle distinction here.
34The relation between PEM and statements about the future was already recognised by Aristotle in De

Interpretatione.
35See Trzesicki [89] for some connections between intuitionism and indeterminism in terms of tense logic.
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Indeed, it might be that in using constructive mathematics one is always forced to have an
empirical attitude to physics. And trying, alternatively, to formulate yet another mathemat-
ics which respects the different physical motivations for decidability would be cumbersome,
if not impossible.36 A similar conclusion is drawn by Hellman [55]:

I believe [. . .] that radical constructivism which grants the coherence of classical
reasoning about the physical is inherently unstable.

However, Hellman does not discuss the possibility that also an ontological interpretation
can have aspects, like indeterminism or indeterminacy, for which classical principles like
PEM are not desirable. In section 4.2, we will see that the intuitionistic philosophy of the
continuum and time can at least inspire us to change our view of physical quantities. In
section 4.3 we revisit the incompatibility of intuitionistic and physical time, as well as the
status of PEM in physics.

4.1.4 What does physics say about constructivism in pure math-
ematics?

Until now, this chapter has been concerned with reasons to use constructive mathematics
to formulate physical theories. Can we, however, also reason the other way around? Can
physical arguments be used to promote constructivism in pure mathematics?

One point of view, which seems to be taken by Hellman [54, p202] and perhaps also
Weyl (see footnote 28), is that the main purpose of mathematics lies in its application to
the natural sciences. This would imply that motivations for using constructive mathematics
in physics should always take into account the representational capacity of mathematical
theories. While this is true in part for fields such as mathematical physics, it does not hold
for mathematics in its purest form. Although important research directions in mathematics
like analysis have been inspired by the physical sciences, they have come to lead a life of
their own and can now be considered separately from the physical sciences. Therefore, the
motivation for using constructivism in pure mathematics should come from a different angle
than in the case of mathematical physics. This has historically indeed been the case, as the
development of constructive and intuitionistic mathematics was mostly carried out without
physical applications in mind.37,38

That is not to say that this different angle has nothing to do with physics at all: indeed,
a significant factor in the motivation for constructivism in pure mathematics, and especially
intuitionism, is the human condition, e.g. the limitations on our ability to mentally construct
mathematical objects,39 and the fact that we can only perform finitely many operations per
unit time. These arguments find their origin in the physical realm—but they are nevertheless
manifestly different from the arguments based on representational capacity discussed above.

So what is the human condition, and how does the BHK interpretation follow from it?
One way to talk about the BHK interpretation in a more formal way is in the framework
of realisability: In realisability, it is made explicit what it means that a statement can be
proven or a mathematical object can be constructed. The notion of ‘proof’ of a statement
ϕ is replaced by the notion of a realiser r for ϕ, written as r  ϕ. r can be thought of as
a computer program or other method witnessing the truth of ϕ. In this way, constructive
mathematics can be brought into relation with various models of computation. Usually
these are mathematical models; Bauer [9], however, explores the possibility of using physical
processes or objects as realisers.

36Such an approach would be considerably complicated by the fact that it is not always clear whether a
mathematical statement represents a statement about physical reality or not.

37This holds to a lesser extent for Brouwer, who used some principles of physics in his thesis on intuitionistic
mathematics from 1907 [19], with which he obtained a PhD title in both mathematics and physics.

38However, the fact that the line between pure mathematics and physics is often blurred and that there is a
constant exchange of ideas between the two subjects definitely complicates matters and, taken together with
the fact that the overwhelming majority of mathematics developed during the previous century is classical,
is one of the reasons that attempts to constructivise physics have not been taken very seriously by the wider
scientific community.

39Oscar Becker even notes that “the very possibility of intuiting mathematical objects rests on our ability
to realise them concretely in the world” [81].
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His approach is closely connected to the so-called physical Church-Turing thesis. This is
the statement that Turing’s mathematical notion of computation captures precisely those
computations that can be performed using physical devices.40 Evidence against this thesis
has been given from different fields of physics: some suggest that quantum computers may
be able to venture ‘beyond the Turing barrier’ [4], and a general relativistic model of ‘hy-
percomputation’ has been proposed that makes use of black holes to perform supertasks [2],
which would mean it would be possible to decide the halting problem.

Bauer uses an informal notion of ‘realisability in the physical world’ to arrive at conclu-
sions such as ‘Decidability of reals is real-world realized iff we can solve the halting problem’.
More generally, this would mean that it might be possible to ‘constructively’ decide LPO, if a
physical notion of constructivism is adopted and e.g. hypercomputation is indeed physically
possible. Bauer also gives conditions on when Brouwer’s continuity principle is real-world
realised [9].41

Although this approach is not formal and is closely related to unsolved problems in
physics, it is interesting to speculate how physics can in fact influence the constructivism
debate in pure mathematics. It is important to note, however, that these results only
impact decidability of equality on mathematically defined reals; they cannot be used for
the discussion of the previous subsections, as they have no influence on, for example, the
determinacy of real numbers representing physical quantities.

Finally, whatever the reasons for adopting constructivism, the fact remains that con-
structive, intuitionistic and classical mathematics are all (as far as we know) consistent
mathematical frameworks. Hence, the foundational ‘debate’ is about not much more than
a difference in interpretation or personal preference—which is perfectly acceptable in pure
mathematics, but when applied to physics could bring along a difference in representa-
tional capacity for the objective world. As we have seen in the preceding sections, whether
constructive mathematics can be successfully used to this end remains questionable. In
section 4.3, we will revisit this question for intuitionistic mathematics specifically.

4.2 Intuitionistic reals in classical physics
We will now investigate what intuitively happens when we apply some of the ideas of the
intuitionistic philosophy of the continuum and of lawless sequences to physics. Gisin [48]
has suggested that this could introduce a notion of ‘creative time’ to physics and that it
could provide a solution to the problems introduced in Chapter 2, in a way similar to his
own alternative formulation of classical mechanics, discussed in Chapter 3.

Note that Del Santo and Gisin’s theory is not intuitionistic: for example, it assumes
the existence of fully determined, ‘finished’ infinite sequences of propensities, contrary to
the intuitionistic view of infinite sequences. Moreover, it makes use of probabilities, which
are not involved in the intuitionistic definition of real numbers. Finally, we have seen that
using the binary expansion to define reals is not possible intuitionistically (section B.4,
page 54). Motivated by these considerations, we will instead use the intuitionistic definition
of real numbers based on infinite sequences of shrinking and dwindling rational intervals
(see section B.4), of which at each point in time only a finite initial segment is known.

However, it will turn out that in many respects, also this approach does not conform to
the intuitionistic spirit, in part because of the challenges discussed in section 4.1.3, and that
it is also very naive from a physical perspective (see sections 4.3.1 and 4.3 respectively).
However, intuitionistic reals provide an intuitive way to think of finite-precision quantities,
based on geometrical aspects instead of binary expansions, and they set the stage for a more

40This thesis differs from the more widely-known Church-Turing thesis, which states that Turing’s com-
putability notion (as well as most other computability notions such as recursion theory, which are equivalent
to Turing’s) captures precisely the computations that can be performed by an (idealised) mathematician
using only a pen and (an arbitrary amount of) paper. See also section C.

41This is closely related to the debate on the meaning of ‘lawlike’: while some constructivists accept
Church’s thesis, which states that lawlike is synonymous to computable in Turing’s sense, others suggest
that a broader notion should be adopted, which captures all processes that can be physically computed by
humans, or even laws which depend on, but are fully determined by, indeterministic processes (like BKS
sequences, discussed in section B.7.1).
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consistent formulation, which we will present in Chapter 5. In this section we focus on some
conceptual consequences only.

We focus on the Hamiltonian formulation of classical point mechanics. The idea is to
concretise the intuitionistic notion of a course of time using the time parameter of physics.
Using intuitionistic reals to describe physical quantities in this way would mean that at
each moment in time, each (one-dimensional) physical quantity is only determined up to
a rational interval of nonzero length.42 Once again, this is meant in an ontological way:
Nature has simply not yet revealed a more specific value for the physical quantity. As time
passes, the rational interval can at some points suddenly shrink, which we sometimes refer
to by collapse of the interval, meaning that the indeterminacy of the value of the physical
quantity decreases. In the terminology introduced in section 2.1.5, this manifests a step in
Heraclitus time. In contrast to the orthodox interpretation of classical mechanics, where all
information about the physical quantities is already present in the initial conditions, in this
interpretation, new information about the real numbers is generated as time passes.

The rational intervals associated with physical quantities take on a quite important
role in the ontology of our new physics,43 but their role can also be generalised to other
formulations of finite-precision theories (such as the one given in Chapter 5). We use the
general term domain of indeterminacy (DOI) to refer to the set of real numbers (or
rather: the region of the continuum) that the physical quantity is determined to lie in at
some time n (in Heraclitus time). In this section, we denote the DOI of a physical quantity
x at time n by xn, and xn is a rational interval. In the simple case that x is not subject to
Hamiltonian evolution (i.e. does not evolve over Parmenides time), DOIs are subject to the
requirement that xn+1 ⊆ xn (a more rigorous definition will have to wait until Chapter 5).

Let us investigate how some fundamental results from intuitionistic mathematics trans-
late to physics. As an example, consider a quantity x that represents the position of a station-
ary particle in a one-dimensional system, such that by the above requirements, (x0, x1, . . .)
is a sequence of shrinking rational intervals. If n is such that xn contains zero, then the
statement

x > 0

is ‘vermetel’ or ‘reckless’ (in Brouwer’s terminology; see Appendix B) at time n, which is to
say: the statement “the particle is to the right of zero” does not have a well-defined truth
value at time n.44 The statement can, however, become either true or false in the future.45

The physical time parameter itself also becomes an inherently imprecise notion. Consider
a particle that moves freely and bounces off a wall at time t0. Its position is given by

x(t) =
{
y(t) if t ≤ t0,
z(t) if t ≥ t0,

for some functions y, z with y(t0) = z(t0) (example taken from Bauer [9]).46 If the initial
position of the particle is not infinitely precisely determined, then neither is the time t0. We

42Hellman [55, p435] finds that a constructive ‘rule for generation’ (a sequence of rationals approaching a
real) should not be identified with a physical object (the real). Here, however, we do exactly that.

43This is a problematic fact, just as the use of rational numbers in Del Santo and Gisin [34] (see section 3.2);
we will ignore this problem for now and focus on the conceptual consequences only, but we return to the
matter in section 4.3.2.

44In Kreisel’s formalism of the creating subject, this reads ¬�n(x > 0).
45This example is perhaps too simple, because it is not invariant under shifts and reflections of the

coordinate system, so it may be difficult to say that it can have an inherent truth value at all. As an
alternative, consider three particles in two- or three-dimensional space, and the statement ‘the particles
form the vertices of an obtuse triangle’.

46This example is again naive, because the momentum of the particle is discontinuous at t0, which is only
possible intuitionistically if we accept that the particle’s momentum is a partial function of time (i.e. not
defined for all times t). Indeed, it is questionable whether elastic collisions are possible in a finite-precision
physics; this agrees corresponds to the observation that in regular physics, elastic collisions are often seen
as only limiting cases of real physical phenomena. As an alternative example, avoiding walls and elastic
collisions, consider the situation in footnote 45 with the particles now moving relative to each other, and
denote by t0 the time at which the triangle becomes obtuse.
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see that the domain of definition of x is (−∞, t0] ∪ [t0,∞). Interestingly, in intuitionistic
mathematics this set is not equal to the whole continuum R, because that would mean that
∀t ∈ R (t ≤ t0 ∨ t ≥ t0), which is not the case in intuitionism (see Equation (B.6)). Hence
also the time continuum is ‘viscous’ and cannot be sharply cut into two: this is what Gisin
calls ‘thick time’ [48].

Moreover, the real number version of Brouwer’s continuity principle BCPR (B.7) makes
sense in finite-precision theories, since any relation between physical quantities and nat-
ural numbers that is well-determined at some point in time should depend only on finitely
much information about the physical quantity in question, analogously to BCPR. It also
means that any total function that takes only physical quantities as arguments should be
continuous, which is analogous to the statement that all real functions in intuitionism are
continuous (which is equivalent to BCPR). Indeed, continuity (and even smoothness) of
functions is often implicitly assumed in physical practice.47

As another example, consider the mean value theorem and its constructive approximate
variant. Suppose f is a function of space, for which f(x) = α and f(y) = β, where x # y and
α, β are physical quantities with α # β (that is ¬(αn ≈S βn), where n is the current time, in
the notation of Appendix B). Because α and β are inherently determined only up to a finite
precision, we see that the classical mean value theorem does not hold: there is no z such that
x < z < y and f(z) = α+β

2 with certainty. The constructive approximate variant is valid,
however, in the following way: for any m ∈ N, if we wait sufficiently long, the indeterminacy
in α, β and f will become sufficiently small to pinpoint a z such that |f(z)− α+β

2 | <
1
m with

certainty (again, the present approach limits us to speaking in informal terms; see Chapter 5
for a more formal approach).

Finally, using the intuitionistic philosophy of the reals sheds light on the nature of colli-
sions in a finite-precision point-particle48 physics. Consider a system of two particles moving
in three-dimensional space approaching each other along the z-axis,49 each of the particles’
position being associated a certain domain of determinacy. When the distance between
the particles decreases and becomes on the order of magnitude of the indeterminacy in the
particles’ positions, then the positions become more physically relevant (as is certainly the
case if, for instance, the particles exchange an inverse-square force). This causes (one of
the) DOIs to collapse to a smaller interval, upon which the particles approach each other
closer. This process continues until the particles pass each other; however, if collapse of the
DOIs is indeed indeterministic, then the particles avoid a collision and thus pass by each
other with probability 1, as the probability is zero that the DOIs pertaining to their x- and
y-positions converge to the same point. In orthodox point mechanics, on the other hand,
there are initial conditions which are guaranteed to lead to point-particle collisions.

We see that using the intuitionistic philosophy of real numbers to describe physical
quantities intuitively provides an alternative approach to a finite-precision theory of classical
mechanics, and that doing so reveals many interesting features of this finite-precision theory.
Moreover, in contrast to Gisin and Del Santo’s theory, the approach given above does not
depend on the base 2 representation of real numbers, which solves one of the problems
discussed in section 3.2. As we will see in section 4.3.2, however, the approach sketched
above still suffers from some major technical problems. First, however, let us make some
more remarks on the interpretative consequences of using intuitionism for physics.

47The momentum of the particle in the previous example is a function of time that is not continuous but
is partial (defined only on (−∞, t0] ∪ [t0,∞)).

48Point-particle seems to suggest that the location of each particle is known to infinite precision, but all
that I mean here is that the particles have zero diameter, so that the positions can be determined to arbitrary
accuracy.

49That is, more or less along the z-axis, as their direction of movement is not defined with infinite precision.
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4.3 Problems of the intuitionistic approach
In section 4.1 we already concluded that a constructive approach to physics might not be
compatible with an ontological (realist) worldview. In section 4.2 and in Gisin [48], on the
other hand, we have seen that the way time is treated in intuitionism might better represent
the flow of time in physics than classical mathematics does. This suggests to ‘couple’ the
intuitionistic and physical notions of time. As we will see below, however, such an attempt
cannot be taken too seriously.

4.3.1 Equating intuitionistic and physical time
The main reason for this is that time forms an important aspect of intuitionistic mathematics
precisely because intuitionism is formulated from the perspective of the (idealised) practising
mathematician, or, in Brouwer’s terminology, the creating subject (see also section B.6).
Intuitionistic time refers to the time experienced by the creating subject, and can therefore
be seen as subjective, whereas time in an (ontological) theory of physics should, ideally, be
an objective50 phenomenon.

As discussed in section B.6, time in intuitionism relates, in the first place, to (i) the time
necessary (for the idealised mathematician) to prove a theorem or to perform computable
operations. In particular, the creating subject can only perform finitely many computa-
tions per unit of intuitionistic time. Apart from that, time appears (ii) in the concept of
choice sequences, which are defined in a ‘step-by-step manner’ (such that the amount of new
information considered or ‘revealed’ per unit of intuitionistic time is finite).

Therefore, if intuitionistic time were literally ‘equated’ to physical time, then not only
would it (ii) take time for physical quantities to become more precisely determined, but
also (i) trivial calculations like Parmenides time evolution (which involves computing the
solution to Hamilton’s equations) could only be performed with finitely many computations
at a time. This would mean that even the finite-precision state of the Universe would only
be determined (‘exist’) at a discrete set of timepoints,51 which is a profound and undesirable
consequence.52

Indeed, for our ontological finite-precision theory of physics, only the lawless aspects of
intuitionism are relevant, which correspond to the generation of truly new information and
hence to indeterminism, rather than the time needed to perform trivial computations of
which the outcome is fixed given the present configuration of the Universe. Because it is
difficult (or as some would argue, impossible) to separate lawlikeness and lawlessness in
intuitionism (see section B.7.3), and because both notions are subject to the same ‘intuitive
time’ experienced by the creating subject, it is questionable whether the philosophy behind
finite-precision physics can truly be called intuitionistic. This is in line with the conclusion
of section 4.1.3; the above arguments also apply to the debate of using intuitionism or
constructivism for indeterministic theories in general.

To support these arguments, let me make some more remarks relating to the principle
of the excluded middle. First of all, the motivation to use intuitionism for indeterministic
theories because the invalidity of the principle of the excluded middle expresses indetermin-
ism well pales by the observation that lawless aspects are not necessary to see that PEM is
intuitionistically invalid. Take for example the statement G defined in section B.2; it does
not satisfy G ∨ ¬G, because the Goldbach conjecture has not been proven nor disproven;
but the truth value of G is, in a certain sense, still fixed.53 So in general, the mathematical

50Though not necessarily global or absolute (considering relativity theory).
51Namely, we cannot let the creating subject calculate the state of the Universe at every time t ∈ R, nor

at every time t ∈ Q, because both options would require infinitely much computation per unit time, even if
the state at every time is only determined with finite precision.

52For example, if (Parmenides) time is discrete, then the system cannot always ‘sense’ when a quantity
becomes physically relevant and thus when its domain of indeterminacy should collapse. While there are
indeed theories that assume that time is discrete, in the current setting, discrete time is not desirable.

53This example might actually not say very much about physics, since its truth value is not directly related
to a statement about physical objects; however, it is in my opinion self-evident that also truth values of
statements about physical objects which are fixed by the current state of the Universe should not depend
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future (of the creating subject) is open for a different reason than why the future of the
Universe is open in an indeterministic theory of physics.54

Secondly, the present-day formulations of indeterministic theories (in classical mathem-
atics, that is) show that the invalidity of PEM is not necessary to express indeterminism. In-
stead of saying that certain statements about physical objects do not have a well-determined
truth-value, we can also say that these statements are ill-defined themselves. For example,
when two domains of indeterminacy (DOIs, recall the terminology of section 4.2), pertaining
to the x-coordinates of two particles, overlap, then the statement “particle 1 is to the left of
particle 2” can be seen as ill-defined. In this respect, therefore, theories formulated in clas-
sical logic might be equally able to represent indeterministic physics as theories formulated
in intuitionistic logic.

A constructivist could still argue that it is easier to use intuitionistic logic, because then
one need not worry about what statements are well-defined and which are not. While this
reasoning is sometimes used in the context of computability theory (see Bridges [17, p441]),
it is questionable whether it can be applied to physics, considering the cases where PEM
holds physically but not constructively, as discussed previously.

4.3.2 Technical problems
Apart from the conceptual issues of the previous section, using shrinking sequences of ra-
tional intervals as proposed in section 4.2 brings along severe technical problems from the
physical side. These are similar to the problems of Del Santo and Gisin’s approach discussed
in section 3.2.

First of all, rationality of a number is conserved neither under many reasonable coordinate
transformations, nor under Hamiltonian time evolution (even for rational lapses of time).
Hence, rational intervals do in general not transform to rational intervals, and moreover,
hyperrectangles representing the DOIs of multidimensional quantities do not transform into
hyperrectangles. This is a problem if we want to assign ontological meaning to these rational
intervals and rectangles.

Moreover, the problem of section 3.2.3 remains, i.e. it is unclear how Heraclitus time and
Parmenides time are linked. One of the reasons for this is precisely that the set of rational
intervals is not invariant under Hamiltonian time evolution.

Finally, it is still unclear in what way the processes of collapse of DOIs of different physical
quantities depend on each other. Two quantities that are inextricably linked, like the velocity
and position of a particle, can in general not both collapse randomly and independently,
because this could lead to physically impossible world lines.

In the next chapter, we will solve these issues by using recursively enumerable open sets
instead of rational intervals and by considering regions of phase space instead of DOIs of
individual quantities.

4.4 Lawless sequences and indeterminism
As indicated above, the most important aspect of the intuitionistic philosophy that might
be of use to finite-precision physics, or perhaps to any indeterministic theory of physics, is
formed by choice sequences, and in particular their lawless aspects. In this section, we focus
on the formalisation and philosophy of lawless sequences proposed by Kreisel and Troelstra,
summarised in section B.7.2, and relate it to indeterminism in physics. In particular, we
will try to investigate whether or not lawlessness follows automatically from the fact that
the laws of an indeterministic physical theory admit multiple possible futures.55

on some ‘creating subject’ having proven or disproven the statement.
54Indeed, although the admission of lawless sequences distinguishes intuitionism from other forms of

constructive mathematics, lawless sequences are not the most important part of the intuitionistic philosophy;
Brouwer himself, for instance, did not accept lawless sequences at first, and even when he did, he never used
an explicit example of a lawless sequence in his proofs. Lawless sequences were only explicitly defined by
Kreisel (see section B.7.2).

55Unfortunately, to assume the well-posedness of this question, we have to ignore the strong arguments
against the meaningfulness of Kreisel and Troelstra’s definition and against the well-definedness of ‘lawless
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One thing to get out of the way is that physical indeterminism of course does not imply
absolute lawlessness: indeterministic theories like quantum mechanics and finite-precision
classical physics have laws of motion, but these do not completely fix the future given the
present.56 Moreover, even wave function collapse in quantum mechanics is not completely
lawless, as it subject to probabilistic laws (which lead to e.g. the law of large numbers). Un-
fortunately (from this point of view), however, probabilities play no role in the intuitionistic
concepts of choice and lawless sequences.

In this section, therefore, we will only consider the simple case of an indeterministic
theory which does not have probabilistic laws. We will further assume, for simplicity, that
we can ‘extract’ one completely indeterministic process from the evolution of a physical
system, parameterisable by an infinite sequence of natural numbers which is not described
by any (probabilistic) law (except perhaps a spread law, see section B.4) and is independent
of other physical processes; and which together with the physical laws completely determines
the evolution of the system. Let us call such a sequence an evolution sequence of a world.
(We might associate this sequence with the sequence of throws of ‘God’s die’, but only if
we divest this die of all probabilistic properties that dice are normally associated with.)57

An example of such a sequence in finite-precision classical physics could be a sequence of
natural numbers, each element describing the DOIs of all physical quantities.

If we assume the existence of such an ‘evolution sequence’, then does it make sense to
impose the condition that it must be a lawless sequence? In particular, let us consider the
following two types of laws of physics:

(a) “Evolution of nature is given by (differential equations and) an (arbitrary) sequence”;
(b) “Evolution of nature is given by (differential equations and) a lawless sequence”.

The question arises: Are these formulations of the physical laws equivalent, and if not, how
do they relate to each other? Let us explore two possible views on this question, one of an ‘or-
thodox physicist’, who is used to using classical (nonconstructive) mathematical reasoning,
and one of a ‘time extremist’, who thinks, analogously to the intuitionistic mathematician,
that we should see physical time as a forever unfinished process.58

Being asked the italicised question, the orthodox physicist might immediately respond
that “these two formulations are clearly not equivalent: because I can describe a world which
has a lawlike evolution sequence. This world is possible according to the laws specified in
(a), but not according to the laws specified in (b). On the other hand, every world that
satisfies (b) also satisfies (a); hence (b) is strictly stronger than (a).”

This view follows from a common philosophical way to talk about physical laws, where
laws are related to the set of possible worlds at which they obtain—see section A.2. In
our simplified case, we can identify the set of possible worldsW with the set of all sequences
of natural numbers (when (a) is adopted) or the set of all lawless sequences of natural
numbers (when (b) is adopted). For a world W ∈ W, we denote by Wt the t-th element
of the evolution sequence of W , where t ∈ N. Using this notation, we employ Earman’s
definition of determinism as given in Equation (A.3).

Note that the world W described by the orthodox physicist, namely one given by a
lawlike evolution sequence, is not deterministic, as for determinism to hold at W , the future
should be fixed given only a time slice Wt, which does not include information about the
specific lawlike sequence that represents W .

sequence’ in general (see section B.7.3). A promising idea for further research is to focus on extensional
notions of lawlessness in intuitionism instead (section B.7.4).

56As Popper indicates, “Indeterminism merely asserts that there exists at least one event (or perhaps, one
kind of events [. . .]) which is not predetermined” [78].

57Asserting the existence of such a sequence does not refute indeterminism; remember that we view infinite
sequences as projects that develop in time.

58In literature on philosophy of mathematics, one often finds discussions between ‘the classical mathem-
atician’ and ‘the constructive mathematician’, but the present discussion is on philosophy of physics, and it
would be inaccurate to call the time extremist a ‘constructivist’.
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Reasoning in terms of a (possibly infinite) set of finished possible worlds, such as the
orthodox physicist does, requires a quite platonistic view. The time extremist would argue
that we should not, or only under very limited circumstances, talk about finished worlds.
They would therefore give a completely different answer to the italicised question, drawing
inspiration from Kreisel and Troelstra’s philosophy of lawless sequences: “Suppose that the
physical laws are given by (a), and consider the sequence γ defined as the evolution sequence
of the actual world, i.e. the sequence that my world experiences. γ is defined intensionally
and is forever unfinished, and because formulation (a) imposes no law on the continuation
of γ at any stage of its development, the sequence γ is a lawless sequence, in Kreisel and
Troelstra’s sense. In other words, the absence of a specified law on the sequence in (a) makes
the definition equivalent to definition (b). This means that (a) being obtained at the actual
world is equivalent to (b) being obtained at the actual world.”

Confused, the orthodox physicist replies: “You are forgetting that Troelstra and Kreisel’s
axioms are actually about the set of lawless sequences and the relations between them;
indeed to make sense of indeterminism, we have to consider not only the actual world, but
also other possible futures. Even if we are constrained to being in a time slice of the actual
world, we must at least be able to talk about those other worlds. How would that match
with your view?”

The time extremist might compromise: “I can still define other sequences γ′ intensionally
by letting them denote the time evolution of given possible worlds, which are of course forever
unfinished. In this way we are able to compare different worlds, and if the laws of nature
are as formulated in (a), then the same argument as I used earlier can be used to justify
that those worlds satisfy (b) as well.”

Here, however, the time extremist’s view deviates much from the traditional possible
worlds view, because possible worlds are usually seen as finished objects. Indeterminism
in physics is usually interpreted in the sense that one cannot infer which possible world is
the actual world on the basis of only one timeslice of the actual world. This is a purely
extensional consideration (i.e. based solely on the present configuration of the actual world
and the future configurations of possible worlds, analogous to the use of the term extensional
in mathematics; see section B.7.2). If we do want to speak about indeterminism using
unfinished worlds in the intuitionistic sense, therefore, we have to relinquish this traditional
possible worlds view.

Nevertheless, when we define the physical laws as in (b), Kreisel and Troelstra’s law-
less sequences prima facie seem to provide a good alternative approach to possible worlds,
because when the set W of possible worlds contains only unfinished, lawless evolution se-
quences, then one can constructively prove from LS1 (B.8) a positive version of Earman’s
indeterminism (A.3). Namely, let us define positive indeterminism at W ∈ W by

∃W ′ ∈ W ∃t (Wt = W ′t ∧W # W ′)

(where W # W ′ means ∃s (Ws 6= W ′s)), i.e. we can find a possible world W ′ and a timepoint
s such that W ′ agrees with W at time t but is distinct from W at s. Assuming, now, that
the timepoint t lies in the actual world W ’s past, viz. Wt is determined, then LS1 lets us
find worlds U, V ∈ W such that Wt = Ut = Vt, but such that Ut+1 6= Vt+1. Then U # V
(i.e. they are positively unequal), and by cotransitivity of #, we have W # U ∨W # V .
Hence,

(Wt = Ut ∧W # U) ∨ (Wt = Vt ∧W # V ),

which constructively proves positive indeterminism as defined above.

On a closer look, however, it is questionable whether Kreisel and Troelstra’s formal-
ism provides an appropriate framework to talk about indeterminism. The axiom LS2 (see
Equation (B.9)) is warranted mathematically by heavily relying on the intensional proper-
ties of lawless sequences: the mathematician knows the ‘identity’ of the sequences α and
β and can therefore decide with certainty whether they are equal or not. Translated to
possible worlds in physics, however, this axiom leaves us with the unusual fact that we can
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distinguish worlds purely on the basis of some intensional property, not pertaining to their
spatio-temporal configuration. The essential point of indeterminism (in the current setting
of a set W of unfinished possible worlds) is, on the other hand, that we cannot distinguish
two worlds which have not (yet) diverged.

Also LS3 poses problems to the time extremist’s view, because its consequence, Equa-
tion (B.10), implies that (a) is not at all equivalent to (b).

Finally, if we adopt the view suggested by (b) that the set of possible worlds is given
by Kreisel and Troelstra’s set of lawless sequences, then we have to somehow deal with
the fact that this set seems to be language-dependent, which we discussed in section B.7.2.
In particular, if three evolution sequences α, β, γ are related by some lawlike relation, for
instance ∀n(γ(n) = α(n) + β(n)), then according to Troelstra, they cannot all be lawless,
but their lawlessness ‘depends on the context’ [87]. Hence, α, β and γ cannot all represent
possible worlds, but which ones do and which one does not is a question that cannot be
objectively answered.

Trying to make sense of Kreisel and Troelstra’s philosophy of lawless sequences in the
context of indeterminism in physics has turned out very difficult, if not impossible.59 By
viewing infinite sequences and time as processes that are never finished, the time extremist’s
first instinct was that definitions (a) and (b) of the physical laws are equivalent. Whether
this is true is questionable, since we have seen that defining the physical laws as in (b)
using Kreisel and Troelstra’s sequences brings along many problems. Most of these follow
from the intensional nature of Kreisel and Troelstra’s definition, which already gives rise to
much debate within intuitionistic mathematics (see section B.7.3). However, while inten-
sional definitions can be considered acceptable in (intuitionistic) mathematics, using them
in physics leads to even more extreme situations. What matters in physics are arguably only
the extensional properties of objects, for two worlds which have the same spatio-temporal
content should probably be considered identical.60

If one really prefers using definition (b) over (a), then it would be wise to use an ex-
tensional definition of lawlessness such as the ones discussed in section B.7.4. The relation
between these lawlessness definitions and indeterminism in physics, and whether they are
satisfied automatically when the physical laws are formulated as in (a), should be investig-
ated in more detail. However, these extensional notions are classical and do there not reflect
the way that we would ideally like to view time in physics.

It seems best to formulate the physical laws as in (a) (as we will do in Definition 5.9),
and to live with the fact that the actual world might be ‘extensionally lawlike’ when viewed
from the end of time. As noted earlier, this does not contradict indeterminism because the
law specifying a sequence cannot be inferred from an initial segment only.

59Having now fully understood Kreisel and Troelstra’s concept and the controversy surrounding it, I think
it might not even have been worth the attempt.

60And finally, of course, the evolution of the Universe is in our view not determined by free choice of an
idealised mathematician. One could involve deities or human free choice in discussions about indeterminism,
but that is a story for another time.





CHAPTER 5

Formalism for finite-precision classical mechanics

Until now, we have studied two approaches to formulating finite-precision theories.
In Chapter 3, we discussed the first attempt at such a formulation, proposed by Del
Santo and Gisin [34] in 2019 and based on the binary expansion of real numbers.

We concluded, amongst other things, that the central role of the binary expansion precludes
the theory from describing complete objective reality. Inspired by the idea that intuition-
istic mathematics might be a natural language for finite-precision physics, we attempted
in section 4.2 to use the intuitionistic real number system and notion of time to describe
finite-precision quantities, but failed, as we had anticipated in section 4.1.3 and as became
clear in section 4.3.

In this chapter, I will outline yet another approach which might provide a suitable form-
alism for finite-precision theories of classical physics. It is inspired by the intuitionistic
philosophy of the continuum, but, building on previous conclusions, is itself entirely clas-
sical (as regards the mathematics) and, in particular, does not try to equate physical and
intuitionistic time as in section 4.2. In section 5.1 I discuss some final necessary physical
considerations, and in section 5.2 I present the mathematical formalism.

Before doing this, however, let us briefly recap the motivation for developing a finite-
precision theory in the first place, which we discussed in section 2.1. The main aim of
developing this kind of theory is to show that there is no physical evidence for the usual
view that physical quantities are given by infinitely precise real numbers. I do not intend
to question the empirical predictions of existing theories, but only suggest that different
but empirically equivalent theories are possible, which correspond to an ontology in which
physical quantities do not have point-like values. In particular, we can conclude from these
alternative theories that not points but regions are central to the physical continuum, and
perhaps even that points play no role in physical ontology (see also section 2.1.3).

This purpose justifies limiting ourselves, for now, to classical mechanics. This has several
advantages: apart from it being a simple (but still quite general) theory, the absence of inde-
terministic aspects in the usual interpretation of classical mechanics allows us to investigate
the nature of the indeterminism which arises naturally in finite-precision theories. By giving
a precise and consistent mathematical formalism for finite-precision classical mechanics, I
hope to show that finite-precision interpretations of theories in general have the potential to
be consistent. This might inspire others (and myself) to develop finite-precision formalisms
for other theories such as quantum mechanics and general relativity theory.

Although I do not buy the arguments discussed in section 2.2 for the supposed principle
that a physical system should be describable by only finitely much information, I do think
that such theories are elegant, for the reasons already outlined in section 2.1.1. Namely,
mathematical uncomputability, which is the mathematical interpretation of ‘infinite inform-
ation’, often comes along with some degree of randomness or unpredictability, as is e.g.
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the case for most real numbers; and finite-information physical theories, which assume that
this information is generated over time instead of being given in the initial condition only,
elevate this mathematical notion of randomness to the physical notion of indeterminism. It
indeed makes sense to associate the mathematically random objects in physical theories with
physical indeterminism (recall that mathematical 1-randomness is a rigorous formulation of
e.g. patternlessness and unpredictability).

If one is only interested in finite precision and not in finite information per se, then the
results of the following sections are still useful (just skip all results about r.e. openness).

Finally, if the finite-precision interpretation were true and classical chaotic systems were
indeed indeterministic, then this would (surprisingly) have practical implications, as we
would not have to rely on quantum processes to generate truly random numbers. Quantum
random number generators today have practical use cases in cryptography, statistics and
lotteries; in addition, the existence of true (algorithmic) randomness in classical or quantum
physics impacts the validity of probabilistic algorithms [29].

5.1 The ontology of indeterminacy
There are multiple possibilities to describe ‘indeterminacy’ or ‘finite precision’ of physical
quantities, some of which are based on probability distributions and others of which are
based on converging sequences. As these different descriptions result in different ontologies,
before presenting our new theory, let us study some of these possibilities in more detail.

It is natural and tempting to associate indeterminacy with probability distributions, es-
pecially when comparing indeterminacy to ‘uncertainty’ in quantum mechanics. We have
seen that e.g. Del Santo and Gisin’s approach to finite-precision physics uses probabilities.61

However, for a number of reasons, I feel that probabilities do not have a place in finite-
precision theories (in my way of thinking about those theories, indicated in the introduction
to this chapter). The main reason is that I am not sure what should be the interpretation of
these probability distributions, as a frequentist interpretation is not possible. In quantum
mechanics, one can prepare an ensemble of particles in the same state and perform repeated
measurements, in which case the frequency diagrams approximate the probability distribu-
tion given by the wave function via the Born rule. In finite-precision physics, however, one
cannot prepare an ensemble of physical quantities to have the same the state of indeterm-
inacy (i.e. to be associated with the same probability distribution). This is necessarily true
if we require that the finite-precision theory is empirically equivalent to the corresponding
orthodox theory in which the physical quantities under consideration are infinitely precise.
Suppose, namely, that there is a process to induce a physical quantity, like the position
of a particle, to be determined up to some probability distribution, and that this process
can be applied to multiple quantities in order to arrange them into the same probability
distribution. Then measurement of these quantities in general yields different results, while
according to the orthodox interpretation, all measurements should yield the same results,
as the quantities were all prepared equally.

Moreover, if one values the arguments against infinite information in real numbers, it
should be noted that while describing physical quantities by probability distributions re-
moves the point-like nature of the quantity, probability distributions still require infinitely
much information to describe in general.62 See also the comments given in section 3.2.2.
We also see this in the fact that probabilities do not play a role in intuitionism.

61As do some other suggested reformulations of physics, such as those presented by Caticha [26] (who
proposes a ‘blurred spacetime’ based on the information metric) or Friedman and Sandler [41] (who apply
t-norm fuzzy logic to physics) or Ydri [100] (who proposes quantisation or ‘fuzzification’ of the manifold
underlying QFT). We do not discuss these approaches in more detail because they are not motivated by the
considerations in Chapter 2 and differ from our conception of finite-precision theories in many ways.

62One possibility to describe probability distributions with finitely much information is to assume that
they are given by the maximum entropy principle [25] and to only specify the constraints, making sure to
use finitely much information (see e.g. the approach in Caticha [26], where the constraints are the expected
values and the variance, so that the resulting distribution is Gaussian).
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A second class of approaches to indeterminacies which we have already encountered uses
sequences of regions of the continuum (which can be seen as subsets of the real number line),
which we called ‘domains of indeterminacy’ in Chapter 4. The collapse of a physical quantity
to a smaller DOI (i.e. one that is contained in the previous DOI) represents an increase in the
determinacy of the quantity. We will use this approach in the theory proposed in section 5.2.

It might be tempting to view physical quantities as being uniformly distributed over
their domain of indeterminacy, but the fact remains that probability distributions have no
place in finite-precision theories that are empirically equivalent to their orthodox counterpart
(at least not in the frequentist interpretation of probabilities). Instead, every collapse to
a smaller DOI is possible, and there is no rule stating what new DOI is more likely than
others.

Finally, one might represent finite-precision or finite-information physical quantities by
Cauchy sequences of e.g. rationals or computable numbers. One such approach is outlined in
Gisin [48, Box 1]. The definition of a Cauchy sequence α ∈ QN in (constructive) mathematics
involves a Cauchy modulus, which is, for example, a sequence µ ∈ NN such that

∀m,n > µ(k) (|α(n)− α(m)| < 1/k)

(see section B.4). If the Cauchy modulus belongs to the physical ontology of the described
quantity, then this approach is a special case of the one discussed previously, as α and µ
together define a shrinking sequence of real intervals (or balls).

If the Cauchy modulus is not part of the ontology, on the other hand, then this can
lead to classically impossible worldlines and, again, empirical inequivalence, as a physical
quantity is not bounded to a well-defined area and can therefore change its value after being
measured.

Gisin’s approach [48] describes quantities as rational sequences given by a computable
function in conjunction with a single random big generator. Depending on the computable
function, this indirectly defines a Cauchy modulus and therefore a domain of indeterminacy.
Although Gisin’s approach has the advantage that it explicitly expresses the idea that in-
formation is generated bit by bit (through the random big generator) as time passes, I prefer
to explicitly use domains of indeterminacy because it is simpler and more general (viz. DOIs
can take more general shapes).

5.1.1 Domains of indeterminacy
If the ontology of indeterminacies is indeed best described by shrinking regions of the con-
tinuum, then the question remains which types of region are allowed, and how DOIs of
different physical quantities relate to each other.

As to the second question, to solve the problem of interdependency of physical quantities
discussed in section 4.3.2, I consider only one ‘fundamental’ physical quantity, which is the
phase space vector. That is, the (perfect-information) state of the system is given by the
domain of indeterminacy of this vector, which is a subset of phase space.

This also somewhat clarifies the relationship between Parmenides time and Heraclitus
time (which I described as still being unclear in sections 3.2.3 and 4.3.2): the state of the
system, given by a subset of phase space (the DOI), evolves according to the Hamiltonian
differential equations (that is, the Hamiltonian flow is applied to the whole DOI; this cor-
responds to the flow of Parmenides time), and at certain points of time the DOI (suddenly)
collapses, i.e. is replaced by a smaller DOI contained in the previous one. (This idea, here
sketched only conceptually, will probably be clearer when I express it in mathematical form
in the next section.) The question of what exactly causes DOI collapse, however, is related
to the classical measurement problem discussed in section 3.1.1 and remains unanswered.

In particular, we see that under Hamiltonian evolution, a hyperrectangle in phase space
does in general not transform into a hyperrectangle, which means that the indeterminate
state of the system can indeed not be expressed by giving the DOIs of individual (one-
dimensional) quantities such as the coordinates of phase space.63

63More precisely, the DOI of the phase space coordinates defines a DOI for each individual position and
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The set of possible DOIs should be invariant under Hamiltonian evolution, but also
under a large set of coordinate transformations, so that the ontology of the theory does not
depend on the chosen coordinate system. In addition, by the motivation in the introduction
to this chapter, the DOIs should satisfy some notion of computability (i.e. they should be
describable by a finite algorithm).64 It should be clear by now (from e.g. section 4.3.2)
that using rational intervals or hyperrectangles does not work. One possible requirement
that does satisfy these restrictions is that a DOI should be a recursively enumerable open
(r.e. open) subset of phase space. This is a notion from computable analysis; the necessary
background is given in Appendix C.1. In brief, a subset E ⊆ Rn is r.e. open if and only if
it is the union of a computable sequence of rational open balls.

R.e. open sets are in general not effectively decidable; that is, for a r.e. open set E, in
general there does not exist an algorithm which is guaranteed to halt on input x ∈ Rk and
outputs a 0 if x /∈ E and a 1 if x ∈ E. However, the arguments in section 4.3.1 suggest that
it should not ‘take the Universe time’ to perform trivial computations; what I mean by that
is that the statement x ∈ E should have a physically well-determined truth value, given the
algorithm that describes E.65

In the formalism introduced below, I define phase space to be a subset of the (classical)
real number field Rk. One might object that a theory that uses the real numbers cannot
solve the problems introduced in Chapter 2 (and section 2.2 specifically). This is not true,
however. The complete set Rk is in my view not problematic when it is simply used to
formalise the continuum as a whole; the problems of the orthodox interpretation only arise
because it assigns a physical interpretation to individual real numbers. I do not attribute
physical significance to the mathematical idea that Rk is a set of points; instead, the state
of the system is defined as a r.e. open subset of phase space, which can be described using
finite information, even though it is, in the purely mathematical sense, a set of points.

Finally, although r.e. openness of a set is preserved under various transformations (e.g.
translations along computable vectors, rotations along computable angles, etc.), it is in
general not preserved under many others, like translations along uncomputable vectors, and
under Hamiltonian evolution by an uncomputable time interval. Hence, in assuming that
all DOIs that can represent the state of a physical system are r.e. open, we still seem to
require that there is some restricted set of coordinate systems and set of timepoints that is
‘preferred’ by nature. However, it might be argued that once a coordinate system is specified
in which the DOI is r.e. open, then any ‘physically useful’ coordinate transformation (e.g.
taking the distance between the DOIs of the positions of two particles as the new unit) is of
an effective (computable) nature and hence preserves r.e. openness. Anyway, r.e. openness
being the best option I have thought of so far,66 let us now try to work out a possible
mathematical formalism of finite-precision theories based on r.e. openness.

5.2 A mathematical formalism for finite-precision clas-
sical mechanics

By the motivation in the preceding section, we will generalise the Hamiltonian formalism
presented in section A.1 from points in phase space M to r.e. open subsets of M, and in
doing so we will use a classical (i.e. nonconstructive, non-intuitionistic) approach. We will

momentum coordinate (by projecting the phase space DOI onto the relevant axis), but the DOIs of all these
quantities together do not completely describe the DOI of the phase space coordinates.

64A looser condition which also fulfills the desire that DOIs should ‘contain finitely much information’,
is perhaps that the set of possible DOIs is countable (since fixing an enumeration enables one to uniquely
identify each DOI by a natural number).

65Note that requiring the DOIs to be effectively decidable does not work since the only effectively decidable
subsets of Rn are ∅ and Rk.

66The recursive closed sets as defined in Weihrauch [94, §2.4] deserve closer inspection! Yet another
possibility is to take infinite-time decidable sets, defined through Turing machines (with a finite set of
instructions and program states) which can run for ω steps (see e.g. Hamkins and Lewis [53]). According
to our previous arguments about computation time, this should not be a problem. However, the notion of
decidable sets is based on a continuum that consists of points, and not regions, in constrast to our preferred
view.
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make use of notions from computable analysis and results from ODE theory. The necessary
background on computable analysis is given in Appendix C.1; the necessary results from
ODE theory will be recalled when used.

Assumption 5.1. We assume that the phase space M is r.e. open submanifold of Rk
(where e.g. k = 6N when the system is three dimensional and contains exactly N particles).
Perhaps the results of this section can be generalised to arbitrary Poisson manifolds; however,
computability structures on manifolds have only recently been introduced [1].

In many cases, we expect the restrictions on the physical system defining M to be of
an effective nature, so that M is most likely indeed r.e. open. Often, for example, the
Hamiltonian is smooth everywhere except on the collision set C, as discussed in section A.1.
In that case we take M = R6N \ C as the phase space, which is r.e. open as subset of R6N .

Alternatively, if M is not r.e. open, we can replace all mentions of ‘r.e. open’ below by
‘r.e. open in M⊆ Rk’.

Assumption 5.2. The Hamiltonian h :⊆ Rk → R is a (ρk, ρ)-computable function with
domain dom h = M (notations as in Appendix C). The Poisson bracket is also assumed
to be computable, as is, consequently, the Hamiltonian vector field Xh :⊆ Rk → Rk, also
having the domain domXh =M.

This can be assumed because all algebraic operations like addition, multiplication, divi-
sion, exponentiation etc. are computable.

Contrary to the orthodox interpretation, we do not view the state of the physical system
as being given by a single point x in phase space M, but rather by a subset of M.

Definition 5.3. A (blurred) state, or domain of indeterminacy, is a r.e. open subset
E ⊆M with compact closure. We denote the set of all blurred states by E .

In our interpretation, the perfect-information state of the system at any computable
timepoint is completely specified by such a r.e. open set with compact closure. ‘Blurred
state’ and ‘domain of indeterminacy’ are synonymous; however, I prefer to move away from
the terms ‘indeterminacy’ and ‘blurred’ whenever possible, because they suggest that the
actual state of the system is more precise than described by this theory, and that points
still play a more important role than regions. Therefore, I will sometimes refer to domains
of indeterminacy simply as ‘states’.

Compact closure is necessary because of Proposition 5.5. It is justified physically because
we can require that the domain of indeterminacy is always bounded in phase space, and that
it has a positive distance from the singularity set S = Rk \M (so that the closure of E
in Rk is contained in M). The latter can be made slightly more plausible if we assume
that the singularity set is precisely the set to which a smooth extension of the Hamiltonian
h is not possible (e.g. if h contains the gravitational potential energy (A.2) and S = C,
the collision set); in that case, points close to the singularity set correspond to ‘extreme’
scenarios, and we can assume that a domain of indeterminacy collapses before it reaches
such a singularity.67

We use the following theorem adapted from Graça and Zhong [51] about computability
of ODE solutions.

Theorem 5.4. Assume W is a r.e. open subset of Rk and x ∈W . Consider the initial-value
problem

y′(t) = f(y)
y(0) = x

(5.1)

67If we even assume that h is unbounded when it approaches the singularity set (which is the case for the
gravity potential), then we can say that, because the energy of a physical system is a well-behaved physical
quantity and therefore should have a bounded domain of indeterminacy, the interval h(E) induced by the
domain of indeterminacy E ⊆M of the phase space coordinates should be bounded, which can only be the
case if the distance d(E,S) is indeed positive.
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where f : W → Rk is C1 and (ρk, ρk)-computable on W . There exists a unique maximal
interval of existence and uniqueness (α(x), β(x)) ⊆ R of the solution y(·) of (5.1) on W .
The functions α and β are continuous and α(x) < 0 < β(x). Furthermore, we have:

1. The operator (x, t) 7→ y(t) is computable;
2. The operator x 7→ (α(x), β(x)) is semi-computable.

The latter means that the mapping β :⊆ Rk → R, x 7→ β(x) is lower-semicomputable in
the sense of Definition C.10, and x 7→ α(x) is upper-semicomputable.

We need the property of compact closure in Definition 5.3 because this ensures states E
can be subjected to Hamiltonian evolution by at least a small time interval:

Proposition 5.5. Let E ⊆M have compact closure. Then there exists a (unique) maximal
number β(E) ∈ (0,+∞] such that E ⊆ Dβ(E)

h , with Dβ(E)
h as defined in (A.1). Likewise,

there exists a minimal α(E) ∈ [−∞, 0) such that E ⊆ Dα(E)
h .

Proof. The function x 7→ β(x) from the previous Theorem is defined on M and maps to
strictly positive values. This means that M is covered by the sets {x ∈ M | β(x) > 1/n}
for n ∈ N>0; since E has compact closure, it admits a finite subcover, so there is an n ∈ N
with E ⊆ D1/n

h . We define β(E) to be the maximal number such that E ⊆ Dβ(E)
h , or ∞ if

such a maximal number does not exist. The proof for α(E) is similar.

The following results show that blurred states transform into blurred states under com-
putable time evolution, so that Definition 5.3 makes sense physically.

Proposition 5.6. For any computable t ∈ R, the set Dth is r.e. open.

Proof. For t = 0 we have Dth =M, which is r.e. open by assumption.
Now assume t > 0. Then Dth = {x ∈ M : β(x) > t}. Because t is computable, we

can approximate it from above by a rapidly converging computable sequence of rationals
(ti)∞i=1 ⊆ Q such that 0 < ti − t < 2−i for all i. Moreover, because x 7→ β(x) is lower-
semicomputable (that is, (ρk, ρ<)-computable) by Theorem 5.4 and is defined on M, there
exists a machine M which computes a function F :⊆ Σω → Σω which, on input p ∈ Σω such
that ρk(p) ∈M, enumerates all rationals r < β(ρk(p)).

For all i, we can derive from M a machine M ′i which on input p ∈ Σω simulates M on p
and stops once M outputs a rational r > ti, but otherwise keeps running forever. Then for
p ∈ Σω such that ρk(p) ∈M, since M enumerates all rationals below β(ρk(p)), M ′ halts on
p if and only if β(ρk(p)) > ti.

Now construct a third machine M ′′ which on input p runs all M ′i on p in parallel, in a
diagonal manner: i.e. it first executes a step of M ′1, then one of M ′2, then one of M ′1 again,
then M ′2, M ′3, M ′1, M ′2, M ′3, M ′4, M ′1, and so on. M ′′ is made to halt whenever one of its
M ′i halts, and otherwise keeps running forever.

It follows that for p ∈ Σω such that ρk(p) ∈M, M ′′ halts on p if and only if there exists
an i such that M ′i halts on p, which is the case iff β(ρk(p)) > t, which in turn holds iff
p ∈ (ρk)−1(Dth). In other words, we have, for all p ∈ Σω,

p ∈ domM ′′ ∩ (ρk)−1(M) ⇐⇒ p ∈ (ρk)−1(Dth) ∩ (ρk)−1(M) = (ρk)−1(Dth),

and hence (ρk)−1(Dth) is r.e. open in (ρk)−1(M). Because by assumption (ρk)−1(M) is r.e.
open, (ρk)−1(Dth) is r.e. open by the final comment in Proposition C.15, and therefore Dth
itself is. The proof for t < 0 is similar.

Theorem 5.7. Let E ⊆M be r.e. open and t ∈ R computable with α(E) < t < β(E). Then
Φt(E) is again r.e. open.

Proof. Note that Φt(E) = (Φ−t)−1(E). Let F−t : Σω → Σω be a (ρk, ρk)-realiser of Φ−t.
Because D−th ⊆ dom Φ−t, we have (ρk)−1(D−th ) ⊆ domF−t.
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It follows from Theorem C.16 that (ρk)−1(Φt(E)) is r.e. open in domF−t, to wit

(ρk)−1(Φt(E)) = dom h ∩ domF−t

for some computable function h :⊆ Σω → Σ∗. We also have Φt(E) ⊆ D−th , which implies
(ρk)−1(Φt(E)) ⊆ (ρk)−1(D−th ) ⊆ domF−t. This means

(ρk)−1(Φt(E)) = dom h ∩ domF−t ∩ (ρk)−1(D−th ) = dom h ∩ (ρk)−1(D−th ),

and hence (ρk)−1(Φt(E)) is also r.e. open in (ρk)−1(D−th ). Because (ρk)−1(D−th ) is r.e. open
by Proposition 5.6, (ρk)−1(Φt(E)) and hence Φt(E) itself are r.e. open.

Corollary 5.8. Let E ⊆M be a state, and let t ∈ R be computable with α(E) < t < β(E).
Then Φt(E) is again a state.

Proof. Φt : Dth → D
−t
h is a diffeomorphism. Because ∀x ∈ E : β(x) ≥ β(E) > t and

x 7→ β(x) is continuous and E ⊆ Dth, we have E ⊆ Dth. We have Φt(E) = Φt(E) because
Φt is a diffeomorphism and Φt(E) ⊆ D−th . Since E is compact, Φt(E) is compact, so that
Φt(E) has compact closure. By Theorem 5.7, Φt(E) is also r.e. open.

We have seen in Proposition 5.5 that a state E can evolve through time for at least a
small time interval. However, if β(E) <∞ then E contains initial conditions which lead to
singularities or escape to infinity in finite time. If we assume as before that (neighbourhoods
of) singularities (i.e. points x ∈ Rk \ M) correspond to extreme physical situations, then
it is plausible that the domain of indeterminacy E collapses before the timepoint β(E) is
reached. For example, when E contains initial conditions which escape to infinity at time
β(E), or in any other way shows chaotic behaviour, then the diameter of the set Φt(E)
blows up as t→ β(E) from below. This means that the domains of indeterminacy of certain
physical quantities become very large, which is a possible mechanism that triggers a collapse
of the domain of indeterminacy.

Therefore, we assume that a state E always collapses at a timepoint before β(E), that
is, at some computable 0 < t < β(E), the state Φt(E) collapses to a smaller E′ ⊆ Φt(E).68

This manifests a step in Heraclitus time. More precisely, we define:

Definition 5.9. A (blurred) world is a sequence {(En, tn)}n∈N ⊆ E ×Rc such that for all
n ∈ N, we have

0 < tn+1 − tn < β(En) and En+1 ⊆ Φtn+1−tn(En).

Here Rc is the set of ρ-computable reals and E is the set of blurred states on M.
For t ∈ (infn tn, supn tn), the (blurred) state at time t is given by Φt−tm(Em), where

m is the greatest integer k such that tk ≤ t.
If E is a blurred state, then a world through E is any world W = {(En, tn)}n∈N such

that En = E for some n. If this n = 0, E is an initial condition for the world W .

It follows directly from Proposition 5.5 that for any blurred state E ∈ E and computable
t ∈ Rc, a blurred world {(En, tn)}n∈N with E0 = E and t0 = t exists.

Note that by Liouville’s theorem, Φt preserves the volume of phase space regions; hence,
the volumes of the states are non-increasing, i.e. vol(En+1) ≤ vol(En) for all n. In this
sense, the indeterminacy in the state of the system cannot increase with time; however,
the diameter of a phase space region can in general increase with Hamiltonian evolution, in
particular when the system is chaotic.

68One could also remove the requirement that t be computable; then Φt(E) would in general not be r.e.
open, but the function t 7→ Φt(E) would be (i.e. there is a Turing machine supplemented with an oracle that
gives a ρ-name for t, which halts on p ∈ Σω iff ρk(p) ∈ Φt(E)). We focus on the case of computable t here.
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5.2.1 Completeness
An apparent shortcoming of Definition 5.9 is that the state of the system might not be
defined for all time values t ∈ R, namely if supn tn < ∞. Let us call a world {(En, tn)}n
that satisfies supn tn =∞ complete. We cannot simply add the condition to Definition 5.9
that all worlds are complete, because although every initial condition (E0, t0) ∈ E × Rc
appears in a blurred world as defined above, not every initial condition might appear in a
complete blurred world. (For example, β(En) might shrink fast enough so that no sequence
tn with tn →∞ is possible.)

As a result, we have to accept that not all worlds might be complete (the definite answer
to this question depends on M and the Hamiltonian h). This is exactly analogous to the
orthodox interpretation of classical mechanics, where we accept that some initial conditions
might lead to a singularity in finite time and are consequently not defined beyond a certain
timepoint.

Let us try to identify the cases in which a complete blurred world is possible.

Definition 5.10. For any t > 0, the pre-singular set St is defined as

St :=M\Dth,

i.e., it is the set of point-like initial conditions (i.e. in the orthodox sense) that lead to a
singularity or escape to infinity before or at time t.

Theorem 5.11. (i) Let E ⊆ M be a state. A complete world through E exists if and
only if for all t > 0, St is not dense in E.

(ii) A complete world exists through any state E if and only if for all t > 0, St is nowhere
dense in M (i.e. the closure of St has empty interior).

Proof. (i) Suppose that St is dense in E and that {(En, tn)} is a world through (E, t0 = 0).
Then for all n ≥ 0 with tn < t, Φ−tn(En) ⊆ E so St is dense in Φ−tn(En), so that
β(En) < t− tn. Hence, a world through E cannot pass beyond time t.

Conversely, suppose that for all t > 0, St is not dense in E. Then for all t > 0, the
set E ∩ Dth is non-empty. Because E is r.e. open by Definition 5.3 and Dth is r.e. open
by Proposition 5.6, E ∩ Dth is also r.e. open (see Proposition C.15). Take any increasing
sequence (tn)n∈N such that tn → ∞ as n → ∞. Then {(Φtn(E ∩ Dtn+1

h ), tn)}n∈N defines a
complete world through E.

(ii) follows from (i) by noting that a set is nowhere dense iff it is not dense in any basic
open set, and that E forms a basis for the topology on M.

Unfortunately, whether the conditions in Theorem 5.11 are satisfied is an open problem
even in, for example, Newtonian gravitational systems. In these systems, for N ≥ 2, there
are initial conditions (in the orthodox sense) which lead to singularities in the form of particle
collisions in finite time. For N ≥ 4, however, there are also initial conditions which do not
lead to a collision, but in which particles escape to infinity in finite time (see Earman [39]
for more discussion). In the case of 4 particles, it is known that the set of initial conditions
leading to (collision or noncollision) singularities in finite time, i.e. the set

⋃
t>0 St, has

Lebesgue measure zero. But this does not imply that the sets St are nowhere dense, and
cases for N > 4 remain to be settled.69

However, if the conditions of Theorem 5.11(ii) are satisfied, then the situation is slightly
more satisfying than in the orthodox case: while in our theory a world through a given initial
condition E extending beyond each timepoint always exists, in orthodox classical physics
there are still initial conditions which are guaranteed to lead to a singularity in finite time.
Additionally, if the conditions of Theorem 5.11 are satisfied, and if we assume that on
approaching the singularities St the state keeps collapsing to ever smaller diameters, then
we can even (informally) say that the probability that the system ‘avoids’ the singularities
is one.70

69Even in classical mathematics, that is; recall that this entire section uses classical mathematics!
70Here I mean only a mathematical interpretation of the word ‘probability’: the set of worlds which can

pass beyond the singularity has full measure in the set of all possible worlds through a given initial condition.
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5.2.2 Time and indeterminism
Intuitively, we speak of n ∈ N as parameterising Heraclitus time; the fact that it is a discrete
parameter corresponds to the idea that only a finite amount of new information is generated
in a finite amount of time. (Once again, this parallels a concept from intuitionism, namely
the fact that the time experienced by the creating subject is modelled by a discrete parameter
(see section B.6).) The parameter t and evolution E 7→ Φt(E) for α(E) < t < β(E)
correspond to Parmenides time evolution. The sequence (tn)n∈N couples Heraclitus time to
Parmenides time.

In the current interpretation, the set of possible worlds W is precisely given by the set
of blurred worlds on M as defined above. It follows directly from Proposition 5.5 that
for any blurred state E ∈ E and computable t ∈ Rc, a blurred world W = {(En, tn)}n∈N
with E0 = E and t0 = t exists; it is also evident that multiple such blurred worlds exist.
Therefore, we see that our theory of classical physics is indeterministic in Earman’s sense
(see section A.2): given any initial condition (E0, t0), we may provide two differing worlds
W,W ′ ∈ W, both through (E0, t0).

5.2.3 Relation to intuitionistic reals
As discussed in the the introduction to this chapter and in section 5.1.1, the present approach
to finite-precision physics is entirely classical and therefore differs conceptually from the
approach in section 4.2. However, there are still various similarities between the two theories
on the technical side. For example, in the present theory, any one-dimensional physical
quantity that can be expressed as a continuous function f : M → R of phase space, such
as the position or momentum of a particle or the energy of the configuration, inherits a
domain of indeterminacy from the blurred state E. When E is connected (which we consider
another physically justifiable assumption on blurred states), this domain of indeterminacy
is an interval. However, it is not a rational interval, as the most literal application of the
intuitionistic philosophy of real numbers to physics would suggest.71

A difference between the theory of this chapter and the sequences of rational intervals in
the definition of the intuitionistic reals is the property that the latter dwindle, i.e. shrink to
arbitrarily small lengths (see Definition B.2). In our theory, this would translate to adding
the condition to Definition 5.9 that

∀m∃n : diam(Φt0−tn(En)) < 2−m, (5.2)

such that when waiting long enough, the state at time t0 becomes determined with arbitrary
precision.72 I myself do not see direct physical motivation for adding this condition (see,
however, the next section).

Finally, note that we can see the two conditions in Definition 5.9 as a spread law on the
sequences {(En, tn)} ⊆ E × Rc, defining the spread of possible worlds (see section B.4 for
the definition of spreads). This spread law is, however, not decidable and it does therefore
not make sense to speak of intuitionistic spread laws in this context.

5.2.4 The orthodox theory as limit case
If we do make the requirement (5.2), then we recover the orthodox theory of classical physics
in the limit n→∞, because the sequence {Φt0−tn(En)}n encloses a unique real number,73

and conversely, every real number can be defined by an infinite shrinking and dwindling
sequence of r.e. open sets. We see that the orthodox view corresponds to a view back on the
initial conditions ‘from the end of time’, as was already suggested in section 2.1.3. Moreover,
because the infinite sequence {Φt0−tn(En)}n is not necessarily computable, we again see that
it in general takes infinitely much information to specify the initial condition of the orthodox

71I would intuitively expect that if f were (ρk, ρ)-computable, then f(E) would be r.e. open; however, it
appears that only taking pre-images preserves r.e. openness (see Proposition C.16).

72As well as the state at any other time t between infn tn and supn tn, since Φt−t0 is continuous.
73And it defines a unique world line through t 7→

⋂
n
{Φt−tn (En)}n.
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interpretation (while every finite initial segment of the sequence requires only finitely much
information, by virtue of the sets En being r.e. open).



CHAPTER 6

Conclusion and prospects

We have discussed three attempts (each of which either more or less successful)
at formulating an indeterministic classical physics based on the assumption that
physical quantities do not have infinitely precise values: a theory proposed by Del

Santo and Gisin [34] and based on the binary expansion of reals (Chapter 3); an attempt
to use the intuitionistic philosophy of the continuum to describe finitely precise quantities
(Chapter 4); and a theory based on the Hamiltonian formalism, replacing points by regions
and using notions from computable analysis (Chapter 5). Putting the specific technical and
conceptual differences between these theories aside, they show us, amongst other things,
that contrary to the orthodox interpretation, one can also think of physical quantities as
being only finitely precise at each point in time; that the physical continuum can also been
as revolving around regions, instead of points; that information about physical quantities
might only come into existence when it becomes physically relevant, or at least when it
is measured; that this naturally introduces indeterminism, in particular in chaotic systems
and even in theories such as classical mechanics; and that it is possible that the state of
a physical system is describable using only finitely much information. However, we have
also seen that the questions of whether our real world is deterministic or indeterministic,
whether its quantities are finitely or infinitely precise and whether its state is describable
by finite or infinite information are empirically underdetermined and cannot be settled by
physical argument only.

Moreover, in Chapter 4 we discussed the debate of using constructive and intuitionistic
mathematics to describe physics, and concluded that every attempt to do so would have to
deal with the apparent collision between the objectivity of physics and the anthropocentrism
of constructive and intuitionistic mathematics, and with the fact that the motivations for
indeterminacy in physics and mathematics are completely different. In addition, the rational
numbers involved in the intuitionistic approach to real numbers have some shortcomings from
the technical side, suggesting that they, while being essential to the human construction of
the intuitive continuum, play no significant role in the physical continuum.

However, the intuitionistic way of approaching the continuum through ever shrinking
regions instead of points has inspired us in our final formulation of finite-precision physics
in Chapter 5. The approach presented there is only of numerous possible ways to formulate
finite-precision classical physics, and it still suffers from some problems. One of these, which
is related to the invariance of r.e. open sets under coordinate transformations, was discussed
in the last paragraph of section 5.1.1. In this chapter, we discuss some more problems and
questions arising in the context of the formalism of Chapter 5 as well as finite-precision
theories in general. We also discuss the possibility of finite-precision interpretations of other
physical theories than classical mechanics.

41
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6.1 Universal constants
Until now, we have implicitly assumed that the universal physical constants have infinitely
precise values. The arguments from Chapter 2, however, might suggest that also these
physical constants should only be determined up to finite precision at each point in time.
This would add another level of indeterminacy to the theory, related to the differential
equations themselves instead of the initial conditions. Indeed, the assumption that the
Hamiltonian flow Φ : Dh → M is a well-defined, single-valued operator hinges on the
assumption that all constants appearing in Hamilton’s equations are infinitely precise. In
the presence of indeterminacy in these constants, even time evolution of the DOI with respect
to the differential equations (i.e. Parmenides time evolution) would become time-irreversible,
since Φt and Φ−t, when applied to subsets of phase space, would not be each other’s inverse.

Furthermore, while quantities like positions and momenta of particles can be said to be
localised in space, the value of universal constants is relevant to all regions of space. This
might form a problem if new information about the universal constants is generated over
time, because this new information would have to be communicated faster than light across
the Universe (if this were not the case, it would be interesting to think what would happen
when two isolated systems with differing physical constants came into contact). This is
similar to the EPR paradox and nonlocality in quantum mechanics.74

Of course, many universal constants can be set to 1 by choosing a suitable unit system,
but in general, not all constants can be set to 1 simultaneously. The arguments from
Chapter 2 might, however, not necessarily apply to physical constants, as physical constants
form part of the physical laws, whereas Chapter 2 was mainly aimed at quantities which
describe the configuration of a physical system.75 In this case, the formalism of Chapter 5
could still be applied.

6.2 The past; the thermodynamic arrow of time
A world is defined in Definition 5.9 as a one-way infinite sequence; hence, Heraclitus time
extends in one direction only. One could also try to let the index n range over Z instead
of N. However, if α(E0) > −∞, i.e. a singularity lies in the past of E0, then it would be
impossible for the past to extend beyond this point in time (contrary to the future, for
singularities that lie in the future of E0 might be ‘avoided’ by collapse to a smaller DOI, as
discussed in section 5.2.1).

Let me briefly note that there are two ways to view the past in a finite-precision physics;
either the past stays fixed, i.e. the initial condition is always given by E0, or the past becomes
more determined as time progresses, i.e. the initial condition is given by Φt0−tn(En) ⊆ E0
at time tn. These views might be compared to the difference between the growing block
universe and presentism in the philosophy of time [71], respectively.

Moreover, let me note that the assumption that DOIs always collapse to subsets (i.e.
Φtn+1−tn(En) ⊆ En+1) might be unwarranted. It is also possible to imagine a theory which
sets a certain minimal resolution to phase space (which perhaps varies over time). As
Hamiltonian evolution of a region of phase space is often ergodic (so that the diameter of
the region increases), but preserves the volume of the region by Liouville’s theorem, the
shape of the region generally becomes increasingly intricate over time; if the level of detail
in this shape requires a higher resolution than the minimum allowed resolution, then collapse
of the region to a new DOI might require the new DOI to tread outside of the previous one.
Such a theory would, however, allow classically impossible worldlines and it is questionable
whether it would be empirically equivalent to the orthodox interpretation.

74Of course, this problem also applies to ‘localised’ quantities such as positions and momenta, in the
presence of forces that act at a distance.

75Another (but ad hoc) way out of this problem is to postulate that ratios between universal constants
of the same dimension are given by rational or computable numbers and are therefore not subject to the
arguments against infinite information.
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It would also be interesting to work out the implications of finite-precision physics for
statistical mechanics. These theories are closely related, but at the same time radically
different: statistical mechanics deals with uncertainties over the set of microstates, while
finite-precision physics assumes that microstates themselves are inherently indeterminate.
Indeed, the probability distributions in statistical mechanics are often interpreted as epi-
stemic [95], while the indeterminacies in finite-precision physics should be thought of as
ontological.

In particular, it would be insightful to explore the relation with the second law of ther-
modynamics in more detail. Boltzmann’s proof of the H-theorem, which derives this law
from the classical kinetic theory of gases, has historically led to much debate because of its
seeming incompatibility with (the orthodox interpretation of) classical mechanics [23]. Two
notable objections to the H-theorem were brought forward by Johann Loschmidt in 1877
and Ernst Zermelo in 1896. Loschmidt remarked that since classical mechanics is time-
reversal invariant, the H-theorem would imply that entropy increases towards the past.
This paradox might be resolved if we accept the finite-precision interpretation, which is
not time-reversal invariant. Zermelo, on the other hand, based his argument on Poincaré’s
recurrence theorem, which states that a bounded isolated classical system always returns
arbitrarily closely to its initial state. However, as pointed out by Del Santo and Gisin [34],
the recurrence theorem depends on the necessary condition that this state is defined with
infinite precision.76

Finally, Drossel [37] argues that deriving macroscopic time-irreversible laws such as the
second law of thermodynamics is only possible when the underlying microscopic theory is
time-reversal invariant itself, and that dropping the assumption of infinite precision would
make such derivations possible.

6.3 Beyond classical mechanics
Another prospect for future research is how to formally apply the idea of finite precision
to theories beyond Newtonian classical physics. Most modern physical theories are field
theories in which time evolution is given by partial differential equations instead of ordinary
differential equations. It is therefore important to consider how to define a finite-precision
field (i.e. a function of space or spacetimeM) of which the precision increases over time, and
whether it makes sense to impose the requirement that these fields should be describable
by only finitely much information. There are multiple possibilities to do this: one could
think, for example, of two computable functions M→ R defining upper and lower bounds
for the value of a one-dimensional field on M at each point in M; alternatively, one could
use the method of approximation of measurable functions by simple functions

∑N
i=1 aiχAi

,
where ai ∈ R is e.g. computable and Ai ⊆M is r.e. open (or satisfies another computability
property) for each i. In intuitionistic mathematics, there is also a way to code continuous
functions ϕ : N → N , where N = NN, and hence continuous functions Rn → Rm, by
sequences of natural numbers, so that it could be possible to see fields as special cases of
choice sequences of natural numbers (see e.g. Veldman [91, §1.3.4]), just as we can identify
real numbers with choice sequences.

In quantum mechanics, a ‘blurred state’ could alternatively be modelled by a subset of
Hilbert space with some computability notion; however, the fact that this Hilbert space is in
general not separable could pose problems. Using finite-precision wave functions would add
a level of indeterminism to the one already present in quantum mechanics, and it would be
interesting to find out what would be the relation between these two types of indeterminism.
Moreover, Stone’s theorem prohibits the existence of singularities in quantum mechanics such
as those that exist in classical mechanics [64], which means that a finite-precision quantum
mechanics could be drastically different from the one presented in Chapter 5. (The absence
of singularities in quantum mechanics is the reason that quantum mechanics is sometimes
called ‘more deterministic’ than classical mechanics, apart from wave function collapse.)

76An interesting related remark is that the (usual) proof of the recurrence theorem is not constructive; it
guarantees recurrence, but does not tell us when it will happen [101].
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Finally, in the special and general theories of relativity, the relativity of time complicates
talking about physical quantities becoming more precisely determined over time. Perhaps
we could just see the universe as a four-dimensional ‘blurred block’ of spacetime (although
singularities might complicate this), the contents of which become more precise over Herac-
litus time, which could therefore be seen as a fifth dimension. In this case the connection
between Heraclitus and Parmenides time would be less clear; however, researching this could
perhaps even shed light on the problem of time in GR. Alternatively, in GR one could fix a
spacelike foliation (i.e. set of time slices) and model the solution of the Einstein equations as
evolving along that foliation, possibly using the ADM formalism (based on a Hamiltonian)
[3] to arrive at a similar formulation as in Chapter 5. Of course, the question remains what
foliation (or what Cauchy surface) should be chosen to accurately model the connection with
Heraclitus time, and whether Heraclitus time should perhaps also be a relative notion.



APPENDIX A

Classical mechanics and determinism

A.1 Hamiltonian mechanics: the orthodox interpreta-
tion

Although the discussions in this thesis apply to a wide range of physical theories (indeed, all
theories that make use of the real numbers), a simple and useful example which we focus on
throughout is Newtonian classical physics. In this appendix we will briefly walk through the
mathematical formalism of this theory (or rather, family of theories) and discuss its usual
interpretation. Some of the notation introduced here is used in section 5.2. We focus on
the formalism of Hamiltonian point mechanics, which describes classical systems consisting
of N point particles. We will first sketch the purely mathematical context and then discuss
the physical interpretation. (The mathematical details are not that important and can be
skipped on a first reading. A more detailed exposition can be found in Landsman [64,
Ch. 3].)

We define phase space to be an arbitrary Poisson manifold M, i.e. a manifold with
Poisson bracket {·, ·} : C∞(M) → C∞(M).77 A smooth function h ∈ C∞(M) is singled
out and called the Hamiltonian. Because M is a Poisson manifold, h corresponds to a
derivation δh : f 7→ {h, f} of C∞(M), which corresponds to a vector field Xh on M, called
the Hamiltonian vector field. A curve through x0 ∈M is a smooth function γ : J →M,
where J ⊆ R is some open real interval containing 0 such that γ(0) = x0. A curve γ : J →M
integrates δh (orXh) if for all f ∈ C∞(M) and t ∈ J , δhf(γ(t)) = d

dtf(γ(t)). It follows from
standard results of the theory of ordinary differential equations that Xh can be integrated
around every x0 ∈ M by a unique maximal curve γx0 : Jx0 → M, where Jx0 is the
maximal interval of existence and uniqueness. Taken together, these intervals define
the Hamiltonian flow domain

Dh = {(t, x) ∈ R×M | t ∈ Jx}.

In section 5.2 we also use the notation

Dth = {x ∈M | (t, x) ∈ Dh}, for t ∈ R. (A.1)

The Hamiltonian flow Φ : Dh →M is a smooth function such that for all x ∈M, Φ(·, x)
is a curve through x which integrates Xh. Finally, we denote

Φt : Dth →M, Φt(x) := Φ(t, x) for all t ∈ R, x ∈ Dth.
77A Poisson bracket is a mapping {·, ·} : C∞(M) → C∞(M) which is anti-symmetric and satisfies the

Jacobi identity, and has the property that the mapping δh : f 7→ {h, f} is a derivation of C∞(M) for each
h ∈ C∞(M).
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Physically, the above formalism can be used to describe classical systems consisting of N
(generalised) point particles, in which case phase space is parameterised by the (generalised)
positions and (generalised) momenta of all particles, denoted by qi ∈ R3 and pi ∈ R3

respectively for i ∈ {1, 2, . . . , N}. (Hence, in the case of a three-dimensional system, M ⊆
R6N .) The essence of the ‘orthodox’ (i.e. usual) interpretation of classical physics, which
will be a subject of debate in this thesis, is that a state of the system is represented by an
(‘infinitely precise’) point x in phase space M.

The Hamiltonian h ∈ C∞(M) physically represents the energy of the system; in practise,
it consists of kinetic energy terms,

N∑
i=1

|pi|2

2mi
,

where mi is the mass of particle i, and potential energy terms like Newton’s gravitational
potential

−
∑
i

∑
j 6=i

Gmimj

|qi − qj |
, (A.2)

where G ∈ R>0 is Newton’s gravitational constant. A term like the gravitational potential
excludes the collision set

C = {(q1, q2, . . . , qN ,p1,p2, . . . ,pN ) | qi = qj for some i 6= j}

from the set of possible states, so that the phase space is in such cases often taken to be
M = R6N \ C. (It should be respected, however, that the mathematical formalism sketched
above captures a very broad set of classical systems. The precise forms of the phase space
and the Hamiltonian depend on the particular classical theory under consideration.)

In the orthodox interpretation, a state x0 ∈ M uniquely determines a wordline, i.e.
a curve γx0 : Jx0 → M through x0 integrating the Hamiltonian vector field Xh. This
represents the evolution of the system through time. With an appropriate choice of Pois-
son bracket on M and writing this curve as γx0(t) = (q1(t), . . . , qN (t),p1(t), . . . ,pN (t)),
γx0 is the unique maximal curve through x0 that solves Hamilton’s equations (or the
Hamiltonian equations) of motion78

dpi

dt (t) = −∇qi
h(q1(t), . . . , qN (t),p1(t), . . . ,pN (t));

dqi

dt (t) = ∇pi
h(q1(t), . . . , qN (t),p1(t), . . . ,pN (t)),

for all i ∈ {1, 2, . . . , N}.

A.2 Determinism in physics
Determinism is roughly the idea that given the configuration of a physical system (or ‘world’)
at a time t, the future of the system is completely fixed by the natural laws. Although the
idea of determinism is ancient, giving a precise and unambiguous definition of determinism
has proven a very difficult task; moreover, the requirements for a definition of determinism
to be satisfactory also partly depend on the theory under consideration (e.g. relativity of
time in relativity theory impacts the meaning of determinism). A definition that we will
consider in this thesis is formulated in Earman [39] (similar to the one given by Montague
[73]) and is based on the common philosophical parlance of ‘possible worlds’. Here, a ‘world’
means a four-dimensional space-time world, i.e. a collection of all events that have happened,
are happening or will happen in that world, and a world is a ‘possible world’ if it is possible
according to the laws of nature. The collection of all possible worlds is denoted by W. A

78More generally, it follows from a theorem by Darboux that every 2n-dimensional Poisson manifold with
invertible Poisson tensor admits charts around any point x ∈ M in which the Poisson bracket is of the
desired form, leading to the form of Hamilton’s equations shown. See Lee [66, Theorem 22.13].
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world W ∈ W is called (Laplacian) deterministic if for any W ′ ∈ W, if W and W ′ agree
at some time t, then W and W ′ agree at all times. We could mathematically express this
as:

∀W ′ ∈ W ∀t : Wt = W ′t =⇒ W = W ′, (A.3)

where t ranges over the timepoints defined by the theory, e.g. t ∈ R (or t ∈ N in section 4.4).
A particular difficulty in defining determinism is to separate it from a closely related

notion called predictability, which is the idea that one can in principle predict the future
evolution of the world (with arbitrary small error) on the basis of sufficient knowledge about
the present configuration. Pierre-Simon de Laplace, one of the first modern philosophers
on determinism, seemed to identify determinism with predictability (‘Laplace’s demon’ is
named after him)79, as well as Karl Popper [14]. Some maintain that predictability implies
determinism or the other way around, but most agree that such an implication does not
exist. For example, reasons to believe that determinism does not imply predictability can
be based on the in principle limits on measurement (e.g. a measurement has finite precision)
and information storage capacity (e.g. one can store only finitely many measurement results).
Also chaotic systems play a role in this distinction: one might be able to approximate
the state at some given future timepoint arbitrarily closely by using sufficiently precise
measurements of the present state, but might not be able to approximate the state at
arbitrary future timepoints to the required precision without requiring infinitely precise
measurement results (for small changes in the initial condition might blow up over time)
[14].

However, we will chiefly be concerned with determinism, which is an ontological notion
and has little to do with limits on measurement and knowledge, even in principle ones.
An example of a theory which is usually considered deterministic (i.e. a theory in which
all possible worlds are deterministic) is classical mechanics: as discussed in section A.1,
the solution through a given initial condition x0 ∈ M is unique (however, the fact that
the maximal interval of existence of a solution might only extend up to a finite time raises
questions about the determinism of classical mechanics; see e.g. Earman [39, Ch. III]). An
example of a theory that is widely regarded as indeterministic, on the other hand, is quantum
mechanics, in which the outcome of a collapse of the wave function is not predetermined—but
does satisfy probabilistic laws (propagation of the wave function itself via the Schrödinger
equation is, however, completely deterministic. The existence of at least one event that is
not predetermined is sufficient for a world to be indeterministic [78]).

It can be shown, however, that for most theories, determinism cannot be verified nor
falsified by experiment: for each deterministic theory, there exists an empirically (or obser-
vationally) equivalent indeterministic theory which has the same empirical predictions, and
vice versa [96]. (Quoting Born [15]: “I myself tend to relinquish determinism in the atomic
world. But this is a philosophical question, for which physical arguments alone are not de-
cisive.”80) Multiple deterministic theories of quantum mechanics have been developed, such
as Bohmian mechanics, which supplements quantum theory with ‘hidden variables’ that de-
termine the outcome of wave function collapse, but which cannot be directly measured [50].
In this thesis we show, conversely, that indeterministic theories of classical physics are also
possible.

79“An intelligence knowing all the forces acting in nature at a given instant, as well as the momentary
positions of all things in the Universe, would be able to comprehend in one single formula the motions of the
largest bodies as well as the lightest atoms in the world, provided that its intellect were sufficiently powerful
to subject all data to analysis; to it nothing would be uncertain, the future as well as the past would be
present to its eyes.” [65]

80Translation by Landsman [63].





APPENDIX B

Intuitionistic mathematics

Intuitionistic mathematics was founded by the Dutch mathematician Luitzen Egber-
tus Jan (“Bertus”) Brouwer (1881–1966) in the early twentieth century in response to
the rapid formalisation of mathematics at that time, and had as its goal to approach

mathematics in a more intuitive or psychological way than the usual approach to mathem-
atics (called ‘classical mathematics’ by intuitionists). Instead of reducing all of mathematics
to a formal logical system of symbols and manipulation rules, intuitionistic mathematics
is formulated from the point of view of the mathematician. Intuitionists à la Brouwer see
mathematics as a ‘languageless activity of the mind’; only when writing down or commu-
nicating mathematical statements and proofs to other people are mathematicians in need
of a language to express their ideas in. The patterns that arise in this symbolic language
can then be seen as the rules of logic.81 The logic that arises when studying intuitionism
is (unfortunately) called intuitionistic logic; however, formal logic is not needed to build up
intuitionistic mathematics, and intuitionism cannot be reconstructed from logic only, since
also arguments about the nature of the (idealised) mathematician are used. We will see
examples of this later on this is appendix.

B.1 Constructive mathematics
Intuitionistic mathematics is a form of constructive mathematics, which primarily differs
from classical mathematics in that it only accepts the existence of an object when it can be
constructed explicitly, as opposed to accepting it on the basis of e.g. a proof by contradiction.
In particular, most variants of constructive mathematics adopt the BHK interpretation
(named after Brouwer, Arend Heyting and Andrei Kolmogorov) of the logical connectives
and quantifiers (whenever it is convenient to use logical symbols at all). In this interpret-
ation, the logical constants are not defined through truth tables, but through their use in
proofs. A few examples are:

• To prove A ∨B we must either have a proof of A or a proof of B.
• To prove A→ B we must provide a method that converts any proof of A into a proof

of B.
• To prove ¬A, we must prove A→ 0 = 1.
• To prove ∃xA(x) we must construct an object x, together with a proof of A(x).

See e.g. Dummett [38] or Troelstra and van Dalen [88] for more on the constructive inter-
pretations of logical constants, and for more comprehensive introductions to intuitionistic
mathematics.

81In Brouwer’s view, logic is not a foundational science, but an ‘observational’ science [19].
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From the above examples we see that, for instance, ¬∀n¬P (n) in general does not
imply ∃nP (n) in constructive mathematics, whereas this implication does hold in classical
mathematics. Indeed, constructive mathematics can be said to require positive evidence,
and that impossibility of negative evidence is not enough.

From this, as well as from the interpretation of ∨, we see that the principle of the
excluded middle (PEM), which is the assertion that A ∨ ¬A holds for all statements A, is
constructively invalid. We call statements A for which A ∨ ¬A does hold decidable. PEM,
which is equivalent to the principle of double negation elimination (¬¬A → A), is one of
the basic axioms of classical mathematics. In fact, intuitionistic logic, which arises from the
BHK interpretation, is precisely classical logic without double negation elimination.

There are many variants of constructive mathematics, all of which follow the rules of
intuitionistic logic [18]. Errett Bishop’s constructive mathematics, for example, is a formal-
istic approach to mathematics which uses intuitionistic logic instead of classical logic [12].
As noted before, however, intuitionistic mathematics à la Brouwer is not formalistic and
is therefore more than just intuitionistic logic. As a result, intuitionism is only a form of
constructive mathematics in the wider sense, since some intuitionistic results are not ac-
cepted by all constructivists. The intuitionistic philosophy of time (as experienced by the
mathematician) and infinities, in particular, forms a distinguishing feature of intuitionism,
and also suggests that intuitionism might be of use in physics. To fully appreciate the dif-
ference between intuitionistic and classical mathematics, therefore, let us consider infinite
sequences.

B.2 Natural numbers, infinite sequences and LPO
While set-theorists like Frege, Dedekind, Russell and Von Neumann defined the set N using
set-theoretical considerations, Brouwer deduced the existence of N from iteration of the
‘basic intuition of two-ity’ (the ‘falling apart of a life moment into two distinct things, one
of which gives way to the other, but is retained by memory’ [20] – see also section B.6).
That is to say, given any finite number of distinct natural numbers, the passage of time
allows one to think of another one. Whatever the precise construction of N, the important
difference between classical and intuitionistic mathematics is that in classical mathematics
N is seen as a finished, fully-determined, actually infinite set, whereas in intuitionism we see
N as only potentially infinite: at every moment of time the mathematician can have only
finitely many elements in mind, but realises that more elements can be appended to them.
The intuitionist views the natural numbers as a forever unfinished project, rather than a
finished object.

The same holds for any infinite sequence α = (α(0), α(1), α(2), . . . ) of natural numbers.
The set NN of infinite sequences of natural numbers (Baire space) is denoted by N . We
use Greek letters α, β, γ to denote elements of N , and Latin letters m,n to denote natural
numbers.

Let us study one particular example of such an infinite sequence. Define γ ∈ N by

γ(n) =


0 if n = 0;
0 if 2n = p+ q for some pair of prime numbers p, q;
1 if such p, q do not exist.

(B.1)

Note that γ : N → N defined in this way is a total function: for all n, either γ(n) = 0
or γ(n) = 1. There is, after all, a known finite procedure to determine whether 2n can be
expressed as the sum of two primes: simply iterate over all pairs of natural numbers p, q ≤ n,
check if they are prime and if they add up to 2n.

However, if we define G := ∃n(γ(n) = 0), then ¬G is equivalent to the Goldbach con-
jecture, an age-old problem in number theory which has neither been proven nor disproven
to this day. Since an intuitionistic proof of G ∨ ¬G requires a proof of either G or ¬G,
the statement G ∨ ¬G cannot be said to be true: in other words, G is not decidable. The
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sequence γ therefore forms a so-called weak or Brouwerian counterexample to the fol-
lowing special case of the principle of the excluded middle, which Bishop [12] dubbed the
limited principle of omniscience (LPO):82

∀α(∀n(α(n) = 0) ∨ ∃n(α(n) 6= 0)). (B.2)

Unproved statements like G ∨ ¬G are sometimes called vermetel, which, following Veld-
man [92], we translate as reckless. These weak counterexamples and reckless statements
are often used to show that certain classically acceptable statements, such as LPO, are un-
acceptable in constructive mathematics. For if LPO were true, we would be able to either
prove or disprove the Goldbach conjecture: LPO has reckless consequences.

An important question to address is how classical mathematicians have come to accept
PEM as a generally valid principle. Brouwer believes that this is caused by the fact that
we tacitly generalise our experience of handling finite sets to infinite sets [90]. Indeed, if
s = (s(0), . . . , s(k)) is a finite sequence of natural numbers then we can prove

∀n ≤ k(s(n) = 0) ∨ ∃n ≤ k(s(n) 6= 0)

by simply checking whether s(n) = 0 for n ≤ k, since equality of natural numbers is
decidable. This does not tell us, however, that we can conclude the same about infinite
sequences.83

LPO has many reckless consequences: for example, it implies decidability of many well-
known unsolved mathematical problems, such as the Goldbach conjecture, the odd perfect
number problem, the twin prime problem, the Riemann hypothesis and the abc conjecture
[70]. Since it is possible that these will be proven at one day (decidability cannot be dis-
proven), these individual weak counterexamples do not suffice to prove ¬LPO;84 however,
the quantifier ∀α leads us to think that LPO is not intuitionistically acceptable. Indeed,
there is no proof (read: finite procedure) that can be used to decide whether ∀n(α(n) = 0) or
∃n(α(n) 6= 0) for arbitrary α (by the insolubility of the Entscheidungsproblem). Therefore,
Brouwer set out to make explicit that LPO is inconsistent.

B.3 Choice sequences and the continuity principle
While Brouwer’s thesis from 1907 laid the foundations for intuitionistic mathematics, it was
only in 1917 that he introduced to intuitionism one of its most defining features, the notion
of a choice sequence. The continuity principle, which follows naturally from this notion, can
be used to prove ¬LPO.85

As stressed before, an infinite sequence of natural numbers is seen as a developing project:
at each point in time, only finitely many digits are known to the mathematician. We have
seen examples of sequences in which the elements follow a rule or law that is specified
beforehand. For example, the n-th entry of the sequence N = {0, 1, 2, . . . } is obtained by
adding one to zero n − 1 times, and the entries of γ = (γ(0), γ(1), γ(2), . . . ) defined as in
(B.1) are found by determining whether 2n can be written as a sum of two primes. These
sequences are called lawlike sequences and are in some sense predetermined, even though,
being infinite, they are projects that are never finished.

82A perhaps more general formulation of LPO would be: ∀n(P (n)∨¬P (n))→ ∃n(P (n))∨∀n(¬P (x)), seen
as a schema over all 1-ary propositions P with argument in N. In our formulation of LPO, the premise that
α(n) = 0 be decidable is always true: equality on the natural numbers is decidable, and α(n) is understood
to be defined in a constructive way, i.e. there is a finite procedure for finding the natural number which it
represents.

83A similar argument applies to infinite precision of physical quantities: see section 2.1.3.
84Some historically significant works on constructivism base their discussion on Fermat’s last principle,

which was proven by Andrew Wiles in 1995.
85In fact, the main motivation for Brouwer to introduce choice sequences originated in considerations

about the real number continuum. We will focus on LPO first because it is more general. We will discuss
the real numbers in section B.4.
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To prove ¬LPO, Brouwer realised that it is necessary to also consider choice sequences,
which can be seen as projects that are not necessarily predetermined by a law or algorithm,
but produce elements of the sequence in a step-by-step manner. There can be several ways
in which the successive elements are chosen, but the mathematician may not know what
process this is; at any given moment, all that needs to be known is a finite initial segment
of the sequence under consideration. In section B.7 We will discuss one particular type of
choice sequence, the lawless sequence.

Now, suppose we are given a relation R ⊆ N ×N such that ∀α∃n(αRn) holds, i.e. given
any α we can find an n and prove that αRn. Here α can also be a choice sequence, which
is revealed to us in a step-by-step manner; hence, whenever we decide that αRn, we must
be able to do so on the basis of only the finite initial segment of α that is known to us at
that time. This reasoning leads to Brouwer’s continuity principle (BCP), which is a
schema over all relations R ⊂ N × N:

∀α∃n(αRn) −→ ∀α∃n∃m∀β(βm = αm→ βRn), (B.3)

where αm denotes the initial segment of length m of the infinite sequence α.
We already saw that LPO has reckless consequences, and hence cannot be intuitionist-

ically true. But now, as promised, we can use BCP to show that LPO is even false:

Theorem B.1. BCP =⇒ ¬LPO.

Proof. Assuming LPO (B.2), we must be able to decide for any α whether ∀n(α(n) = 0) or
∃n(α(n) 6= 0) (following the constructive interpretation of ∨). Intuitively, we see this leads
to a contradiction because we should be able to decide between these two options on the
basis of only a finite initial segment of α, which is clearly not possible. Formally, note that

∀α∃i[(i = 0 ∧ ∀n(α(n) = 0)) ∨ (i 6= 0 ∧ ∃n(α(n) 6= 0))]

holds. We define the relation R ⊆ N × N such that αRi holds if and only if the expression
between square brackets above holds. Taking α = 0 ≡ (0, 0, . . .), an infinite sequence of 0s,
and applying BCP (B.3), find i,m ∈ N such that ∀β(βm = 0m → βRi). In particular, we
have 0Ri. We have i 6= 0 ∨ i = 0 since equality of natural numbers is decidable. i 6= 0 leads
to ∃n(0(n) 6= 0), which is clearly contradictory. If on the other hand i = 0 then we can
conclude that ∀β(βm = 0m → ∀n(β(n) = 0)). This is also not possible, as can be seen by
e.g. taking the sequence β that is everywhere 0 except in its m+ 1-th element. Hence, LPO
leads to a contradiction.

Note that we have now proven that ¬(∀α(∀n(α(n) = 0) ∨ ∃n(α(n) 6= 0))), but that
we can never give a ‘strong’ counterexample: that is, we cannot provide an α such that
¬(∀n(α(n) = 0) ∨ ∃n(α(n) 6= 0)), because this would lead to a contradiction. We see that
intuitionistic mathematics including BCP is truly incompatible with classical mathematics,
as LPO is classically valid.

B.4 Real numbers
Construction of the reals A significant part of Brouwer’s motivation to develop intu-
itionism lied in creating a more intuitive notion of the continuum. The continuum is also
of great importance to physics and in this thesis it forms the main reason to consider using
intuitionism for physics. In this section, we will translate the results about N = NN in the
previous section to results about the set of intuitionistic real numbers R, which can be seen
as a subset of N .

The construction of the integers and rationals goes in much the same way as in classical
mathematics; still, it is important to present the entire procedure because we have to stick
to the intuitionistic philosophy along the way. In constructing the intuitionistic reals, we
follow Veldman [90].86 We will later briefly discuss some other approaches to constructing
the reals.

86This approach is akin to Brouwer’s own formulation; see Brouwer [21, p69]. See also e.g. Driessen [36]
for a publicly available reference exhibiting the approach in Veldman [90].
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Given N, we can construct N2, and from there any power Nd, by using a bijection
K : N ∼−→ N×N (which, of course, should be defined in a constructive way, like its inverse).
In this way, every natural number n encodes a pair of naturals K(n), which we denote by
(n′, n′′). We often identify n with K(n), i.e. n = (n′, n′′).

Next, the integers and rationals are defined in the usual way. The integers Z are seen
as pairs of natural numbers n = (n′, n′′) subject to the equivalence relation =Z defined by
(n′, n′′) =Z (m′,m′′) iff m′ + n′′ = m′′ + n′. Arithmetic operations such as addition +Z
and multiplication ·Z are defined as usual, as are relations such as <Z and ≤Z. Next, the
rationals are pairs of integers p = (p′, p′′), with p′′ 6= 0, subject to the equivalence relation
(p′, p′′) =Q (m′,m′′) iff p′ ·Z q′′ = p′′ ·Z q′. We again define +Q, ·Q, <Q and ≤Q in the expected
way.

Now, we define the set of rational segments S as consisting of all pairs s = (s′, s′′) of
rational numbers such that s′ ≤Q s

′′. We define the following relations for s, t ∈ S:

• s ≤S t iff s′ ≤Q t
′′;

• s <S t iff s′′ <Q t
′;

• s vS t iff t′ ≤Q s
′ ≤Q s

′′ ≤Q t
′′ (t covers s);

• s ≈S t iff s ≤S t ∧ t ≤S s (s and t overlap).

Note that S ∼= N, so that every rational segment s can be encoded with a natural number;
this means that any given rational segment (as well as any rational number and integer)
can be seen as a finished object. Next, we define the real numbers as infinite sequences of
rational segments:

Definition B.2. A sequence α ∈ SN is called a real number if

(i) α shrinks: ∀n(α(n+ 1) vS α(n));
(ii) α dwindles: ∀m∃n(α′′(n)− α′(n)) ≤Q

1
m ,

where α′(n) := (α(n))′ and α′′(n) := (α(n))′′, such that α(n) = (α′(n), α′′(n)). We define
the following relations on the real numbers:

• α =R β iff ∀n(α(n) ≈S β(n)) (α and β coincide);
• α ≤R β iff ∀n(α(n) ≤S β(n));
• α <R β iff ∃n(α(n) <S β(n));
• α 6=R β iff ¬(α =R β)
• α #R β iff ∃n¬(α ≈S β) (α and β are apart).

The set of real numbers R is the set of equivalence classes of real numbers relative to =R.

Some remarks are in order.

• All relations defined above respect the relation of coincidence: that is, if α =R α
′ and

β =R β
′, then α ≤R β ↔ α′ ≤R β

′.
• The rationals can be embedded into the reals by identifying q ∈ Q with the sequence
α : n 7→ (q, q), and in this embedding all defined relations on the rationals translate
to the corresponding relations on the reals.
• Recall that in the intuitionistic philosophy, infinite sequences, including ones defining

real numbers, are seen as only forever unfinished projects rather than finished objects.
This means that at any point in time, the mathematician knows the real number only
up to the precision of a rational segment.
• However, because intuitionistic mathematics is constructive, it is assumed that n in

(ii) can be constructed explicitly from m; hence, we can pinpoint the location of a real
number on the number line with arbitrary precision. To emphasise this, we could also
define a real number to be a pair of (‘potentially’) infinite sequences α ∈ SN, µ ∈ NN

such that (i) is satisfied (ii) is replaced by
(ii′) ∀m(α′′(µ(m))− α′(µ(m))) ≤Q

1
m .
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• Classically, 6=R and #R are equivalent. This is not true constructively: the fact that
we can prove that ∀n(α(n) ≈S β(n)) is contradictory does not mean that we can
constructively find an n such that ¬(α ≈S β). #R is a positive notion, while 6=R is a
weaker negative notion.
• Equality =R of two reals is in general undecidable (as is any other of the relations

defined above), and hence the equivalence classes of R are undecidable. We will discuss
an example below.
• The set of real numbers is not countable (contrary to what one would perhaps expect

from constructive mathematics). It is even positively uncountable, as the following
theorem shows.

Theorem B.3. R is positively uncountable, that is: for any infinite sequence α0, α1, . . . or
real numbers, we can construct a real number α such that for all i ≥ 0, α #R αi.

Proof. We proceed along a Cantor-like argument. First of all, for a rational segment s ∈ S,
divide s into three even parts and define L3(s) and R3(s) to be the left- and rightmost parts,
respectively. (That is, L3(s) = (s′, 2

3s
′ + 1

3s
′′) and L3(s) = ( 1

3s
′ + 2

3s
′′, s′′).) We define the

elements of α one by one. First define α(0) = (0, 1); next we recursively define the remaining
α(n) such that α′′(n) − α′(n) = 1

n for n ≥ 1. Suppose that α(n) has been defined; find m

such that α′′n(m) − α′n(m) < 3−(n+1). Such an m exists and can be found because of the
axiom that αn dwindles. Note that αn(m) overlaps at most one of L3(α(n)) and R3(α(n)).
We want α to be apart from αn; therefore, define α(n + 1) = L3(α(n)) if αn(m) does not
overlap L3(α(n)), and α(n + 1) = R3(α(n)) otherwise. α constructed in this way satisfies
α #R αi for every i ≥ 0.

Note how the above proof works: we construct α step by step, and at each step we need
to know only finite initial segments of finitely many αi.

Other constructions of the reals The above is only one possible way to construct the
reals from the rationals. Another example is identical to the one based on Cauchy sequences
usually used in classical mathematics. We say that a rational sequence α ∈ QN has the
Cauchy property if

∃µ ∈ N∀m,n > µ(k) (|α(n)− α(m)| < 1/k).
The sequence µ is called the Cauchy modulus of α. Similarly to the fourth bullet above,
to prove that a sequence α is Cauchy, also its Cauchy modulus should be constructed, and
conversely, when proving properties of Cauchy sequences, also their Cauchy modulus can be
explicitly used in proofs. This approach based on Cauchy sequences is almost identical to
the one using rational segments.

In addition, one could try to define the reals on the basis of their decimal (or binary)
expansions; that is, we define a real number as an infinite sequence of natural numbers
below 10, together with a natural number indicating the position of the decimal point.
However, such a definition is fruitless in constructive mathematics, as the obtained set of
real numbers is, for example, not closed under addition. Suppose, namely, that we define a
real x = 0.999 . . . which has as its n-th digits a 9 if γ(n) = 0 and a 0 if γ(n) = 1, where γ ∈ N
is defined as in (B.1). Moreover, define y = 0.000 . . ., which has as its n-th digit the value
γ(n + 1). Then x + y cannot be constructively defined through its decimal expansion, for
its unit digit depends on the validity of the Goldbach conjecture, for which there exists no
known proof. In other words, the addition operation is not a total real function R×R→ R.
(Cf. the discussion below Definition C.10.)

Undecidability of relations on the reals In section B.2 we defined a sequence γ ∈ N
such that the statement ∀n(γ(n) = 0) ∨ ¬∀n(γ(n) = 0) is reckless. We can turn this into a
statement about real numbers by defining the number ργ as follows:

ργ(n) =
{

(− 1
n ,

1
n ) if ∀k ≤ n(γ(k) = 0);

( 1
k 0,

1
k 0) if ∃k ≤ n(γ(k) 6= 0), where k0 is the least k such that γ(k) = 0.

(B.4)
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We see that ∀n(γ(n) = 0) ↔ ργ(n) ≤ 0, and ∃n(γ(n) 6= 0) ↔ ργ > 0.87 Therefore, ργ is a
well-defined real number for which the statement

ργ ≤ 0 ∨ ργ > 0

does not hold (i.e. it is a reckless statement). We say that ργ floats around 0.
Defining a real number ρα for every sequence α ∈ N in the way of Equation (B.4), we

see that the statement
∀ρ ∈ R (ρ ≤ 0 ∨ ρ > 0). (B.5)

implies LPO, and is therefore strictly false under BCP. The statement can in fact be shown
to be equivalent to LPO [70]. In particular, we see that equality on the reals is undecidable:
for ρ, σ ∈ R, we can in general not decide whether ρ =R σ or ρ 6=R σ.

The lesser limited principle of omniscience (LLPO) is a weaker variant of LPO
which is also reckless in intuitionistic mathematics but a tautology in classical mathematics.
Similarly to LPO, LLPO is false under BCP, and it is equivalent to the statement88

∀ρ ∈ R (ρ ≤ 0 ∨ ρ ≥ 0). (B.6)

Spreads Let us briefly introduce the general intuitionistic notion of spread, of which the
real numbers can be seen as a special case. We first need some notation: denote by N∗
the set of all finite sequences s of natural numbers, by 〈 〉 the sequence of length 0 and
by 〈m1,m2, . . . ,m`〉 the sequence of length ` containing the elements m1, . . . ,m`. The
concatenation operation is denoted by ∗: e.g. 〈a, b〉 ∗ 〈c〉 = 〈a, b, c〉. Finally, remember that
for an infinite sequence α ∈ N , αn = 〈α(0), . . . , α(n − 1)〉 is the initial segment of α of
length n.

A spread law is an element σ ∈ N for which

(i) σ(〈 〉) = 0 and
(ii) for all s ∈ N∗, σ(s) = 0 if and only if ∃n(σ(s ∗ 〈n〉) = 0).

If σ(s) = 0 for s ∈ N∗, we say that the finite sequence s is admitted by the spread law σ.
We call an infinite sequence α ∈ N admitted by σ if all its initial segments are admitted
by σ, i.e. ∀n(σ(αn) = 0). The set Fσ ⊆ N of all infinite sequences admitted by σ is called
the spread determined by σ. Hence, a spread is essentially a tree which has at least one
branch (by (i)) and no leaves (by (ii)).

The real number field R can be seen as a spread if we replace (ii) in Definition B.2 by
the assumption that a real α dwindles by at least some predefined rate, e.g.

(ii′′) ∀n(α′′(n)− α′(n)) ≤ 1
n .

(Namely, define the spread law σ to admit a sequence s ∈ N∗ iff its elements encode a finite
sequence of rational segments that shrink and dwindle by the predefined rate.) Modulo the
equivalence relation =R, this yields the same set R as Definition B.2.

B.5 Real functions
In intuitionism, a real function f : R→ R is a constructive method to define a real number
f(α) given a real number α, and for which

∀ρ, σ ∈ R (ρ =R σ → f(ρ) =R f(σ))

holds.
87From now on, we will omit the R-subscripts on relations and operations. 0 ≡ 0R is the sequence formed

by repeating the rational segment (0Q, 0Q).
88In the study of constructive mathematics it is often insightful to characterise reckless statements by

their equivalence to a small set of reckless principles, such as PEM, LPO, LLPO and Markov’s principle
MP. The programme of exploring these equivalences is called constructive reverse mathematics.
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Analytic theorems and approximate variants As you might imagine, the invalidity
of (B.5) has some profound impacts on the general validity of theorems in classical analysis.
A notorious example of a theorem that fails to hold intuitionistically is the intermediate
value theorem, which states:

For any continuous function f from [0, 1] to R with f(0) = 0 and f(1) = 1, we
have ∀ρ ∈ [0, 1]∃σ ∈ [0, 1](f(σ) = ρ).

Proposition B.4. The intermediate value theorem is reckless; in particular, it implies
∀ρ ∈ R(ρ ≤ 0 ∨ ρ ≥ 0), which is equivalent to LLPO and therefore even false under BCP.

0

1

0 1

1
2

f

The function f

for small positive ρ.

Proof. Assume the intermediate value theorem and let ρ ∈ R be given.
Define a function f : [0, 1] → R such that f(0) = 0, f( 1

3 ) = f( 2
3 ) =

1
2 + ρ, f(1) = 1 and f is linear between these points. This is a well-defined
intuitionistic function since the function value f(σ) can be approximated
arbitrarily closely by approximating σ and ρ arbitrarily closely, for σ ∈ R.
Applying the intermediate value theorem, find σ such that f(σ) = 1

2 . By
finding m such that 0 ≤ σ′′(m) − σ′(m) < 1

3 , we can decide that either
σ < 2

3 or σ < 1
3 . If σ < 2

3 , then ρ ≥ 0 because f( 2
3 ) = 1

2 + ρ and f is non-
decreasing (see the figure). Similarly, if σ < 1

3 then ρ ≤ 0. We conclude
that ρ ≤ 0∨ ρ ≥ 0 for any ρ ∈ R. For the proof that ∀ρ ∈ R (ρ ≤ 0∨ ρ ≥ 0)
is equivalent to LLPO, see Mandelkern [70, Theorem 5].

Many other classically valid analytical theorems are intuitionistically invalid, such as
the Bolzano-Weierstrass theorem (equivalent to LPO) and, ironically, Brouwer’s fixed point
theorem (equivalent to LLPO) [70].89 This does not mean all of analysis is lost: several
‘approximate’ variants of these principles hold constructively. The approximate intermediate
value theorem:

For any continuous function f from [0, 1] to R with f(0) = 0 and f(1) = 1, we
have ∀ρ ∈ [0, 1]∀n∃σ ∈ [0, 1](|f(σ)− f(ρ)| < 1

n ),

for example, is classically equivalent to the intermediate value theorem but is valid intu-
itionistically.

Continuity of real functions From the way a real function is defined in intuitionism, it
already appears that every real function is continuous. We can make this explicit by using
a version of Brouwer’s continuity principle applied to real numbers, which we denote by
BCPR. It states that for every real relation R ⊆ R× N, we have90

∀ρ ∈ R∃n(ρRn) −→ ∀ρ ∈ R∃n∃m∀σ ∈ R
(
|σ − ρ| < 1

m
→ σRn

)
. (B.7)

In words: if we are able to find and n such that ρRn for any n, then we must be able to do
so on the basis of some finite approximation of ρ.

BCPR can be used to prove:

Theorem B.5. Every real function f : R→ R is continuous.

B.6 The role of time in intuitionism
We have already seen multiple ways in which the notion of time enters into intuitionism.
In this section we discuss these in more detail. The importance of time clearly resounds in
Brouwer’s two ‘acts of intuitionism’, formulated in his Cambridge lectures in the 1940s. The
first act is:

89As Brouwer himself well realised. Brouwer has made some significant contributions to classical topology;
he understood that to be taken seriously in his unusual approach to mathematics, he first had to prove himself
an able mathematician.

90BCPR can be deduced from intuitive argument or from a generalised version of BCP which holds for
spreads.
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First act of intuitionism Completely separating mathematics from mathem-
atical language and hence from the phenomena of language described by theoret-
ical logic, recognizing that intuitionistic mathematics is an essentially language-
less activity of the mind having its origin in the perception of a move of time.
This perception of a move of time may be described as the falling apart of a life
moment into two distinct things, one of which gives way to the other, but is re-
tained by memory. If the twoity thus born is divested of all quality, it passes into
the empty form of the common substratum of all twoities. And it is this common
substratum, this empty form, which is the basic intuition of mathematics. [20]

Hence, the notion of ‘time’ central to intuitionism refers to the time experienced by the
mathematician, and can also be characterised as ‘intuitive’ or ‘subjective’ time. The first
act gives rise to the natural numbers (section B.2);in addition, the realisation that the
mathematician needs time to prove theorems and do calculations already implies that the
principle of the excluded middle does not hold, even with respect to lawlike sequences such
as the one given in (B.1) [59].

The second act of intuitionism expresses the acceptance of (free) choice sequences, and
gives rise to the existence of the continuum:

Second act of intuitionism Admitting two ways of creating new mathem-
atical entities: firstly in the shape of more or less freely proceeding infinite se-
quences of mathematical entities previously acquired (so that, for example, in-
finite decimal fractions having neither exact values, nor any guarantee of ever
getting exact values are admitted); secondly in the shape of mathematical species,
i.e. properties supposable for mathematical entities previously acquired, satisfy-
ing the condition that if they hold for a certain mathematical entity, they also
hold for all mathematical entities which have been defined to be ’equal’ to it,
definitions of equality having to satisfy the conditions of symmetry, reflexivity.
[20]

The ‘step-by-step’ generation of choice sequences, and the fact that they introduce a form of
‘indeterminism’ to intuitionism in the sense that their elements are not necessarily fixed in
advance by a law, makes the importance of time in intuitionism even more explicit. However,
choice sequences are not necessary to realise that PEM does not hold intuitionistically (as
can also be seen from the fact that no other form of constructive mathematics accepts the
existence of choice sequences).

Brouwer, at least in his early writings, indicates that the ‘intuitive time’ central to
intuitionism should be clearly distinguished from ‘scientific time’. He considers the first to
be the only aprioristic element of science (the only “necessary prerequisite for the possibility
of science”), while the second only appears a posteriori from experience and can be reduced
to a one-dimensional parameter serving to ‘catalogue observed phenomena’ [19]. On the
other hand, it is tempting to compare the distinction between lawlike and lawless (i.e. free
choice sequences) sequences to deterministic and indeterministic processes in physics, which
are solely related to Brouwer’s ‘scientific time’.91 However, in Brouwer’s intuitionism, both
lawlike sequences and choice sequences are subject to the ‘intuitive time’,92 which suggests
that this comparison might not be justified.93

91Unless one associates indeterminism to free will and the psychological arrow of time, in which ‘intuitive
time’ might come into play.

92Many intuitionists maintain, moreover, that the collection of lawlike sequences is not clearly separable
from the collection of (free) choice sequences, meaning that these are no ‘well-circumscribed’ sets and that
it is only meaningful to regard the continuum (or Baire space N) as a whole. We will return to this in
section B.7

93Moreover, Oscar Becker, a contemporary of Brouwer, has compared the distinction between lawlike
sequences and choice sequences in intuitionism to Heidegger’s distinction between ‘natural time’ and ‘his-
torical time’, where the former is ‘time as measured’ and the latter can be seen as the cultural phenomenon
of passage from one generation to another [81]. It is unclear whether physical indeterminism plays a role in
this comparison, but because ‘natural time’ presumably coincides with Brouwer’s ‘scientific time’, also this
comparison can be questioned from an intuitionistic perspective.
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In the previous sections, we have seen that some of Brouwer’s arguments for intuitionistic
principles, such as his continuity principle (B.3), are based on reasoning about the mind of
the mathematician; here an idealised mind is meant, for Brouwer considered intuitionistic
mathematics to be independent of psychology [59]. Brouwer called this idealised mind the
creating subject. A formal theory of the creating subject was designed by Kreisel [61] (and
later Troelstra) in order to formalise and analyse Brouwer’s creating subject arguments.
It concretises the temporal aspect of intuitionism by introducing the notation �nP , which
should be interpreted as saying that the creating subject has a proof of or ‘experiences
the truth of’ statement P at time n, together with some axioms. n ranges over a discrete
(countable) set, representing the ‘stages’ of the creating subject’s arguments [6].

The creating subject also enters into intuitionism via arguments based on sequences
given by the Brouwer-Kripke schema (BKS), proposed by Brouwer and formalised by Saul
Kripke [6]. The schema asserts that for every proposition P , one can construct a sequence
α ∈ N such that α(n) = 0 if at stage n (or ‘day n’), the creating subject has not proven
P , and α(n) = 1 if it has.94 Such a sequence is perhaps the clearest example showing that
an infinite sequence develops in time and is never a static, finished object. Furthermore,
BKS sequences are sometimes seen as lawlike, which casts further doubts on the comparison
between lawlike sequences and determinism in physics alluded to before.

B.7 Lawless sequences
In section B.3 we already discussed the notion of lawlike sequences and choice sequences,
the latter being sequences of which the elements are revealed one by one, not necessarily
according to a law. What is often presented as perhaps the simplest example of a choice
sequence is a lawless sequence or (absolutely) free choice sequence of natural numbers. This
kind of sequences was first considered by Georg Kreisel.95 In his words, lawless sequences

are those where the simplest kind of restriction on restrictions is made, namely
some finite initial segment of values is prescribed, and, beyond this, no restriction
is to be made. [62]

However, trying to more precisely characterise the set of lawless sequences has turned out far
from simple, and attempts to do this are surrounded by controversy. Needless to say, there is
a strong connection between lawless sequences and mathematical notions of randomness as
well as indeterminism in physics. The latter connection is be discussed in section 4.4. Lawless
sequences in intuitionism are generally associated with Kreisel and Troelstra’s formalisation;
therefore, we briefly discuss their approach, even though it is considered controversial in some
respects. Before doing this, however, let’s take a closer look at lawlike ones.

B.7.1 Lawlike sequences
Lawlike sequences are roughly those sequences that are ‘completely determined [and] fully
described’ [88] or ‘fixed by a recipe’. What exactly a ‘law’ or ‘recipe’ means is a matter of
interpretation.

The definition of ‘law’ that appeals to most mathematicians is a Turing-computable
(recursive) law. In this interpretation, ‘lawlike’ is seen as synonymous to ‘recursive’, i.e. the
lawlike sequences are precisely the recursive sequences. This identification can be expressed
by an axiom called Church’s thesis.96 Lawlikeness can also be taken to refer to a broader
concept, however. An example of a class of sequences that are not recursive, but are still

94It is an axiom of the theory of the creating subject that �n(P ) is decidable. Hence, BKS can be expressed
as ∃α(α(n) 6= 0↔ �nP ), or, not using the creating subject formalism, ∃α(∃n(α(n) 6= 0)↔ P ), for all P [6,
59].

95The term lawless was coined by Gödel [62].
96Not to be confused with the Church-Turing thesis, nor with the physical Church-Turing thesis, which

are discussed in Appendix C. For a formal expression of Church’s thesis, see Troelstra and van Dalen [88,
§4.3.1].
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sometimes said to be lawlike, are the sequences given by the Brouwer-Kripke schema (BKS),
introduced in the previous section. While the elements of a BKS sequence are indeed ‘fixed
by a recipe’, they are less ‘predetermined’ than recursive sequences.

Finally, it is interesting to note that while under most notions of lawlikeness, the collec-
tion of lawlike sequences is countable from the classical point of view, no lawlike enumeration
exists.97 Indeed, to Brouwer, the collection of lawlike sequences was ‘countably unfinished’
(‘aftelbaar onaf ’); however, he argued that the collection was still too small to build up the
continuum; in particular, to fully justify his continuity principle (B.3), he needed to intro-
duce the notion of choice sequence. Georg Kreisel [62] later derived from this the notion of
lawless sequence.

B.7.2 Intensional lawlessness; Kreisel and Troelstra’s formalisation
Kreisel [62], and subsequently Troelstra [87], developed an intuitionistic theory of lawless
sequences which is based on an intensional concept of lawlessness: this means that not the
elements of the sequences themselves are what characterise lawlessness, but the process by
which the elements are determined. Properties of sets that only depend on their elements,
on the other hand, are called extensional properties.98 Troelstra and van Dalen [88, §4.6.2]
explain the concept of lawless sequence (or more precisely, proto-lawless sequence, see below)
perhaps somewhat more clearly than Kreisel:

A lawless sequence is to be viewed as a process (say α) of choosing values
α0, α1, . . . ∈ N such that at any stage in the generation of α we know only
finitely many values of α. If we generate a lawless sequence, then we have a pri-
ori decided not to make general restrictions on future values at any stage.

Thus Troelstra and van Dalen [88] distinguish lawless sequences from what they call hesitant
sequences, which are processes of generating values “such that at any stage we either decide
that henceforth we are going to conform to a law in determining future values, or, if we have
not already decided to conform to a law at an earlier stage, we freely choose a new value [of
the sequence]”.

Kreisel and Troelstra proposed four axioms LS1–LS4 for lawless sequences [87]. I will
only discuss the first three axioms; especially the second is instructive because it illustrates
the intensional nature of Kreisel and Troelstra’s notion.

The first axiom, the density axiom LS1, states that

∀s ∈ N∗∃α(s @ α), (B.8)

where α ranges over the lawless sequences, and s @ α means that s is an initial segment
of α. In words, the axiom says that for each possible finite sequence of natural numbers,
we can construct a lawless sequence which has that finite sequence as an initial segment.
(This makes the sequence slightly less ‘lawless’; for an extended discussion on this axiom,
see [88, §12.2.2]. Troelstra calls lawless sequences for which no initial segment is specified
beforehand proto-lawless.)

To justify the second axiom, Troelstra considers the relation ≡, which one could say
represents intensional equality or identity of sequences: if α, β ∈ N , then α ≡ β means that
α and β refer to the same process of generating values. Obviously, we have

α ≡ β ∨ α 6≡ β, as well as α ≡ β → α = β;

For lawless α and β, Troelstra argues that we also have

α 6≡ β → α 6= β,

97This can be proven classically if ‘lawlike’ is taken to mean ‘recursive’; Moschovakis [74] argues that this
holds for any notion of lawlikeness.

98Cf. the extensionality axiom of ZF, which states that two sets are equal iff they have the same elements.
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since if α 6≡ β, it would be impossible to have a proof of α = β, as at each point in time only
finitely many values of both α and β can be known.99 This suggests the second axiom:

α = β ∨ α 6= β, (B.9)

where α and β are lawless sequences (obviously this does not hold for all sequences; this
would imply LPO).

The third axiom, the principle of open data, is like Brouwer’s continuity principle but with
the ∀α-quantifier removed, since Kreisel and Troelstra, unlike Brouwer, speak of individual
lawless sequences. Let A be a unary predicate and α a lawless sequence, then the simplest
version of LS3 states that

A(α)→ ∃n∀β(αn = βn→ A(β)).

From LS1 and LS3, one can in particular conclude that for any lawless α and lawlike a,
we have

¬(α = a). (B.10)

(Namely, assuming α = a, use LS3 to find n such that ∀β(αn = βn → β = a)), and using
LS1, find γ such that γn = αn but γ(n) 6= α(n). Then γ 6= a but this contradicts LS3.)

Being able to prove this contradiction seems to conflict with the fact that at each moment
in time only a finite initial segment of α is known, but it follows from the intensional nature
of Kreisel and Troelstra’s definition of lawless sequences.

A disconcerting consequence of the intensional nature of Kreisel and Troelstra’s law-
lessness is that a sequence γ defined by pointwise addition of two sequences α and β can-
not be lawless, even if α and β are both lawless; for γ is completely described by the law
∀n(γ(n) = α(n) + β(n)). On the other hand, one can take γ and α to be lawless, but then
β cannot be lawless. In fact, to make this rigorous, one can prove from the axioms LS1 and
LS3 that the identity operation is the only lawlike operation under which the universe of
lawless sequences is closed [88, §12.2.9].

Kreisel and Troelstra use their four axioms LS1–LS4 to prove an elimination theorem,
which states that all formulas with quantifiers ranging over lawless sequences are equivalent
to formulas not involving lawless sequences.101 In this way, they conclude, lawless sequences
can be seen as nothing more than a ‘figure of speech’ but are not necessary to prove results.102

It is useful to mention that one can also consider ‘lawless’ elements of a spread Fσ; in
this case, the choice is restricted to elements that are admitted by the spread law σ, but is
otherwise free. In this way we can speak of, e.g., lawless binary sequences and lawless reals.

B.7.3 Separating lawlike from lawless
Although Kreisel and Troelstra’s approach is probably the most well-known formalisation of
lawless sequences, it is surrounded by controversy, also among intuitionists. Its dependence
on intensional considerations causes it to be ‘language-dependent and [have] no absolute
mathematical meaning’ [83]. This is particularly clear from the example involving the se-
quences γ, α and β just discussed. In the words of Gielen, de Swart and Veldman [43]:

We admit that an individual sequence can be (more or less) lawlike, or determ-
inate, as we will put it later on, but we do not think it meaningful to speak of
‘the set of all lawlike sequences’, or, for that matter, of ‘the set of all lawless
sequences’. (The ‘denumerably unfinished totality of all lawlike sequences’, to
which Brouwer sometimes referred, is [. . .] unable to do justice to the fullness of

99This argument is surrounded by controversy, also within intuitionistic mathematics.100 Having a proof
of α = β is contradictory, but does this mean that the statement α = β is itself contradictory?

101Granted that one accepts the Kreisel and Troelstra’s formulation of lawless sequences; others argue that
one cannot quantify over the lawless sequences in the first place because that set is not well-circumscribed
[83].

102However, there are several reasons to believe that the elimination theorem does not imply that lawless
sequences are ‘unnecessary’ in intuitionistic mathematics. See e.g. van Atten [5, p41].
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the geometric intuition of the continuum. In Brouwer’s own view the continuum
as a whole is a far clearer concept.)

The sets of lawlike and lawless sequences are also sometimes called ‘not well-circumscribed’,
and it is argued that one can only quantify over well-circumscribed sets [83], rendering
much of Kreisel and Troelstra’s formalisation invalid. Their philosophy of lawless sequences
remains, however, an interesting phenomenological point of discussion.

B.7.4 Extensional lawless sequences
Also extensional definitions of lawless sequences have been proposed, viz. sequences that
are lawless by virtue of their elements only and not the process by which the elements are
generated. One of these definitions has been studied by Joan Moschovakis, who describes
lawless sequences as those that “evade description by any fixed law”, aiming to solve the
problem that Kreisel and Troelstra’s lawless sequences are not well-circumscribed [74, 75].
It has proven difficult to analyse these sequences intuitionistically. This stems from the fact
that extensional lawlessness of a sequence cannot be decided on the basis of an initial segment
only. Lawlessness can also be expressed through classical notions such as 1-randomness (also
referred to as Martin-Löf randomness), although this yields different results [75], and notions
related to generic sets [74]. In this thesis, we mainly consider Kreisel and Troelstra’s notion,
and compare it to indeterminism in physics (section 4.4); however, analysing the connection
between physical indeterminism and these extensional lawlessness definitions would also be
interesting.





APPENDIX C

Computability theory

The field of computability theory, also called recursion theory, emerged in the twen-
tieth century to try to answer the question of what exactly an algorithm is. It
was developed in response to the foundational mathematical debates of the early

twentieth century, and is therefore closely connected to the Entscheidungsproblem, Gödel’s
incompleteness theorems and the debate between constructive and classical mathematics.
For a more complete introduction to computability theory, see e.g. Terwijn [85]. Some nota-
tions in this chapter are borrowed from Weihrauch [94], and others from Brattka, Hertling
and Weihrauch [16].

Many different definitions of the notion of algorithm were developed in the 1930’s and
onwards by notable figures including but not limited to Kurt Gödel, Emile Post, Alonzo
Church and Stephen Cole Kleene. Perhaps the best-known formalisation was given by Alan
Turing. Remarkably, all these notions of algorithm are formally equivalent, and give rise to
the same formal notion of computable function.

Turing’s approach is based on Turing machines, which represent idealised computing
devices. A Turing machine can be described to consist of a tape of unbounded length,
divided into infinitely many cells, each being either ‘blank’ or containing a 0 or 1; together
with a head which can move along the tape and manipulate the cells’ values. The action of
the head depends only on a program, i.e. a finite set of rules or instructions, given in advance,
together with the state of the program, of which there are finitely many, and the value of
the cell at the current location of the head. Given an initial specification of the values of the
cells and an initial location of the pointer, the Turing machine may either continue running
forever, or terminate after a finite number of steps. In the latter case, the Turing machine
is said to halt.

In anticipation of section C.1, we generalise Turing machines to working with arbitrary
alphabets, instead of only the alphabet {0, 1} as in the above.

Convention C.1. An alphabet is a finite set containing at least two elements. In the
following, Σ denotes some fixed alphabet. Σ∗ is the set of all finite sequences of elements in
Σ.

Notation C.2. For any two sets X,Y , by ϕ :⊆ X → Y we mean a function whose domain
domϕ is contained in X and whose range ranϕ is contained in Y . ϕ is called (strictly)
partial if domϕ ( X and total if domϕ = X.

Definition C.3. A function ϕ :⊆ Σ∗ → Σ∗ is called (Turing) computable if there exists
a Turing machine M such that for any finite sequence s ∈ Σ∗, when the initial configuration
of the tape contains s and is otherwise blank and the initial location of the head is at the
start of s, then the Turing machine halts if and only if s ∈ domϕ, and if it does, it finishes
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in a final configuration in which the tape contains the finite sequence ϕ(s) and is otherwise
blank.

The original objects of study for Turing were not functions ϕ :⊆ Σ∗ → Σ∗ but functions
ϕ :⊆ N→ N. These can, however be easily encoded by the former functions. In section C.1
we will discuss in more detail how to define computability on arbitrary sets with cardinality
< 2ω.

Church-Turing thesis As we noted before, in addition to Turing’s formulation, many
different formalisations of the informal notion of algorithm have been developed, and (al-
most) all have turned out to be equivalent. This suggests that Turing’s formal notion is
indeed the ‘right’ notion of algorithmic computability. This is captured in the heuristic
statement referred to as the Church-Turing thesis:

A function ϕ : N→ N can be computed by an algorithm (in the informal sense)
if and only if it is Turing computable.

An algorithm in the informal sense is also sometimes referred to as an effective or mech-
anical, i.e. ‘pen-and-paper’ method. A variant of the Church-Turing thesis relevant to this
thesis is the physical Church-Turing thesis, which states that

A function ϕ can be physically computed if and only if it is Turing computable.

That is, not only pen-and-paper methods can be used but any process allowed according to
the laws of physics. We discuss the status of the physical Church-Turing thesis in somewhat
more detail in section 4.1.

C.1 Computable analysis
While the origins of computability theory lie in the study of algorithms that compute func-
tions ϕ : N → N of natural numbers, the second half of the twentieth century showed an
increased interest in computability notions for functions on non-discrete spaces, in particular
the real numbers. Many different approaches have been developed to generalise computabil-
ity theory to the reals. These form the field of computable analysis, which is still very active
today. We will focus on Klaus Weihrauch’s Type-2 theory of effectivity and in particular
on the language of representations of sets.103 A comprehensive introduction is presented in
Weihrauch [94], and a brief introduction is given in Brattka, Hertling and Weihrauch [16].
An even briefer and less complete introduction follows below.

We adopt the same convention as in the above that Σ is a finite alphabet containing at
least two elements. Σω = {p | p : N→ Σ} is now the set of (one-way) infinite sequences over
Σ.

Whereas Turing machines usually compute functions ϕ : Σ∗ → Σ∗, a Type-2 machine
computes functions Σω → Σ∗, Σ∗ → Σω or Σω → Σω. A Type-2 machine of the latter type
consists of a one-way input tape, a one-way output tape and a working tape. Each tape
has a separate head which can move along the cells of its tape. That the input and output
tapes are one-way means that the heads can only move to the right (one cell at a time). The
input head only reads values of cells on the input tape, while the output head only writes
values (from Σ) on its cells, and the head at the working tape can do both (and can move to
the left and right). This restriction on the head of the output tape allows us to at any time
during the execution of the machine retrieve an initial segment of the (potentially infinite)
sequence p ∈ Σω that the machine outputs (without allowing the machine to change the
values it had already output at an earlier stage). Again, the behaviour of the three heads

103Another notable approach was given by Pour-El and Richards [79], who also discuss computability
notions on Banach spaces and operators on Banach spaces, which are therefore relevant to physics. Com-
putability notions on manifolds, however, which could be useful to classical and relativistic mechanics, have
only recently been introduced [1].
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is completely determined by the program of the machine, specified in advance, its state, of
which there are finitely many, and the value of the cells at each of the heads’ positions.

Definition C.4. A function F :⊆ Σω → Σω is computable if there exists a Type-2 machine
which, when the initial values of the cells on the input tape are given by the infinite sequence
p ∈ Σω, keeps writing on the output tape forever and outputs the sequence F (p) if p ∈ domF ,
and terminates after a finite number of steps if p /∈ domF .104

Please note that this is only one of the many possible ways of formulating machines
that compute Σω → Σω functions, but that (to us) only the resulting formal computability
notion is of importance.

C.1.1 Representations and computable functions on the reals
To define computability on more general sets, we use the framework of representations.

Definition C.5. A representation of a set X is a surjective function δ :⊆ Σω → X. If
x ∈ X, then any p ∈ Σω with δ(p) = x is called a δ-name of x. We call the pair (X, δ) a
represented space.

Definition C.6. The Cauchy representation ρ :⊆ Σω → R of the real numbers is defined
by ρ(p) = x ∈ R for p ∈ Σω if and only if p encodes a sequence of rationals (qi)i∈N ⊆ Q that
converges rapidly to x, i.e. ∀i ∈ N : |x− qi| < 2−i. (Here we assume that there is a canonical
way to encode a sequence of rationals in a sequence p ∈ Σω.)

Naturally, by construction of R, the function ρ is surjective. We are, however, interested
in the subset of R of computable numbers.

Definition C.7. A sequence p ∈ Σω is called computable if there is a Type-2 machine
that on any (or no) input produces the sequence p. (This is equivalent to there being a total
computable function ϕ : N→ Σ that produces the symbol p(n) on input n ∈ N.)

Let (X, δ) be a represented space. An element x ∈ X is called computable if it has a
computable δ-name (i.e. there exists a computable p ∈ Σω such that δ(p) = x).

Example C.8. It follows from Definitions C.6 and C.7 that a real x ∈ R is ρ-computable if
and only if there exists a computable sequence of rationals (i.e. a computable total function
N → Q, in the sense of Definition C.3) that converges rapidly to x. This can be shown to
be equivalent to, for instance (see Brattka, Hertling and Weihrauch [16, Theorem 3.2] for
more examples):

• There exists a Turing machine that outputs the infinite binary or decimal expansion
of x;
• There exists a computable sequence of shrinking and dwindling (in the sense of Defin-

ition B.2) rational intervals, of which the intersection contains only x.

Because there are countably many Type-2 machines, there are only countably many
computable reals;105 hence, almost every real (w.r.t. the Lebesgue measure) is uncomputable.

We now define computability of functions on represented sets.

Definition C.9. Let (X, δX) and (Y, δY ) be represented spaces and let f :⊆ X → Y be
a function. A function F :⊆ Σω → Σω is called a (δX , δY )-realiser of f if and only if
dom(f ◦ δX) ⊆ dom(δY ◦ F ) and

(δY ◦ F )(p) = (f ◦ δX)(p) for all p ∈ dom(f ◦ δX).
104Remark that in the case for functions Σω → Σω , the computation is ‘successful’ whenever the corres-

ponding machine keeps running forever, while for functions Σ∗ → Σ∗ (see Definition C.3), the computation
is ‘successful’ whenever the Turing machine terminates after a finite number of steps.

105Note that this chapter is written from a classical viewpoint. When one restricts oneself to using com-
putable mathematical objects only, as is done in e.g. Markov’s recursive constructive mathematics, then one
cannot say that the set of computable sequences is countable, as there exists no computable enumeration of
all computable numbers. Cf. section B.7.1.
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(I.e. for any δX -name p for x ∈ X, the value F (p) is a δY -name for f(x).) The function
f is called computable if it admits a computable (δX , δY )-realiser (in the sense of Defini-
tion C.4).

We first define some more useful representations of the real numbers, and then dis-
cuss what computability of functions with respect to these representations intuitively mean,
without going into the details.

Definition C.10. • For any representation δ of X, we can define a representation δ2

of X ×X by

δ2(〈p1, p2〉) = (x1, x2) :⇐⇒ δ(pi) = xi for i = 1, 2,

where for p1, p2 ∈ Σω, we define 〈p1, q1〉 = (p1(0), p2(0), p1(1), p2(1), . . .) ∈ Σω.
Iterating this, we can define representations δk of Xk for any power k ∈ N. In partic-
ular, the Cauchy representation ρk of Rk is defined in this way.
• The representation ρint :⊆ Σω → R is defined as

ρint(p) = x :⇐⇒ p encodes a sequence ([ai, bi])i∈N ⊆ Q2 of rational intervals
such that for all i, ai ≤ ai+1 ≤ bi+1 ≤ bi and |bi − ai| < 2−i,
and ai → x, bi → x.

• The binary representation ρ2 :⊆ Σω → [0, 1] is defined in the usual sense by

ρ2(p) = x ∈ R :⇐⇒ pi ∈ {0, 1} for all i and x =
∞∑
i=1

2−i p(i)

for p ∈ Σω (where Σ is assumed to contain at least the symbols 0 and 1.)
• The representation ρ< :⊆ Σω → R is defined by

ρ<(p) = x ∈ R :⇐⇒ p enumerates all q ∈ Q with q < x.

A ρ<-computable real number is also called lower-semicomputable, as is a function
f : (X, δ) → R which is (δ, ρ<)-computable. ρ<-computability is weaker than ρ-
computability. Upper-semicomputability is similarly defined, by replacing < with
>.

Intuitively, a function f : Rk → Rk is (ρk, ρk)-computable iff when given a sequence of
rational vectors in Qk rapidly converging to x ∈ Rk, one can compute from this another
sequence of rational vectors rapidly converging to f(x) ∈ Rk.

Similarly, a function f : R→ R is (ρint, ρint)-computable iff there is an effective method
to determine, for each i, the value f(x) up to a precision of 2−i, given any required level
of precision on the argument x. This is very much like the way real functions are defined
in intuitionism (see section B.5). Note, however, that a constructive method need not be
effective (i.e. computable); indeed, there are intuitionistic functions that are not lawlike.

It follows from the discussion in Example C.8 that a real number x is ρ2-computable if
and only if it is ρ- or ρint-computable. However, when it comes to computability of functions,
computability with respect to ρ2 is a stronger notion than computability with respect to the
other two representations. In particular, the addition function f : R2 → R, (x, y) 7→ x + y
is not (ρ2

2, ρ2)-computable. The argument for this is completely analogous to the one given
in section B.4 on page 54, where it is shown by a Brouwerian argument that when the reals
are defined by through binary expansion, the set of real numbers is constructively not closed
under addition.

We mention the following result, which naturally follows from the discussion above,
because it stresses the connection between intuitionistic mathematics and computability
theory once again:

Theorem C.11. Every (ρk, ρk)-computable function is continuous.
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C.1.2 Recursively enumerable open subsets
In this thesis, we are not only interested in computability notions for points in Rk, but also
for subsets of Rk. A first attempt, inspired by the notion of decidability on subsets of N,
would be to call a subset A ⊆ Rk decidable if there exists a Turing machine that on input
x ∈ R decides whether x ∈ A or x /∈ A—that is, the characteristic function χA : Rk → R
which maps A to {1} and Rk \ A to {0} is (ρk, ρ)-computable. We see, however, that such
a definition would not make sense:

Proposition C.12. The only decidable subsets of Rk are the trivial subsets ∅ and Rk.

Proof. Every (ρk, ρ)-computable function is continuous, and the only subsets of Rk with
continuous characteristic function are ∅ and Rk. The characteristic functions χ∅ and χRk

are obviously computable.

A more useful definition is the following:

Definition C.13. A subset V ⊆ Σω is called recursively enumerable open (r.e. open)
if V = dom h for some computable function h :⊆ Σω → Σ∗ (i.e. if there is a Turing machine
which halts on input p ∈ Σω if and only if p ∈ V ). V is called r.e. open in W for W ⊆ Σω
if V = dom h ∩W for such h.

If (X, δ) is a represented space, a subset U ⊆ X is called δ-r.e. open if δ−1(U) is r.e.
open as a subset of Σω. (That is, there is a Turing machine which, given a δ-name of any
element x ∈ X, halts if and only if x ∈ U .)106

In the case of real numbers, we can characterise ρk-r.e. openness as follows. Here
Bε(q) ⊆ Rk is the Euclidean open ball with radius ε around q.

Proposition C.14. A set U ⊆ Rk is ρk-r.e. open if and only if U =
⋃
i∈NBεi

(qi) for some
computable sequence of pairs (qi, εi) ∈ Qk×Q>0. In particular, any r.e. open subset U ⊆ Rk
is open in the Euclidean topology.

For a proof see e.g. Weihrauch [94, §5.1.16]. Now follow some propositions which will
prove useful in section 5.2 when applying them to the Hamiltonian flow.

Proposition C.15. The intersection V ∩W of any two r.e. open sets V,W ⊆ Σω is again
r.e. open. In particular, if V is r.e. open in W and W is r.e. open, then V is r.e. open.

Proof. (From Weihrauch [94, Theorem 2.4.5].) Let MV and MW be Turing machines that
halt on input p ∈ Σω iff p ∈ V , resp. p ∈ W . Let M be a machine which on input p ∈ Σω
simulates both MV and MW on input p in parallel (by alternately executing an instruction
in the program of MV and of MW , as long as none of the machines has halted), and which
halts whenever both MV and MW have halted. Then M halts on p if and only if both MV

and MW halt on p, which is the case if and only if p ∈ V ∩W .

Proposition C.16. Let X,Y be sets and δX : Σω → Σ∗, δY : Σω → Σ∗ be representations.
Let f :⊆ X → Y be (δX , δY )-computable with (δX , δY )-realiser F : Σω → Σω. If U ⊆ Y is
r.e. open, then δ−1

X (f−1(U)) is r.e. open in domF .107

106It would be natural to define, in addition, that U is δ-r.e. open in W for some W ⊆ X if U = V ∩W
for some V ⊆ X which is δ-r.e. open. However, this definition seems not useful, at least not to us (see
footnote 107); this might be the reason that it is not given in e.g. Weihrauch [94]. Also note that this is not
(at least not trivially) equivalent to δ−1(U) being r.e. open in δ−1(W ) (namely, if δ−1(U) = domh∩δ−1(W )
for some computable h :⊆ Σω → Σ∗ then this implies that U = δ(domh)∩W , but δ−1(δ(domh)) might be
strictly larger than domh and hence not necessarily r.e. open.)

107It is suggested in Ziegler [102] that, conversely, any function for which taking pre-images preserves r.e.
openness is also computable; but it is unclear whether or not this holds only for total functions, and we do
not need this result here. Furthermore, an even more elegant result than the present Proposition would be
that f−1(U) is r.e. open in dom f , in the sense defined in footnote 106; however, this might not necessarily
follow from the present result, for the reason explained in that footnote. Luckily, we need no more than the
present Proposition for our results in section 5.2.
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Proof. Because U is r.e. open, there is a computable function g :⊆ Σω → Σ∗ such that
dom g = δ−1

Y (U). Because F is a (δX , δY )-realiser of f , we have δY F (p) = fδX(p) for all
sequences p ∈ dom(fδX).

We use the fact that the function g ◦F :⊆ Σω → Σ∗ (which has domain F−1(dom g)) has
a computable extension h :⊆ Σω → Σ∗ such that dom h∩ domF = dom(g ◦F ). For a proof
of this fact, see Weihrauch [94, Theorem 2.1.12]. Note that dom(f ◦δX) ⊆ domF . It follows
that for p ∈ dom(f ◦ δX), we have p ∈ δ−1

X (f−1(U)) ⇐⇒ f(δX(p)) ∈ U ⇐⇒ δY (F (p)) ∈
U ⇐⇒ F (p) ∈ δ−1

Y (U) = dom g ⇐⇒ p ∈ dom(g ◦ F ) ⇐⇒ p ∈ dom h ∩ domF .
Since dom h ⊆ Σω is r.e. open by definition, we conclude that δ−1

X (f−1(U)) is r.e. open in
domF .
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[22] Brukner, Č. ‘On the quantum measurement problem’. In: Quantum [Un] Speakables

II. Springer, 2017, pp. 95–117.
[23] Callender, C. ‘Thermodynamic Asymmetry in Time’. In: The Stanford Encyclopedia

of Philosophy. Ed. by E. N. Zalta. Winter 2016. Metaphysics Research Lab, Stanford
University, 2016.

[24] Caticha, A. ‘Lectures on probability, entropy, and statistical physics’. In: arXiv pre-
print arXiv:0808.0012 (2008).

[25] Caticha, A. ‘Lectures on probability, entropy, and statistical physics’. In: arXiv pre-
print arXiv:0808.0012 (2008).

[26] Caticha, A. ‘The information geometry of space-time’. In: Multidisciplinary Digital
Publishing Institute Proceedings. Vol. 33. 1. 2019.

[27] Cattaneo, G., Dalla Chiara, M. and Giuntini, R. ‘Constructivism and Operationalism
in the Foundations of Quantum Mechanics’. In: The Foundational Debate. Springer,
1995, pp. 21–31.

[28] Chaitin, G. ‘How real are real numbers?’ In: arXiv:math/0411418 (2004).
[29] Chaitin, G. J. and Schwartz, J. T. ‘A note on Monte Carlo primality tests and al-

gorithmic information theory’. In: Communications on Pure and Applied Mathematics
31.4 (1978), pp. 521–527.

[30] Chang, H. ‘Operationalism’. In: The Stanford Encyclopedia of Philosophy. Ed. by
E. N. Zalta. Winter 2019. Metaphysics Research Lab, Stanford University, 2019.

[31] van Dalen, D. ‘The war of the frogs and the mice, or the crisis of the Mathematische
Annalen’. In: The Mathematical Intelligencer 12.4 (1990), pp. 17–31.

[32] Dasgupta, A. ‘Mathematical foundations of randomness’. In: Philosophy of Statistics.
Elsevier, 2011, pp. 641–710.

[33] Del Santo, F. ‘Indeterminism, causality and information: Has physics ever been de-
terministic?’ In: arXiv preprint arXiv:2003.07411 (2020).

[34] Del Santo, F. and Gisin, N. ‘Physics without determinism: Alternative interpretations
of classical physics’. In: Physical Review A 100.6 (2019).

[35] Dowek, G. ‘Real numbers, chaos, and the principle of a bounded density of inform-
ation’. In: International Computer Science Symposium in Russia. Springer. 2013,
pp. 347–353.

[36] Driessen, B. ‘Intuitionistic Probability Theory’. In: (). url: https://www.ru.nl/
publish/pages/813276/driessen_bob_2018.pdf.

[37] Drossel, B. ‘On the relation between the second law of thermodynamics and classical
and quantum mechanics’. In: Why more is different. Springer, 2015, pp. 41–54.

[38] Dummett, M. Elements of intuitionism. Oxford University Press, 2000.
[39] Earman, J. A primer on determinism. Vol. 37. Springer Science & Business Media,

1986.

https://www.ru.nl/publish/pages/813276/driessen_bob_2018.pdf
https://www.ru.nl/publish/pages/813276/driessen_bob_2018.pdf


BIBLIOGRAPHY 71

[40] Ellis, G. F., Meissner, K. A. and Nicolai, H. ‘The physics of infinity’. In: Nature
Physics 14.8 (2018), pp. 770–772.

[41] Friedman, Y. and Sandler, U. ‘Fuzzy dynamics as an alternative to statistical mech-
anics’. In: Fuzzy Sets and Systems 106.1 (1999), pp. 61–74.

[42] Ghirardi, G. and Bassi, A. ‘Collapse Theories’. In: The Stanford Encyclopedia of
Philosophy. Ed. by E. N. Zalta. Summer 2020. Metaphysics Research Lab, Stanford
University, 2020.

[43] Gielen, W., de Swart, H. and Veldman, W. ‘The continuum hypothesis in intuition-
ism’. In: The Journal of Symbolic Logic 46.1 (1981), pp. 121–136.

[44] Gisin, N. ‘Propensities in a non-deterministic physics’. In: Synthese 89.2 (1991),
pp. 287–297.

[45] Gisin, N. ‘Time really passes, science can’t deny that’. In: Time in Physics. Springer,
2017, pp. 1–15.

[46] Gisin, N. ‘Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are
Real Numbers Really Real?’ In: Erkenntnis (2019).

[47] Gisin, N. ‘Real numbers are the hidden variables of classical mechanics’. In: Quantum
Studies: Mathematics and Foundations (2019), pp. 1–5.

[48] Gisin, N. ‘Mathematical languages shape our understanding of time in physics’. In:
Nature Physics (2020), pp. 1–3.

[49] Goldblatt, R. Lectures on the hyperreals: An introduction to nonstandard analysis.
Vol. 188. Springer Science & Business Media, 2012.

[50] Goldstein, S. ‘Bohmian Mechanics’. In: The Stanford Encyclopedia of Philosophy. Ed.
by E. N. Zalta. Summer 2017. Metaphysics Research Lab, Stanford University, 2017.

[51] Graça, D. S. and Zhong, N. ‘Computability of ordinary differential equations’. In:
Conference on Computability in Europe. Springer. 2018, pp. 204–213.
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