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In general, a physical theory is based on some fundamental principles concerning space, time,
matter, and the laws prescribing how matter is distributed in space and how it evolves in time, and
even how spacetime itself changes in response to the changes of matter.

The spectrum of the known theories is very diverse, since they are based on different assumptions.
Some theories assume that space and time are totally independent, some that they are warped in
a continuum named “spacetime”, and some even that there are more dimensions than the usual
3+1. Most theories consider that space and time are continuous, but many recent theories consider
them to be discrete. Most dynamical laws of fundamental Physics are deterministic, but apparently
Quantum Mechanics shows that they may have an indeterministic component.

Despite these distinctions between various theories, our intuition and experience tells us that
they have a lot in common. In this paper I will try to capture the common features in a single
mathematical structure. This is not a Theory of Everything, but only a mathematical structure
which is common to most physical theories known so far. We will see that these theories can be
obtained as particular cases of this structure, which I will call “world”. In particular, the worlds
described by the Classical Mechanics, the Theory of Relativity and the Quantum Mechanics are
examples of worlds according to this definition, but also some theories attempting to unify gravity
and QM, like String Theory.

The purpose of this distillation is to provide a mathematical common background to both physical
and metaphysical discussions about the various theories of the World.
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I. INTRODUCTION

What are the most general assumptions one can make
about the Physical World? Each theory in Physics and
each philosophical system comes with its own vision try-
ing to describe or explain the World, at least partially. In
this paper I will try to establish a mathematical frame-
work, at least for the physical world, general enough to
keep an essential part from all these visions.

Science tries to discover and understand the rules gov-
erning the World. The way of science is to propose hy-
potheses about what the rules are, and to experimentally
test their consequences. Logic is essential in deriving the
consequences, in developing the explanations, in check-
ing the logical consistency of each theory. If the logical
structure of a theory is flawless, the theory can be put in
a mathematical form. Many physicists strongly believe
that all the laws of Nature are expressible in a mathemat-
ical form ([1, 2]). In fact, the very existence of a science
like Physics is a proof that this belief exists.

Maybe Nature can be entirely described mathemati-
cally, or maybe only partially. There are important indi-
cations that we can use Mathematics to describe Nature,
at least partially [3]. Physics is successful in identifying
such parts of Nature, and describing them mathemati-
cally with an impressive degree of accuracy. It is this
part of Nature we will discuss in the following, and I will
model it by a mathematical structure here named world.

Suppose we know a set of axioms describing (at least
partially) the laws of the real world. These axioms repre-
sent, mathematically and logically, the relations between
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various objects of the world. For example, they can tell,
considering that the space in the Newtonian Mechanics is
Euclidean, that two points determine a unique line. They
will tell nothing about what the points are, or what the
line is. The formalist point of view says nothing beyond
the relations described by the axioms. Ontic structural
realism even says that the mathematical structure itself
is all there is, and it does not even need a physical in-
terpretation [4]. My view here will be that, even if the
points or lines have a physical meaning, the mathemati-
cal description will ignore it, and it will only capture the
relations that can be expressed mathematically by the
axioms. What can be expressed mathematically becomes
part of the axiomatic theory. Any knowledge about what
the object are is mathematically meaningless, except to
the extent that they can be defined in terms of other
objects of that theory. Any addition like the nature of
things, meanind, etc., even if it may exist, will not be
considered as part of the theory. The only possibility to
account for the additional objects or meanings will be by
extending the theory. Even in this case, there will be in
the theory fundamental objects that cannot be defined
in terms of more fundamental ones. This is why an ax-
iomatic theory describes only the relations between the
objects, and any model (in the sense of the Model The-
ory [5, 6]) of that theory will not be part of the theory
itself. Yet, any theorem deduced in the axiomatic theory
will apply to the model too.

The process of abstraction and formalization will allow
us to focus on the elements of the theory, and to ignore
what is “additional”, or the question if there is something
“additional”. This does not make any implication about
the existence of the “additional”; this simply is beyond
the scope of the theory.

The article starts by introducing the elements of a
mathematical structure, named world, which aims to cap-
ture the main aspects of a theory in Physics (Section §II).
The world is defined as a mathematical structure con-

taining spacetime, which in general is a topological space,
and the physical laws, expressed as a sheaf over the space-
time. The definition of a world is chosen to be very gen-
eral, to fit the necessities of the most theories in Physics.
At the same time, it aims to capture their essence.

Examples of worlds are the various theories in Physics,
as shown in Section §III.

In Section §IV I generalize the observation that, to find
a description of the world, we need both laws and initial
conditions. The resulting generalization aims to capture
the way experiments and theory allow us to identify the
states of the systems, as well as their laws.

Several possible applications of World Theory are dis-
cussed in Section §V: to theoretical models in Physics,
to the study and comparison of unified theories, to the
modeling of emergent phenomena.

The Appendices contain an illustration of how we se-
lect the law sheaf to obtain universal laws (Section §A),
and a generalization of World Theory to spacetimes that
may not even have points (Section §A).

II. PRINCIPLES OF WORLD THEORY

A. Spacetime

In Newtonian Mechanics, the background of the phys-
ical systems is the 3-dimensional Euclidean space. Phys-
ical phenomena are considered to unfold on the direct
product of the space with the time axis R. Special
Relativity merged space with time and obtained a four-
dimensional spacetime with Lorentz metric. General Rel-
ativity allowed spacetime to be curved, as a response to
the distribution of matter, making it into a differentiable
manifold with Lorentz metric.
We accept the existence of spacetime – as an arena of

all physical phenomena. This arena can play an active
role, as in General Relativity. It may be emergent, as
in various approaches to Quantum Gravity. In the latter
case it may be impossible to decompose it exactly into
space and time, and this is the reason why we will take
it as a whole, rather than as space and time.
This suggests that spacetime is a topological mani-

fold, that is, spacetime is locally homeomorphic to an
Euclidean n + 1-dimensional space. But there are theo-
ries in which this constraint is too strong. In particular,
there are theories in which spacetime is considered to be
a graph or a foam, which are topological spaces, but not
topological manifolds.
These observations suggest the following principle:

Principle 1. There exists a topological space S, which
will be named spacetime.

Remark 1. We will not constrain the topological dimen-
sion of S, to allow the formalism apply to all the theories,
no matter how many different spacetime dimensions they
need. There is another reason for maintaining the gen-
erality: we may find it useful sometimes to apply it to
the configuration space and to the phase or state space
as well. But the main usage of this Principle will be for
the physical space.

Remark 2 (Discrete spacetime). Assuming spacetime
to be “continuous” may seem limiting. Maybe it is dis-
crete. We will see that the requirement that spacetime
is a topological space does not exclude discreteness, be-
cause we can always consider its topology to be finer. At
limit it can even be the discrete topology, which brings
no constrains. However, some definitions that will be
subsequently introduced will be greatly simplified if we
would consider even the discrete structures as embedded
in a background topological manifold, in a background-
independent way. This will be the case when we will dis-
cuss the symmetries of the physical laws, in Sec. §IID.

Remark 3 (Pointless spacetime). Maybe in reality
spacetime is not quite a topological space, but it only
seems to be one at a coarse-grained level. Category The-
ory [7] allows us to accommodate this possibility, as we
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will show in the Appendix Sec. §B. Pointless topology,
based on locales, which will be defined there, go far be-
yond the generality needed to describe most, if not all of
the known theories in physics. But since for the known
theories topological spaces turn out to be sufficient, in
the following we will stick to these ones, for simplicity.

B. Matter

It appears to us that matter is distributed in space
and changes in time. Classically, particles and fields live
in space and evolve in time. So the natural thing to
do is to define matter as mathematical objects in space,
evolving in time. Quantum Theory challenges this in-
tuition, and challenged it since its inception, as noticed
by Schrödinger, Lorentz, Einstein, and many others [8].
The reason is that, already in Nonrelativistic Quantum
Mechanics (NRQM) of n particles for example, the wave-
function is an object defined on the configuration space of
the n particles, R3n, which consists of the coordinates of
the positions of all particles. For this reason, in NRQM
it may seem more appropriate to take as spacetime in
Principle 1 the direct product between the configuration
space and the time dimension, R3n × R. To allow par-
ticles to be created or annihilated, as in Quantum Field
Theory, we can use the Fock representation of the states
on which the creation and annihilation operators act. In
this case, the many-particle states can be represented as
wave functions on

⊕
k∈N R3k, and spacetime can be re-

placed with
(⊕

k∈N R3k
)
× R.

Remark 4. However, we have shown in [8] that both the
NRQM wavefunction, and the states in Quantum Field
Theory, can be faithfully replaced with complicated fields
defined on the 3D-space. This allows us to understand
spacetime from Principle 1 to be 3 + 1-dimensional.

In general, the matter fields are scalar, pseudoscalar,
vectorial, pseudovectorial, tensorial or spinorial quanti-
ties. The natural way to see the matter fields is as sec-
tions in vector bundles. The scalar, vector, tensor and
spinor fields are in fact functions valued in vector spaces,
and the natural mathematical object that allows us to
deal with such quantities is the notion of vector bundle,
or more general, fiber bundle.
The classical electromagnetic potentials and fields are

described as connections and curvatures of a principal
bundle whose symmetry group is U(1). This works for
other gauge fields present in the Standard Model of Parti-
cle Physics [9–11]. Both connections and curvatures are,
in their turn, sections of appropriate bundles [12, 13].

As far as we know, there exist several different kinds of
matter fields, so maybe we should have several bundles
over spacetime. For classical theories, we simply con-
sider at each point of spacetime the Cartesian product
of all the fibers over that point (if the bundles are vec-
tor bundles, the Cartesian product becomes the direct
sum). Consequently, a single bundle over spacetime is

sufficient, without loss of generality. In Quantum The-
ory, we need to consider tensor products of the vector
spaces of sections. But all of these can be incorporated
in a unique matter field which is a section of a very large
vector bundle, as explained in Remark 4.
Therefore, we will consider that all forms of matter are

contained in a section of a bundle over spacetime:

Principle 2. There exists a fiber bundle M σ→ S over
the spacetime S, which will be named matter bundle.

Here σ is the canonical projection of the bundle on the

base manifold S. The bundle M σ→ S can be a vector
bundle, or simply a topological bundle. The sheaf of its
local sections is named the matter sheaf. The matter field
is a global section of the matter sheaf.
An apparently more general approach is to start di-

rectly with the matter sheaf:

Principle 2′. There exists a sheaf over spacetime,
which will be named matter sheaf.

But of course, any bundle has associated a sheaf of
local sections, and, reciprocally, any sheaf over a topo-
logical space can be made into an étale bundle, such that
the sections in that sheaf are local sections of the étale
bundle. So in fact Principle 2′ is not more general than
Principle 2. Which one is more convenient depends on
the situation. For most classical field theories, Princi-
ple 2 may be more intuitive. For discrete approaches in
which spacetime itself is part of the discrete structures
or it is expected to emerge out of them, Principle 2′ is
more appropriate.
One may worry that only fields can be represented like

this. In fact, even point-particles and their paths through
spacetime can be represented as sections in bundles. A
natural idea is to construct sheaves of trajectories. Would
it be possible to construct a sheaf that associates to each
open set of spacetime a set of curves, so that they de-
scribe the paths of point-like particles in spacetime? The
sections of the sheaf can be characteristic functions of the
sets representing the curves in spacetime. We can main-
tain continuity, which is important for the very definition
of the bundle, and it is general enough, provided that we
choose the appropriate topology. But first we need to
recall the definition of the Sierpińsky space.

Definition 1. The Sierpińsky space S is a topological
space formed by two points, {0, 1}, with the topology
τ = {∅, {1}, {0, 1}}. The set {0} is closed (but not open),
and the set {1} is open and not closed (its closure is

{1} = {0, 1}).

Example 1 (The Sierpińsky bundle). We can take the
spacetime to be R3+1, and the fiber to be the Sierpińsky
space S. The continuous functions f : R3+1 → S are sec-
tions of the trivial bundle S×R3+1 → R3+1 (which we call
the Sierpińsky bundle). The set f−1(1) is open in R3+1,
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and f−1(0) is closed. We can see that the continuous sec-
tions of the fiber bundle S× R3+1 can be identified in a
natural way with characteristic functions of open sets of
R3+1. We prefer here to identify the continuous sections
f with the closed sets of the form f−1(0). Any continuous
curve γ : [0, 1] → R3+1 is a closed set, therefore it defines
sections of this bundle, as restrictions of the character-
istic function of its complement. Therefore, the set of
all possible trajectories of a particle can be represented
by a subsheaf. If we consider a number n of particles,
we simply consider n trajectories. The particle interac-
tions such as decay and scattering can be expressed as
unions of such curves, and they also form a subsheaf of
the Sierpińsky sheaf. This example shows that not only
the fields, but also the trajectories can be described as
sheaves over the spacetime.

C. Physical laws

All the possible sections of the matter bundle form a
sheaf over spacetime, but not all of them are allowed by
the physical laws. In the theories whose laws are ex-
pressed as partial differential equations (PDE) we reduce
the sheaf by accepting only the solutions of the equa-
tions. The local solutions of the PDE form a subsheaf of
the sheaf of sections of the matter bundle.

That this can be done is easier to see in the case of
fields. After all, sheaf theory itself originates from the
study of local solutions of PDE. But the same is true
even for the paths of the point-particles through space.
Example 1 shows how to define the matter bundle and
the matter sheaf in this case. Additional constraints are
imposed by the necessity that the paths are differentiable,
and that they are solutions of PDE.

Because we consider all the matter fields combined into
a single one, the equations can also, at least formally, be
combined into a single equation which describes the evo-
lution of the matter fields and their interactions. This
unique equation is simply a combination of all the equa-
tions that describe the physical laws for all the matter
fields. It is not the “Unified Theory of Physics”, be-
cause any set of equations can be “unified” in this man-
ner. Probably the “Unified Theory” will have this form,
but the component “sub-equations” must be parts of the
“unified equation” in a more natural way, and not in the
trivial way presented here.

For generality purposes, we will identify the laws with
the subsheaf consisting of local matter fields determined
by the physical laws, rather than the equations defining
them. The equations are important, but if we want to
include more general theories, for example discrete ones,
we need to use sheaves rather than PDE.

Principle 3. There exists a subsheaf Λ(S) of the mat-
ter sheaf, named law sheaf.

The set of global sections of the law sheaf is named

the set of solutions, in analogy to the set of solutions of
a PDE.

Remark 5 (The metric tensor). The standard formula-
tions of physics include the metric tensor in the definition
of space or spacetime. However, since in General Rela-
tivity the metric tensor depends itself on the distribution
of matter on spacetime, via the Einstein equation, it is
a dynamical field. To give a unified treatment as we do
here, the metric tensor is included in the matter sheaf
itself, along with what we normally call “matter fields”,
even though it is generally not regarded as matter.

The matter field cannot merely be any allowed section
of the matter bundle, but a global section of the law
sheaf, because it has to obey the Physical Laws:

Principle 4. The matter field is represented by a
global section µ of the law sheaf Λ(S), and will be called
the matter section.

Again, as explained in Remark 5, the metric tensor is
considered here to be a component of the matter section.

D. Symmetries of the laws

A condition which lies at the core of the whole idea that
the physical laws are knowable is their universality. The
physical laws are supposed to be independent on place
and time. The actual state of the universe, described by
the matter section, can of course depend on time and
position.

Principle 5. The law sheaf is independent of the po-
sition and the moment of time. In other words, for any
two events p1, p2 ∈ S, there is a local isomorphism of
the law sheaf mapping p1 to p2.

Principle 5 states that the law sheaf and the spacetime
itself are locally homogeneous. When we will discuss the
distinction between space and time, in Section §II E, we
will also discuss local isotropy (Definition 2).

Question 1. Suppose that the fundamental structure of
the world is such that matter itself is different at differ-
ent points of spacetime precisely because the topological
properties at those points are different. This may be the
case if spacetime is discrete, if the fundamental structure
is graph-like etc.. Then how can Principle 5 hold?

Answer 1. For theories based on discrete structures,
there are ways to generalize the notion of sheaf over the
topological space S so that Principle 5 holds.
One way is to go along with the generalization in which

S is not a topological space, but a locale, as in Appendix
§B, but this would make the formalism too abstract, and
no known theory in Physics seems to absolutely need it.
A much simpler way is to consider such discrete struc-

tures as embedded in a background topological mani-
fold, which will be taken to be the spacetime S. This
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can be done even for background-independent theories
without loss of background-independence. Consider as
an example the cases when the entire theory is based on
graphs or foams (e.g. hypergraphs which not only have
vertices and edges, but also two-dimensional polygonal
structures that are determined by more than two vertices
or edges in a way similar to how an edge is determined
by a pair of vertices in graphs). Then, for each such
graph or foam, there is a dimension n so that any two
embeddings of the graph or the foam in the topological
manifold Rn are homeomorphic. To see this, consider hy-
pergraphs with n+1 vertices. Then, they can be seen as
sub-hypergraphs of the total hypergraph, which can be
embedded as an n-simplex (a higher-dimensional tetra-
hedron) in Rn. Since any such embedding can be trans-
formed into any other one by homeomorphisms of Rn,
background-independence is ensured by the uniqueness
of the embedding up to a homeomorphism.

Therefore, even if spacetime itself is emerging from a
discrete structure, we can still use sheaves to describe the
laws, provided that the “true” spacetime is the emergent
one, and S = R∞ is just a convenient representation that
does not break background-independence.

Question 2. We only have access to a matter section,
which contains us as observers. We have no access to pos-
sible alternative, counterfactual histories of the world, to
compare them with our own history. One may therefore
think that the laws themselves can change in time, that
they can evolve [14]. Then how can Principle 5 hold?

Answer 2. The assumption that the laws are universal
is based on the fact that we can reproduce the experi-
ments made in the past, and we can do this at different
times and in different places. We can do this because we
can concentrate our efforts on subsystems, and we can
manipulate them to make the experimental arrangement.
Whenever the experiment was not reproduced, assuming
that there was no error from our part, we seem to be able
to identify a difference. In this sense, even when physi-
cal quantities that we assumed to be constant changed in
time, we later discovered that in fact they are different as
a consequence of more fundamental and more universal
laws, which allows them to change, and not because the
laws themselves change in time or space.

A more common situation happens when we analyze
the empirical data, and choose a formulation that is
based on laws that are independent of the reference
frame, even though other descriptions are possible. A
simple example of this kind is discussed in Appendix §A.

But there is also a triviality argument for the universal-
ity of the laws. While we only have access to a particular
history of the universe, we can take that history as a sec-
tion of a sheaf (the matter section), and we can use it to
build a sheaf that satisfies Principle 5. This can be done
by identifying all local solutions obtained by restricting
the matter section at different points in spacetime, and
then translating them in spacetime to construct a larger
sheaf which satisfies Principle 5. This construction is

trivial, and leads to a law sheaf that is universal.

There will be more to be said about symmetries in Sec.
§II E, were we will discuss time.

E. Time

So far we treated spacetime as a whole, without dis-
tinguishing space from time. In general, time is a coordi-
nate labeled smoothly with ordered values from R. But
in some theories time can be discrete, and in this case it
can be labeled with integers from Z. For full generality,
the time coordinates can be a totally ordered set T , with
a topology consistent with its order relation (also called
order topology).

Remark 6. Not all continuous maps τ : S → T from
S to T is a time coordinate, because space coordinates
also may have this form. In standard theories like Classi-
cal Mechanics, Relativity, or Quantum Theory, the PDE
distinguish between space and time directions. For ex-
ample, in General Relativity, the metric tensor, which
in the formalism presented here is part of the matter
field, along with the other physical fields of the theory,
specifies which directions are time-like, and this imposes
additional conditions. In all these standard theories, in
order for a coordinate τ : S → T to be a time coordinate,
the restriction of the law sheaf to each slice τ−1(t) of S,
where t ∈ T , should have certain symmetries, for ex-
ample it has to be homogeneous and isotropic, since this
expresses the independence of the laws on the spatial ref-
erence frame. Only spacelike hypersurfaces of spacetime
satisfy isotropy. To generalize this condition, which is
essential if we want to distinguish the space and time
directions in S, a general notion of direction is needed,
which is not present in the mere topology of S, but in
general it is implicit in the law sheaf. At least when
the law sheaf consists of local solutions of some PDE,
partial differentiation requires the existence of directions
in spacetime along which the differentiation takes place.
If the theory is based on discrete structures, directions
may not be definable, and other criteria for distinguish-
ing space and time coordinates are needed. The following
definition will help, and it is general enough.

Definition 2 (Locally isotropic sheaf). Let Ω be a sheaf
over a topological space A, and a ∈ A. Let γ be a contin-
uous path joining a with a distinct point b ∈ A. Denote
by R(γ) the union of all transformations of γ under the
homeomorphisms of A which preserve the point a and
the sheaf Ω. The sheaf Ω is said to be locally isotropic at
the point a if R(γ) is a neighborhood of a.

Definition 3. A time structure is a continuous map τ :
S → T from S to a totally ordered topological space T
satisfying the following conditions:

1. The image of τ has more than one element.
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2. For any time t ∈ T , the restriction of the law
sheaf to τ−1(t) is locally homogeneous and locally
isotropic.

3. For any two distinct times t1, t2 ∈ T , the restric-
tions of the law sheaf to τ−1(t1) and τ−1(t2) are
isomorphic.

Definition 4. For any t0 ∈ T we define the topological
subspace τ−1(t0), and we name it the space at the instant
t0, corresponding to the time coordinate τ .

Principle 6. There exists (at least) a time structure
τ : S → T .

It is possible to have more time coordinates that are
not equivalent under reparametrizations of time alone, as
known from Relativity.

F. Worlds

Let’s summarize the principles enumerated so far:
The matter section µ is a global section in a matter

fiber bundle M σ→ S over a spacetime topological mani-
fold S. There is a locally homogeneous subsheaf Λ of the
sheaf of sections of the matter bundle Γ(S,M), named
the law sheaf, containing the admissible matter sections.
The matter section µ should be a global section of this
law sheaf as well. We can identify it with the subsheaf it
generates, F(µ). All these principles are resumed in the
following diagram:

Matter
field

Law
sheaf

Matter
sheaf

Spacetime

global section

subsheaf

homogeneous

subsheaf

(1)

or, using the notations I introduced,

F(µ) Λ Γ(S,M)

S

global section

subsheaf

homogeneous

subsheaf

(2)

Definition 5. A world consists of a topological space1

S named the spacetime, a locally homogeneous sheaf M
on S (the matter sheaf ), a locally homogeneous subsheaf
Λ of M named the law sheaf, a global section µ ∈ Λ(S)
(the matter section), and a time structure T , all subject
to Principles 1–6.

1 Or, more general, a locale (see Definition 10).

III. EXAMPLES OF WORLDS IN PHYSICS

Let us start with a simple example.

Example 2 (Classical fields). Let spacetime be R3+1,
where space is R3 and time is R. Let the matter bundle
be the trivial vector bundle M = Rk × R3+1 with fiber
Rk, where k ≥ 1. We take as law the wave equation

1

c2
∂2fa

∂t2
− ∂2fa

∂x2
− ∂2fa

∂y2
− ∂2fa

∂z2
= 0, (3)

where f = (fa)a∈{1,...,k} ∈ Γ(R3+1,Rk × R3+1). Its local
solutions form a homogeneous subsheaf (the law sheaf)
of the sheaf Γ(R3+1,Rk×R3+1). The bundle may include
tensors over the tangent space of space or spacetime, con-
nections, and curvatures.
Similarly, we can consider the heat equation, Maxwell’s

equations and so on. For classical interacting fields, the
bundle is the direct sum bundle of the bundles of the in-
dividual fields. The evolution equations include in this
case interaction terms, which describe how two fields af-
fect one another. This defines the law sheaf. In this
way, a classical theory in which different kinds of classi-
cal fields exist can be constructed.
This applies to Special Relativity as well. Topologi-

cally speaking, spacetime is in both cases R4. The dif-
ference between Classical Nonrelativistic Mechanics and
Special Relativity is due to the different symmetry groups
of the laws, which respectively are the Galilean Group
and the Poincaré group.

Example 3 (Classical gauge theory). Gauge theory can
be used to formulate Maxwell’s electrodynamics in terms
of fiber bundles [9, 10, 12]. Maxwell’s equations can be
described as in Example 2. But with fiber bundles, the
electromagnetic potential gains a geometric interpreta-
tion as a connection, and the electromagnetic field be-
comes its curvature. The gauge group in this case is U(1).
The idea scales to higher-dimensional Lie groups, leading
to the Yang-Mills theory [15]. This led to the unification
of the electromagnetic and weak interactions [16–18], and
applies to the strong interactions too [9, 10].

Example 4 (Classical point-particles). With the same
spacetime R3+1 as in Example 2, we may wonder how
can we describe point-particles. The history of a point-
particle is a path in R3+1. Continuous fields cannot rep-
resent it, if the topology is the manifold topology.
But we can use a different topology – that of the

Sierpińsky space from Definition 1. As it was shown in
Example 1, this allows us to define the Sierpińsky bun-
dle, which can be used to treat paths in R3+1 similarly
to how we treated fields in Example 2. When particles
collide and disappear or new particles appear, the paths
are connected into a graph. Graphs embedded in R3+1

can also be represented as fields on R3+1, and in the
Sierpińsky topology they are continuous sections of the
Sierpińsky bundle. To endow the point-particles with
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properties like mass and charge, which appear in the evo-
lution equations, we need to take the product bundle ob-
tained from the Sierpińsky bundle and the line bundles
(with the fiber R) for each type of scalar quantity. In
particular, a line bundle for the masses, another one for
the electric charges and so on. This way, each point-
particle is not merely a path in spacetime, but it also has
“attached” charges and masses.

Thus, the matter bundle in this case contains the
Sierpińsky bundle, and the law sheaf restricts these “dis-
crete fields” to point-particles. The bundle can be ex-
tended to include even fields like the electromagnetic or
gravitational fields. The law sheaf is as usual the sheaf of
local solutions of the equations describing the evolution
and the interactions between fields and point-particles.

Again, this applies to both Classical Nonrelativistic
Mechanics and Special Relativity, for the reasons given
in Examples 2 and 3.

Example 5 (General Relativity). In General Relativity,
spacetime is a four-dimensional manifold. This means
that it is only locally homeomorphic to R3+1. It ac-
tually is more than this, it is locally diffeomorphic to
R3+1, which ensures the existence of the tangent bundle,
whose fiber is the vector space R4. To this bundle, we
associate the bundle of symmetric nondegenerate bilinear
forms. The metric tensor is a section of this bundle, and
it changes from point to point in a way that depends on
how matter is distributed on spacetime, according to the
Einstein field equation.
This bundle is then combined in a direct product with

a bundle whose fibers are the same as in Special Rela-
tivity, which may include fields and point-particles as in
Examples 2–4. The metric tensor field interacts with the
other fields, and this happens in both directions, since on
the one hand the differential operators in the field equa-
tions depend on the metric tensor, and on the other hand
the metric tensor depends on the curvature, which is re-
lated by Einstein’s equation to the stress-energy tensor
of the other matter fields. As we see, in this case the
metric tensor is included as a component of the matter
field. This is natural, since the metric tensor is itself a
dynamical field that interacts with other fields.

Other generalizations or modifications of General Rel-
ativity, for example theories obtained by replacing the
Einstein-Hilbert Lagrangian with other Lagrangians like
f(R) [19], conformal gravity [20], Einstein-Cartan theory
[21] etc., can be described in a similar way.

The occurrence of singularities in General Relativity
suggests that we should release the constraint that the
metric is nondegenerate. For example, Singular General
Relativity [22] is equivalent to General Relativity outside
the singularities, but in addition it can describe a large
class of singularities without running into infinities.

As already mentioned, by using the Sierpińsky bundle
we can define graphs on manifolds. Also, we can de-
fine graphs with labeled vertices or edges, by considering
a bundle with fibers S × K, where S is the Sierpińsky

space, and K is a set, for example a field. We can also
define triangulations into simplices, and associate to the
manifold simplicial complexes. To the k-simplices we can
associate values in the same manner.
As explained in Answer 1, the spacetime can be in

this case the topological manifold R∞, in which hy-
pergraphs (including simplicial complexes) can be em-
bedded uniquely up to homeomorphisms. This unique-
ness ensures that spacetime does not break background-
independence.

Example 6. Regge calculus is based on discretizing the
Lorentz manifold in General Relativity by replacing it
with a simplicial complex, which is a hypergraph. The
metric is replaced with numbers associated to the edges
(their lengths), and the curvature with angles of the 2-
simplexes. Tullio Regge showed how we can translate in
this setup a discretized version of the Einstein equation
as constraints on these angles [23]. His work led to signif-
icant applications in numerical relativity and Quantum
Gravity.

Example 7. Spin networks, initiated by Roger Penrose
[24–27], are graphs having all vertices of order 3, and the
edges labeled with integers satisfying a set of rules (the
triangle inequality and the fermion conservation). Later,
the spin networks were generalized, by replacing the num-
bers on the edges with group representations, the vertices
with intertwining operators, and by allowing the order
of each vertex to be greater than 3 [28–30]. Spin foams
are similar with spin networks, but with two-dimensional
facets. They are used in Loop Quantum Gravity [31].

Example 8. Let us employ instead of a continuous
spacetime, a lattice of points in the Euclidean version
of the Minkowski spacetime, obtained by a Wick rota-
tion. Define fermionic fields at the vertices of the lattice,
and gauge fields (elements of a Lie group) on the edges
linking them or on the loops they form. This is how we
can construct a lattice gauge theory [32].

Example 9. Starting from the observation that in Gen-
eral Relativity the causal structure contains, up to a con-
formal transformation, all the information about the ge-
ometry, Sorkin [33–35] initiated the idea of causal sets.
In this theory, we keep only a discrete set of points of the
Lorentz manifold of the General Relativity, and a partial
order relation encoding the causal structure. A causal
set has an order relation which is irreflexive, transitive,
and between any two points there is a finite number of
intermediate points. The number of points in each region
we define the 4-density, which together with the causal
structure recovers a discrete version of the spacetime ge-
ometry.

Example 10. In string theory, the bundle can have as
fiber the product of the Sierpińsky space and a space
of extra dimensions, for example a Calabi-Yau manifold.
The Sierpińsky bundle is needed to define submanifolds
like strings and d-branes.
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All Examples 6–10 are particular cases of worlds in
which the Sierpińsky bundle is used.

Example 11 (Quantum Theory). Examples 2–10 are
classical, they need to be quantized. This, largely speak-
ing, consists of taking a classical Hamiltonian formulation
and promoting the Poisson brackets to commutators on
an appropriate Hilbert space. This can be achieved in
different ways.

In general, the Hilbert space is a tensor product of
smaller Hilbert spaces, corresponding to elementary par-
ticles. The Hilbert space of an elementary particle con-
sists of wavefunctions on space, and they can be seen,
when evolving in time, as fields on spacetime. But when
at least two elementary particles are involved, this is not
enough. The wavefunction becomes a field on the config-
uration space, which means that spacetime representa-
tions seem to be insufficient. As explained in Sec. §II B,
this problem was known since the beginning, in particu-
lar by Schrödinger, Lorentz, Einstein, and others. In [8]
a representation completely equivalent to that of Quan-
tum Theory, but in terms of (very complicated) fields on
spacetime, was given. This works for both NRQM and
Quantum Field Theory.

Example 12. Another class of examples (also of the
PDE type) can be defined if we take the base manifold
as only consisting of the time dimension, and the fiber as
being the phase space. We require the sections to respect
the Hamilton’s equations:{

ṗ = − ∂H
∂q

q̇ = ∂H
∂p ,

(4)

where q and p are the generalized coordinates and mo-
menta, and H the Hamiltonian. Hamilton’s equations
can be used to formulate Classical Physics.

Example 12 is a particular case of dynamical system.

Definition 6. A dynamical system is a partial action of
a monoid (T,+) on a set M , (T,M,α):

1. α : U ⊆ T ×M → M ,

2. α(0, x) = x, and

3. α(t1, α(t2, x)) = α(t1+t2, x) for (t1, x), (t2, x), (t1+
t2, x) ∈ U ,

where α is named the evolution function andM the phase
space or state space.

Example 13. To a dynamical system (T,M,α) we can
associate a world, by taking T with the order topology
as spacetime, and the matter bundle as T ×M . The law
sheaf consists in the restrictions of the partial functions
αx : I(x) → T × M , αx(t) = (t, α(t, x)), where I(x) =
{t ∈ T |(t, x) ∈ U}.

IV. DETERMINING THE MATTER SECTION

A. Determining a section

If the law sheaf comes from PDE, a solution can be de-
termined by a set of initial and/or boundary conditions.
But this is idealized approach has two problems:

1. it only works if the law sheaf comes from PDE, and

2. it is not what we do in practice, when we determine
the matter section through experiments spread at
various points of spacetime.

In practice, we only learn new additional information
from experiments, and this information is only local, and
it is subject to the experimental error. Experiments and
observations, including quantum measurements, are local
operations, whose results are never 100% precise. They
tell us that the measured properties have values within
this or that interval. We are not Laplace’s daemon who
completely knows the initial state of the world.
In this section, I will define the sheaf selections, which

generalize the initial/boundary conditions from the case
of the PDE to the sheaf language, and for the kinds of
observations we are actually making in practice.

Definition 7. Let µ be a section of a sheaf F . A A sheaf
selector is a subsheaf of the law sheaf. A sheaf selection
is a set of selectors, whose intersection contains at least
a global section.

The matter field is supposed to be a global section of
a sheaf selection obtained from observations and experi-
ments. In particular, assuming we know from experiment
the initial conditions of a system that evolves determin-
istically, there is a unique matter field satisfying those
initial conditions. To the matter section we associate a
sheaf, consisting of the restrictions of the matter field
to each open subset of S. Let us define in general such
sheaves associated to a global section.

Definition 8. Let F be a sheaf. A subsheaf M ≤ F is
said to be section-like if for any U ∈ O(M), M(U) has
exactly one element.

Remark 7. Any global section of F defines canonically
a section-like subsheaf. Reciprocally, each section-like
subsheaf of F admits a unique global section, which is,
of course, also a section of F . Thus, there is a one-to-
one correspondence between the global sections and the
section-like subsheaves of a sheaf of sets, F .

The matter field is therefore equivalent to a section-like
subsheaf of the law sheaf.

B. Determining the matter section

Since we are not Laplace’s daemon, we can only know
partially the initial conditions. In fact, we can only know
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the values of certain properties of the matter section in
certain regions of spacetime, and even for those values
we can only know a probability distribution, due to mea-
surement error. These conditions are not stricto sensu
“initial”, because they are spread in various regions of
spacetime where observations occur, so I will call them
delayed initial conditions.

Classically, we think that the matter field is prede-
termined. In other words, that its initial conditions are
already fixed long time ago, likely at the Big Bang. By
this view, our measurements partially reveal preexisting
information about the matter field, information already
encoded in the fixed initial conditions.

But when quantum measurements are performed, this
description seems to be contradicted. By making a suc-
cession of two incompatible measurements, the two re-
sulting eigenstates are inconsistent with the Schrödinger
equation. For example, if we measure the spin of a spin 1

2
particle along an axis, we find it to be along the positive
or the negative direction of the axis. If we then measure
the spin again, but along a different axis, we find it to be
along the positive or the negative direction of the second
axis. Hence, the initial conditions established by the first
measurement are not consistent with those established by
the second one, even if we take into account that the par-
ticle evolves in time according to the Schrödinger equa-
tion. Then, the Projection Postulate is invoked, stating
that a wavefunction collapse occurred. The previously
determined initial conditions are reset and replaced with
the new ones. Consequently, it seems that there is no
global matter sheaf consistent with more measurements.

There is another possibility, described by Wheeler in
terms of the game of twenty questions, in which the play-
ers try to guess a word by asking yes/no questions. Col-
lecting observations and measurements can be seem as
questioning the Universe about its state. But Wheeler
mentions another version of the game, in which the word
to be guessed is not fixed since the beginning of the
game. The person who chooses the word just makes
sure to give answers that are consistent with the exis-
tence of a nonempty set of words. So eventually the set
may be restricted to only one word, which was not pre-
viously known to the person who chooses it. Wheeler
uses this idea to interpret the universe as being partici-
patory [36, 37]. This is his interpretation of Bohr’s views
on Quantum Mechanics, encoded in the saying “no phe-
nomenon is a phenomenon until it is an observed phe-
nomenon”. He illustrates this with the delayed-choice
experiment, which seems to be most naturally interpreted
in terms of choices that can affect the past history of a
particle. It can in fact be interpreted in all interpreta-
tions of Quantum Mechanics, but this particular type of
experiment seems to be more naturally interpreted by
assuming that the past is not predetermined.

In terms of sheaf selections, this idea gains a natural
interpretation. There is no predetermined matter field,
only a sheaf selection that is updated in time. Every new
measurement adds a new selector to the sheaf selection,

restricting the number of global sections.
But how can this solve the inconsistency between suc-

cessive measurements, like in the example of two spin
measurements along different axes? This seems to indi-
cate that there is no global section, unless we allow the
sections to be discontinuous in time. However, if the mat-
ter section is not predetermined, then the resulting free-
dom can allow apparently incompatible measurements to
be accommodated by global sections. To understand this,
one should recall that not only the observed system is in
an undetermined state, but also the measuring appara-
tus. The measuring apparatus may have a well defined
state at the macro level, but its actual micro state can
be one of infinitely many possible. This remains unde-
termined both by construction and functionality, by the
way in which it is manipulated by the experimentalist.
The actual state of the observed system is also not deter-
mined. What is determined is what the measuring device
indicates it to be, and this is a macro state. For this rea-
son, measurements only determine a selector with many
possible sections, but the actual section remains unde-
termined. With every measurement, the possible matter
states are reduced, but they remain still infinitely many.
The possibility that incompatible measurements are ac-
tually compatible is discussed in [38–42].

C. Determining the physical laws

The law sheaf may result from the conjunction of
more physical principles. In this case, each principle de-
termines a locally homogeneous subsheaf of the matter
sheaf. Their intersection is the law sheaf. Let us see some
examples showing how pinching can reduce a locally ho-
mogeneous sheaf to a locally homogeneous subsheaf.

Example 14. Let M be an analytical manifold. Its
structure can be specified by a pseudogroup of analyt-
ical transformations, composed by the transition maps.
We can consider a hierarchy T ω(M) ⊂ T ∞(M) ⊂ . . . ⊂
T k(M) ⊂ . . . ⊂ T 1(M) ⊂ T 0(M) of pseudogroups of
transformations, from analytical transformations to dif-
ferentiable transformations of finite degree, ending with
continuous ones. These layers reflect the differentiable
structures and the topological structure of an analytical
manifold. Considering the real-valued functions on M ,
we obtain the following hierarchy of sheaves: Cω(M) ⊂
C∞(M) ⊂ . . . ⊂ Ck(M) ⊂ . . . ⊂ C1(M) ⊂ C0(M).

In the previous example the selection was a sequence or
a hierarchy. The following example provides us a latticeal
selection which is not sequential.

Example 15. Let V be an topological vector space. The
continuous linear forms on V define a sheaf which can
be obtained by intersecting the sheaf obtained from the
linear forms on V with the sheaf of continuous functions
from V to R. If the dimension is finite, the linear forms
on V are also continuous, and the selection is sequential.
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In the infinite dimensional case, the linear forms on V
are not necessarily continuous, therefore the selection is
latticeal but not sequential.

Example 16. As an example of totally ordered selec-
tion which is not sequential, because it is continuous, we
can take the Sobolev spaces {W s(X,E)}s∈R, of a Hermi-
tian differentiable vector bundle E → X. Sobolev spaces
{W s(X,E)}s∈R satisfy W s ⊂ W t for any s > t, and it is
a selection of W∞(X,E).

While these examples are mathematical, they apply to
fields in Physics too.

For applications in Physics, pinching the law allows us
to think about theories at different levels of abstraction.
The most abstract level within World Theory is to think
of the world as the mathematical object “world” in Def-
inition 5. Then we can introduce various principles and
define less general worlds, for example quantum worlds,
relativistic worlds etc..

V. WHAT WORLD THEORY CAN DO?

The mathematical object named world can be used to
mathematically model the laws of Nature. We have seen
that a very large class of theories in Physics can be ex-
pressed in this language. This is because it abstracts the
most general properties of the known theories. World
Theory’s main purpose is to derive logically general con-
clusions that can be applied to a large class of physical
theories. This means that it does not compete with par-
ticular theories. It is not likely to be falsifiable, but this
is not a handicap, because this theory does not try to
eliminate from competition other theories. Its purpose
is merely to extract the common assumptions in an ab-
stract manner, and to derive logical and mathematical
consequences.

Another possible application is to provide a framework
to mathematically formulate theories from other domains
of Science, such as Chemistry, Biology, Psychology, Soci-
ology, Economics. World Theory being a mathematical
one, it can be applied to any system that satisfies its defi-
nition. These theories study emergent phenomena, which
cannot be directly inferred from the laws of Physics. Al-
though it is assumed that we can describe these emergent
objects and laws in terms of physical objects and laws,
in practice it is not always possible to reduce everything
to the fundamental level, due to complexity. It is also
preferable to emphasize the higher level behavior. We
can compare these emergent laws with a computer pro-
gram, which is a computer program without regard of its
physical support (hardware).

At a higher level or coarse grained level many details
of the fundamental level are ignored. A higher level ob-
ject can be constructed in more ways at the fundamental
level. Macro states are obtained by coarse graining from
the fundamental states in the state or phase space, as in
Statistical Mechanics.

Another possible application is to offer less ambigu-
ous ways to discuss and think about concepts that usu-
ally fit in areas of Philosophy, such as Metaphysics and
Epistemology. A philosophically neutral, unified and un-
ambiguous language provided by Mathematics can bring
more clarity in such fields.

Appendix A: Symmetries and universality of the
laws. An example

For the particular kind of physical law defined by PDE,
the law provides just the evolution equation, having an
infinity of solutions. In order to specify a solution, we
can use a condition at a given moment t0 = 0. In the
case of most equations of the Physics, specifying the evo-
lution equation and the initial conditions gives a unique
solution. In the following, we will exemplify the way
we choose the law sheaf by applying considerations of
symmetry, which are comprised in the condition of local
homogeneity of the law sheaf (Section §IID).

Example 17. For example, let us consider a point-
particle moving with a given constant acceleration a in
the Euclidean plane R2. Suppose that the evolution is
described by the equation

d2 x

d t2
= a (A1)

which admits solutions of the form

x(t) =
1

2
at2 + v0t+ x0, (A2)

where a, v0, x0 and x are vectors in R2, a is given, v0

and x0 are free parameters. Let us denote the subsheaf
of sections of this form by Λ. Spacetime is R2 × R, and
the matter bundle is defined as in Example 4 using the
Sierpińsky bundle.
Knowing

x(t0) = x0 (A3)

for an initial moment t0 = 0 gives us an initial condition.
This condition does not determine a unique solution, but
a subspace of the general solution space, of the form:

x(t) =
1

2
at2 + v0t+ x0,

where the only free parameter is now v0. These solutions
define a subsheaf Λ′ of the sheaf Λ of all solutions. We
also need to know v0, the initial speed – the first deriva-
tive of x(t) at the moment t0 = 0. Let’s write this second
initial condition:

dx

d t
(t0) = v0. (A4)

The two conditions (A3) and (A4) reduce the solution
space to a space containing a unique element, which is
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just the solution, and defines a subsheaf Λ′′. Then the
solution is given in term of three equations – the evolution
equation and the two initial conditions (A3) and (A4). It
seems that the law sheaf for this case is Λ.

But the condition for the initial position defines a sub-
sheaf Λ′ in Λ, isn’t it possible to consider Λ′ instead? The
answer is yes, but our common sense tells us that Λ is
more appropriate, because it is independent of the value
x may take at a particular moment t0 = 0. Of course, Λ
depends on the acceleration a, but a is presumed inde-
pendent of t.

This example shows that when we consider the physical
laws expressed as equations of evolution, it appears to
exist a natural way to distinguish the law sheaf from the
subsheaves determined by particular initial conditions.
The distinction is made by the condition that all the
coefficients in the equation are independent of time and
space. But v0 and x0 are constants as well, hence it
may seems that all sheaves Λ, Λ′ and Λ′′ can be equally
considered as the law sheaf. Still, why does it seem more
natural to choose Λ? Let’s apply a transform to the time,
t 7→ t+ θ. The equation (A2) is transformed into

x(t) =
1

2
at2 + v1t+ x1, (A5)

where x1 = 1
2aθ

2 + v0θ+ x0 and v1 = 1
2aθ+ v0. We see

that only a, the coefficient of t2, is independent of time,
while the coefficients of t1 and t0 are not. We can ex-
tract the following prescription: if the law sheaf contains
the function x(t), it should also contain x(t + θ). This
makes the law sheaf invariant to time translations. More
generally, we want the physical laws to be independent
of space and time, and this is why we prefer a locally
homogeneous law sheaf.

The invariance properties are used to characterize the
properties of the law sheaves. In general the law sheaf can
be defined in more than one way. We want the law sheaf
to describe best the systems we are studying. We want
the description to be general – for example to be indepen-
dent of the particular time and position, or of the initial
conditions. At the same time, we do not want the de-
scription to be too generic, otherwise it will not be useful.
For instance, in the same Example 17 we could define the
law sheaf as the solutions of the equation d3 x/d t3 = 0.
We could even define it as the sheaf of all continuous
functions x : R2 → R. But, while these definitions give
locally homogeneous sheaves, they are too generic.

The choice of the law sheaf depends on the intended
level of abstraction – in the example above, if we just
want to study the continuous motions, the sheaf of con-
tinuous functions is good enough. If we want to study
the generic accelerated motions, we can consider a sheaf
of accelerated motions with all the possible accelerations.
If we want to study a particular example, we can consider
the sheaf Λ′′ which contains a unique solution.
In general in Physics, the laws are independent of the

initial conditions, but there are theories which study pre-
cisely the initial conditions – such as the theories of the

origin of the physical world. Also there exist laws of
Physics which currently are the same at any moment
and position, but are dependent on the initial condi-
tions of the Universe. For example the Second Law of
Thermodynamics is valid everywhere (although its valid-
ity is only statistical), but it depends on the initial low
level of entropy of the Universe. Other theories explain
some properties of the particles and their interactions by
a spontaneous symmetry breaking occurred in the early
ages of the Universe, e.g. the electroweak theory [16–18].
In most cases, the physical laws expressed by the law

sheaf have some invariance properties. Sometimes the
law sheaf is invariant to groups or pseudogroups of trans-
formations of the underlying topological manifold which
is the spacetime. This is the case of the Newtonian
Physics, whose laws are invariant to global transforma-
tions which form the Galilei group, and with the Spe-
cial Theory of Relativity, whose invariance group is the
Poincaré group. Some equations, like Maxwell’s, are in-
variants of a larger group – the conformal group O(2, 4).
Spinor field equations in Special Relativity are invariants
of the group SL(2,C). General Relativity states that the
laws should be diffeomorphism-invariant, i.e. invariant
to the transition functions of the differentiable manifold
representing the spacetime. Transformations of the fibers
also can leave the form of physical equations unchanged
– this is the case of the gauge transformations.

Appendix B: Generalized worlds

Throughout this article, spacetime S has been taken to

be a homogeneous manifold, the matter bundle M σ→ S
was a bundle over S, the law sheaf Λ was a subsheaf of
Γ (S, M), and the matter section µ a global section of Λ.
Theories of Physics, like the Classical Mechanics, Elec-

tromagnetism, Special Relativity, General Relativity,
Quantum Mechanics, Dirac’s Relativistic Quantum Me-
chanics, Gauge Theory, Quantum Field Theory etc. can
be viewed as special cases of the model described above.
Now we will make the natural generalization of the world
defined before.
Any topological space can be seen as a category Op(S)

whose objects are the open subset of S, Ob(Op(S)) =

{U ⊂ S|Ů = U}, and whose morphisms (or arrows) are
the inclusion maps, Hom(Op(S)) = {i : U ↪→ V |U, V ∈
Ob(O(S)), U ⊂ V }. The category Op(S) defines the
topology of S (more precisely, the topology of S can be
recovered if S is a sober topological space). The occur-
rences of the notation S in this article can then be un-
derstood as denoting the category Op(S).
Now we can generalize spacetime to a locale, a general-

ization of a topological space which may or may not have
enough points to distinguish any pair of open subspaces.
It may even have no points at all (pointless topology).
For the following definitions see [43, 44].

Definition 9. A frame is a complete lattice with all
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finite meets and all arbitrary (finite or infinite) joins sat-
isfying the infinite distributive law:

U ∧

(∨
i

Ui

)
=
∨
i

(U ∧ Ui)

for any element U and any family of elements Ui.

Definition 10. Frames are objects in a category named
(Frames), having as morphisms maps of partially ordered
sets which preserve the frame structure. This means that
they preserves the finite meets and arbitrary joins. The
objects of the dual category (Locales) := (Frames)

op
are

named locales. We denote the corresponding frame of a
locale X by O(X).

For example, a topology is a locale. This fact allows
us to define a functor from the category of topological
spaces (Spaces) to the category of locales (Locales),

Loc : (Spaces) → (Locales) (B1)

which associates to each topological space T the locale
dual to the frame of its open subsets, by

O (Loc(T )) := O(T ). (B2)

Definition 11. A point of a locale X is a map of lo-
cales 1 → X from the terminal object 1 of the cate-
gory (Locales) to X. We denote by pt(X) the set of
all points of the locale X. It is a topological space in
a canonical manner, with the open sets pt(U) = {p ∈
pt(X)|p−1(U) = 1} ⊆ pt(X).

Principle 1′. There exists a locale S, which will be
named spacetime.

Locales and the more general Principle 1′ are provided
for full generality. The structures proposed in this article
being sheaves over topological spaces, they can be easily
extended to sheaves over locales. As such, the matter
sheaf becomes a sheaf over the spacetime locale, the law

sheaf a subsheaf of the matter sheaf, and the matter field
a section of the law sheaf.

In Section §II E, time was considered to be a set T en-
dowed with an order topology. Now we have to replace
this with an order locale. For time intervals that do not
contain points, as it can happen if time has a locale struc-
ture, there will be no space at a given moment of time
t0 ∈ T as in Definition 4, because there will be no definite
moment of time t0. There can only be slices of spacetime
corresponding to time intervals that are open in T .

In the same spirit of considering the locale structure
of S as its defining structure, time can be introduced as
a subcategory of S. Start with the case when spacetime
S is a topological space, and let τ : S → R be a time
coordinate on S. The subsets of S defined for t ∈ R by

St := {p ∈ S|τ(p) < t} (B3)
are open, and they form a subcategory of Op(S). Since
the time coordinate is supposed to be continuous (with
respect to the topology of S), the inclusion functor defin-
ing the subcategory whose objects are the open sets (B3)
has to be continuous. Recall that a functor is continuous
if it preserves the limits. When the inclusion functor is
continuous, we say that the subcategory it defines is con-
tinuous. This captures the idea that time is continuous
with respect to the topology of spacetime.

Since time is totally ordered, we should also transfer
this order to categories. A category is said to be totally
ordered if its morphisms define a total order “→” on its
set of objects.

Due to the way we formulated them, these observations
generalize immediately to locales. Hence, we can now
define time.

Definition 12. A time structure is a totally ordered con-
tinuous subcategory T of S. The time structure T is
called global time structure if it includes among its ob-
jects the initial and terminal objects of the category S.

When S is a topological space, its initial object is the
empty set ∅, and its terminal object is the set S.
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