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Abstract 

In the last years, the surprising bosonic behavior that a many-fermion system may acquire, has 

raised interest because of theoretical and practical reasons. This trans-statistical behavior is 

usually considered to be the result of approximation modeling methods generally employed by 

physicists when faced with complexity. In this paper, we take a tensor product structure and an 

ontology of properties approach and provide two versions (standard and algebraic) of a toy model 

in order to argue that trans-statistical behavior allows for a realistic interpretation. 

Keywords composite bosons – non-individual bundle – ontology of properties – tensor product 

structure 

 

Section 1 Introduction 

1.1. Indistinguishability and statistics 

In classical mechanics, a composite system of two or more identical particles rearranged because 

of a permutation between them is statistically considered a different microstate. This fact leads to 

Maxwell-Boltzmann statistics. In quantum mechanics (QM), an analogous permutation does not 

yield a statistically different possibility. For this reason, it is said that quantum identical particles 

are indistinguishable. That means that any permutation between them cannot yield any 

observable consequence. The indistinguishability postulate (IP) of QM may be formulated as 

follows (see Butterfield 1993): 

IP: If the vector   represents the state of a composite system whose components are 

indistinguishable particles, then the expectation value of any observable represented by an 

operator O  must be the same for   and for any permutation '  

 :' P ' O ' O        (1) 
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In order to satisfy IP, a restriction to states is usually introduced in QM: the symmetrization 

postulate (SP). IP is satisfied by symmetric S  or antisymmetric A  states with respect to 

permutation operator P . Both of them are eigenvectors of P  with eigenvalues (1)  and ( 1)  
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

 
 (2) 

So, a formulation for SP may be (see Fortin and Lombardi 2021)  

SP: Any system of many identical particles is represented by either a totally symmetric 

quantum state (bosons) or a totally antisymmetric quantum state (fermions), where 

symmetry and antisymmetry are defined in terms of permutations P . 

 ' P      (3) 

In order to obtain a symmetric S  or antisymmetric state A  from a generic state  , 

symmetrizer S  and antisymmetrizer A  operators should be applied to it 
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It must be noted that fermions (half-integer spin) and bosons (integer spin) have very different 

behaviors. A many-fermion system is represented by an antisymmetric state, and, therefore, as 

the Pauli Exclusion Principle states, it is not possible to find two fermions in the same state. This 

gives rise to the Fermi-Dirac statistic for fermions. On the contrary, in accordance with Bose-

Einstein statistics, two different bosons can be in the same state. 

1.2. Trans-statistical behavior 

Taking into account SP, it is quite clear that quantum particles must behave as fermions or 

bosons. However, under certain circumstances, physicists found surprising bosonic behavior in 

many-fermion systems. That is the well-documented phenomenon of composite bosons or simply 

co-bosons. In this paper we call it trans-statistical behavior of quantum particles. On the one 

hand, the issue has raised theoretical interest among many researchers. Law (2005) found that the 

degree of entanglement between constituent fermions in a multiparticle system determines how 

close it behaves as a system of composite bosons. As a result, interactions are not strictly needed 

for the phenomenon to arise. If there are interactions, they apparently only reinforce correlations 

which are the determinant factor for bosonic behavior. Chudzicki et al. (2010) obtained a 

generalization of Law’s approach in terms of creation and annihilation operators. On the other 

hand, the issue is also relevant for practical reasons since it has connections with several 

applications such as quantum information processing (Gigena and Rossignoli 2015), Bose-
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Einstein condensates (Avancini et al. 2003, Rombouts et al. 2003), excitons (Combescot et al. 

2001) and Cooper pairs in superconductors (Belkhir el at. 1992). Recently, some of these studies 

have been applied to describe both fermionic and bosonic behavior of confined Wigner molecules 

(Cuestas el at. 2020). 

1.3. A non-realistic approximation 

It is a usual assumption that trans-statistical behavior is a phenomenon that should not be 

interpreted realistically, but simply as a result of approximation methods frequently employed in 

experimental physics (see Tichy et al. 2014 for an example). Most phenomena are so complex 

that they just cannot be modelled in a realistic manner. In turn, it is necessary to work with 

models that only provide an approximate description of the object under scrutiny. Physicists are 

well aware that in these circumstances, approximate models may predict behavior that cannot be 

expected for a physical real object. For the sake of clarity, it is not really expected that a real 

pendulum will exhibit perpetual motion. That is only predicted for an approximate model. 

Analogously, it is not believed that a many-fermion system really behaves as a system of bosons. 

Trans-statistical behavior of identical particles –it is believed– is only a suitable description for 

the observed phenomenon that arises from approximate models of many-fermion systems under 

specific conditions, in which entanglement is apparently a key factor.  

1.4. A TPS approach 

In this paper we tackle trans-statistical behavior from a different perspective. We take a tensor 

product structure (TPS) approach (see Harshman and Wickramasekara 2007). As it is well-

known, a TPS is a particular way (among many) to factorize the Hilbert space into subspaces or, 

from an algebraic approach, decompose the algebra of observables into subalgebras in order to 

split a system into subsystems. We benefit from studies that defend the idea that the notion of 

separability between subsystems is not absolute but relative to a particular partition (Zanardi 

2001). In this work we explore the possibility that the relativity of separability extends to 

quantum statistics. Such relativity of separability leads also to the question of which of the many 

mathematically possible TPSs should be endowed with physical significance. The very idea of 

what a system is has also been put into discussion (Dugić and Jeknić 2008). At this point, the 

matter demands that we also adopt a philosophical perspective. The fact that a multiparticle 

system may be factorized in many equally legitimate structures, poses the question of what is the 

ontological picture that trans-statistical behavior entails if it is realistically interpreted.  

1.5. A realistic interpretation 

We are proposing a toy model in which different TPSs give rise to both fermion-like or boson-

like behavior. We aim to show that trans-statistical behavior is built into QM formalism, in a way 

that favors a realistic interpretation of that phenomenon. It is important to emphasize that we are 

not intending to create an approximate model to capture such systems empirically, as usually 
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performed by experimental physicists. We just play mathematically with QM formalism to create 

a toy model. Before proceeding, it is also necessary to make clear in what sense we are talking 

about reality. We are not referring to it as a noumenon in a naïve manner. Our concept of reality 

is a relative one. It is reality as it is constituted by the theory, in our case QM. It is a categorical-

conceptual framework endowed with ontological significance (see Lombardi 2021). In simple 

terms, we talk of reality as if QM were true. 

1.6. Towards an ontological lesson 

If trans-statistical behavior were indeed built into QM formalism, it would be possible to take it 

as a fundamental concept of the theory. And if, at the same time, we assume a realistic stance 

towards QM, we could benefit of trans-statistical phenomenon to learn a lesson about QM 

ontology. A topic of debate in QM ontology is what ontological concept is adequate to refer to a 

quantum system. There are traditional ontologies, which are favored by the familiar particle-

picture in physics, in that properties are attributes of individuals. The ontology of individuals and 

properties suggests that fermions should retain their identity when merged in a composite and 

only in a merely descriptive manner could behave as bosons. There are also ontologies based 

exclusively on properties (see da Costa and Lombardi 2014). From this perspective, a system 

may be just a non-individual bundle of properties. If a system is a bundle, there is no need that it 

preserves its identity when it enters in a composite. This ontology of non-individual bundles 

would allow us to claim that statistical behavior does not depend upon any identity conditions 

previously possessed by quantum systems and so, construe trans-statistical behavior in a realistic 

manner. 

1.7. Content of the next sections 

In section 2, a first version of our toy model will be proposed. In this first version, we work with 

a standard Hilbert space formalism. States will have logical priority over observables. 

Consequently, systems will be identified from their vector state and standard indistinguishability 

(IP), and symmetrization (SP) postulates will be employed. In this version, we settle two specific 

TPSs to account for both fermionic and bosonic behavior. On the one hand, alpha-partition will 

entail fermionic behavior. On the other, beta-partition will induce a bosonic one. We work in this 

section exclusively at a mathematical level.  

In section 3, we will not only work mathematically. The basic lines of an ontology of properties 

for QM will be exposed. This ontology was originally suggested by the algebraic formalism of 

QM, which grants priority to observables over states. So, a second version of our toy model will 

be proposed, in which the two partitions settled in section 2 are reconsidered from the algebraic 

approach. The main idea is to show that the same set of observables yields fermion-like or boson-

like behavior with respect to different TPSs, both in a single system in the very same state. It will 

be concluded that trans-statistical behavior –so modeled– allows a realistic interpretation that 

strengthens a non-individual bundle ontological picture. We end up with some final remarks 
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Section 2 The toy model in Hilbert space 

In this section we will present a toy model in which it is possible to study the bosonic behavior of 

particles composed of fermions. Although we deal with only four fermions in this model, it could 

be easily generalized to any even number of fermions. Our interest is to argue in favor of the 

relativity of quantum statistics by making clear that fermionic and bosonic behavior arise as a 

result of considering different partitions of a multiparticle system. The striking feature of our 

model is that alternative symmetrization or antisymmetrization of the state of the system will not 

be required to obtain alternative statistics. The different decompositions are performed in this 

section in terms of different tensor product structures of the multiparticle system Hilbert space. 

2.1.1. Fermion-like decomposition (alpha-TPS) 

The toy model is a system composed of 4 elementary systems of the following type. 

The component systems: Let us consider a spin ½ quantum system S represented in its own 

Hilbert space H . Its Hamiltonian Ĥ  has eigenstates n  with energy nE , that is ˆ
nH n E n . 

Then, each state  H  can be written as 
n

n

c n  . 

The composite system: Now we will consider a quantum system 1 2 3 4U S S S S     with an 

associated Hamiltonian 1 2 3 4
ˆ ˆ ˆ ˆ ˆ

UH H H H H     whose eigenstates 1 2 3 4N n n n n     

generate the Hilbert space 1 2 3 4U    H H H H H . Then, ˆ
NH N E N  where 

1 2 3 4N n n n nE E E E E    , and each state U H  can be written as  

 
1 2 3 4

1 2 3 4

, , , 1 2 3 4

, , ,

N n n n n

N n n n n

c N c n n n n        (5) 

Since they are fermions (spin ½), the wave function is antisymmetric under the exchange of the 

labels of any pair of particles. So, if permutation operators 1 2 1 3 1 4 2 3 2 4 3 4, , , ,  and P P P P P P       

are defined as 

 

1 2 2 1 3 4 1 3 3 2 1 4

1 4 4 2 3 1 2 3 1 3 2 4

2 4 1 4 3 2 3 4 1 2 4 3

,  

,  

,  

P N n n n n P N n n n n

P N n n n n P N n n n n

P N n n n n P N n n n n

 

 

 

       

       

       

 (6) 

This condition imposes a restriction over the possible states. Then the only possible coefficients 

Nc  (or 
1 2 3 4, , ,n n n nc ) are those such that 
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 1 2 1 3 1 4 2 3 2 4 3 4P P P P P P                   (7) 

Because of the very way it is constructed, the Hilbert space of the composite system can be 

trivially factorized into four equivalent subspaces. This is the alpha tensor product structure 

(TPSA) that had to be considered. In summary, U is a composite system of fermions whose wave 

function is antisymmetric with respect to TPSA. 

2.1.2. Boson-like decomposition (beta-TPS) 

The decomposition of the state 1 2 3 4N n n n n     is not the only one that can be done 

on the complete system U . For example, it can be described as a system composed of components 

systems of the following type. 

The component systems: Let us consider the system 1 2iS S S   represented in its own Hilbert 

space 1 2i  H H H . Its Hamiltonian 1 2
ˆ ˆ ˆ

iH H H   has eigenstates 1 2im n n   with energy 

1 2im n nE E E  , that is ˆ
ii m iH m E m . Then, each state i

i H  can be written as 

i

i

i

m i

m

c m  . Let us also consider another system 3 4iiS S S   represented in its own Hilbert 

space 3 4ii  H H H . Its Hamiltonian 3 4
ˆ ˆ ˆ

iiH H H   has eigenstates 3 4iim n n   with 

energy 
3 4iim n nE E E  , that is ˆ

iiii m iiH m E m . Then, each state ii

ii H  can be written as 

ii

ii

ii

m ii

m

c m  . 

If we consider these components, the toy model is a composed system of two elementary 

systems. This is beta tensor product structure (TPSB) employed in our model, since the Hilbert 

space that defines system U can be factorized into two subspaces. 

The composite system: Now the same system U can be described as i iiU S S   with an 

associated Hamiltonian ˆ ˆ ˆ
U i iiH H H   whose eigenstates i iiN m m   generate the Hilbert 

space U i ii H H H . Then, ˆ
NH N E N  where 

i iiN m mE E E  , and each state U H  can 

be written as  

 ,

,
i ii

i ii

N m m i ii

N m m

c N c m m      (8) 

To study the statistical aspects, it is necessary to define new permutation operators. This is 

because, for example, the labels 1 and 2 from the old operator 1 2P , no longer refer to 
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subsystems that are present in this partition. To be able to permute the new particles it is 

necessary to define the operator 

 i ii i ii i ii ii iP N P m m m m      (9) 

This is the only permutation operator that exists in this partition. Since the particles iS  and iiS  are 

linked with the particles 1S , 2S , 3S  and 4S  in a direct way, it is easy to see that there is a relation 

between the permutation operators 

 3 4 1 2 1 3 2 4i ii ii iP N m m n n n n P P N          (10) 

So, the relation between permutation operators from both TPS is  

 1 3 2 4i iiP P P    (11) 

It should be noted that so far we have not changed the state, we have only written it in a new way. 

Therefore, the coefficients Nc  have the same restrictions as before. Then, it is possible to 

compute how i iiP  operates on the state   

 1 3 2 4 1 3i iiP P P P           (12) 

In summary, under this decomposition (TPSB) U is a composite system of bosons whose wave 

function is symmetric. 

2.1.3. The relativity of statistics with respect to partition 

Having arrived at this result, it is important to note that the fact that a set of fermions happens to 

form a new non-fundamental particle with bosonic behavior is not new. Indeed, it has long been 

known that a group of protons and neutrons, all spin 1/2, can join together to form an atomic 

nucleus. For example, two protons together with two neutrons join together through nuclear forces 

to form a nucleus of Helium 4. These atomic nuclei are bosons that exhibit empirically testable 

bosonic behavior such as superfluidity (Brooks and Donnelly 1977). In this case, the strong 

nuclear force holds the particles of the nucleus together so tightly that it is possible to think that 

the nucleus is a new entity. However, in the toy model presented in this work, the particles do not 

interact with each other and this argument is not valid. There are also other more recent examples 

such as atomic Bose-Einstein condensates (Avancini et al. 2003, Rombouts et al. 2002), excitons 

(Combescot et al. 2008, Rombouts et al. 2002), and Cooper pairs in superconductors (Belkhir and 

Randeria 1992). However, the mathematical treatment of all these models includes important 

approximations that obscure the ontological question about this type of physical systems. Then, in 

the case of bosons composed of fermions, the question arises that a group of bosons can share the 
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same quantum state, but the fermions that compose them cannot, due to the Pauli exclusion 

principle. 

That question finds an answer in our toy model, since the same state which is symmetric under 

TPSB is antisymmetric under TPSA. That is, the state   is symmetric with respect to the 

permutation operator i iiP  in the TPSB perspective but antisymmetric with respect to the 

permutation operators 1 2 1 3 1 4 2 3 2 4 2 3, , , ,  y P P P P P P       in the TPSA perspective. The relativity of 

statistics with respect to partition has been clearly stated for our model. This suggests that trans-

statistical behavior is built into QM formalism. But we still have two ways to define subsystems, i. 

e., alpha and beta partitions. This brings us to the question, is it a fermionic or a bosonic system? 

At this stage of the present work, our answer cannot be far away from the orthodox point of view, 

that is, that the fundamental level has ontological priority. In this case, the fundamental level is 

that of the TPSA and therefore the system is composed of fermions. While the TPSB corresponds 

to the collective behavior of the fermions taken in pairs. From this perspective, bosonic behavior 

becomes an appearance. It is the unreal behavior of particles that do not really exist except as 

pseudoparticles or virtual particles. However, a definitive answer will come out from the algebraic 

version of our toy model that will be provided in the next section, once the ontology of properties 

for QM has been introduced. 

 

Section 3 Trans-statistical behavior in an ontology of properties 

3.1. Classical and quantum particles as individual objects 

From a philosophical perspective, an individual is an object that possess an identity that makes it 

distinguishable from other objects and is able to retain its identity over time. It is also believed to 

be the bearer of a set of properties, such as location in space and time. The individuality of such 

an object may be regarded to be granted for something over and above the properties that it 

possesses, such as substance. Alternatively, Leibniz Identity Principle (PII) establishes that 

individual identity depends only on the properties possessed by the object. Identification of the 

individual object over time is made possible by its spatiotemporal trajectory. The ontological 

category of individual fits properly when referring to classical particles. But it runs into trouble 

when applied to quantum particles. Quantum indistinguishability is known to prevent particles of 

the same kind to be re-identified once a permutation is performed between them. Moreover, 

contextuality prevents quantum particles to possess well-defined properties. As a consequence, 

omnimode determination principle that is expected to be satisfied by any individual object is 

violated by particles in the quantum domain. They do not even have well-defined spatiotemporal 

trajectories, which would have allowed to identify them over time and keep track of particles 

being permuted. 
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These features led some of the founding fathers of QM (Born and Heisenberg) to radically 

discard the category of individual to refer to quantum particles. They are simply not individuals. 

This idea was reflected in early discussions (see Weyl 1931). This constitutes the so-called 

Received View concerning this matter, which eventually entailed the development of non-

standard formal systems to represent non-individual objects (Krause 1992). Recently, a variety of 

authors criticized the Received View claiming that the category of individual may hold if we drop 

PII or at least some of its strongest forms. In order to make this view consistent with quantum 

statistics, van Fraassen (1985) argued that it is not necessary to admit equiprobability for each 

possible configuration as usually assumed in statistical mechanics. Alternatively, French (1989) 

proposed that states that are neither symmetric nor antisymmetric are ontologically possible but 

physically inaccessible. From this perspective, quantum particles are considered individual 

objects that are contingently in states that make them indistinguishable. Muller and Saunders 

(2008) explored the possibility of weakly discern between quantum identical particles in 

relational terms. 

3.2. An ontology of properties for quantum systems 

In the context of modal interpretations of QM, some authors proposed a new quantum ontology 

of properties without individuals (see da Costa, Lombardi and Lastiri 2013; da Costa and 

Lombardi 2014; Lombardi and Dieks 2016). The choice for this ontology is strongly suggested 

by the aforementioned quantum features (contextuality and indistinguishability). Our guiding 

hypothesis is that also trans-statistical behavior matches the most with a non-individual ontology. 

3.2.1. Ontology of properties and algebraic formalism 

Usual presentations of QM employ Hilbert space formalism. It is mathematically built from a set 

of vectors, which in turn represent possible physical states of the system. System observables are 

represented by operators that act on already defined state vectors. The logical priority of system 

states over observables that characterizes Hilbert space formalism favors an ontology of 

individuals and properties. Systems are individuals identified by their state space and observables 

are properties that inhere in them (see Ballentine 1998, 234-235). 

As it is known, it is also possible to employ an algebraic formalism in QM. Taking this option 

allows even a greater degree of generality, since mix states cannot be represented in Hilbert space 

formalism. In algebraic formalism, the set of physical observables are represented by an algebra 

of operators. System state is represented by a functional that act upon those already defined 

operators, in order to compute expected values. In this case, logical priority of observables over 

states suggests an ontology of properties, where there may be no individuals. Systems are defined 

exclusively by their algebra of observables. State functional is simply a device that codifies 

quantum probabilities (see Ballentine 1998, 48). 

3.2.3. Ontology of properties. Semantic correspondences 
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To put it more formally, an ontology of properties without individuals is defined by the following 

semantic correspondences (see Fortin and Lombardi 2021): 

 The algebra of self-adjoint operators represents the set of physical observables that define 

a quantum system, which in turn corresponds to the set of instances of universal type-

properties in the ontological domain. 

 Eigenvalues of self-adjoint operators represent possible physical values, which in turn 

corresponds to possible case-properties belonging to each type-property. 

 Probability functions represent physical probability distributions for each physical 

observable, which in turn corresponds to ontological propensities of each possible case-

property 

 Functionals over algebra of observables represent physical states. This last item has no 

ontological counterpart, since physical states are just devices that assign a probability 

distribution for each observable. 

It is important to notice that we do not talk about physical outcomes but about physical values 

because the ontology of properties was first developed in the context of modal interpretations of 

QM. In this family of interpretations, the observables may have determined values regardless of a 

measurement context. A preferred context is defined a priori and each modal interpretation 

postulates a particular actualization rule. Nonetheless, the ontology of properties is equally 

suitable for the standard interpretation or for others not belonging to the modal family.  

3.2.4. Quantum systems as non-individual bundles of possible properties 

The ontology of properties yields a picture of quantum systems in which they are just bundles of 

possible case-properties without any individual identity. The familiar particle-picture assumed in 

physical practice is generally discarded and could be retained only under peculiar circumstances. 

It is important to stress that it is not the traditional bundle of actual properties, designed in 

metaphysics to account for classical individual objects without the notion of substance. A 

quantum system could not be this latter kind of bundle because of contextuality restrictions 

definitively stated in Kochen-Specker theorem (1967). Even more important is to emphasize that 

bundles of possible case-properties are no longer object of PII. It is not a matter that PII is false. 

It simply just not applies to them. Bundles of possible case-properties do not retain any identity 

each time they merge into a composite bundle or split into them. These features of the ontology 

of properties make it adequate to overcome the difficulties that quantum contextuality and 

quantum indistinguishability impose upon the design of a QM ontology. As it will be soon 

formally stated, this ontology fits properly also with trans-statistical behavior, in which it is 

observed that somehow a set of fermions loses its identity and become a set of bosons under 

certain circumstances. It is rather obvious that an ontology based in individuals could not in any 
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way construe that phenomenon in a realistic manner. The ontology of properties certainly does. 

Of course, a basic assumption that is previously needed to choose for this ontology is to endow 

modality with an ontological meaning.  

3.2.5. Ontology of properties and indistinguishability 

An additional result of the ontology of properties for QM is a re-statement of traditional 

indistinguishability postulate (IP see eq. 1 in section 1) that makes symmetrization postulate (SP 

see eq. 3 in section 1) a natural consequence of the ontology. When two or more 

indistinguishable bundles are combined, it is natural to expect that the instances of universal 

type-properties belonging to the composite bundles do not distinguish between those component 

bundles. More simply, when two indistinguishable bundles merge into a single whole, which 

component bundle is taken first and which second does not matter at all. Mathematically, the 

restriction that yields the observed statistics is no longer imposed over states (as in SP) but 

directly over observables. IPobs is formulated as (see Lombardi and Castagnino 2008 and Fortin 

and Lombardi 2021 for a complete justification) 

 
† :O' P OP O' O      (13) 

Then, the observables that respect this condition will be symmetric, that is †

sym symO P O P  and 

form the space sym  (see Fortin and Lombardi 2021 for details). In contrast with standard IP, IPobs 

is ontologically motivated, since a bundle is symmetric if its constituents are identical. Let us 

consider two bundles 
1h  and 

2h  defined by different instances of the same algebra of observables 

1 2O O  such that 
1 2h h . That means that these bundles are represented in the physical domain 

by systems or “particles” of the same kind and must be considered indistinguishable. Of course, 

different indices in this case does not mean physical distinguishability. These two bundles merge 

in a composite bundle Uh  such that 
1 2Uh h h  . Consequently, the algebra 1 2 2 1U    O O O O O  

defines bundle Uh . Now the restriction over observables U UO O  established in IPobs (eq. 13) 

must be carried out. This requires that observables  1 2U ij i jij
O k O O   are such that 

1 2 2 1i j i jO O O O   . This means that observables UO  belonging to bundle Uh  are symmetric 

with respect to permutation of bundles 
1h  and 

2h (see Fortin and Lombardi 2021). 

The restriction imposed by (eq. 13) includes both the case of fermions and bosons. This is 

because the permutation operator appears twice, then both in the case that the state ( S ) is 

eigenstate of P with eigenvalue 1 

  † 2
1S sym S S sym S S sym S S sym SO P O P O O           (14) 



 11 

and in the case that it is 1  ( A ) 

  † 2
1A sym A A sym A A sym A A sym AO P O P O O            (15) 

the eigenvalue appears squared. To account for bosons or fermions separately, it is necessary to 

further restrict the space of observables. Usually, to obtain the symmetric/antisymmetric state 

S / A  from a generic state  , it is necessary  to apply the operator S/A respectively 

S S  / A A  , then the expectation value of an observable O  is 

 †

S
S SO O S OS O O

 
          (16) 

 †

A
A A A AO O A OA O O

 
          (17) 

It is easy to see that observables of the type †
SO S OS  form the subspace S symO O  and 

observables of the type †
AO A OA  form the subspace A symO O . Therefore, the same empirical 

reason that imposes the restriction to symmetric-bosonic states S  or antisymmetric-fermionic 

states A  in the usual presentations, from the present perspective imposes the restriction to 

bosonic observables S SO O  or fermionic observables A AO O . 

3.3. A semi-classical behavior 

An ontology that focuses on properties has the advantage that it allows us to define a system from 

a set of observables. That is, if a quantum system is defined from a set of properties, and those 

properties are each linked to a mathematical operator, then it is possible to define the physical 

system from a set of observables. This allows us to build a coherent description of systems that 

exhibit classical and quantum behavior at the same time. This is the case, for example, of a 

tunnel-effect transistor. So let us consider it. On the one hand, at first glance it can be considered 

a classic object. It is possible to touch it, measure its position and speed simultaneously at all 

times, when it moves it follows a defined trajectory, etc. However, when we examine the internal 

processes of the transistor it becomes obvious that it is a quantum object. This is due to the fact 

that, in addition to endless quantum interactions between the atoms that make up the transistor, 

the tunnel effect occurs inside it. To describe this situation from the point of view of a state-

centered ontology, it is necessary to define a global state   of the transistor and then define 

subsystems. Each subsystem S will have its reduced state S  which is obtained by taking the 

partial trace over the other degrees of freedom (the environment E), then ( )S ETr  . 

According to the decoherence theory, to demonstrate that this subsystem has a classic behavior it 

is necessary to show that the reduced state becomes diagonal in a decoherence time and therefore 

it can be considered a classical-like state. In addition, it is necessary to show that there is another 
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partition in which the reduced state is not diagonal and therefore retains its quantum character. 

This state-based description can lead to ontologically sensitive situations. For example, the 

existence of systems in which it is possible to make a partition such that all its subsystems have 

reduced diagonal states, and therefore classical, but the joint state is not diagonal (see Castagnino 

et al. 2010a and Lombardi et al. 2012).  

From the point of view of a property-centered ontology, the description of this type of system 

does not pose any challenge. It is possible to define a classical system represented by the space of 

observables cO  that includes all the observables that behave classically. On the other hand, 

observables that behave quantically form the space of quantum observables qO . From this space it 

is possible to define another quantum system that behaves in a quantum way. With this approach, 

the classical / quantum character of an object depends on which are the relevant observables that 

are considered. For an exhaustive review of the decoherence and the classical limit from the point 

of view of the observables see Fortin and Lombardi 2019, 2016, 2014, Fortin 2014, Castagnino et 

al. 2008, 2010b, 2010c, Castagnino and Fortin 2011a, 2011b, 2012. 

The example above aims to show the comparative advantages that a property-centered ontology 

generally has over a state-centered one. Nonetheless, it is important to stress that the example 

above is not exactly analogous with the algebraic version of the toy model that we present below. 

In the tunnel-effect transistor, classical behavior and quantum behavior could not be modeled 

exactly as if they arose from the very same system, since in order to account for different 

behaviors, it was necessary to define different sets of observables. In what follows, it will become 

clear that instead, fermionic and bosonic behavior arise from the very same set of observables. 

So, the ontological lesson we can draw from our algebraic toy model is even stronger. 

3.4. Algebraic version of the toy model 

3.4.1. Definition of the total system based in its observable space 

Let us consider an aggregate 
Uh of indistinguishable bundles 

1 2 3 4h h h h  such that 
1 2 3 4Uh h h h h    . This aggregate of bundles 

Uh , which is itself a new bundle, is in the 

physical domain a composite system U  of indistinguishable subsystems 1 2 3 4S S S S    each 

of them with spin ½ such that 1 2 3 4U S S S S    . We are adopting here an ontology of 

properties suggested by the algebraic approach of QM, so subsystems 1 2 3 4S S S S    are not 

defined in Hilbert space, but by the algebras of observables 1 2 3 4  O O O O , where each algebra 

represents each subsystem type-properties. System U  is defined in terms of an algebra UO  such 

that 1 2 3 4U    O O O O O  which is the minimal algebra generated by the subsystems algebras. 
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Since these subsystems are indistinguishable and consequently the bundle 
Uh  is symmetrical 

with respect to any permutation of component bundles, the operators representing observables 

U UO O  are symmetric in accordance with IPobs (eq. 13) 

 †

U U UO' P O P O    (18) 

Where P  represents each element of the set  P  of all possible permutation operators relative 

to alpha-partition (TPSA) of system U . In addition, the observables UO  are symmetric with 

respect to the only admissible permutation relative to beta-partition (TPSB), since 
i iiP P   is 

equivalent to one of the elements of the set  P , i. e. the product of the permutation operators 

1 3 2 4P P   (see eq. 11). Consequently, if observables UO  satisfy condition †

U U UO' P O P O    

(eq. 18), they also satisfy 

 †

U U UO' P O P O    (19) 

This means that every observable UO  belonging to UO  is permutation invariant with respect to 

both partitions 

 †,U U U UO O P O P  O  (20) 

But this is not the whole story, since UO  includes both fermionic and bosonic observables (see eq. 

14 and 15). It is necessary to introduce specifically the fermionic character of the TPSA 

subsystems. 

3.4.2. Fermionic subalgebra of observables 

In section 2, because of the value of spin ½ of the component systems in TPSA, we demanded 

that the state of the system U  were antisymmetric with respect to permutation operators 

1 2 1 3 1 4 2 3 2 4 3 4, , , ,  and P P P P P P       (eq. 7). However, in this section we are adopting an ontology 

of properties. The system state will be considered just a device that assigns a probability at each 

possible event. It plays no roll in identifying the system. The fermionic character that our bundle 

may assume ought to be defined exclusively in terms of its properties. So, the empirical behavior 

of a fermionic system will be obtained by imposing a further restriction to its observables. 

Consider the antisymmetrizer projector corresponding to the TPSA 

 
1

1

! i

A P
N







   (21) 

Notice that the projector A is alpha-indexed in correspondence with the permutations that define 

it. The operator P  (also alpha-indexed) represents each possible permutation (including the 

identity I) belonging to TPSA, !N =24 is the quantity of those permutations, and ( )  depends of 
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the parity of P : ( )  if it is even or ( )  if it is odd. Usually in QM, the antisymmetrizer projector 

is applied to a generic state A AA  


 . Instead, we are applying it to our observables 

 †

U UA O A O'    (22) 

That operation allows us to define a fermionic subalgebra F

UO O  such that 

 †,F

F F UO O A O A   O  (23) 

Which is the algebra in respect with any generic state   will behave as antisymmetric 

 †

F U A U AO A O A O     
     (24) 

3.4.3. Bosonic subalgebra of observables 

In section 2, we found that the same coefficients Nc  that make the system state antisymmetric 

with respect to the set  P  of permutations, turn it symmetric with respect to operator i iiP . 

That is 

 A A i ii A AP P    
        (25) 

Then, every antisymmetric state in the TPSA A


 is a symmetric state S


 in the TPSB 

 /A A A SA    
        (26) 

However, the inverse relationship is not valid 

 i ii A A A AP P   
         (27) 

This is easy to see in a trivial example. Let us consider the state 

 

 

 

1 2 3 4 3 4 1 2

1

2

1

2
i ii ii i

n n n n n n n n

m m m m





       

   

 (28) 

If we apply the operator i iiP  we obtain the same state

 

 

 3 4 1 2 1 2 3 4

1

2

1

2

i ii ii i i ii

i ii

P m m m m

P n n n n n n n n

 

 





    

        

 (29) 
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But if we apply, for example 1 2P  , we don’t obtain the same state changed sign 

  1 2 2 1 3 4 4 3 1 2

1

2
P n n n n n n n n             (30) 

This means that to build the bosonic subalgebra of this model we cannot simply apply the 

canonical symmetrizer operator to a generic state in TPSB. If we define this operator in the 

standard way, 
1

( )
2

i iiS I P   , the space of observables of the form †

U UO S O S   is bigger 

than FO . Then, we will try in other way, we can build the bosonic subspace in this model by 

means of a symmetrizer operator defined as 

 S A   (31) 

Oddly enough, this operator is a legitimate symmetrizer for the TPSB because all antisymmetric 

states in the TPSA are symmetric in the TPSB. Then, we are applying it to our observables 

 †

U US O S O'    (32) 

That operation allows us to define a bosonic subalgebra B

UO O  such that 

 †,B

B B UO O S O S   O  (33) 

The observables generated with the operator S  are “less” than those generated by S , however 

it generates all that are necessary to describe this model. Then, BO  is the algebra in respect with 

any generic state   will behave as symmetric 

 
†

B U S U SO S O S O         (34) 

Since there is a direct relation between S  and A , we have 

 
† †

F A U A B U B BO A O A S O S O           (35) 

Then, the same observables can be interpreted as fermionic observables from the TPSA and as 

bosonic observables from the TPSB. This fact invites us to change the notation with which we 

call the algebra of observables, instead of FO  we will use F

O  and instead of BO  we will use B

O . 

In this way, we can say that both algebras are the same, that is 

 F B

  O O O  (36) 

The difference in the notation is that if O  is considered from different partitions the system has 

fermionic or bosonic behavior. 
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3.4.4 Trans-statistical behavior and its full ontological lesson 

The previous result is relevant and may allow us to affirm that the system itself is neither 

fermionic nor bosonic.  In the Hilbert space version of our toy model, we were able to find that 

quantum statistics can be considered as TPS-relative. That result made possible to take trans-

statistical behavior as a fundamental concept of QM, built into its formalism. But in that first 

version of the model, it was not yet possible to interpret trans-statistical behavior realistically and 

learn the full ontological lesson from it since there was a correspondence between a particular 

statistical behavior and a specific definition of subsystems. Let us recall the exact 

correspondences 

Fermionic behavior to subsystems 1 2 3 4S S S S U     (see subsection 2.1.1) 

Bosonic behavior to subsystems i iiS S U  (see subsection 2.1.2) 

That is, statistical behavior seemed to be attached to peculiar identity conditions of the 

subsystems that entail it. It was necessary to endow one of the partitions (TPSA) with ontological 

significance and the other with just a descriptive meaning. That criterion corresponds with the 

ontology of individuals suggested by the way systems are defined in Hilbert space formalism 

(through state vectors that may be factorized together with Hilbert space).  

When the toy model was translated to algebraic formalism, we obtained a relevant result at the 

end of last subsection: it was possible to define the multiparticle system of our model by means 

of a single set of observables that yields both fermionic or bosonic behavior when considering 

different TPSs. Namely 

Whole system U is defined by the algebra F B

  O O O  (see eq. 36) 

As a consequence, statistical behavior of the total system no longer depends on particular identity 

conditions of its possible subsystems. Algebraic approach makes possible to work with the 

system as a whole, which in itself is neither fermionic nor bosonic. That is, we obtained a single 

set of observables for the whole system that is compatible with both statistical behaviors. 

Quantum statistics was attached to a specific definition of subsystems, which corresponds in the 

ontological domain to peculiar identity conditions. But when we work with the algebraic 

formalism it was possible to directly constrain the observables of the whole system in order to 

make them symmetric or antisymmetric with respect to particular partitions. In this case, a single 

set of observables represents the whole system, without establishing a priori preferences for one 

partition or other. That single set may yield statistical behavior when properly considered. 

Statistical behavior from this perspective is not linked anymore to peculiar identity conditions of 

the system subsystems. Only a physical criterion outside from the formalism can give ontological 

priority to any of the partitions. 
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Therefore, from the algebraic approach there is no ontological priority between both TPS. They 

only express equally legitimate statistical behavior that a multiparticle system may exhibit as a 

whole. This ontological flexibility corresponds with the relaxed identity conditions that are 

assigned to quantum systems when they are considered in the ontological domain as non-

individual bundles of properties. They can merge or split without carrying with them restrictive 

identity conditions. That flexibility is required to realistically interpret trans-statistical behavior. 

In turn, trans-statistical behavior thus construed reinforces the ontology of properties for QM in a 

virtuous theoretical circularity. 

Conclusions 

In this work, we proposed a toy model of trans-statistical behavior taking a TPS approach in the 

standard Hilbert space formalism. This model suggests that quantum statistics is TPS-relative and 

that trans-statistical behavior is built into QM formalism. As a result, trans-statistical behavior 

may be considered a part of QM and not merely a matter of approximation modelling methods. 

From this approach the multiparticle system is ontologically fermionic and descriptively bosonic. 

Fermions taken in pairs may behave like bosons, but it is not an ontologically proper bosonic 

behavior. As a consequence, if we adopt an ontology of individuals for QM suggested by Hilbert 

space formalism, trans-statistical behavior cannot be realistically interpreted. 

The algebraic version of the toy model shows that a fermionic or bosonic system may be defined 

by the same set of observables. Since each observable semantically corresponds to a property in 

an ontology of properties without individuals, it is possible to interpret trans-statistical behavior 

from an ontology in which quantum systems are just non-individual bundles of properties. In this 

ontology, bundles do not retain their identity when they merge into a single whole or split into 

subsystems. This feature of the ontology of properties allows to interpret trans-statistical behavior 

in a realistic manner. The argument ran as follows. The algebraic toy model suggests that a 

multiparticle system may not be regarded as fermionic or bosonic until a specific TPS is chosen. 

Since statistical behavior does not depend upon a peculiar physical identity of quantum systems, 

it is possible to claim that a multiparticle system really behaves both as fermions or bosons. As a 

result, trans-statistical behavior is realistically interpreted. 

Last but not least, realistically-construed trans-statistical behavior reinforces the ontology of 

properties originally proposed to deal with other ontological challenges posed by QM, such as 

contextuality and indistinguishability. 
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