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Abstract

Many decades ago Patrick Suppes argued rather convincingly that
theoretical hypotheses are not confronted with the direct, raw results
of an experiment, rather, they are typically compared with models
of data. What exactly is a data model however? And how do the
interactions of particles at the subatomic scale give rise to the huge
volumes of data that are then moulded into a polished data model?
The aim of this paper is to answer these questions by presenting a
detailed case study of the construction of data models at the LHCb
for testing Lepton Flavour Universality in rare decays of B-mesons.
The close examination of the scientific practice at the LHCb leads to
the following four main conclusions: (i) raw data in their pure form
are practically useless for the comparison of experimental results with
theory, and processed data are in some cases epistemically more reli-
able, (ii) real and simulated data are involved in the co-production of
the final data model and cannot be easily distinguished, (iii) theory-
ladenness emerges at three different levels depending on the scope and
the purpose for which background theory guides the overall experi-
mental process and (iv) the overall process of acquiring and analysing
data in high energy physics is too complicated to be fully captured by
a generic methodological description of the experimental practice.
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1 Introduction

The constantly growing integration of science and technology during the last
decades has brought science in the new ‘era of big data’. Modern experi-
mental setups and other advanced methods of data collection often result
in enormous datasets calling for more and more sophisticated methods of
data analysis in order to enable the comparison of the experimental re-
sults with theoretical hypotheses. The well known Hypothetico-Deductive
method whereby theoretical hypotheses are reinforced – or, in Popperian
terms, corroborated – in the light of new data nicely captures a large part
of the scientific practice, however, at the same time it provides an over-
simplified and unrealistic picture in which important details are left aside.
How exactly are theoretical hypotheses eventually confronted and tested by
experimental results given that the latter are often produced in the form of
large datasets and in a language that is not accessible to the theory?

Patrick Suppes (1962) answered this question by pointing out that theoret-
ical hypotheses are not directly confronted with the raw unprocessed data
from experiments, rather, they are only confronted with models of data.
What exactly is a model of data however? Suppes explains in an earlier
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work: ‘The maddeningly diverse and complex experience which constitutes
an experiment is not the entity which is directly compared with a model of a
theory. Drastic assumptions of all sorts are made in reducing the experimen-
tal experience [...] to a simple entity ready for comparison with a model of
the theory’ (1960, p.297, emphasis added). In Suppes’ mind, a data model
is a simple entity that incorporates what is often a very complicated and
sophisticated experimental process, into a simple result which is eventually
compared with the theoretical predictions of a theory or a model.

While Suppes’ remarks on data models sowed the seeds for further significant
work on the philosophy of data, the interest of philosophers of science in
data was mainly revived by the seminal works of Bogen and Woodward
(1988), Woodward (1989) and van Fraassen (1980, 1989). In response to
van Fraassen’s well known view that the empirical adequacy of a theory
is measured by its ability to save the observable phenomena, Bogen and
Woodward emphasized the distinction between data and phenomena and
argued that theory often saves the non-observable phenomena, rather than
the observed data. Within this context, a large part of the discussion that
followed on the philosophy of data (e.g. McAllister 1997; Glymour 2000;
Harris 2003; and Massimi 2007) has mainly focused on the relationship of
data with the physical phenomena that they are often taken to represent.

In the more recent literature on data, this tendency of philosophers to ex-
amine the nature of data with respect to the underlying phenomena they
represent, has been replaced by a new tendency to closely examine examples
of actual scientific practice, in order to explore the methodology of data pro-
cessing in various scientific fields and the role of data models within them.
This approach is most evident in the works of Sabina Leonelli (2015, 2016,
2019) in biology and Alisa Bokulich (2018, 2020) in paleontology which, as
one might expect, are highly influenced by works of non-philosophers on
data processing, such as Edwards’ book on climate science (2010).

The present article follows this recent tendency and aims in expanding the
existing literature on the methodology of data analysis into the field of
modern High-Energy Physics (HEP). Given that modern large-scale HEP
experiments rely on the production of large volumes of data more than any
other scientific field, it is surprising that not much has been said about the
methodology of data analysis in this field. As Bokulich notes, although
many philosophers have followed Suppes in highlighting the importance of
data models in science, ‘most [of them] have largely black-boxed how data
models are produced’ (2020, p.794), and this includes the discussions on the
philosophy of HEP.1 The primary aim of this article is to fill this gap by

1Massimi (2007) is perhaps one of the few exceptions, since in her attempt to argue
for her thesis that data provide evidence for unobservable phenomena in HEP, she follows
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closely examining the methodology behind the production of data models
in HEP in order to facilitate our understanding of the nature and the role
of data models in this field.

In particular, the article explores the nature of data models and their place
in HEP by providing a detailed case study of experimental tests of Lepton
Flavour Universality (LFU) at the LHCb experiment at CERN. The adopted
methodology is characterised by a systematic study of real scientific practice,
and falls within the emerging framework of Philosophy of Science in Prac-
tice which aims in producing ‘productive interactions between philosophical
analyses and the study of actual scientific practices’ (Ankeny et al., 2011,
p.305). By taking a close look at the work of the experimental physicists of
the LHCb collaboration, the idea is to depart from the usual theoretical ap-
proach of philosophy of science and re-examine the concept of data models,
as well as other related questions, strictly in terms of scientific practice. The
ultimate goal is to gain important insights to the question of what a data
model is by examining the process by which a data model is constructed
in HEP experiments. This thorough examination will nicely demonstrate
the way in which theoretical hypotheses are eventually connected with ex-
perimental results via data models, and will highlight the importance of
considerations regarding the selection criteria, efficiency calculations, data
fitting, and uncertainties in the process of constructing a data model that
can be compared to a theoretical prediction in HEP. Contrary to the tra-
ditional understanding of data models as idealised versions of the raw data
perceived by our immediate observations, the proposed understanding of
data models does not rely on the problematic distinction between raw and
processed data, nor does it involve the process of immediate observation.

The philosophical lessons we can take from the exposition of the particular
case study at the LHCb are abundant and are outlined throughout the
text. There are however, four main lessons that can be taken to apply in
any large scale HEP experiment. The first lesson concerns what Bokulich
(ibid.) calls the folk view of data which, amongst other things, claims that
the tampering of data results in their corruption and the decrease of their
epistemic reliability. Contra to this seemingly popular conception, it will be
shown that not only the epistemic reliability of data often increases via their
processing, but also that raw data – i.e. data that comes out of the detector
at the early stages of the experiment – are actually useless as they are for the
comparison of the experimental results with the theory. One of Bokulich’s
central aims is ‘to make plausible the prima facie counterintuitive claim
that model-filtered data can – in some instances – be more accurate and

van Fraassen in providing a logical reconstruction of data models as partially ordered sets.
Some further work on the methodology of data processing in HEP comes from Karaca
(2018) and will be discussed in the next section.
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reliable than so called raw data, and hence beneficially serve the epistemic
aims of science’ (ibid. p.10, emphasis added). The close examination of our
case study in HEP shows that this view – i.e. that model-filtered data are
epistemically superior from the raw data obtained from the experiments –
not only is not counterintuitive when it comes to the experimental practice
of HEP, but rather, it is the norm for conducting successful experiments. As
will become evident in the following sections, the very nature of experimental
HEP makes the interpretation of raw, unprocessed data impossible, and
hence, the only way to achieve progress in the field is by collecting and
analysing large volumes of processed data.

This also suggests that a clear distinction between raw data and processed
data cannot be applied in the context of large-scale HEP experiments. The
close examination of the case study on LFU tests illustrates that an under-
standing of the concept of ‘raw data’ as data perceived directly from our
experience is largely irrelevant to the scientific practice in HEP and what is
labelled as raw data and processed data is often merely a matter of conven-
tion. Instead of placing data into two distinct categories as raw or processed,
what best describes the current scientific practice in HEP is the placement of
data in a continuous spectrum in which some datasets are more processed
than others, without really worrying where to draw the line between raw
and processed data.

The second lesson concerns the further distinction between real and simu-
lated data. The careful scrutiny of the experimental practice at the LHCb
illustrates that the boundaries between these two types of data are not as
sharp as it is often implied in the literature and not particularly important
for the completion of successful experiments in HEP. As we shall see, the fi-
nal datasets that reach the hands of theoretical and experimental physicists
for interpretation are essentially consisted of a mixture of real and simulated
data that cannot be distinguished, due to the fact that simulated data are
often embedded in real measurement outcomes during the various stages
of the experiment. The final data model that is eventually compared to
the theoretical hypothesis and provides the ‘window’ through which theory
makes contact with the real world, is essentially a co-production of real and
simulated data.

The third lesson concerns the various levels in which theory guides the over-
all construction of the experiment as well as the extraction, interpretation
and the further analysis of the acquired data. In particular, the exam-
ple of the experimental tests of LFU in rare B-decays nicely illustrates that
theory-ladenness emerges at three different levels throughout the experiment
depending on the scope and the purpose for which background theoretical
assumptions guide the experimental process. The possibility of a vicious
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circularity due to the theory-ladenness of observation will not be discussed
in detail here since this is a well-known problem which has already been
thoroughly examined by many authors (Franklin et al. 1989; Brown 1993;
Brewer & Lambert 2001; Schindler 2013; Franklin 2015; Beauchemin 2017;
Ritson & Staley 2020). The consensus in these discussions is that theory-
ladenness is not necessarily vicious and does not lead to a relativist account
of contemporary science. In accordance with this view, our case study shows
that the various potential threats of circularity are indeed mitigated by the
practice of ‘blind analysis’ and the implementation of uncertainties in the
final result. The focus here will therefore remain on the different levels and
the extend to which various theoretical assumptions affect the physicists’
decisions in triggering data and their overall understanding of the events at
the LHC.

Finally, the fourth and most general lesson concerns the overall process in
HEP experiments for the construction of a data model to be compared with
the theory. In his seminal paper on data models, Suppes defines models of
data ‘in terms of possible realizations of the data’ (1962, p.253) in the same
way that the models of the theory are possible realizations of the theory in
the logician’s sense. This formal characterization of data models by Suppes
closely follows his favourite semantic view of theories which sees theoreti-
cal models as set-theoretical structures that are deductively derivable from
theoretical sentences.2 However, as we shall see, the process of building a
data model in HEP via the four stages of selection criteria, efficiency cal-
culations, data fitting and uncertainties is way more complicated and less
easily formalised than Suppes’ discussion would lead one to believe.

Although the final data model is indeed ‘a simple entity’ as Suppes pointed
out, the process of converting the initial data from the detectors into a con-
cise and polished final result in the form of a statistical hypothesis based
on the available data is, as we shall see, anything but simple. The com-
plexity of this process mainly stems from the fact that the aforementioned
stages do not follow a clear chronological order and cannot always be easily
distinguished. Rather, they describe the essential procedures of a long and
reiterative process during which data from the experiment are processed
and analysed in a number of various ways, including their fusion with data
from simulations and the use of highly sophisticated techniques of statistical
analysis. During this long process, theory infiltrates the analysis of data at
various levels, having clear effects both on the nature of the collected data
and their final interpretation. The fact that different theoretical considera-
tions and different techniques of statistical analysis can, in principle, provide
slightly different results makes the description of data models as possible re-

2For a nice review of the syntactic-semantic debate on theories see Lutz (2017) and
references therein.
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alizations of data in a logical sense seem somewhat unsuitable in the context
of HEP. Nevertheless, the three types of models in terms of which Suppes
described the connection of theory and experiments in his hierarchy of mod-
els account – i.e. models of theory, models of experiment and models of
data – are useful concepts, and will be used in what follows for sculpting
the overall framework of experimental practice in HEP. At the same time,
it will be shown that a less stringent version of Suppes’ hierarchy of models
account is indeed reflected at the practical level in HEP experiments, despite
the criticism that has occasionally received.

The structure of the article is as follows. Section 2 opens the discussion with
a defence of Suppes’ hierarchy of models account, which will serve as the
basis for the present account on the nature of data models and their rela-
tionship with theory. In Section 3 the focus will be shifted to the necessary
theoretical framework for understanding the B-anomalies in particle physics
and their usage in tests of the theoretical principle of Lepton Flavour Univer-
sality. Section 4 will follow with a presentation of the data processing system
at the LHCb experiment at CERN, illustrating how theory enters the collec-
tion and analysis of data in three different levels. In Section 5 the process of
constructing the data model representing the final experimental result will
be described in four stages. Finally, Section 6 will follow with a discussion
on the distinctions between raw/processed data and real/simulated data.
Section 7 concludes the discussion by drawing together the philosophical
insights from the examination of the case study at the LHCb.

2 Stretching the Hierarchy of Models account

Suppes (1962) begins his analysis of the relationship between theory and ex-
periment by noting that the theoretical principles to be tested do not usually
have a direct observable counterpart in the experimental data. Instead, this
gap between theoretical predictions and experimental results is filled by a
number of different types of models and theoretical principles which Suppes
classifies in five levels. At the top level are the models of the theory relevant
to the experiment. The main function of these models is to narrow down
the typically broad scope of the theory in question into a simple hypothesis
H0 to be tested by the experiment. At the next level one finds the models
of experiment. These are models that are ‘closer to the actual situation’
and whose aim is to adjust the theoretical model to the specific features of
the particular experimental setup by providing all the necessary details of
how the experiment must be designed and how the data can be linked to
the hypothesis in question. At the third level, models of data enter. Suppes
describes these as the possible realizations of the data that are ‘designed to
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incorporate all the information about the experiment which can be used in
statistical tests of the adequacy of the theory’ (ibid., p.258). Finally, in the
lowest two levels, are the theory of experimental design which deals with
various problems of the experiment that are beyond the particular theory
being tested, and what Suppes calls the ‘ceteris paribus conditions’ which
concern every other ‘intuitive consideration’ of the experimental setup that
does not involve formal applications of the theory (e.g. safety rules, control
of external disturbances etc.).

Suppes’ account has been further elaborated by Deborah Mayo (1996, Ch.5).
Although significantly richer in details, Mayo’s account maintains Suppes’
main idea: theory becomes testable through the models of the theory which
provide a distinct primary question or hypothesis to be tested, and exper-
imental results are linked to this hypothesis as models of data. The con-
nection between these two types of models is mediated by the experimental
model: ‘If the primary question is to test some hypothesis H, the job of the
experimental model is to say, possibly with the aid of other auxiliary hy-
potheses, what is expected or entailed by the truth of H with respect to the
kind of experiment of interest’ (ibid., p.133). For Mayo, the two key func-
tions of the experimental model are (i) to provide an experimental analogue
of the primary theoretical model and (ii) to specify the necessary techniques
for linking the experimental data to the questions of the experimental model.

What is also common in Suppes’ and Mayo’s approach is their emphasis on
the importance of statistical and other formal methods of analysis in the
construction of data models, as a necessary tool for the successful transition
from the level of the theory to the level of the experiment. Suppes conclu-
sion is that once the experimental results are condensed into a simple data
model, ‘every question of systematic evaluation that arises is a formal one’
(Suppes 1962, p.260-1), implying this way that data models are necessarily
statistical models, or at least, subject to statistical and mathematical anal-
ysis. Drawing on Suppes’ empahsis on statistical methods, Leonelli (2019,
p.22) has recently criticised Suppes’ account by identifying three problems.
First, Leonelli notes that Suppes’ analysis only deals with numerical data,
neglecting the fact that there are also cases where data are not quantita-
tive objects and thus are not amenable to statistical analysis. Second, it is
hard to see how Suppes’ analysis can be applied in situations of exploratory
experiments where the research question under investigation is not clearly
stated and thus, it cannot be easily compared with the data model. Fi-
nally, Suppes’ approach presupposes, according to Leonelli, the ability of
researchers to identify what constitutes ‘raw data’ in the experiment, and
overlooks the close connection between the activities of data acquisition and
data manipulation.
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Leonelli’s first observation is correct and lends further support to the claim
made earlier that the diversity and complexity of data analysis in various
scientific fields makes it impossible to come up with a universal philosophical
description for the relationship of theories and data in science. The remain-
ing two observations however, are subject to further analysis. Leonelli’s
point with respect to the application of Suppes’ framework on exploratory
experiments stems from Suppes’ dictum that the theoretical predictions of
a theory are typically expressed in the form of an initial hypothesis and are
eventually compared with data models. If there is no theoretical hypoth-
esis to be validated via its comparison with a data model, then Suppes’
description is inadequate.

This would be true however, only in the unrealistic cases where scientists are
blindly looking for new physics in collider experiments from an Archimedean
point of view, independently of any sort of background theory. This is hardly
the case in large-scale HEP experiments. The description of the method-
ology of data acquisition and data processing in Sections 4 and 5, clearly
shows how the very act of collecting and analysing data in HEP experi-
ments is simply impossible without the presupposition of a clear theoretical
hypothesis with respect to which the data models are built. What consti-
tutes an exploratory experiment in HEP is not the fact that the research
question is not clearly stated, rather, it is the fact that the question is not
part of an already well-formed and established theory to be tested.3 Karaca
(2017) also notes that the exploratory nature of HEP experiments concerns
the ability of an experiment to achieve a variety of possible outcomes, which
as we shall see, can be made possible by the systematic variation of the
various experimental parameters.

The example of LFU tests to be used as a case study here, is a clear ex-
ample of a non-exploratory experiment in which the theoretical prediction
of the Standard Model for the RK ratio is put to the test by building a
corresponding data model. However, one might think of a hypothetical sit-
uation where either (i) the existing theoretical framework does not provide
a precise numerical value of the ratio, or (ii) several competing and not-
well established models offer different values of the ratio. In this case, the
research hypothesis shifts from ‘Is the experimental value of the RK close
enough to the theoretical prediction of the Standard Model?’ to the more
exploratory question ‘What is the value of the RK ratio?’. Nevertheless,
in both cases, the final data model is built with respect to a corresponding
theoretical question since the ultimate aim is to fit the data into an already

3This approach is also compatible with Steinle’s account in which exploratory experi-
mentation ‘is driven by the elementary desire to obtain empirical regularities’ and ‘despite
its independence from specific theories, the experimental activity may well be highly sys-
tematic and driven by typical guidelines’ (1997, p.70).
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existing or a future theoretical framework. If the data is not in a comparable
form with a theory, then this task cannot be accomplished.4

Leonelli’s third objection is very similar to an objection raised by Karaca
(2018), regarding the lack of a modelling concept for the data acquisition
process in Suppes’ account. Using the example of the ATLAS experiment at
CERN, Karaca notes that both Suppes’ and Mayo’s descriptions leave out
a significant aspect of the overall process of bringing together theory and
experiment in HEP, which is the specification and organization of the nec-
essary experimental procedures in order to select the required data. This
is achieved, according to Karaca, via a model of data acquisition whose
key function is to specify the operational and technical details during the
data acquisition process and to determine the necessary selection criteria
for the rejection of non-interesting events in the LHC collision experiments.
While Karaca is right to point out that Suppes’ description does not ex-
plicitly address the process of data acquisition in HEP experiments, the
modified version of the hierarchy of models account that I wish to provide
here includes these and other related models within the broad concept of
experimental models.

Leonelli’s additional point to the discussion is that Suppes presupposes a
problematic distinction between the ‘raw data’ that constitute the ‘simple
datasets’ to be processed and the data models that are eventually compared
with the theory. Leonelli draws on Harris’ (2003) accurate observation that
very often the data that are traditionally referred to as ‘raw’ are in fact data
models, and thus, it is not clear how these models can be compared with
theoretical hypotheses. However, this confusion comes from a subtle point
regarding Suppes’ claims. Suppes definition of data models with respect to
their ability to be compared with the theory only applies to the final simple
entity which eventually puts the theory to the test. However, Suppes is
not saying – or, at least, should not be understood as saying – that any
data model must necessarily be comparable with a theoretical hypothesis
as Leonelli seems to imply. Rather, what Suppes’ is saying is that, when
it comes to the comparison of theory with experimental results, the entities
with which theoretical hypotheses are eventually compared are necessarily
data models that are subject to statistical analysis. This is a subtle point,
but nonetheless it is important for making sense of the fact that very often
the various datasets throughout the process of data acquisition and analysis
are indeed consisted of – what I shall call – auxiliary data models, and

4This view is also nicely supported by Bokulich and Parker (2021) in a recent paper
on what they call the ‘pragmatic-representational view of data’. By using an example
from climate science, Bokulich and Parker highlight the fact that data and data models
are representations that should be evaluated in terms of their adequacy for a particular
purpose, in which case is the specific research question.
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whose function is to facilitate the construction of the final data model to
be compared with the theory. Moreover, as we shall see in Section 6, the
distinction between raw and processed data is indeed not so clear, as Leonelli
and Harris have pointed out, however, it is precisely for this reason that it
is also not necessary for describing the scientific practice in HEP.

The deeper lesson to be learned here is that the process of theory testing
via experiments in HEP is simply too complicated to be fully captured by a
sharp tripartite distinction of three types of models. The modified account I
wish to present in the following sections is partially a reconciliation of Sup-
pes’ approach with Karaca’s remarks that focuses on three different types of
models that constitute a research project. There are however three impor-
tant caveats to keep in mind. First, the concept of experimental models is
significantly extended in order to include every possible model related activ-
ity which facilitates the connection between the theoretical models and the
models of data. Second, although it is possible to provide a relatively clear
definition (or description) for theoretical and data models, when it comes to
the various types of experimental models the boundaries between them and
the two aforementioned types cannot be sharply distinguished and whether
one wishes to include a specific modelling activity (such as the models for the
specification of selection criteria) in one level or another is up to a certain
extend a matter of personal choice. Finally, for a given collision experiment
in HEP, each one of these three types does not consist of one single entity,
rather it should be understood as a cluster of models with similar features
serving a common goal.

The three different types of models will thus be understood as follows:

• Models of theory : A model of a theory is a mathematical tool whose
aim is to narrow down the scope of the background theory by providing
an experimentally testable hypothesis H0 (or a number of hypothe-
ses) concerning a specific type of physical processes or phenomena.
The background theory providing the hypothesis need not be a well-
established and empirically well-confirmed theory. It can also be an
isolated and preliminary theoretical framework based on a small class
of observations, which would give rise to a phenomenological model.
Depending on the nature of the background theory and the model,
the hypothesis may concern the exact numerical value of a theoretical
parameter (e.g. the fine structure constant at a given energy level,
the electron magnetic moment etc), an estimate of a model parameter
in the form of a probability distribution corresponding to a physical
quantity (e.g. particle properties such as mass), or a specific relation
(in the form of an equation) between two or more physical quantities
(e.g. the differential cross section for a given process as a function of
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the transverse momentum etc).

• Models of data: A model of data is the representation of a measure-
ment outcome into a canonical form that allows – directly or indirectly
– the comparison of experimental data with the hypothesis under in-
vestigation. The construction of a data model involves a variety of data
analysis techniques and statistical methods, and as we shall see, it is
heavily guided by background theoretical assumptions and other ap-
proximations. Depending on the hypothesis in question, a data model
can take several forms such as a table, a simple numerical answer with
an uncertainty estimate, or as it is most common in HEP, a function
represented by a graph. Finally, although the final data model which
is eventually compared with theory is typically a ‘simple entity’ as
Suppes pointed out, the construction of this entity often requires a
number of auxiliary intermediate data models.

• Models of experiment : A model of an experiment is a blanket term
referring to every possible modelling activity that facilitates the com-
pletion of a measurement process in an experiment, and allows the
connection between the final data model and a theoretical hypoth-
esis. In high energy collision experiments this includes the physical
models for calculating the interactions of particles with the different
parts of the detector, any kind of simulation modelling that provides
the basis for necessary calculations (event generators, detector simula-
tions, pseudo-experiments with Monte Carlo simulations etc.), models
of data acquisition, and finally, the various statistical models used for
the analysis of data.

Measurement is understood in this context as the experimental activity
which leads to the quantitative attribution of the value of a targeted physical
quantity, typically represented as a theoretical parameter or variable in an
idealized experimental model. Eran Tal (2017a, p.240) describes measure-
ment in terms of two levels: the physical interaction between the target of the
measurement and the measuring instrument, and the model of measurement,
which is an abstract and idealized representation of this physical interaction.
The attribution of values to various parameters from the sub-detectors of
the LHCb to be described in Sections 4 and 5 based on the experimental
models of the interactions between the products of the collisions and the
detector, nicely illustrates Tal’s description of measurement in terms of the
concrete physical interactions in the detector and the abstract models of
measurement – or as we shall call them here – models of experiment. For
the purposes of our discussion, it is also useful to follow Tal (2017b) and dis-
tinguish between instrument indications and measurement outcomes. The
former are properties of the final states of measuring instruments after a
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measurement is completed such as the numerals appearing on the display of
a measuring device, and are often understood as providing the raw data of
the experiment. The latter are knowledge claims about the value of a phys-
ical quantity attributed to a physical process such as the claim that ‘the
mass of the top quark is Mtop = 172.85± 0.714(stat.)±0.85(syst.) GeV/c2’.
As we shall see, it is the measurement outcomes and not the instrument
indications that are represented by data models.

This slightly modified version of the hierarchy of models account, even in its
crudest form, nicely captures the relationship of theories and experiments in
high-energy physics. Background theory, be it the Standard Model, or any
other new physics theory or model to be put to test, such as Supersymmetry,
provides its predictions via the theoretical models in the form of empirically
testable hypotheses. Large scale scattering experiments are then designed
and carried out based on these theories, yielding a huge volume of raw data
which is eventually turned into a simple data model which is comparable
to the theoretical hypothesis. The acquisition of data and the construction
of the final data model is unavoidably carried out with the help of various
theoretical assumptions and other intermediate experimental models. The
purpose of the following sections is to illustrate how this modified account
of the hierarchy of models can be applied for the description of experimental
tests of the theoretical principle of Lepton Flavour Universality in HEP via
the so-called B-anomalies in the rare decays of B-mesons.

3 B-anomalies and Lepton Flavour Universality

The Standard Model (SM) of particle physics is by far the most empirically
successful physical theory for the fundamental building blocks of visible mat-
ter and the interactions between them. However, despite its tremendous
empirical success, the Standard Model is also undermined by a number of
experimental results that consistently deviate from its theoretical predic-
tions.5 One type of such results, which will be the focus of the present case
study, concerns the so-called B-anomalies in the rare decays of B-mesons
that are one of the main areas of study in the indirect searches for new
physics at the LHCb experiment at CERN.6

The term B-anomalies refers to a set of observed experimental results of

5For more details on the limitations of the Standard Model and the searches for new
physics at the LHC see Virdee (2016) and Rappoccio (2019).

6As opposed to direct searches, which aim at the observation of hypothetical new par-
ticles via their production in scattering experiments, indirect searches for new physics
concern the performance of precise measurements of observables in (usually rare) scatter-
ing processes, by analysing large volumes of data on observables related to these decays.
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Figure 1: Feynman diagram of the dominant contribution to the B-meson decay
B+ → K+µ+µ− within the Standard Model. The diagram illustrates the rare
process in which a B+ meson (ub̄) decays into a K+ meson (us̄) and a pair of
muons.

various observables of B-decays displaying tensions with the SM predictions
at the 2-3 sigma level. The overall consistency of these results is interpreted
by many physicists as a hint for the presence of new physics in these decays
and hence, the accumulation of further data and the precise measurement of
these observables via the appropriate data models is of ultimate importance
for the development of new physics beyond the Standard Model. A partic-
ular observable in these anomalies is the RK ratio that features in tests of
Lepton Flavour Universality (LFU) (Bifani et al., 2018; Muller 2019). LFU
is a theoretical principle of the Standard Model which stems from the fact
that, apart from their mass differences, the three charged leptons (electrons,
muons and taus) are identical copies of each other, and thus the electroweak
coupling of the gauge bosons to leptons is independent of the lepton flavour.
In practice, this means that according to the SM, electrons couple to pho-
tons, Z and W± bosons in the same way the muons and taus do. As Suppes
pointed out however, this is a general theoretical principle that does not
directly correspond to an experimental observable and thus a theoretical
model is needed in order to convert this general theoretical principle into an
empirically testable hypothesis.

The most straightforward way to do this is by constructing a theoretical
model featuring the ratio of the branching fractions between two different
B-decay processes with different flavours of leptons in their final products,
such as B+ → Kµ+µ− and B+ → Ke+e− (Fig.1). Since the electroweak
couplings of all three charged leptons are the same, the ratio of branching
fractions for these two decays is naively expected to be unity, and it can
indeed be calculated theoretically with high precision in a given range of
the produced dilepton mass squared q2. In the low region range for the
dilepton mass squared (1.1 < q2 < 6.0 GeV2/c4), this ratio is predicted by
the Standard Model to be unity with O(1%) precision (Bordone et al. 2016).
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This theoretical prediction constitutes the theoretical hypothesis:

H0 : RK+ [1.1, 6, 0]SM = 1.00± 0.01QED

which is eventually compared to the model of data. The QED subscript
indicates the origin of theoretical uncertainties due to QED effects and the
numerical interval corresponds to the dilepton mass squared range.

The ultimate aim of ‘the maddeningly diverse and complex experience’ which
constitutes the experimental test of LFU is to construct a data model of the
RK ratio: a simple entity in the form of a numerical result, subject to sta-
tistical and systematic uncertainties, which is comparable to H0 in a precise
and mathematical manner. The next section provides a brief description
of the data processing system of the LHCb in order to facilitate the dis-
cussion to follow on the rather complicated process of constructing a data
model for the RK ratio. As we shall see, theory guides the observation
and data acquisition process in three different levels: an all-encompassing
fundamental level independent of the specifics of the experiment, an inter-
mediate level concerning the physical processes in the detector, and a more
restricted level regarding the specifics of the quantities to be measured in a
given experiment.7

4 Data processing at the LHCb

The LHCb experiment at CERN is currently the largest experiment in
physics for the study of rare B-decays. It is specifically designed to profit
from the enormous production rate of b quarks in proton-proton collisions
at the Large Hadron Collider (LHC) which happen at a rate of around
3 × 1011 per fb−1.8 The LHCb detector collects about 25% of the b quarks
produced in these collisions, and provides the necessary data for making
precise measurements of various observables related to the rare B-decays.

The detailed study of these processes requires the determination of the var-
ious properties of the final state particles and their kinematics. In order to
determine these properties and allow the full reconstruction of an interac-
tion process, a number of different quantities need to be measured including
the charge of a particle, its flavour, the momentum vector, and for short

7The content of this section was derived from Teubert (2016), Blake, Lanfranchi &
Straub (2017), Cabdevilla et al. (2018), Lionetto (2018), Mauri (2018), Lisovskyi (2019)
and Humair (2019).

8One inverse femtobarn (fb−1) corresponds to approximately 100 trillion (∼ 1014)
proton-proton collisions.
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lived particles, the production and decay vertex. Since no detector can si-
multaneously measure these quantities, large detector systems such as the
LHCb detector, are typically made of various specialised sub-detectors, each
performing a different task. The various sub-detectors of the LHCb detector
can be grouped into two complementary sub-systems: the Track Reconstruc-
tion system and the Particle Identification system. As the name suggests,
the systems involved in track reconstruction aim in reconstructing the tra-
jectories of charged particles in a collision event by combining information
from the ‘hits’ recorded in the various sub-detectors. Once the tracks are
reconstructed, the Particle Identification (PID) system derives further infor-
mation from its sub-detectors in order to associate the tracks with a specific
particle species. Together with the momentum information provided by the
tracking system, the PID also allows the energy of a charged track to be com-
puted using the relativistic energy-momentum relation E2 = p2c2 +m2c4.9

4.1 The three levels of theory-ladenness

Already one may notice here the first and most general level of the theory-
ladenness of observation. The overall design and operation of the track
reconstruction and particle identification systems at the LHCb (as well as of
any other large scale experiment) is based on a number of physical principles
that are considered to be fundamental and are expected to hold in any possi-
ble new physics theory to be constructed based on these data. These general
principles enter the observational process in the form of various implicit and
explicit assumptions which lie at the core of almost every experiment in
physics and concern the most fundamental facts we know about nature,
such as the conservation of energy and Einstein’s mass-energy equivalence
principle. This type of theory-ladenness is universal across a particular field
of physics and is independent of the aims and quirks of any particular ex-
periment.

The second level of theory-ladenness of observation in collision experiments
concerns the physical processes behind the production of ‘hits’ in the de-
tectors and the identification of particles. During a proton-proton collision
event, hits are produced in the various trackers by the energy loss of the
traversing particles due to their interaction with matter. The two main
physical processes that occur in the detectors are inelastic collisions of the
products with the atomic electrons and elastic collisions with the nuclei of
the atoms of the detectors’ material, leading to the phenomena of ionisation
and multiple Coulomb scattering respectively. Theory-ladenness appears at
this stage by offering the various physical models for calculating the effects

9For a detailed description of the LHCb detector see the official publication from the
LHCb collaboration (LHCb collaboration, 2008).
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of these physical processes on the detector.

As aptly noted by Beauchemin (2017, p.299), quite often there are more
than one competing models about the nuclear interactions between charged
hadrons and the material of the detector.10 However, these competing mod-
els, although empirically equivalent, affect the simulation of the detector
and the selection of data in different ways, giving rise to different results. In
other words, the extrapolation and interpretation of data, and consequently
the form of the final experimental result as a data model, depends on the
choice of the model for the underlying physical processes in the detector.
This fact raises the worry of a possible vicious circularity due to the theory
ladenness of data selection. If the result depends on the arbitrary choice be-
tween several empirically equivalent models, what validates the objectivity
of a given result based on a particular model? As will be shown in Sec-
tion 5.4, the solution to this problem is achieved by separately calculating
the effects of each model to the measurement and including them in the
systematic uncertainties of the final result.

The third and most specific level of theory ladenness concerns the theo-
retical principles and assumptions that are specific to the aims of the par-
ticular experiment which will be described in the following section. These
assumptions basically determine (i) the selection criteria for distinguishing
the data from what are considered to be the ‘interesting events’, i.e. events
related to the two decays consisting the RK ratio and (ii) the vast major-
ity of theoretical and mathematical calculations involved in the derivation
of the final result. The suggested tripartite distinction of theory-ladenness
presented here partially overlaps with Karaca’s (2013) two-fold distinction
between the strong and the weak sense of theory-ladenness of experimen-
tation, albeit with an additional intermediate layer. Karaca describes the
strong sense of theory ladenness experimentation as the continuous guidance
of an experiment by some theoretical account with the aim of ascertaining
the conclusions of the same account. This strong sense of theory-ladenness
is captured by what I call here the third and most specific level of theory
ladenness which essentially determines the collection and further refinement
of data at the LHCb trigger system, in order to construct an appropriate
data model to be compared with the theoretical hypothesis in question. The
weak sense is described by Karaca in a broader context, as the utilization
of theoretical considerations that have no guiding power on the progress of
the experimental process.

10The reader may notice here a similarity in the title of the present paper and Beau-
chemin’s paper due to the presence of the medical terms ‘autopsy’ and ‘anatomy’. Al-
though this is a mere coincidence, the two papers are indeed related with respect to their
close examination of the scientific practice at the LHC.
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4.2 The LHCb trigger system

Before moving to the analysis of the data modelling process for the RK ratio
it is useful to give a brief description of some technical details regarding the
data processing system of the LHCb. The rate of visible collisions at the
LHC, i.e. the number of recorded events per second, is currently between 10
and 20 millions (∼ 13 MHz in Run II).11 This number is simply too big to
allow every single event to be stored for further analysis and thus, a filtering
system is required to select the interesting events by filtering out the events
containing various well-studied physical processes that are unrelated to the
specific aims of the experiment. For the LHCb experiment, this amounts to
the selection of the events that are most likely to contain a B-meson or a
D-meson, since, in addition to the study of the rare B-decays, LHCb is also
dedicated to the study of D-decays (decays of heavy D-mesons consisting of
at least one charm quark/antiquark) and CP violations. The selection of
these events is completed in two levels by the LHCb Trigger system, and is
based on the information from the various subsystems of the detector.

Practically speaking, the ultimate task of the software algorithms connected
to the tracking and the particle identification system of the detector is to
attach values to several variables related to the kinematics of the interac-
tions (momentum, energy, mass etc), their topology (scattering angles, flight
distance, impact parameter) and the nature of the particles. Two simple ex-
amples of such variables are the binary isMuon variable which depends on
the number of hits in the muon stations associated with a track, and the
DLLx(t) variable which corresponds to the likelihood of a track t to belong
to a particle species x rather than a pion. These variables can be produced
based on information from either a single subdetector or by combining in-
formation from several detectors. The job of the trigger system is then to
take these variables as inputs and, based on a number of selection criteria
that are also known as cuts, decide whether a given event is of interest or
not.

In order to be able to distinguish the interesting events from the various
processes taking place in the LHC, the trigger system of the LHCb is pro-
grammed to search for the characteristic signatures of hadrons containing b
or c (anti)quarks, which give rise to the heavy flavour decays in which we
are interested. The three most significant signatures of these hadrons are
(i) their large lifetime, which results in long flight distances compared to
the resolution of the detector, (ii) their large mass, which results in high

11In the jargon of particle physics, the recording of an event amounts to the recording
of all the products from a given collision. Run I and Run II refer to the different periods of
operational running for the LHC under different conditions. Run I took place in 2009-2013
and Run II in 2015-2018. Run III is scheduled to take place in the years 2021-2023.
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transverse momentum PT of the product particles,12 and (iii) the existence
of muons in the final state of several key decay modes of these hadrons,
such as the B+ → K+µ+µ− decay in which we are interested in for the
measurement of the RK ratio (Head 2014). This is where the third – aim
specific – level of theory-ladenness becomes apparent: the specification of
these signatures for the data selection process is largely driven by various
theoretical assumptions for the nature of these decays based on the existing
background theoretical knowledge. This fact is also related to what was
said earlier in Section 2 about the necessary connection of data acquisition
with a clear research question. The fact that the ultimate purpose of this
particular experiment is to test LFU via the RK ratio specifies which events
are of interest for this purpose, and eventually determines the choice of the
most appropriate selection criteria to distinguish these events.

The first level of the LHCb trigger system is completed by the Low Level
trigger (L0). L0 is a hardware based trigger and its task is to reduce the
data output from ∼ 13 MHz to approximately 1 MHz at which the LHCb
detector can be read out. Contrary to what one might expect, the selection
criteria at this first level are not purely theory-laden, rather they are mainly
determined by a number of technical limitations. In order to achieve the
goal of 1 MHz, the L0 trigger needs to take a decision for every event in
a very short amount of time (4µs), and for this reason, it only receives
information from the muon system and the calorimeters, as these are the
only sub-detectors able to provide information in such a short amount of
time. Once this information is received, the trigger algorithm discards all
events with too many hits in the SPD detector since such high occupancy
events would require an excessive fraction of the available processing time
at the next level of the data process. After these criteria are applied, L0
proceeds to a coarse-graining of the interesting events by selecting muons
with a high transverse momentum pT and other events with high energy
deposits in the calorimeter. The thresholds for these cuts are not fixed,
rather they are constantly changing according to the data-taking conditions
of the experiment, even during the same year or Run.

The second level of the trigger system is completed in two stages by the
High Level triggers (HLT1 and HLT2) of the detector. These are software
based algorithms and their task is to further reduce the amount of data in
order to be stored onto servers at the CERN Data Centre and distributed
to physicists for analysis. In Run II, HLT is programmed to reduce the
data rate from the 1MHz output of the L0 trigger to 12,5 kHz which is low
enough to be permanently stored on disks. During the first stage of the
High Level triggering, HLT1 receives information from the tracking system

12Transverse momentum is the component of momentum transverse (i.e. perpendicular)
to the beam line.
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Figure 2: Schematic representation of the various stages of the data acquisition
process at the LHCb. The numbers below the arrows indicate the size of data
before and after each level.

and proceeds to a partial event reconstruction by applying various selection
criteria based on the impact parameter of the events, the quality of the tracks
and the transverse momentum.13 This process reduces the data output to
∼70 kHz and passes the selected tracks to HLT2. The HLT2 algorithm
then performs a full reconstruction of all the selected events that satisfy
PT > 0.3 GeV independently of their impact parameter or matching hits
in the muon chambers. The overall process of reducing the amount of data
from the LHC collisions to a manageable dataset to be distributed widely is
illustrated schematically in Fig.2.

This pragmatic dimension of the data acquisition process is nicely captured
by Bokulich and Parker in their discussion of the problem space in data
modelling, in which the goal is to achieve a particular purpose of interest
guiding the construction of the model (2021, p.12). As Bokulich and Parker
note, the final properties of the data model are jointly determined by the
different dimensions of the problem space, namely the representational rela-
tionship between the data and the target of the experiment, the data users,
the adopted methodology and the background circumstances of the experi-
ment. Given that the purpose of our case study is to test LFU via the RK
ratio, the final form of the data model is indeed jointly determined by a
number of theoretical and pragmatic factors including the choice of models
for the interactions of product particles with the detector, the available com-
putational time and power, the storage capacity at the CERN Data Centre,
the reconstruction of events so that they are amenable to statistical analysis
and so on.

The completion of the High Level triggering process marks a significant
milestone where the vast majority of the available data from the proton-
proton collisions at the LHC is discarded irretrievably, mainly due to the

13The impact parameter of a particle, typically denoted by χ2, is related to the angle
of scattering, i.e. the angle at which a particle is deflected by a another particle after
collision, and is used in particle identification to tag flavours to the particles.
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technical limitations of the data processing system both in terms of the
data-processing time and the store capacity of CERN’s Data Centre. The
reduction of data from 13 MHz to the final 12,5 kHz that eventually becomes
available to the users means that about 99,9% of the available data from
visible collisions never reaches the physicists’ desks for further analysis. Add
this to the fact that only about 1% of the actual collisions in the LHC pro-
vide products that end up in the detectors, and it is not hard to see that the
otherwise huge amount of data that eventually gets stored and analysed by
physicists is only a minute fraction of the potentially available information
provided by the proton-proton collisions at the LHC. Even though extreme
care is taken to make sure that the data collected correspond to the events
containing new physics, it is widely acknowledged by the physics commu-
nity that a large amount of information containing hints to new physics is
permanently lost during this process.

This brings us to the final aim of the overall experimental process which
is the acquisition and organisation of data for the construction of the data
model representing the results of the experiment. Part of this process con-
cerns the determination of the selection criteria for the collection of data,
whereas another part takes place only once a sufficient amount of data for
the study of a particular phenomenon becomes available at the CERN Data
Centre. The datasets are then widely distributed to the scientific community
on an international scale by the Worldwide LHC Computing Grid (WLCG)
for further statistical and mathematical analysis. Given the huge amount
of data required to produce reliable results, it should be stressed that the
overall process of deriving an experimental result from the available data
is typically a non-linear and laborious activity of constant refinement and
revision, which usually takes years of collaborative work to complete. Nev-
ertheless, it can be characterised by four main stages which will be the focus
of the next section. Although in practice these stages do not follow a clear
chronological order and are not always clearly distinguishable, they nicely
capture the most essential procedures for the construction of a data model
in HEP.

5 Constructing data models for the RK ratio

This section provides a description of the four main stages for the construc-
tion of the data model of the RK ratio as it was recently presented by the
LHCb collaboration (2019; 2021): (i) data selection (ii) efficiency calcula-
tions (iii) data fitting and (iv) uncertainty calculations. The analysis of
these four stages illustrates the importance of considerations for the con-
struction of a data model with respect to the data acquisition criteria, the
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complicated calculations of the performance and efficiency of the detector
with the help of simulation, the fitting of finite data to continuous functions
via statistical analysis, and the evaluation of possible errors during the mea-
surement process. As we shall see, each stage of this procedure is, in its own
way, replete with various underlying theoretical assumptions, giving further
credence to the idea that observation in HEP is highly theory-laden.

5.1 Selection criteria

The first stage in the construction of the RK data model concerns the de-
termination of the selection criteria to be applied to the trigger system in
order to distinguish the signal – i.e. the events of interest that contribute to
the ratio – from the background – i.e. the unrelated events in the collision
with similar signatures. The involved strategies during this stage are deter-
mined at each step according to the source and the specific characteristics
of each type of background based on the existing theoretical knowledge. For
instance, a particularly invasive form of background comes from the mis-
identification of pions as leptons in the B+ → K+π+π− decays, which are
30 times more frequent than the B-decays constituting the ratio. The sup-
pression of this background is achieved by applying a combination of cuts for
the isMuon, the DLLµ, and the DLLe variables in the particle identification
algorithms. In general, the choice of these cuts is based on a combination of
both theoretical and pragmatic criteria regarding the expected behaviour of
the detector with respect to each type of background. The underlying as-
sumption is that there is sufficient knowledge of the nature of different types
of the background processes which produce signals that could potentially be
mis-identified by the detector as coming from the rare B-decays.

The main challenge at this stage, is what Franklin (1998, 2015) calls ‘the
problem of cuts’, which stems from the possibility that the experimental
result simply reflects the choices of the particular cuts on the triggering
system. In other words, the worry is that certain combinations of cuts will
give rise to different sets of results and there is simply no way of knowing
which of these combinations provides a genuine unbiased result. The situ-
ation becomes worse in cases where the effects of the cuts to the result are
known to the experimenter in advance, and hence, the idea of producing a
desired outcome may distort the objectivity of the experimental results. As
Franklin notes, the experimenter’s bias is mitigated by applying the prac-
tice of ‘blind analysis’, in which the experimenters analysing the data do not
know the result until the analysis method is finalized, following an extended
peer review within the collaboration. Beacheumin (2017) adds that the so-
lution to these problems also comes from the implementation of systematic
uncertainties in the result, which will be further discussed in Section 5.4.
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Once the first stage of calculating and applying the selection criteria for
distinguishing the relevant decays for the RK ratio is completed, the mea-
surement of the ratio requires the calculation of two types of quantities: the
efficiencies, ε, for selecting each one of the decays and the yield, N , of each
decay mode, which is the number of recorded events contributing to the ra-
tio. The calculations of these two types of quantities constitutes the second
and third stage respectively for the construction of the RK data model.

5.2 Efficiency calculations

The second stage of the data modelling process concerns the calculation of
the detector’s efficiency during the triggering, reconstruction, and identifica-
tion processes. These efficiencies are usually integrated in the total efficiency
of the detector, εtot, which can be defined as the fraction of the events reg-
istered and correctly identified at the detector, with respect to the actual
number of events produced by the proton-proton collision in the LHC. The
knowledge of these efficiencies is essential, since in order to know the true
value of the ratio between the two yields, it is clear that we must first be in
a position to know how many of the rare B-decays that actually occur are
eventually recorded by the detector and become available for analysis. The
calculation of the ‘true number’ of rare B-decays is a crucial yet challenging
aspect at this stage. Given that the only way to detect and count these de-
cays is via the – imperfect – detectors, how is it possible to know how many
of these decays are eventually recorded? The answer is via simulation.

The overall process of calculating the efficiency of the detector by simulation
can be described in three steps. The first step is to provide a complete list
of all the particles that come out of a certain physical process, including
the ones that are stable enough to interact with the detector. This is made
possible by various software algorithms that are known as event generators.
When combined, event generators provide a complete description of all the
particles that come out from a collision between protons in which a B-meson
is produced, providing this way the necessary knowledge for the expected
yield of rare B-decays.

Once the events are generated, the next step in this stage is to simulate the
path of the produced particles in the various parts of the detector, in order
to model the detector’s response. This process requires the construction of
a detailed digital map of the LHCb detector in a language that is readable
to the software. Ideally, this map would include every single wire and pipe
of the detector ensuring that the simulation provides accurate results, how-
ever, this would require an unrealistic amount of processing time, and thus
various approximations are used. This part of the simulation also involves
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the implementation of various physics models in the software, describing
the different physical processes that are expected to take place in the detec-
tor (bremsstrahlung, ionization, multiple scattering etc.) according to the
background theory. Once again, it should be noted that it is not possible
to include in the simulation every single physical process that is expected
to take place (this would require the simulation to run for a tremendous
amount of time) and thus, the physical models are chosen on a pragmatic
basis, taking into account limitations on time and computational power.
The final output of this second step in the simulation is a large database
with information about energy deposits in the detector including their times
and locations.

The third and final step in simulation is the digitization of data. This is
the process whereby the available data from simulation is converted in the
same format as the data provided by the experiment electronics and the
detector’s data acquisition system. The idea is to convert the information
about the energy deposits from the simulation into whatever it is that the
detector actually reads – i.e. voltages, currents and times. Moreover, this is
the stage where various other interesting detector effects are also taken into
consideration with the help of various models, such as the difference in light
collected from a scintillator tile in the calorimeter depending on whether the
energy is deposited in the middle or in the edge of the tile. The final result
is a simulated dataset that has the exact same format as the data coming
out of the detector’s data acquisition system, and for which, as opposed
to the real data, there is precise knowledge of the physical processes that
generate them. This allows the calculation of the efficiencies of the tracking
and particle identification systems of the detector. After digitization, the
simulated data follow the exact same path through the trigger system just
as the real data, allowing this way the calculation of the efficiency of the
trigger system as well.

This procedure is not immune to problems either however. Even though
the simulation is considered to provide a good estimate of the detector’s
efficiency in real data acquisition, it is still possible to have discrepancies
between the simulation-calculated efficiency and the true efficiency of the
detector. This may happen for instance due to technical problems during
data acquisition from real collisions that are not taken into account in the
simulation, or poor modelling of certain aspects of the detector in the simu-
lation software (for instance, it is known that the performance of the RICH
detectors and calorimeters is not accurately simulated by the LHCb soft-
ware). These discrepancies are often corrected by a data-driven method
called ‘tag & probe’ whereby the simulation efficiency is revised based on
data calibration samples from other well-studied decays.14

14For a detailed description of the ‘tag & probe’ method see Archilli et al. (2013).
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Figure 3: Fit to m(K+`+`−) for B+ → K+`+`− events in the Run II data, along
with the contribution from combinatorial background. The extracted values for the
signal yield Nsig and the background Ncomb are displayed at the right of the figure
(Humair 2019).

The various models described during this stage – i.e. detector layout models,
models of the physical processes and other effects in the detector, models
of data flow in the detector etc. – are all part of the class of experimental
models described in Section 2, whose task is to facilitate the connection
between the theoretical and the final data model of the experiment.

5.3 Data fits

As already mentioned, in addition to the detector efficiencies, the measure-
ment of the RK ratio requires the calculation of the yields N of the decays
of the ratio. This is achieved in the third stage of data modelling via the
process of data fitting. In general, data fitting is the mathematical process
of finding a function that best fits a number of data points (i.e. the pro-
cess of ‘fitting the curve’), with the aim of determining or estimating the
values of various unknown parameters affecting the collection of data. As
noted by Suppes (1962, p.253), one of the most profound complications in
the reconciliation of data and theoretical predictions is that the former are
of a discrete and finite nature, whereas the latter are typically continuous
functions or infinite sequences. Data fitting is the mathematical tool for
solving this tension by finding the most appropriate (continuous) function
that best describes the finite sequence of data collected in the experiment.

In the context of the measurement of the RK ratio, the fits are performed to
the data for the combined mass m(K+`+`−) in each decay, providing this
way a probability distribution for the mass of the B-meson. This distribu-
tion is considered to be the best description of the set of observations xi,
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given that these observations are also affected by the presence of residual
background (i.e. background that evades the data selection process). Once
the fit is performed, the probability density function is re-parametrised so
that it is a function of the relevant yield N and RK , and maximum likeli-
hood estimations are then performed to find the values of the yields for the
signal Ns and background Nb for which it is most likely to observe the given
masses m(K+`+`−) in each decay process. For instance, Fig.3 illustrates
the fit performed to the m(K+µ+µ−) data in order to extract the yield of
the nonresonant decay B+ → K+µ+µ−. This is an example of an auxiliary
data model needed for the construction of the final data model representing
the RK ratio. The extraction of the yield from these fits involves the use of
specialized software algorithms both for the determination of the shape of
the curve and the maximum likelihood estimation of the parameters, taking
into account all possible contaminations to the fit from background contri-
butions.

Maximum likelihood estimation (MLE) is one of the most popular statisti-
cal methods for calculating unknown parameters such as the yields of decay
processes in high energy physics experiments. Roughly speaking, given a
probability density function f(xi; θi) describing a set of observations xi, that
are characterised by a set of parameters θi, MLE is a method of finding the
values of θi that make the data most likely. What this means in practice, is
that the final value of RK which is eventually compared to the theoretical
hypothesis H0, is itself a hypothesis as well, which nonetheless, is derived
from the available experimental data on the basis of various mathematical
criteria. What makes MLE a popular method in HEP is the fact that com-
pared to other estimation methods, it is characterized by a number of ‘good’
statistical properties such as consistency, small bias and robustness.15

For completeness, let us note here that the most likely value of the RK ratio
given the available data for the most recent measurement (LHCb collabora-
tion, 2021) was found to be

RK = 0.846+0.042+0.039
−0.013−0.012 (1)

where the first uncertainty is statistical and the second systematic. The
fourth and last part in the construction of data models concerns the deter-
mination of these uncertainties, which, as we shall see, are a very important
and indispensable part of a data model.

15In short, an estimator of a parameter is said to be consistent if it converges, in
probability, to the true value of the unknown parameter as the number of measurements
tends to infinity. The bias of an estimator is the average deviation of the estimate from
the true value over an infinitely large number of repeated experiments. Robustness is the
property of an estimator to have limited sensitivity to the presence of outliers in the data.
The full mathematical definitions of these properties can be found in Lista (2016, Ch.5).
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5.4 Uncertainty calculations

The attribution of statistical and systematic uncertainties in a HEP exper-
imental result can be understood as a way of quantifying possible errors in
the data taking process. This understanding reflects the seemingly more
popular ‘error approach’ in HEP, whose objective is to determine an esti-
mate of a quantity which is as close as possible to the unique true value of
the quantity. This is opposed to the ‘uncertainty approach’ whose objec-
tive is to determine an interval of values which can be equally assigned to a
quantity with relatively high confidence, and can be understood as a way of
quantifying doubt during a measurement process.16 In the case of the RK
ratio, the preference to the error approach is reflected by the expression of
the result as a single numerical value – which is supposedly as close as possi-
ble to the real value of the ratio – associated with statistical and systematic
uncertainties.

Generally speaking, in a HEP experiment, there are six main sources of un-
certainty: (i) the intrinsic probabilistic nature of the underlying quantum
field theory, (ii) the theoretical uncertainties involved in the calculation of
various quantities due to highly complicated (usually QCD related) theo-
retical calculations (iii) the various measurement errors that are present in
the data taking process even without taking into account any quantum ef-
fects, (iv) the variability in the selection of different models and different
measurement methods in the experiment (v) the experimenter’s insufficient
knowledge about various aspects of the experiment due to limitations of
cost, computational time, computational power and so on, and (vi) the sim-
ple fact that a repeated measurement may yield different results for the same
quantity.17

These and other possible sources of error give rise to two different types
of uncertainty that are typically accompanying a HEP result in the form
of the data model: statistical uncertainties and systematic uncertainties.
A possible way to distinguish between these two types of uncertainty on
the semantic level, is to understand the former as expressing the possible
fluctuations in a measurement result even when all input quantities and
other factors affecting the measurement are perfectly known and stable.
This means that the presence of statistical uncertainty can be attributed to
the probabilistic nature of quantum field theory and other purely statistical
factors, and thus its minimisation is quite often merely a matter of collecting
additional data in future runs. Systematic uncertainties on the other hand,

16See Mari and Giordani (2014) for an illuminating discussion on the error approach
and the uncertainty approach in science.

17I am grateful to an anonymous referee for pointing out that this list – or any list – is,
of course, non exhaustive.
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can be seen as resulting from our imperfect knowledge on various aspects of
the experiment, the mis-modeling of detectors in the simulations, and the
possible defects and biases of measuring instruments during the data taking
procedures. A large part of the data analysis process therefore concerns the
precise calculation and mitigation of systematic uncertainties to the extent
allowed by the available funds and the available time, which in turn will
provide extra security and robustness to the final result.

In a recent study on uncertainties in HEP, Staley (2020) aptly notes that
the distinction between statistical and systematic uncertainties in HEP is
rather opaque.18 The main reason for this ambiguity stems from the fact
that the sources of systematic uncertainty in a measurement are often un-
known and difficult to distinguish from statistical uncertainties. Moreover,
they often require a different method of evaluation, which in turn makes the
combination of systematic and statistical uncertainties in the final result
problematic. In order to resolve this lack of consensus, particle physicists
have developed an extensive literature on the treatment of systematic uncer-
tainties providing possible definitions and practical guidance on methods of
statistical evaluation.19 Barlow (2002) for instance, provides two conflicting
definitions of systematic error by ‘widely read and accepted authors’ and
shows how different measurements in HEP reflect these two definitions. He
then concludes his paper with a set of practical advice for practitioners.

Given this ambiguity, in practice, the lack of consensus on the distinction be-
tween statistical and systematic uncertainties is usually resolved by simply
stating the sources of statistical and systematic uncertainties in a published
result.20 In the case of the RK ratio, ‘by convention, the uncertainty on
RK arising from the statistical fluctuations affecting [the ratio of the yields]
NKµµ
NKee

is referred to as statistical uncertainty’ (Humair 2019, p.133, empha-
sis added). All other sources of uncertainty are integrated as systematic
uncertainties and are listed below (ibid., p.138):

1. Calibration samples size

2. Kinematic reweighting

18The following remarks from experimental physicist Pekka Sinervo confirm this: ‘the
definition of these two sources of uncertainty in a measurement is in practice not clearly
defined, which leads to confusion and in some cases incorrect inferences. [...] The definition
of such uncertainties is often ad hoc in a given measurement, and there are few broadly-
accepted techniques to incorporate them into the process of statistical inference’ (2003,
p.122).

19See for example Barlow (2002), Sinervo (2003), Lyons (2006), Wanke (2016), Bailey
(2017) and references therein. Staley (2020) offers a very illustrative philosophical analysis
of the various aspects of this debate.

20This, of course does not solve the problem of how one should evaluate and combine
these two types of uncertainty as noted by Staley (2020).
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3. PID calibration

4. Trigger calibration

5. Occupancy proxy

6. Tracking efficiency

7. q2 and mass resolution

8. Decay model

9. Fit shape

Some of these uncertainties are related to the finite nature of the data sam-
ples while others come from various limitations in the detector, and the
presence of physical effects like bremsstrahlung which significantly compli-
cates the identification of electron tracks. The calculation of each type of
uncertainty follows a different methodology according to the nature of the
source, but the main idea remains the same. As we have seen, the overall
data taking process for the extraction of the RK ratio involves the utilisa-
tion of various auxiliary models and other assumptions that are necessary
for carrying out the calculations leading to the final result. However, given
that there is often no theoretical or empirical justification for (i) the use of
one experimental model over another, or (ii) the assignment of a particular
value in a parameter of a model or an assumption (e.g. a specific threshold
value in the triggering system) the result is extracted several times either by
varying the auxiliary experimental model or the value of a parameter within
the selected model (Staley 2020, p.102). The variance in the result due to
the use of different models and different parameters is then recorded as a
systematic uncertainty.

Uncertainties are a crucial and indispensable part for the reliability of an
experimental result but a further discussion on their nature and exact role
requires a much deeper analysis which is beyond the scope of this paper. As
a closing remark, let us simply note that in addition to being a quantifiable
measure of comparison between different results from different experiments,
uncertainties are also a solid way of determining the accuracy and precision
of a specific result. This point has been nicely illustrated by Beauchemin
(2017) who emphasizes the critical role of uncertainties in determining the
robustness and the validity of measurements. A measurement is robust inso-
far as the systematic uncertainties on the final results are ‘sufficiently small’
regardless of the source of these uncertainties. Sufficiently small is to be
understood here as being significantly smaller than the order of magnitude
of the physical effect to be measured. How much smaller is significantly
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smaller is not written in stone, however, the main idea is that the smaller
the uncertainty, the more robust the result will be.

Beauchemin also notes, rather interestingly, that in cases of small uncer-
tainties, the allegedly vicious circularity of theory-ladenness in observation
is not problematic, precisely because ‘its impact on the physics conclusions
will be small and fully accounted for’ (ibid., p.303). Beauchemin’s remarks
have been further elaborated by Ritson and Staley (2020) who nicely illus-
trate how the identification of the assumptions on which a result depends
and the further quantification of the dependence of this result on the various
assumptions in terms of uncertainty calculations, jointly control the possi-
bility of a vicious circularity at the practical level. The determination of the
dependence of the result on the various theoretical assumptions in terms of
uncertainty serves in discriminating amongst those model assumptions that
have the highest impact on the uncertainty of the result and those whose
variation introduces negligible changes. The clear separation between the
statistical and systematic uncertainties, and the identification of the dif-
ferent sources of uncertainties in the published result as presented in the
above list, nicely demonstrates how Ritson and Staley’s observations can be
applied at the example of the RK ratio.

6 Two dubious distinctions

Now that we have seen how the available data are treated in different ways
during the various stages of the construction of a data model, we are in a
position to make some remarks about the two distinctions between (i) raw
and processed data and (ii) simulated and real (or signal) data. Although
in both cases, the two extremes in these distinctions can be clearly defined,
the transition between the two types of data in each case is, as we have seen,
quite blurry. Regarding the first distinction, raw data are often defined as
objects that are directly perceived by our experience without any mediating
processing or influence by theory (cf. Harris, 2003, p.1511). If this definition
is taken seriously, then it is not clear at all what should be counted as raw
data in a large-scale HEP experiment. In practice, physicists tend to refer to
the electronic signals produced by the physical processes in the various parts
of the detector as the ‘raw data’ given to us by the proton collisions, whereas
the output of the triggering system that eventually gets stored in the data
centre and reaches the hands of researchers is referred to as ‘reconstructed
events’.

However, none of the signals produced in the detectors is actually directly
perceived by the researchers at CERN. Before reaching the hands of physi-
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cists, the data from the electric signals produced at the early stages of the
experiment at the Track Reconstruction and Part Identification systems de-
scribed in Section 4, undergo a long process of refinement and reconstruction
by the computer algorithms of the LHCb detectors and triggering systems.
Hence, the ‘first points of contact’ – i.e. the reconstructed events – are long
lists of numerical data about energy deposits on detectors, momenta etc,
but as we have seen, these data are far from being unmanipulated and clear
from any theoretical influence. The very nature of particle physics therefore
makes it impossible to talk about raw data in this field in a strong sense.

This point also illustrates that the basic definition of data models as ‘a
corrected, rectified, regimented, and in many instances idealized version of
the data we gain from immediate observation’ given by Frigg and Hartmann
(2016) does not really apply in the case of HEP. Nevertheless, the data in
the reconstructed events are, in a sense, also ‘raw’, since they still need to
undergo a long process of further analysis by scientists in order to reach
their final form as a data model which is comparable to the theory. A more
appropriate way to describe this situation is thus to say that data follow a
long ‘ripening’ journey which starts from their birth as electric signals in the
heart of detectors, and goes all the way up to the final polished form of a data
model, without really worrying at which stage the data should be considered
to be raw.21 It is precisely for this reason that the novel definition of data
models in Section 2, does not depend on a clear-cut distinction between
raw and processed data and thus avoids the relevant objection discussed by
Leonelli.

Regarding the folk view that sees the tampering of data as an act of de-
creasing their epistemic reliability, it should be obvious from our discussion
so far that this does not apply to HEP experiments. Generally speaking, a
dataset is epistemically reliable if the information it provides for the physi-
cal phenomenon it represents is correct. In the context of LFU tests, to say
that the processing of data decreases their epistemic reliability is therefore
to say that the processed datasets provide less accurate information about
the possible violation of LFU in B-decays compared to their less processed
counterparts. This is not true however. The successful completion of a
large-scale experiment in HEP and the extraction of meaningful and reli-
able conclusions about the empirical adequacy of various theoretical claims,
necessarily requires the processing of data by statistical methods and com-
puter simulations. For instance, as we have seen, the calculation of detector

21Bokulich’s comment on the blurriness of this distinction is characteristic: ‘I will not
engage the difficult question here of where exactly to draw the line between (raw) data
and a data model. It may very well be that the distinction is one of degree with vague
boundaries, rather than a difference of kind; [...] and where the line is drawn may further
be context dependent’ (2018, fn.25).
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efficiencies (Sec. 5.2) involves the introduction of simulated data in the
datasets which can be seen as a form of tampering the initial data. This
step however, is taken to ensure that the calculated number of yields in the
data fitting stage reflects the actual number of B-decays occurring in the
collider and not the number of yields detected by the LHCb. Hence, the
processing of data in some cases increases the reliability of the datasets in
that it mitigates the impact of possible errors in the less processed datasets
due to poor detector performance, computational limitations and so on.

Moreover, it is safe to say that the so-called raw data from these experiments,
are not just epistemically less reliable than the processed data in some cases,
but when it comes to their comparison with theoretical predictions, they are
also practically useless in their pure form. The successful comparison of a
theoretical hypothesis with data necessarily requires that the raw data ex-
tracted from the detectors are moulded into an appropriate form that makes
them comparable to theoretical predictions in order to serve the purpose for
which they are extracted. However, the raw data extracted from the first
level of the triggering system are far from fulfilling this requirement. Hence,
the seemingly counterintuitive claim that processed data are epistemically
more reliable and more useful than the raw data obtained by experiments
is actually a platitude when it comes to HEP.

As for the distinction between simulated and real data in HEP, this has al-
ready been discussed in detail by Margaret Morrison (2015, Ch.8). Morrison
uses the example of the Higgs discovery to emphasize the absolute necessity
of simulation, not only in calculating the efficiency of a detector, but also
in almost every other aspect of the LHC experiments. Her main conclusion
is that given that simulation and signal data are essentially combined dur-
ing the data analysis process, the sharp distinction between simulation and
experiment is practically meaningless, and that ‘simulation is as much part
of the experiment as the signal data’ (ibid., p.289). Parker (2017) reaches
a similar conclusion in her attempt to show that the results of computer
simulations that are often embedded in measurement practices can be un-
derstood as measurement outcomes of equal epistemic importance to the
outcomes of real measurements.

The calculation of the efficiencies via simulation provided in Section 5.2 is a
clear example of such cases, where simulation results are actually embedded
in real measurement outcomes in a way that makes it practically impossible
to distinguish between the two. This example however, illustrates only one
out of the many applications of simulation in a large-scale HEP experiment
such as the LHCb. In addition to the calculation of the detector efficiency,
simulation is also involved in the very early stages of the experiment to
design and optimize the detectors for best physics performance, as well as
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in the calculation of the performance of the detector which is crucial for
the extraction and interpretation of the available data (indeed, the numbers
provided at the beginning of Section 4 regarding the performance of the
LHCb detector can only be estimated by simulation). It is also heavily
used for the estimation of background signal in the extracted data and the
evaluation of the possible physical processes in the various parts of the sub-
detector in order to assess their impact on the final data model via the
calculation of uncertainties.22

For the purposes of our discussion, it therefore suffices to say that although
what counts as simulation data and what counts as signal data in the ex-
periment is quite straightforward, the data that reaches the experimenters
as reconstructed events for further analysis, is in effect an indistinguishable
amalgamation of these two types. Along with a number of additional fac-
tors, simulation data therefore have a clear influence on the final properties
of the data model either directly via their presence in the processed datasets
that reach the scientists’ desks, or indirectly via their effects on the various
aforementioned stages and procedures of the experiment. Although the dis-
covery of a new particle or the presence of new physics in a physical process
cannot – of course – be claimed based solely on simulation data, the final
data model that is eventually compared to theory to make such claims is in
effect a co-production of real and simulated data. The extent to which each
type of data contributes to the final results depends on the specific details of
the experiment. This further suggests that the question whether real data
are more reliable than simulated data does not really apply in the case of
HEP, since in practice, there is rarely a case in which a dataset is exclusively
constructed from real data.

7 Concluding remarks

The description of the four stages in HEP data modelling and the fol-
lowing remarks on the two distinctions between raw/processed data and
real/simulated data bring us to the end of our discussion. As we have seen,
the construction of a data model in HEP typically proceeds via a four stage
process in which (i) the selection criteria for reducing the available data are
defined and applied at the trigger systems, (ii) the efficiency of the detector
in recording the relevant events is calculated, (ii) the yields of the decays are
determined by data fitting, and (iv) the uncertainties accompanying the fi-

22For a detailed review of the impact of simulation to collider experiments in general,
including the discussion of cases where the use of simulation samples made a difference
in the precision of the physics results, see Elvira (2017). For a description of the LHCb
simulation system see Clemencic et al. (2011).
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Figure 4: Comparison of the Standard Model theoretical prediction and various
RK ratio results from different experiments. (LHCb collaboration, 2021).

nal result are determined and calculated. It is important to note once again,
that in practice, these four stages are not clearly separated during the data
analysis, nor do they follow a linear path in which one stage follows after the
completion of another. Rather, the activity of constructing a data model is
a long and iterative process of trial and error, in which several attempted
algorithms for extracting the result go back and forth a peer review process
until they reach the necessary standards for publication. The breakdown of
these procedures in four different stages only aims in giving an overview of
the main tasks that need to be accomplished in order to compress the huge
amount of information hidden in the available data into a simple data model
to be compared with the theory.

Fig.4 perfectly captures Suppes’ dictum that theoretical hypotheses are
eventually compared with ‘a simple entity’ – i.e. the data model – which in-
corporates all the relevant information extracted from the many and various
procedures that constitute the LHCb experiment. The graph is taken from
the LHCb’s most recent announcement of the result, and shows the com-
parison between the theoretical prediction of the Standard Model (vertical
dashed line) and various experimental results for the Rk ratio (horizontal
lines). Compared to the previous result at the LHCb (LHCb collaboration,
2019) and the results from the Belle and BaBar experiments, the 2021 LHCb
result by far has the smallest associated uncertainty which makes it the most
precise and robust measurement of the RK ratio to date.

This result is consistent with the Standard Model prediction at the level
of 3.1 standard deviations, which corresponds to a p-value of ∼ 0.1%. In
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practice, this means that if the ‘null hypothesis’ is correct – i.e. if there is no
violation of Lepton Flavour Universality – then the probability of obtaining
any data yielding a discrepancy from the Standard Model prediction that is
at least as great as that obtained with these data is about 1 in 100000. The
3.1 sigma level is still far away from the golden 5 sigma level for claiming a
new discovery in particle physics, corresponding to the much lower p-value of
approximately 1 in 3.5 million. This, however, is a significant improvement
to the 2.5 standard deviation of the 2019 measurement with a p-value of
1 in 166, in that it comes with even smaller uncertainties and makes the
possibility of discovering new physics in rare B-decays more credible. Future
measurements of the ratio based on larger data samples are expected to both
reduce the total uncertainty and increase the sigma level in order to reach
a more definite conclusion for the possible violation of LFU in B-decays.

It is also worth noting that the plethora of experimental results showing
potential anomalies at the 2-3 sigma level has already led to the development
of various phenomenological models containing new physics in the form of
additional interactions that allow the violation of LFU. The most promising
types of such models involve the existence of additional particles such as
the so-called ‘leptoquarks’ (Becirevic et al. 2016) or a new heavy neutral
Z′ boson (Celis et al. 2015). The precise way in which indirect searches
in HEP, such as the measurement of the RK ratio, give rise to new models
extending the Standard Model of particle physics, and the impact of these
models on future research in HEP is an interesting topic that deserves to be
explored further in future work.

To summarise, the main objective of this article was to explore the connec-
tion of theory with experimental results via the concept of data models, by
studying in detail an example of experimental practice in HEP. Our discus-
sion began with a brief presentation of Suppes’ hierarchy of models account
and his distinction between models of theory, models of experiment and
models of data. The following section focused in providing the theoretical
framework of the rare decays of B-mesons at the LHC in order to under-
stand the experimental process of LFU tests at the LHCb for which the
data model of the RK ratio is constructed. The discussion continued with
a presentation of the LHCb trigger system, followed by the presentation of
the four main stages for the construction of the data model of the RK ratio
and some remarks on the two distinctions between raw/processed data and
real/simulated data in support of the four main conclusions of this paper.

The first conclusion is that the first data collected at the early stages of the
experiment, which can be characterised as the raw data of the experiment,
are useless as they are for the comparison between theory and experimental
results, since they necessarily need to undergo a process of refinement in
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order to be transformed into a language that is comparable to theory. This
also indicates that raw data in HEP cannot be understood in the traditional
sense as data directly perceived from human experience and that, contra to
popular perception, the process of refining the data sometimes makes the
processed datasets epistemically more reliable than non-processed data.

The second conclusion concerns the fact that the final datasets that reach
the hands of physicists for analysis consist of a mixture of simulated and
real data that cannot be distinguished. The use of simulation and its data
are essentially involved directly or indirectly in almost every step of the
data acquisition and data analysis process and hence, one can safely say
that the final data model of the RK ratio that is eventually compared to the
theoretical prediction of the Standard Model is a co-production of data com-
ing from the physical interactions of particles in the detector and computer
simulations.

The third conclusion is that theory guides the observation and the deriva-
tion of results in three different levels: a fundamental level which is universal
across all experiments in HEP, an intermediate level regarding the various
processes throughout the experiment which are not directly involved with
the physical phenomenon under investigation, and a third and most spe-
cific level which explicitly guides the overall experimental procedure based
on the specific research question of the experiment. In the core of these
three levels lies the fundamental assumption that new physics will resemble
known physics. This means that the anticipated models and theories that
go beyond the Standard Model are expected to respect all the fundamen-
tal laws of current physics, and new physics will only appear in extremely
short distance/high energy scales and in rare processes such as the decays
of B-mesons which have not yet been studied in detail.

Finally, the detailed study of the LFU tests at the LHCb showed that Sup-
pes’ categorization is not as rigid as one might first think, in that the three
types of models cannot always be easily distinguished. Nonetheless, this
categorization remains a useful conceptual tool for describing the otherwise
extremely complicated structure of large scale experiments in HEP. In this
context, a data model can be understood as the representation of an exper-
imental result in the form of a graph, table or numerical answer that allows
the comparison of experiment with theory. While this straightforward an-
swer to the question of what a data model is does not differ from what
Suppes and others have said, what is of special philosophical interest is the
complicated and extremely laborious process of constructing a data model
in HEP, which has largely been overlooked by philosophers of science. The
detailed analysis of the necessary considerations regarding the determina-
tion of cuts, the calculation of efficiencies and uncertainties and the fitting
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of data with sophisticated algorithms shows that tha process of construct-
ing a data model in HEP involves much more than the mere collection and
organization of raw data, and cannot be easily formalized as Suppes implied.

In addition to these main conclusions, the detailed description of the id-
iosyncrasies of the LHCb experiment for the test of LFU and the various
challenges faced by physicists in their attempt to derive the experimental
results also reveals a number of further issues worthy of philosophical atten-
tion. The pragmatic dimension of the experimental process regarding the
determination of selection criteria based on time limitations, computational
power and store capacity, and the fact that the LHCb detector is able to
collect only 25% of the b-quarks that are produced in the proton collisions of
the LHC means that the otherwise huge amount of data that eventually gets
stored for further analysis is only a tiny fraction of the potentially available
data from the proton-proton collisions in the LHC. Although special atten-
tion is given to collect the most relevant data with respect to a research
question, it is a widely accepted fact that the data that are irretrievably
thrown away at the LHC contain evidence for new physics and hence, the
final data model of the RK ratio, as well as most of the results in HEP, is
not a solid and flawless representation of reality in the microscopic scale as
one might think. Rather, it is itself a hypothesis based on our best estima-
tion given the small fragment of data we are able to collect from particle
collisions.

37



References

Ankeny, R., H. Chang, M. Boumans, and M. Boon (2011). Introduction:
philosophy of science in practice. European journal for philosophy of
science 1 (3), 303.

Archilli, F., W. Baldini, G. Bencivenni, N. Bondar, W. Bonivento,
S. Cadeddu, P. Campana, A. Cardini, P. Ciambrone, and X. C. Vi-
dal (2013). Performance of the muon identification at LHCb. Journal
of Instrumentation 8 (10), P10020.

Bailey, D. C. (2017). Not Normal: the uncertainties of scientific measure-
ments. Royal Society open science 4 (1), 160600.

Barlow, R. (2002). Systematic errors: facts and fictions. arXiv preprint
hep-ex/0207026 .

Beauchemin, P.-H. (2017). Autopsy of measurements with the ATLAS de-
tector at the LHC. Synthese 194 (2), 275–312.
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