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Abstract

Climate modelling plays a crucial role for understanding and addressing the climate challenge,
in terms of both mitigation and adaptation. It is therefore of central importance to understand
to what extent climate models are adequate for relevant purposes, such as providing certain
kinds of climate change projections in view of decision-making. In this perspective, the issue
of the stability of climate models under small relevant perturbations in their structure (or
small relevant ‘structural model errors’ with respect to the target system) seems particularly
important. Within this framework, a debate has emerged in the philosophy of science literature
about the relevance for climate modelling of the mathematical notion of structural stability.
This paper adresses several important foundational and epistemological questions that arise
in this context, in particular about the the role of abstract mathematical considerations of
a qualitative nature (in some precise, topological sense) for concrete modelling projects with
mainly quantitative purposes.

Keywords: climate models, structural stability, structural model error, hawkmoth effect, topology,
dynamical systems theory, chaos theory, climate projections, decision-making.

1 Introduction

Climate modelling plays a crucial role for understanding and addressing the climate challenge, in
terms of both mitigation and adaptation. It is therefore of central importance to understand to
what extent climate models are adequate for relevant purposes (Parker 2009), such as providing
certain kinds of climate change projections in view of decision-making. In this perspective, the
issue of the stability of climate models under small relevant perturbations in their structure (or
small relevant ‘structural model errors’ with respect to the target system) seems particularly im-
portant. Besides difficulties for the decision making relevance of certain climate change projections,
issues related to structural stability (and structural model error) may also point, in certain cases,
towards some kind of epistemically relevant fundamental (irreducible) limitations of climate mod-
elling (McWilliams 2007). Such ‘in-principle’ limitations (with respect to certain purposes) would
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not be easily mitigated by making climate models more comprehensive and more complex (e.g. by
including more processes) or by increasing computational power.

These issues are known to the climate science community, where they seem however to be
rather little discussed (see Smith 2002 for an example)—they actually often fall in the general set
of issues labelled ‘structural (model) uncertainty’. Part of the reasons may come from the fact that
the rather abstract and involved mathematical framework of dynamical systems theory underlying
structural stability issues is quite far removed from the concerns of the working climate scientists
and climate modellers (indeed, these questions tend to be confined to the sub-community interested
in the mathematical foundations of climate science and climate modelling, see e.g. Ghil et al. 2008
and Majda et al. 2010) and also from the fact that the concrete impact of these issues can be rather
difficult to quantify.

Interestingly, a debate has emerged in the philosophy of science literature about the relevance (in
particular for climate modelling) of structural model error and structural stability. Indeed, beyond
the difficult purely technical (mathematical) issues, there is also a number of very interesting more
conceptual questions.

On the one hand, Frigg et al. (2014) construct a thought experiment or toy example using the
logistic map in order to illustrate the critical impact of structural model error on (probabilistic)
model outputs (and on their relevance for decision making).1 Their argument for the general scope
of the critical impact of structural model error beyond the kind of thought experiment they put
forward crucially relies on considerations about (the absence of) structural stability (Frigg et al.
2014, §4)—in this context, the critical impact on the decision-making relevance of the combination
of structural model error and lack of structural stability is often broadly (and sometimes a bit
loosely) called ‘hawkmoth effect’ in the literature, in reference but also in distinction to the famous
‘butterfly effect’.2 Relatedly, issues about structural model error and structural stability lie in
the background of the critical assessment of the UKCP09 climate modelling project in Frigg et al.
(2013b) and Frigg et al. (2015).

On the other hand, Winsberg and Goodwin (2016), Goodwin and Winsberg (2016) and Naber-
gall et al. (2019) raise a number of issues and object to the general relevance of the hawkmoth effect
for climate projections; in particular, they challenge the general scope (in view of decision-making)
of the absence of (a proof of) structural stability.3 This paper does not aim to settle all aspects
of this debate—somewhat surprisingly, beyond the bold claims, it seems that both sides actually
agree that structural model error can be a real worry in certain cases, one of the main points of
disagreement being rather about the scope of the worry and the precise role of structural stability.

This paper aims to highlight the epistemic relevance of structural stability considerations within
the framework of climate modelling. To this aim, after introducing the notions of structural model
error and structural stability, we will discuss their role in the hawkmoth effect argument, with a
particular attention to the crucial (but little discussed) notion of ‘genericity’ in this context (section
2). We will then address a series of issues related structural stability that have been raised within
the framework of the debate about the hawkmoth effect, and we will argue that these issues do not
affect the general epistemic relevance of investigating structural stability features of climate models
(section 3). We will put the discussion in a broader perspective in section 4.

Before starting, a note on our focus on climate modelling: the issues discussed here are of
course not specific to climate modelling, but the latter provides an interesting study case, not least

1See also Frigg et al. (2013a) and Bradley et al. (2014); the very relevance of this thought experiment is debated
in the philosophy of science literature.

2The expression ‘hawkmoth effect’ has been introduced in Thompson (2013). We make the hawkmoth effect
argument explicite in section 2.

3See also the paragraph 5.6 as well as the appendix in Winsberg (2018).
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because of the important potential implications in the climate change context, e.g. in terms of what
to expect from climate modelling in view of decision making and addressing the climate challenge.

2 Structural stability and the hawkmoth effect

Climate models obviously differ in many ways from a perfect representation of the target climate
system (because of, e.g., discretization, approximations, missing physical processes, . . . ).4 We
are here interested in certain structural differences. In particular, a model has ‘structural model
error’ (SME) if its “functional form is relevantly different from that of the true system” (Frigg
et al. 2014, 35).5 The dynamics of a model with SME differs from the dynamics of the true
(target) system in a way that “can destroy the utility of [the] model’s predictions” (Frigg et al.
2014, 39): as already mentioned in the previous section, when combined with considerations linked
to structural stability, this is often broadly referred to as the ‘hawkmoth effect’ (mainly in the
philosophy of science literature), in reference but also in contrast to the well-known butterfly
effect. The intuition underlying this reference (and contrast) is that the hawkmoth effect is about
sensitive dependence on model structure, whereas the butterfly effect is about sensitive dependence
on initial conditions (the notion of ‘sensitive dependence’ needs to be precisely articulated in both
cases).6 Frigg et al. (2014) further argue that the hawkmoth effect cannot be easily mitigated
with probabilistic methods, in contrast to the butterfly effect where, very roughly, the sensitive
dependence to initial conditions can be mitigated by considering (the evolution of) a probability
distribution over initial conditions.

The argument for the general relevance of the hawkmoth effect beyond specific cases (and in
particular for climate modelling) crucially relies on mathematical considerations from dynamical
systems theory involving the notion of structural stability (Frigg et al. 2014, §4). Indeed, dynamical
systems theory allows the study of the qualitative behaviour of physical (mechanical) systems, in
particular the study of the geometrical and topological properties of their phase portrait (the set of
all trajectories of a dynamical system over time in state space). In this context, dynamical systems
theorists (and their precursors) have developed the notion of structural stability in order to address
qualitative issues of the following kind:

If a dynamical system X has a known phase portrait P , and is then perturbed to
a slightly different system X ′ (for example, changing the coefficients in its differential
equation slightly), then is the new phase portrait P ′ close to P in some topological sense?
This problem is of obvious importance, since in practice the qualitative information
obtained for P is to be applied not to X, but to some nearby system X ′, because the
coefficients of the equation may be determined experimentally or by an approximate
model and therefore approximately. (Abraham and Marsden 1978, xix)

Suppose our dynamical system is the solution of a differential equation or otherwise
comes from a real world physical system. Ordinarily, the system itself will be only a
model of real world phenomena: certain assumptions will have to be made, and certain
approximations and experimental errors will be present. Hence the dynamical system

4Of course, a climate model does not aim to perfectly represent the target climate system, but only the aspects
that are relevant for the specific purposes the model has been designed for (see Parker 2009; see also the discussion
from a climate scientist’s point of view in Knutti 2018).

5Structural model error is about model structure and so is not equivalent to parameter uncertainty.
6The famous expression ‘butterfly effect’ is generally associated with Edward Lorenz, who may have actually

meant something rather different from ‘mere’ sensitive dependence to initial conditions, see Palmer et al. (2014).
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itself, albeit a completely accurate solution of the physical model, will nevertheless
be only an approximation to reality since the model itself suffers this flaw. Now, if
the dynamical system in question is not structurally stable, then the small errors and
approximations made in the model have a chance of dramatically changing the structure
of the real solution to the system. That is, our “solution”could be radically wrong or
unstable. (Devaney 1989, 53)

Intuitively, the above mentioned worry related to SME in climate modelling can be rephrased
along similar lines within the framework of dynamical systems theory: is the phase portrait of a
climate model (understood as a dynamical system) with (small) SME close in some topological sense
to the phase portrait of the dynamical system we are ultimately interested in, namely the target
climate system? Or, in other terms: is the dynamics described by the considered climate model
with (small) SME qualitatively equivalent (‘close in some topological sense’) to the dynamics of the
target climate system? The notion of structural stability precisely provides a way to characterize
when this is the case.7

If on the other hand, the dynamical system in question is structurally stable, the small
errors introduced by approximations and experimental errors may not matter at all:
the solution of the model system may be equivalent or topologically conjugate to the
actual solution. (Devaney 1989, 53)

In intuitive terms, a dynamical system is structurally stable if its dynamics remains qualitatively
equivalent under small perturbations (of course, ‘qualitatively equivalent’ and ‘small’ need to be
made precise in this context). Let us now consider a somewhat more formal characterization of
structural stability. We first need to define the relevant equivalence relation (we here closely follow
Katok and Hasselblatt 1995, 68-69).

Definition 1. For r ≥ 0 two Cr maps f : M → M and g : M → M are said to be topologically
conjugate if there exists a homeomorphism h : M →M such that f = h−1 ◦ g ◦ h.8

M typically is a smooth manifold, which can represent the state (phase) space of the considered
dynamical system, f and g can represent possible time evolutions for this system (e.g., in our
context, the model dynamics with SME and the ‘true’ one of the target system).9 One can similarly
define topological conjugacy for flows on phase space (the homeomorphism has to map orbits of one
flow onto orbits of the other while preserving the orientation).10 The important point to highlight
here is that if two dynamical system evolutions are topologically conjugate, then they have the

7There are many different notions of stability in dynamical systems theory, which rely on different equivalence
relations (more on that below). In the fascinating development of dynamical systems theory, these notions primarily
aim at classifying dynamical systems with respect to these equivalence relations (and at characterizing their orbit
structure), see the standard references Abraham and Marsden (1978, ch. 7) and Katok and Hasselblatt (1995, ch.
2). Besides this purely mathematical perspective, there is also clearly a practical and epistemic motivation to the
investigations of stability properties in dynamical systems, as exemplified by the quotes in the main text (see also,
e.g., Robbin 1972, §1); about this episitemic motivation, see Fletcher (2020).

8A map h : A → B (where A,B are topological spaces or smooth manifolds) is a homeomorphism if it is continuous,
bijective and its inverse is also continuous; in intuitive terms, a homeomorphism between two spaces captures the
idea that they are similar from the topological point of view. A map is of differentiability class Cr if its derivatives
up to the order r exist and are continuous.

9Katok and Hasselblatt (1995, 68) consider f and g on different manifolds M and N respectively; this changes
nothing for our discussion.

10In general, flows describe continuous time dynamics whereas maps—and iterations thereof—describe discrete
time dynamics.
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same (asymptotic) dynamical properties, such as the same dynamical invariants (e.g. same fixed
points with same properties). We can now define the structural stability condition.

Definition 2. A Cr map f is Cm structurally stable (1 ≤ m ≤ r) if there exists a neighbourhood
U of f in the Cm topology such that every map g ∈ U is topologically conjugate to f .

Again, structural stability can be similarly defined for flows on phase space.11 We can now
clearly see the relevance of structural stability for the general scope of the hawkmoth effect. Indeed,
if the model dynamics is not structurally stable, then even if it has small SME (with respect to the
relevant topology) and so is topologically close to the dynamics of the target system, its dynamics
can be topologically inequivalent to the one of the target system. As a consequence, the model can
then have a radically different dynamical behaviour from the one of the target system and therefore
can be totally inadequate for providing decision relevant projections.12

A crucial step in the argument based on structural stability for the general relevance of the
hawkmoth effect relies on mathematical results suggesting that structural stability is not generic
among dynamical systems in dimensions greater than 2. In this context, one can say that a
property is generic in a set S if for any element p ∈ S the property is either satisfied or is satisfied
for some element in any open neighbourhood of p (in intuitive terms, the property is either satisfied
for p or for an element that is ‘arbitrarily close’ in some topological sense).13 The claim that
structurally stable dynamical systems are not generic is in particular motivated by a theorem due
to Smale, which basically shows that there exists an open set U of dynamical systems that are
not structurally stable (Smale 1966):14 so any element of U is a counterexample for the genericity
of structural stability among dynamical systems. It follows directly from this result that “there
are some dynamical systems that cannot be approximated by structurally stable ones” (Pugh and
Peixoto 2008).

Within the framework of climate modelling, these considerations therefore suggest, the argument
goes, that structural stability is not generic (in the precise sense defined above) among climate
models (understood as dynamical systems) and that the target climate system itself could not be
approximated (in the topological sense) by structurally stable models.15 Because of complexity and
dimensionality issues (among others), it is however extremely difficult to provide rigorous stability
results in the climate context.16 But still, the mathematical considerations discussed above can be
considered as strong indications that nice stability properties should not be assumed to be generic
(in the precise topological sense discussed here) in the climate context.

11Indeed, Pugh and Peixoto (2008) proposes the following general “Bourbaki-style” definition: “If a set is equipped
with a topology and an equivalence relation then its structurally stable elements are those interior to the equivalence
classes. The “structure” is whatever is preserved by the equivalence relation; its structure remains the same when a
structurally stable element is perturbed.” In the case of flows, as mentioned above in the text, the relevant equivalence
relation is orbit preserving.

12The precise nature of the modal aspect here is epistemologically crucial in many ways. The discussion about
genericity which follows lies at the heart of the issue.

13In an alternative measure-theoretic perspective, one can say that a property is generic in a set S if the ensemble
in which it is not satisfied is of zero measure. However, as we will discuss below, the topological characterization of
‘genericity’ proposed in the main text is more appropriate for the context here.

14“MAIN THEOREM. There exists a compact 4 dimensional manifold M , an open set U in the space of Cr vector
fields, Cr topology, r > 0, on M such that no X ∈ U is structurally stable.” (Smale 1966, 491) As already mentioned
above, dynamical systems can be represented by flows and their associated vector fields.

15As we will discuss in this paper, this implies in no way that climate models are useless.
16For an explicite expression of this difficulty, see McWilliams (2007, 8711) for instance: “Although we may expect

a chaotic AOS [atmospheric and oceanic simulation] model to be structurally unstable, it is difficult to explicitly
make this determination. The attractor cannot be fully visualized or measured because the phase space has such a
high dimension (i.e., high order).”
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As a consequence, intuitively, one could be tempted to say that ‘most’ dynamical systems (in
dimensions greater than 2) are therefore not structurally stable. Great care is required, though.
‘Most’ is generally understood in measure-theoretic terms, but such measure-theoretic character-
ization raises subtle questions in the present setting since the ‘space of dynamical systems’ is
infinite-dimensional. In this context, it is therefore more appropriate to introduce a notion of
genericity that is topological rather than measure-theoretic, as we do here. Specifically, Smale’s
theorem mentioned above is an ‘openness’ and ‘density’ result rather than a measure-theoretic one:
in particular, it does imply that one can be sure that the property of ‘structural stability’ is not
generic in the set of all dynamical systems, so that there are for sure dynamical systems that cannot
be approximated by structurally stable ones. Having said that, Smale’s theorem does not prevent
having certain classes of climate models that are indeed structurally stable, because it does not rule
out the existence of classes of structurally stable systems that are open and dense in an appropriate
(proper) subset of all systems (of non-zero measure in some appropriate measure). The extent
to which these considerations may impact our epistemic attitude with respect to certain climate
model outputs and their decision-making relevance is in many ways at the heart of the matter (see
section 3).17

We can now summarize the three main steps (HE1)–(HE3) in the hawkmoth effect argument,
which allow to highlight the role of structural stability considerations.

(HE1) Climate models have structural model error (SME).

(HE2) Structural stability is not generic among dynamical systems; since climate models can be
considered as dynamical systems, one should not expect them to exhibit structural stability
in general.18

(HE3) Given SME, lack of structural stability can lead to certain climate model predictions/projections
being misleading and irrelevant for decision-making.

Strictly speaking, ‘lack of structural stability’ should be understood as ‘lack of appropriate
stability features’, as we will discuss in the next section. Also, note that (HE2) can be replaced by:
(HE′2) Structural stability is not generic among dynamical systems; since the target climate system
can be considered as a dynamical system, one should not expect the climate system to exhibit
appropriate stability features in general.

The first step (HE1) is uncontroversial. Several issues related to structural stability have been
raised in the literature in connection to (HE2) and mainly (HE3)—we address these issues in the
next section.

3 The epistemic relevance of stability features in climate mod-
elling

In the debate around the hawkmoth effect, a series of issues have been raised in relation to structural
stability.19 These issues point to fundamental aspects of structural stability as well as to important
open questions in climate modelling. The aim of this section is to discuss these issues focusing
on structural stability and to argue that they do not affect the general epistemic relevance of
appropriate stability features within climate modelling. We consider three main (sets of) issues.

17I am grateful to an anonymous referee for pushing me on this.
18Thanks to an anonymous referee for highlighting the structure of this second step to me.
19See Winsberg and Goodwin (2016), Goodwin and Winsberg (2016) and Nabergall et al. (2019), as well as the

paragraph 5.6 and the appendix in Winsberg (2018).
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(1) No relevant analogy between lack of structural stability and chaos. The first issue concerns the
analogy between the butterfly effect and the hawkmoth effect: assuming that the relevance
of the latter for climate projections relies on being analogous to the former, disputing this
analogy amounts to disputing the relevance of the hawkmoth effect itself. To this aim, the
strategy in Nabergall et al. (2019, §3) is to consider standard features of chaotic systems
underlying the butterfly effect and then to stress the difficulties to identify similar features in
the case of the hawkmoth effect. The focus lies in particular on relevant degrees of sensitive
dependence to initial conditions and on topological mixing; for instance, it is pointed out that
there is no clear counterpart to the notion of exponential sensitive dependence in the case
of lack of structural stability.20 There is no need to enter into the subtle technical details of
chaos theory here; the interesting point for us is that the lack of structural stability involves
a priori no notion allowing to evaluate how ‘big’ and how ‘fast’ the discrepancies can grow.21

The worry then is that the related deficiencies in predictive capacities cannot be quantified,
and so are irrelevant for climate projections.

(2) Structural stability is about topological rather than metrical features. The second issue is
closely related to the first: indeed, according to (1), lack of structural stability is disanalogous
to chaos because the first concerns topological features and topological features are just not
the right kind of features that are relevant for predictions. The fact that structural stability
is about topological features just follows from its definition in terms of topological conjugacy
(see definition 2 in section 2). Of course, a failure of topological conjugacy as such involves
no metrical information. So, the argument goes, a model’s time evolution that fails to be
topologically conjugate to the time evolution of the considered target system may still be
predictively reliable; lack of structural stability, as a topological rather than metrical notion,
is therefore of little or of no relevance for predictions/projections.

Regarding the first issue (1), two points are worth making here. First, it should be noted that
chaos can well be characterized topologically, so that the topological nature alone of structural
stability (and lack thereof) cannot be what grounds any potential disanalogy between lack of
structural stability and chaos. Second and most importantly, a qualitative difference may be
relevant (e.g. for climate projections and decision-making) even if it does not exhibit features
analogous to chaotic ones.22

More generally, there is a common difficulty with the two issues (1)–(2) as (somewhat schemati-
cally) exposed above, which revolves around the implicit background assumption that a topological
difference (in the sense of lack of topological conjugacy) has in general no relevant metrical im-
plication in this context.23 But, clearly, this may not always be the case. Indeed, the topological
character of the structural stability property implies that a model that is not structurally stable
may well display some qualitatively different behaviour from the target system (e.g. with a differ-
ent attractor structure) in a way that renders the model’s predictions/projections unreliable (e.g.

20See Werndl (2009) for a discussion of chaos theory in the philosophy of science literature: in intuitive terms,
sensitive dependence to initial conditions “means that small errors in initial conditions lead to totally different
solutions” (203), and topological mixing “means that any bundle of solutions spread out in phase space like a drop
of ink in a glass of water” (204).

21Such an evaluation requires a metric, which allows to measure distances, e.g. in phase space; no metric is required
to discuss structural stability.

22Mayo-Wilson (2015) also discusses the disanalogies between lack of structural stability and various notions of
chaos; he makes clear that this leaves open the question of the “importance of the various notions of structural
stability for prediction, control, and explanation” (1244).

23The issues (1)–(2) seem to rely on a sort of dichotomy between topological and metrical aspects, but this need
not be the case: the two are actually best conceived as complementary.
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in view of decision-making)—note that, at this stage, introducing a metric in order to ‘quantify’
things may not be needed in order to draw relevant (qualitative) conclusions about the reliability
of certain models projections (for certain purposes).

Now, a crucial question includes the prevalence of such unreliability induced by the lack of
structural stability. For instance, given a concrete climate model with SME, what are the exact
implications of its (generic)24 lack of structural stability features on the reliability of its projections?
It is in general extremely difficult to answer precisely (rigorously) to such questions—for reasons
partly related to issues discussed under (3) below. But this difficulty does not affect the above
considerations, that is, the general epistemic relevance of appropriate stability features (or lack
thereof) for certain climate modelling purposes (see also the discussion below).

(3) Issues about the class of models, the notion of similarity, and the time scale. Structural
stability is a feature that is relative to the class of models considered, as well as to the choice
of topology (and to the choice of the metric, if applicable) for defining a notion of similarity
(and for defining a metrical notion of closeness, if applicable). For instance, it follows directly
from our definition of structural stability in section 2 that it is dependent on the choice of
topology (see definition 2); in intuitive terms, the latter defines what can be regarded as a
small perturbation or a small SME.25 Analogously, the choice of the class of models is crucial
to the definition of structural stability. These considerations then raise the following issue:
either the worry about the lack of structural stability is merely an artefact of considering
a class of models that is too broad26 or the question of the appropriate class is just too
indeterminate to reach any meaningful conclusion. On top of this issue, there is the further
question of the time scales at which the lack of structural stability may become relevant for
predictive (and related decision-making) purposes. Again, the nature of the worry is similar:27

either the time scales at which the lack of structural stability would have an impact is not
relevant for the predictive purposes we are interested in (e.g. climate change projections for
certain variables and certain emission scenarios at the the end of the 21st century) or we
simply have no clue; in both cases, it may seem that the epistemic relevance of structural
stability considerations is much weakened.

This set of issues points to difficult and still open questions linked to the exact implications
of the lack of structural stability for concrete climate projections (and related decision-making).
However, the fact that these issues remain open actually calls for further investigations about the
manifestation of appropriate stability features (and lack thereof) in concrete climate models. For
instance, concerning the relevant time scales, a possible first step can be to investigate how the
various sources of uncertainties (for certain variables) are partitioned for different lead times (e.g.,
Hawkins and Sutton 2009 argue that, for decadal mean surface temperature,28 model uncertainty
tend to dominate over natural internal variability for longer lead times); such investigations may
provide certain indications about the time scales at which issues linked to SME and the lack of

24See the discussion about the topological notion of ‘genericity’ in section 2.
25In the recent philosophy of science literature—albeit in a slightly different context—Fletcher (2020, §4) clearly

highlights the dependence of stability considerations on the choice of topology.
26Discussing structural stability as defined in section 2 (see definition 2), Katok and Hasselblatt (1995, 69) are very

explicit: “Attempts to either replace topological conjugacy by smooth equivalence or to allow arbitrary continuous
maps or even arbitrary homeomorphism as perturbations lead to vacuous notions.”

27It should be clear however that the issues are rather different, e.g. the issue of the relevant time scales being a
more practical question for instance.

28The partitioning of uncertainty depends on the variable of interest, but also on the region and the spatial scale.

8



structural stability may manifest themselves. In the end, however, much depends on the specifics
of the particular climate modelling situation under consideration.29

Globally, the discussion of the issues (1)–(3) above tends to show that questions related to
structural stability—and, more generally, qualitative features of the climate models phase portrait—
do require careful attention in the climate modelling context, in particular in view of climate
decision-making. However, it should be clear that highlighting the (possible) implications of the
lack of structural stability constitutes in no way an argument for imposing structural stability as
a necessary condition for a climate model to be adequate for certain predictive tasks (this would
possibly disqualify most of them).30 The considerations above (as well as the discussion in section
2) rather motivates ensuring that the model’s concrete predictions or projections are sufficiently
stable (for a certain purpose) and are not the result of some ‘structurally unstable’ behaviour
(in some sense to be made precise)—thereby highlighting the epistemic relevance of appropriate
stability features in climate modelling.31

These considerations are reminiscent of the critical discussions in dynamical systems theory in
the last century around the so-called ‘stability dogma’, according to which “structurally unstable
systems were regarded as somehow suspect” so that “structural stability was imposed as an a priori
restriction on “good” models of physical phenomena” (Guckenheimer and Holmes 1983, 259; see also
Abraham and Marsden 1978, xix-xx).32 But as such this dogma seems too strict (especially given
the lack of genericity of structural stability in dimension greater than two), even if its underlying
epistemic motivation is sound. This latter can be preserved in a weakened version, for instance
following Guckenheimer and Holmes (1983, 259), who suggest to reformulate the stability dogma
“to state that the only properties of a dynamical system (or a family of dynamical systems) which
are physically relevant are those which are preserved under perturbations of the system”.33

Similarly, in the philosophy of science literature, Fletcher (2020) recently defends a principle of
stability as an epistemological principle “partially constitutive of the activity of representational
modeling itself” (16). It follows from Fletcher’s principle that appropriate stability considerations
are crucial for justifying a model’s predictions; this is well in line with the upshot of the discussion
above. Moreover, Fletcher’s topological formalization of the principle allows to explicitly highlight
the importance for stability issues of the topology and the class of models that are considered—
which correspond, as we have seen above, to some fundamental questions in climate modelling.

4 Perspectives

We would like to conclude with two important perspectives, at two different levels, that are strength-
ened by taking seriously the question of structural stability in the climate modelling context. At

29In this sense critical assessment of particular climate modelling projects, such as in Frigg et al. (2013b) and Frigg
et al. (2015), is extremely valuable; however, in general, these issues are not very often investigated in great depth in
concrete cases.

30So, strictly speaking, the challenge posed by Frigg et al. (2014, 47) that “those using non-linear models for
predictive purposes have to argue that the model they use is one that is structurally stable” seems hopeless; an
alternative understanding of Frigg et al. (2014) here can possibly be articulated in terms of appropriate stability
features with respect to some predictive context, very much along the lines of what is argued for here.

31See Fletcher (2020) for a recent discussion of the epistemic motivations for stability features (encoded in a
‘principle of stability’) in a general modelling context.

32In his famous book The Aim and Structure of Physical Theory first published in French in 1908, Duhem argues for
a criterion of stability for models “to be useful to the physicist” (1991, 143); if Schmidt (2011) explicitly understands
Duhem’s criterion of stability as a precursor to the stability dogma (see also Abraham and Marsden 1978, xix-xx),
Fletcher (2020, §3.3) argues for a more epistemological reading, following which Duhem’s criterion is about what can
be inferred from the models rather than about what is possible according to the models.

33See also the discussion in Batterman (2002, §4.4).
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the mathematical and foundational level, structural stability considerations have further motivated
a stochastic perspective on climate modelling. In this approach, a stochastic version of structural
stability is considered, which takes into account random perturbations, for instance related to un-
resolved processes or linked to natural or anthropogenic forcing; the underlying expectation is that
some level of added noise can improve (the understanding of) the (stochastic) stability features of
the climate models and their projections (see Ghil et al. 2008 for instance; this approach is also
well in line with the stochastic perspective on parameterization, see recently Berner et al. 2017
and Palmer 2019 as well as references therein). This stochastic approach to stability issues is being
developed within the general framework of random dynamical systems theory (Arnold 1998), which
typically allows to describe (nonautonomous) dynamical systems with stochastic forcing; more gen-
erally, the stochastic (and statistical) perspective in climate science and climate modelling actually
highlights the relevance of mathematical investigations in this context.34

At the epistemic and decision-making level, issues related to the lack of structural stability
further highlight the importance of a qualitative perspective on climate models, especially in view
of reliable climate projections and appropriate decision-making. To the extent that they point
to some fundamental epistemic limitations of climate modelling (McWilliams 2007), uncertainties
linked to SME and lack of structural stability further stress the crucial role of understanding—
or “process understanding” (Knutti 2018)—and background knowledge in building confidence in
climate projections (Baumberger et al. 2017). Relatedly, these uncertainties and limitations also
strengthen the case for systematically including expert knowledge in providing relevant model
based support for decision-making in the climate context (Thompson et al. 2016, Thompson and
Smith 2019; how precisely to incorporate expert judgement in a systematic way raises several open
questions though). It is important to stress that, in many ways, these qualitative perspectives can
be considered as a crucial aspect of climate modelling itself—they of course imply in no way that
modelling is useless.

So, issues related to structural stability (and lack thereof) in climate science and climate mod-
elling raise many important foundational and epistemological questions that require careful inves-
tigations. A preliminary list of such questions includes the following points: spelling out the extent
to which stability features are required for a certain purpose and in a certain context, exploring the
kind of stability (and lack thereof) involved in concrete modelling projects (as well as the charac-
teristic time scales at play)35, and further developing the qualitative (in the mathematical sense)
study of climate models. With respect to this last point, it should be highlighted that stability
issues—and more generally the qualitative approach in the sense of dynamical systems theory, and
bifurcation theory in particular—are also central to the understanding of abrupt climate changes
and tipping points.36 In view of the climate challenge, these questions need to be taken seriously.

34Methods relying on the mathematical (and statistical physics) framework of the fluctuation-dissipation theorem
have also been exploited in this context; for instance, Majda et al. (2010) develop a linear statistical response
approach based on the fluctuation-dissipation theorem explicitly in order to deal with the lack of structural stability
in climate modelling—showing en passant that this latter is seriously investigated by some researchers working on
the foundations of climate science and climate modelling.

35As already discussed in relation to (3) in section 3, this is a central question, since lack of structural stability
may become ‘manifest’ (e.g. for decision-making purposes) only asymptotically or at time scales that are irrelevant
for the concrete modelling and decision-making purposes under consideration in a given context.

36E.g. see Ashwin et al. (2012), Bathiany et al. (2016) and recently Ghil and Lucarini (2020), in particular the
parts III & V.
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