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Abstract. Recently, there have been several attempts to generalize the coun-
terfactual theory of causal explanations to mathematical explanations. The
central idea of these attempts is to use conditionals whose antecedents ex-
press a mathematical impossibility. Such countermathematical condition-
als are plugged into the explanatory scheme of the counterfactual theory
and – so is the hope – capture mathematical explanations. Here, I dash the
hope that countermathematical explanations simply parallel counterfactual
explanations. In particular, I show that explanations based on countermath-
ematicals are susceptible to three problems counterfactual explanations do
not face. These problems seriously challenge the prospects for a counterfac-
tual theory of explanation that is meant to cover mathematical explanations.

1 Introduction

Philosophical accounts of causal explanation in terms of counterfactuals
have enjoyed popularity at least since Lewis (1973a, 1986). Such coun-
terfactual accounts, roughly, say that Suzy throwing a rock explains why
the window shattered, because the counterfactual conditional if she had not
thrown the rock, the window would not have shattered is true; that is, Suzy’s
throw makes a difference as to whether or not the window shatters. The
prospect of extending the counterfactual accounts to mathematical explana-
tions is appealing. If it could be done, we would be on the road to acquire a
general theory of explanation in science and mathematics. Generality, some
argue, is a virtue that ideally a theory of explanation should satisfy (Nickel,
2010; Reutlinger et al., 2020). Moreover, the success of a counterfactual
theory of mathematical explanation would have resounding impacts on the
debates about metaphysical explanation, grounding, logical explanation,
artificial intelligence explanations, and non-causal explanations more gen-
erally (Schaffer 2016; Wilson 2018a,b; Maurin 2019; Baron 2019; Kasirzadeh
and Smart 2021).
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Recently, there have been several attempts to liberate counterfactual
accounts of explanations from their causal trappings (see for instance,
Reutlinger, 2016; Baron et al., 2017; Woodward, 2018; Baron et al., 2020;
Reutlinger et al., 2020). Among these, the most elaborate and systematic
endeavor to extend the counterfactual theory of causal to mathematical ex-
planations is due to Baron, Colyvan, and Ripley (2017, 2020), which I will
abbreviate henceforth by BCR.

BCR claim that akin to an empirical fact such as Suzy throwing a rock,
a mathematical fact can also make a difference. Accordingly, they maintain
that we can understand the explanatory structure of a mathematical ex-
planation in terms of counterfactual dependency between its mathematical
explanantia and its explanandum. Just like an empirical explanans, a math-
ematical explanans would fit into the explanatory scheme of the counterfactual
theory:

C explains E if (1) C and E are true, and

(2) if C were not true, E would not be true.1

Suppose C denotes a mathematical fact and E an empirical or a math-
ematical fact. Then we say C mathematically explains E. Furthermore, (2)
becomes a countermathematical; that is, a conditional whose antecedent ex-
presses a mathematical impossibility.2 Finally, we refer to the conjunction
of (1) and (2) as a countermathematical explanation.3

Here is a countermathematical discussed by BCR (2017):

(I) If 13 were not a prime number, then North American periodical ci-
cadas would not have 13-year life cycles.

According to BCR, this countermathematical reveals that a mathemati-
cal fact – the primeness of 13 – (partly) explains the fact that North Amer-
ican periodical cicadas have 13-year life cycles. BCR thus propose that a
mathematical fact can make a difference just like Suzy’s throw can make a
difference.4

In this paper, I raise three problems for the current counterfactual ac-
counts of mathematical explanations. These problems reveal the extreme
difficulty one faces for an appropriate evaluation of (2). Recall that evalu-
ating (2) is absolutely central to any counterfactual account of explanation.
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Accordingly, I argue that varying whether or not Suzy throws a rock is en-
tirely different from varying mathematical antecedents such as 13’s prime-
ness. Together, the three problems seriously challenge the current quests
for a general counterfactual theory of explanation.

The plan of my investigation is straightforward. I outline the counter-
factual approach of mathematical explanations in Section 2. In Section 3,
I compare countermathematical and counterfactual explanations. Unlike
counterfactual explanations, explanations based on countermathematicals
are susceptible to three major problems. Firstly, there is no clear escape route
from absurd contradictions when assuming a mathematical impossibility.
Secondly, there is sometimes no robust space for tracing the (difference-
making) ramifications of varying a mathematical antecedent. Thirdly, a
countermathematical explanation provides no explanatory benefits, unlike
the variation of the antecedent fact of a counterfactual. In Section 4, I briefly
sketch the outline of an alternative approach for tackling mathematical ex-
planations. Section 5 concludes the paper.

It should be mentioned that BCR’s account, as the most elaborate, is
central to the current debate about the viability of a counterfactual account
of mathematical explanations. Some of the proponents of countermathe-
matical explanations, such as Reutlinger et al. (2020), simply presuppose
the validity of BCR’s account. Others, such as Woodward (2018), presum-
ably require arguments very much along the lines of BCR to defend their
accounts of countermathematical explanations – at least if a mathematical
impossibility is supposed to figure in the antecedent. Hence, my counter-
arguments to BCR’s countermathematical explanations carry over – almost
unmodified – to the other similar attempts for generalizing the counterfac-
tual theory of explanation. In what follows, I can thus focus my criticisms
on BCR’s account without losing much generality.

2 Countermathematical explanations

BCR (2017, 2020) abstract away from any particular counterfactual account
of explanation, such as Lewis’s (1973, 1986) or the structural-equations
framework (Halpern and Pearl, 2005). Let us call what is common to these
counterfactual accounts of explanation the counterfactual account of explana-
tion. At the heart of the counterfactual account is a three-step procedure for
the evaluation of conditionals:
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(i) Determine the facts to be kept fixed under counterfactual variation.

(ii) Vary some facts as stated in the antecedent.

(iii) Determine the influence of the variation on the consequent.

To illustrate the evaluation procedure, let us apply it. According to
the explanatory scheme of the counterfactual theory, Suzy throwing the
rock explains the window’s shattering if Suzy throws the rock, the window
shatters, and if she had not thrown the rock, the window would not have
shattered. To evaluate this counterfactual, first, we keep fixed the past up
until the time Suzy throws. Second, we vary the fact that Suzy throws by
supposing (contrary to the facts) that she does not throw. Third, against
the backdrop of the facts that are kept fixed, the influence of varying the
antecedent on the consequent is established. If the consequent varies, that is
the window would not have shattered, the counterfactual under considera-
tion is evaluated to be true. If so, Suzy’s throwing the rock counterfactually
explains the window’s shattering. With these preliminaries out of the way,
I move to BCR’s (2017, 2020) counterfactual account of mathematical expla-
nations.

Generally, mathematical explanations come in two flavors: extra- and
intra-mathematical (Colyvan, 2012, Ch. 5; Colyvan et al., 2018). Extra-
mathematical explanations explain empirical facts, in part, by mathemati-
cal facts (Baker, 2005; Lange, 2013; Lyon and Colyvan, 2008). Intra- math-
ematical explanations explain mathematical facts such as an explanatory
proof for why a mathematical theorem should be accepted (Mancosu, 2008;
D’Alessandro, 2017; Lange, 2018). An extra- or intra-mathematical explana-
tion can be expressed in the form of a counterfactual. Recall the explanatory
scheme of the counterfactual theory. If C and E are mathematical facts, we
have a countermathematical that is obtained from an intra-mathematical
explanation. By contrast, if C is a mathematical fact and E an empirical fact,
we have an extra-mathematical explanation.5

Let me review an extra- and an intra-mathematical explanation in order
to fix intuitions about the respective types of countermathematicals.

2.1 Extra-mathematical explanations

Perhaps the most familiar example of an extra-mathematical explanation
in the philosophical literature is Baker’s (2005) case of the North American
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periodical cicadas. A simplified version of this explanation is as follows.
Two sub-species of North American periodical cicadas have life cycles of
13 and 17 years, respectively. Why these two lengths? The explanatory
response appeals to two mathematical facts (a), (b), and two empirical facts
(c), (d):

(a) 13 and 17 are prime numbers.

(b) Prime numbers maximize their lowest common multiple relative to
all lower numbers; that is, they minimize the intersection of periods.

(c) Ecological conditions restrict the life cycle of cicadas to 12–18 years.

(d) The predators of the cicadas have periodical life cycles.

Under the paradigm of evolutionary biology that successful organisms
evolve in an optimal way, (a) – (d) explain why North American cicadas
have 13-year and 17-year life cycles: prime-numbered life cycles minimize
the frequency of co-occurrence with periodical predators with life cycles
that are strictly less than the cicada’s life-cycle length. This is because the
lowest common multiple of two numbers is maximal if and only if the
two numbers are coprime. A cicada having a 15-year life cycle overlaps
periodically with predators having 1-, 3-, 5-, and 15-year life cycles. A
cicada with a 13-year (17-year) life cycle, by contrast, overlaps only with
predators of 1- and 13-year (17-year) life cycles.

BCR’s (2017) counterfactual account of extra-mathematical explanation
holds that the variation of the mathematical fact (a) makes a difference to
the optimal life-cycle length of the cicadas. If 13 were not a prime number,
ceteris paribus, North American periodical cicadas would not have evolved
to have 13-year life cycles. Why? If 13 were not prime, it would have
factors in addition to 1 and 13, and thus the 13-year life cycle would overlap
with more than two life cycles. Hence, 13-year life cycles would not be
optimal any more to avoid predators. According to BCR, the truth of a
conditional such as (II) establishes why the optimal life-cycle length of 13
years is explained by 13’s primeness:

(II) If, in addition to 13 and 1, 13 had the factors 2 and 6, North American
periodical cicadas would not have 13-year life cycles.
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On BCR’s (2017, p.4) account, mathematical facts are necessarily true.
Varied mathematical facts are thus impossible. The antecedent of (II) ex-
presses an impossibility, making the conditional a so-called ‘counterpossi-
ble’. A countermathematical hence is a counterpossible whose impossible
antecedent is mathematical.

There are two general approaches to the evaluation of counterpossibles:
vacusim and non-vacuism.6 In accordance with BCR, in this paper, I assume
that a non-vacuist evaluation procedure is the sensible route to adopt when
evaluating countermathematicals.

BCR’s (2017, p.7) proposal for evaluating countermathematicals keeps
classical logic fixed when varying mathematical facts. After all, the ordinary
cases of mathematical explanations, including the instances discussed by
BCR (2017, 2020), Reutlinger (2016), Reutlinger et al. (2020), and Woodward
(2018), are generated from the mathematical facts of classical logic. I will
discuss what happens to their account if we move to a domain of mathe-
matics based on a contradiction-tolerant logic in the next section. For now,
I would like to emphasize that their commitment to classical logic forces
us to prevent any absurd contradictions. BCR’s (2017) alleged solution is
to keep fixed as much of mathematics as possible without engendering
contradiction. In BCR’s (2017, p. 7) terms:

Here’s our suggestion: work backwards from the desired twid-
dle. First, twiddle 13 and hold some portion of the number
theory structure fixed. Does a contradiction result? If yes, then
relax the amount you’ve held fixed and re-twiddle. Does a con-
tradiction result? If yes, then relax the amount you’ve held fixed
and re-twiddle. Does a contradiction result? If yes ... And so
on. Stop when you get to the maximal amount you can hold
fixed within mathematics without inducing a contradiction.

How does this solution apply to the case of the cicadas? BCR (2017,
p. 7) claim that we can provide a ‘surgical strike’ on the primeness of 13:
one ‘can hold all of number theory fixed except for the twiddles to 13 if
one is prepared to change the way multiplication works’. Their reason
is that there can be a varied version of the multiplication operator, namely
multiplication∗, which works exactly like multiplication, except that it maps
the inputs 2 and 6 to 13. As I will take issue with their claim in the next
section and do not want to misrepresent their remarks on multiplication∗, I
will quote them at length:
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Multiplication∗ will preserve the same theorems as multiplica-
tion, and imbue the natural numbers with the same structure,
except for whatever disruption is involved in changing the fac-
tors of 13; [...] Moreover, the structure will be consistent just if
multiplication∗ does not take one set of numbers as input and
map those same numbers onto two different outputs. Because
functions are so easy to come by, we can be assured that there is
some function that behaves exactly this way, and so no contra-
dictions will arise by twiddling multiplication so that it matches
multiplication*.

BCR (2017) adapt the abstract three-step procedure (i) – (iii) of Section
2 to evaluate a countermathematical that figures in an extra-mathematical
explanation as follows:

(i’) Keep fixed as much as possible about mathematics and the empirical
world under countermathematical variation.

(ii’) Vary the mathematical facts in the antecedent while respecting (i’);
that is, keep fixed as much of mathematics as possible consistent with
the variation.

(iii’) Determine the influence of this variation on the empirical consequent.

Let us apply BCR’s evaluation recipe to the countermathematical (II).
First, keep fixed a structural morphism between number theory and the
empirical domain of the cicada life cycles, in particular how the structure
of natural numbers map on the structure of life-cycle lengths in years.
Second, vary some facts of number theory such that 13 has the factors 1,
2, 6, and 13 while keeping as much of mathematics fixed as is possible
in a consistent way; for instance, change the multiplication operator to
multiplication∗. This results in a number theory∗ that is as much as possible
like ordinary number theory except that 13 is not prime. Third, because the
morphism between number theory and the empirical domain is kept fixed,
the variation of number theory to number theory∗ implies that a cicada
with 13-year life cycle overlaps with predators having 2-year and 6-year
life cycles. As a result, a 13-year life cycle is not optimal to avoid predators.
The countermathematical (II) thus comes out true, or so argue BCR (2017).

Let me briefly review an instance of intra-mathematical explanation,
before I move to examining three major problems with countermathematical
explanations.
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2.2 Intra-mathematical explanations

Consider the following number-theoretic fact: (Γ) The product of any three
non-zero, consecutive natural numbers is divisible by 6. Why? The expla-
nation appeals to two mathematical facts α and β (e.g., Lange, 2014):

(α) For any three consecutive nonzero natural numbers, at least one of
those numbers is even and therefore divisible by 2.

(β) For any three consecutive nonzero natural numbers, exactly one is
divisible by 3.

α and β entails (Γ): the product of any three non-zero, consecutive natu-
ral numbers is divisible by 2×3= 6. This explanation is used to illustrate the
basic idea behind BCR’s (2020) counterfactual account of intra-mathematical
explanation: the variation of the mathematical explanans (α) makes a differ-
ence to the mathematical explanandum (Γ). To show this, BCR (2020) claim
that we must first evaluate the following countermathematical expressing
the explanatory structure between (α) and (Γ):

(III) If it were not the case that for any three consecutive nonzero natural
numbers, at least one of those numbers is even (and therefore divisible
by 2), then it would not be the case that the product of any three non-
zero, consecutive natural numbers is divisible by 6.7

How to evaluate (III)? BCR (2020, p. 26) suggest that we can adjust the
recipe (i) – (iii) to evaluate the intra-mathematical explanations figuring in
countermathematicals as follows:

(i”) Keep fixed as much as possible about mathematical facts and their
intrinsic properties under counterfactual variation.

(ii”) Vary the mathematical facts in the antecedent while respecting (i”);
that is, keep fixed so much of ‘upstream mathematics’ as possible
consistent with the variation.

(iii”) Determine the influence of this variation on the mathematical conse-
quent.
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What are the intrinsic properties of mathematical facts? BCR (2020)
suggest a notion similar to Lewis’s (1983) duplication-based conception of
intrinsicality. According to this proposal, a property is intrinsic if and only
if, for any two duplicate things, either both have the property or neither
does (Lewis, 1983, pp. 355–356).

How to apply this notion of intrinsicality to the realm of abstract math-
ematics? BCR (2020) propose the following:

In the mathematical case, as in the non-mathematical case, this
means holding fixed as much as we can concerning the intrinsic
properties of whatever mathematical features are mentioned
in the antecedent of a given counterfactual, compatible with
realising the antecedent itself. The less we hold fixed about
the intrinsic properties of whatever we are interested in, the
less confident we should be in the outcome of the evaluation
procedure. That is because the counterfactual situation we end
up considering may bear little resemblance to the actual scenario
at issue in relevant respects (i.e., respects of intrinsic similarity).

In practice, however, this proposal remains utterly unclear as BCR (2020)
do not sketch at all how to make sense of ‘two duplicate numbers’, or how
we should even start thinking about the intrinsic properties of numbers.
For the sake of argument, let us assume we can fix some intrinsic properties
of numbers, whatever they are. In other words, let us assume that some-
how (i′′) is obtained. The evaluation recipe for (III) goes then as follows.
Consider three nonzero, consecutive natural numbers such as 503, 504, and
505. Tweak the natural numbers by making them such that none of 503, 504,
505 is even. We get to step (iii′′′). The product of any two non-zero, natural
numbers is even if and only if at least one of the numbers is. The product
of these numbers is (503× 504) × 505. According to the tweak, 505 is not
even. So, we should turn to 503 and 504. Again, according to the tweak,
neither is even. Therefore, (503×504)×505 is not even. A requirement for
divisibility by 6 is that the number is even. (503× 504)× 505 is not even,
hence (503× 504)× 505 is not divisible by 6. Therefore, (III) is true, or so
BCR (2020, p. 26) argue.
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3 Counter countermathematical explanations

In this section, I develop three arguments against the current counterfactual
accounts of mathematical explanation. In particular, I question the plausi-
bility of a principled procedure for evaluating explanatory countermathe-
maticals. The first argument points out that there is no clear escape route
from absurd contradictions when assuming a mathematical impossibility.
This argument questions whether the mathematical explanans figuring in
the antecedent can be meaningfully varied in the context of mathematical
explanations. The second argument says that sometimes there is no ro-
bust space for tracing the (difference-making) ramifications of the twiddled
mathematical fact to the consequent. This questions whether the influence
of the impossible variation of the antecedent can be robustly and meaning-
fully determined. The third argument shows that a countermathematical
explanation provides no explanatory benefits.

3.1 No clear escape route from absurd contradictions

To evaluate a countermathematical, BCR suggest that we should check
whether varying mathematical facts results in (absurd) contradiction. If so,
we should relax the fixed portion of pure mathematics and vary again, and
we continue this procedure until the minimal amount of change without
introducing (absurd) contradiction is achieved.

In the rest of this section, I will argue that BCR offer no satisfactory
route for preventing absurd contradictions when we vary the antecedent
of an ordinary countermathematical explanation. In Sections 3.1.1 and 3.1.2,
I make the argument in relation to mathematics based on classical and
contradiction-tolerant logics, respectively. Let us keep in mind that in
classical logic, all contradictions are unacceptable and hence absurd; that
is, there is no difference between acceptable and unacceptable contradic-
tions. However, a contradiction-tolerant logic distinguishes between ac-
ceptable and absurd contradictions. While it avoids absurd contradictions,
a contradiction-tolerant logic searches for sorting out what acceptable con-
tradictions are.
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3.1.1 Mathematics based on classical logic

Let us scrutinize BCR’s (2017, pp. 7–8) evaluation recipe for the counter-
mathematical (II): If, in addition to 13 and 1, 13 had the factors 2 and 6, North
American periodical cicadas would not have 13-year life cycles. For evalu-
ating this countermathematical, they vary multiplication to multiplication∗.
On this proposal, multiplication∗ maps the inputs 2 and 6 to 13, that is
(1) 2×∗ 6 = 13. Moreover, multiplication∗ is meant to behave like ordinary
multiplication, ‘except for whatever disruption is involved in changing the
factors of 13’. In particular, multiplication∗ ‘takes all of the same inputs
and yields all of the same outputs as multiplication except in one special
case of 13’. For instance, (2) 2×∗ 3 = 6, (4) 3×∗ 4 = 12 and (5) 2×∗ 2 = 4.
Substituting (2) in (1) we obtain (3) 2×∗ 2×∗ 3 = 13. Substituting (5) in (4) we
obtain (6) 2×∗ 2×∗ 3 = 12. In a few steps, we obtain an absurd contradiction,
as multiplication∗ maps the same inputs to 12 and 13; either we must take
12 = 13, or we must assume that 12 does not belong to the set of natural
numbers.

Since BCR’s (2017) account requires avoiding contradiction, we need an
additional ‘disruption’, contrary to their strong claim that multiplication∗

yields the same outputs as multiplication except for the inputs 2 and 6. But
which one?

If we disallow substitution of equal parts, mathematics loses consider-
ably in force and usefulness. This undermines BCR’s own proposal. For
instance, BCR (2017, pp. 7–8) setup the multiplication∗ operation as follows:
‘Whereas multiplication never takes in 2 and 6 and yields 13, multiplica-
tion* does exactly that. Moreover, whereas multiplication takes in 2 and 6
and yields 12, multiplication∗ does not’. In mathematical terms, this means
that 2×6, 13, 2×∗ 6 = 13, 2×6 = 12, and 2×∗ 6, 12. If we are not allowed to
use the substitution of equal parts (substituting 12 for 2×6 in 2×6 , 13), we
will not obtain 12 , 13. This result is, of course, needed for BCR’s proposal
when they set up a distinction between the functioning of multiplication
and multiplication∗.

If we omit 12 from the set of integers, we violate the recursive nature of
the natural numbers. This omission will have some significantly undesir-
able consequences for BCR’s own proposal. Consider the just cited quote
above. If there is no 12 in the set of natural numbers, this proposal is void
of meaning.

If we deny one of (2) or (5), the sequence of integers will look quite
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different to the extent that this sequence will not really be a part of ac-
tual mathematics based on classical logic. Mathematical facts are ‘tightly
integrated’, as BCR (2017, p. 3) also acknowledge. Hence, varying a mathe-
matical fact propagates through the whole of mathematics, and results in a
mathematics that is far from the mathematics applied in the generation of
explanations. Why should we accept this distant mathematics as relevant
to the counterfactual analysis? BCR offer no answer.

Worse, multiplication∗ will not preserve the same theorems of number
theory as multiplication. Consider, for instance, the fundamental theorem
of number theory:

Every integer greater than 1 either is a prime number itself or
can be represented as the product of primes. Moreover, each
integer has one and exactly one prime factorisation.

Now, 2×∗2×∗3 = 12 and 2×∗2×∗3 = 13 outrightly violate the fundamen-
tal theorem of number theory. If we change this fundamental theorem, we
would radically change actual mathematics. For instance, what becomes
of Goldbach’s conjecture that every even integer greater than 2 can be ex-
pressed as the sum of two primes? In this case, BCR’s (2017, p. 3) surgical
strike on 13’s primeness became in no time a doomsday attack on number
theory. It is at best misleading to say that multiplication∗ ‘will preserve
the same theorems as multiplication and imbue the natural numbers with
the same structure, except for whatever disruption is involved in changing
the factors of 13’. As noted earlier, any kind of contradiction in classical
logic is absurd. BCR’s (2017) cited claim remains hollow as long as they do
not delineate precisely which theorems and which structures are preserved,
which disruptions are required, and most crucially how the preservation
and disruption are possible.

One potential fix, as BCR (pp. 8–9, 2020) presume, is to divide between
the ‘upstream’ and ‘downstream’ facts of mathematics. Let us assume that
relative to a fact Fm of a mathematical structure, we have a procedure to
divide the upstream and the downstream facts. The ’upstream mathemat-
ical facts’ are those within a mathematical structure on which Fm depends.
The ‘downstream facts’ from a given mathematical structure are those that
depend upon Fm.

On BCR’s (2020) account, when evaluating a countermathematical ex-
planation, we hold fixed as many general, upstream mathematical princi-
ples as possible. Those mathematical principles that are downstream to the
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tweaked mathematical fact are not hold fixed, as much as possible, so that
the tweak has enough conceptual space to ramify properly. Although this
proposal might seem theoretically promising, unfortunately, in practice it
does not resolve any of the issues I raised above. As illustrated in six simple
steps (1) – (6), an absurd contradiction obtains in a very small neighboring
region of natural numbers. These steps only rely on a very small vicinity
of natural numbers composed of 2, 3, 4, 12, 13, and multiplication∗. 2, 3,
and 4 appear in the sequence of natural numbers in an upstream way: the
recursive definition of natural numbers starts from 2, 3, 4 and only after it
arrives at 12 and 13. So, even if we have a procedure to distinguish between
the relevant upstream and downstream mathematical facts, still the upris-
ing of absurd contradictions occurs in this local neighborhood (or we do
not know how to treat them), according to the discussion above. Classical
logic simply does not allow for distinguishing between local and absurd
contradictions: all contradictions are absurd in classical logic.

Very similar worries apply to the cases of intra-mathematical explana-
tions. Recall the following countermathematical:

(III) If it were not the case that for any three consecutive nonzero natural
numbers, at least one of those numbers is even and therefore divisible
by 2, then it would not be the case that the product of any three
non-zero, consecutive natural numbers is divisible by 6.

Let us apply BCR’s (2017) procedure for the evaluation of (III). Consider
503, 504, and 505 as three nonzero, consecutive natural numbers. Now,
tweak the natural numbers such that none of 503, 504, 505 is even, and keep
everything else in the immediate vicinity of the tweak fixed. In a mathe-
matics based on classical logic, either a natural number is divisible by two
or is not divisible by two. As a result of the tweak, 504 is not even, and so it
means that it is not divisible by two. According to a plausible interpretation
of upstream facts, the following mathematical fact about 504 is upstream:
504=252×2. As a result of the tweak, 504 is not even, which means that
252×2 is not even, and therefore not divisible by 2. This means that neither
252 nor 2 is divisible by 2. We get to an absurd contradiction: 2 is not divis-
ible by 2. One escape route might be to change the multiplication operator
to another operator such as multiplication∗∗. Let’s say multiplication∗∗ be-
haves just like multiplication except that 504 , 252× 2. Fair enough, but
what is 504 equal to? We must run into very similar problems as with
multiplication* outlined above.
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One might object to this argument that the factors of 504 are irrelevant
to its evenness. I think this is false because ‘even’ means divisible by
2, or having the factor 2. If the factors are irrelevant to whatever 504
means, what is remaining of this number’s meaning? The proponents of
countermathematical explanations owe us an answer.

There might be a different way to interpret BCR’s proposal. This way
requires to identify propositions with sets of possibilities, and then interpret
possibilities not in a mathematical way, but in terms of what you consider to
be possible or impossible (see Huber (forthcoming, Ch. 6) for a sketch of this
formal treatment). This interpretation remains open to full investigation,
and I do not tackle it in details here. However, I see a potential problem for
applying this agent-relative interpretation to the counterfactual analysis of
mathematical explanations. A reasonable counterfactual analysis of extra-
and intra-mathematical explanation should be in search of correct truth
values of some sort, rather than an individual belief about the truth or falsity
of a countermathematical explanation. After all, we want a counterfactual
analysis of mathematical and scientific explanations to be robust enough
in delivering what such explanations are, and not coming out true for
person A, false for person B, and indeterminate for person C depending
on and sensitive to different individual’s interpretations of possibility or
impossibility. BCR (2017, p. 6), for example, assert that ‘we’re just going to
assume that these counterfactuals are true and then give a way of evaluating
these counterfactuals that yields their correct truth-values’.

To evaluate a countermathematical in terms of what an individual con-
siders possible or impossible about mathematical facts can yield interesting
results for the acceptability of or the belief in countermathematicals, but
not for their truth. For the truth value of a countermathematical it seems
that what a person considers possible is too subjective. And since math-
ematical explanations require a true counterfactual, mere acceptability or
belief in this countermathematical is not enough to establish mathematical
explanations. That is, the belief of an individual about the possibility or
impossibility of a mathematical fact, as noted earlier, is not in the business
of establishing countermathematical explanations. A correct truth value,
rather than a purely subjective belief about a counterfactual, seems to be
the plausible robust constraint for unifying counterfactual accounts to intra-
and extra-mathematical explanations in science and mathematics.

So far, I have established that varying mathematical facts of the an-
tecedent of a countermathematical either leads to inevitable absurd contra-
dictions or provides serious challenges to BCR’s proposal for two examples.
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It is easy to see how these examples generalize for other instances. As a
result, given BCR’s account, we do not really know how to make the ‘sur-
gical strikes’ on mathematical facts of interest. It follows that the second
step of BCR’s evaluation recipe for counterpossibles can easily fail. (ii′)
and (ii′′) require to vary the antecedent of countermathematicals while
keeping mathematics consistent with the variation. I have shown that
BCR (2017) cannot even uphold their own example. For instance, varying
the number-theoretic fact of 13’s primeness by changing multiplication to
multiplication∗ violates the fundamental theorem of number theory, and
makes it extremely difficult, if not practically impossible, to know what
to make of this distant mathematics with this new number theory. The
same is true of varying the evenness of 504. Hence, given BCR’s (2017,
2020) proposal, the variation of a mathematical operation, such as the one
of multiplication to multiplication∗, does not tell us in any clear way how
mathematics would change.

Up to this point, I have focused the discussion within the domain of
classical logic. On this assumption, varying mathematical facts leads to
unavoidable absurd contradictions. Relaxing this assumption and consid-
ering a contradiction-tolerant logic as the basis of mathematics, in which
some contradictions are allowed and managing some contradictions is possi-
ble, might seem to be a solution to save countermathematical explanations.
This relaxation, however, invites another set of serious problems.

3.1.2 Mathematics based on contradiction-tolerant logics

What if the worlds comply with some contradiction-tolerant logic, such as a
Priestian paraconsistent logic (Priest, 2002)?8 In such worlds, some acceptable
inconsistencies and contradictions might be true. In contrast to classical
logic that does not distinguish between the two notions of contradiction
and absurdity, one main challenge of a contradiction-tolerant logic is to
sort out acceptable contradictions (i.e., contradictions without explosion)
from the absurd ones (i.e., contradictions with explosion). From the fact
that mathematics can be based on contradiction-tolerant logics, it does not
follow that any kind of contradiction is permissible. Proper reasons and
proofs must be developed to show that the contradictions such as 13 not
being prime (given that it is proven to be prime) or 504 not being even (given
that it is proven to be even) are acceptable and not absurd. Allowing for
some contradictions does not imply that in any given area of mathematics
we can suppose that there are contradictions.
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Paraconsistent logics originally came to be in order to deal with some
classical self-reference paradoxes such as Russell’s paradox, the Liar para-
dox, and more generally paradoxes that came about in the foundational
considerations of mathematics (see Priest, 2002). From a parconsistent per-
spective, a localised contradiction such as the truth and falsity of the Liar
sentence ‘This sentence is false.’ does not lead to absurd contradictions that
trivializes a mathematical theory. So far so good.

Now, the assumption that there are different kinds of contradiction-
tolerant logics might sound appealing for the purpose of tweaking the
antecedent of a countermathematical explanation. The tempting idea is
that mathematics based on a contradiction-tolerant logic can function as a
haven safe from absurd contradictions because such mathematics tolerates
some acceptable contradictions. For instance, it is tempting to think that
tweaking mathematical facts such as the primeness of 13 comes at no serious
cost in a variant of mathematics based on a contradiction-tolerant logic.

Before I explore the success of this proposal and to avoid any confu-
sion, let me explicitly reiterate the specific kind of countermathematicals
of interest to any generalized counterfactual account of explanation. We
are interested in the evaluation of those countermathematicals which have
the following form: their antecedent expresses the negation of a mathe-
matical explanans and their consequent is equivalent to the negation of the
explanandum. The main question that the defenders of a counterfactual
theory of mathematical explanation need to answer is this: does tweaking
a mathematical explanans reveal the explanatory structure in terms of the
counterfactual dependence between the mathematical explanans and the
explanandum, and if so how?

Recall the explanation of the life cycles of North American periodical
cicadas. Let us call the explanandum of this explanation Ex. Recall (a) 13
and 17 are prime numbers. These numbers are prime in mathematics based
on classical logic, and their primeness (rather than their non-primeness)
makes the mathematical facts explanatory in the first place. Let us denote
mathematics based on classical logic byM. According toM, it is either true
that 13 is a prime number or it is false. There is no third option. If we
choose a mathematical fact fromM, only the two options of truth or falsity
are available. That is, the explanans (a) is either true or false when we useM
to explain Ex, and exactly because (a) is true, it becomes an explanans and
acquires the explanatory relevance to Ex. Only after we assume M as our
reasoning scheme, we agree about what prime numbers, odd numbers and
even numbers are. Therefore, adoptingM as a reasoning scheme is required
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to assume the truth of (a) and (b). Recall (b) Prime numbers maximize their
lowest common multiple relative to all lower numbers. Only after accepting
M as our reasoning scheme and the truth of the empirical facts (c) and (d),
we could build the mathematical explanation with the explanandum Ex.
Formally speaking, where A, B, C, and D denote the propositions (a), (b),
(c), and (d), respectively, and � stands for necessity in mathematics based
on classical logic:

M |= �A andM |= �B

(�A∧�B∧C∧D)→ Ex

Now, I agree that we might be able to shift the underlying reasoning
scheme to mathematics based on a contradiction-tolerant logic M∗. How-
ever, the change in the reasoning scheme does not guarantee that contra-
dictory suppositions such as the non-primeness of 13 and non-evenness of
504 are non-absurd and hence allowed. It might be that for avoiding absurd
contradictions, the mathematical facts of interest to ordinary mathematical
explanations remain the same; that is, the part of mathematics that incor-
porates explanatory mathematical facts are bounded with classical logic,
because the set of acceptable contradictions is empty (i.e., all contradic-
tions have absurd consequences). Moreover, there is no reason to accept
that the world tolerating the impossible mathematics is the relevant world
for the countermathematical analysis – i.e., closest to the actual world in
which the mathematical explanation of interest holds. As long as BCR’s
proposal, or any other working proposal along the lines of BCR, does not
provide a principled procedure to distinguish between the absurd and ac-
ceptable contradictions, any proposal along the lines of BCR remains on
shaky foundations.

For instance, it might be that in the impossible world of interest in
which tweaking mathematical facts is allowed, the relevant bits of mathe-
matics to explanatory reasoning (primeness of 13 or non-evenness of 504)
remain untouched by the exotic property of some well-justified and relevant
non-absurd contradictions are acceptable. In such a world, these bits of mathe-
matics relevant to explanations would stay out of the scope of the acceptable
contradictions. As a result, it remains a viable option that a contradiction-
tolerant mathematics does not allow for supposing the non-primeness of
13 or non-evenness of 504, even though it allows for other well-justified
and acceptable contradictions. We just do not know. For the sake of the
argument, let us assume that A∧¬A is allowed inM∗:
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M∗ |= A∧¬A

Another problem intrudes. By definition, the (members of the collection
of) mathematical explanantia for Ex should be true (or should hold) in the
actual world. That is, truth (or mathematical adequacy) is needed to call a
mathematical fact an explanans in the actual world. Now, let us assume that
M∗ |= A∧¬A. How should we settle the truth value of A in this world? As
soon as we supposeM∗, we move from the actual world to a world where
a different mathematics holds. In such a world, it remains unclear what
is true or not, especially in relation to the antecedent and the consequent
of countermathematicals. And this is simply because some basic rules and
laws cannot hold anymore in this distant world.9 The supposed relation
between antecedent and consequent might get lost in translation, so to
speak, when moving from a world to another, in which some of the most
basic laws and rules do not hold. It could just be that the notion of truth we
employ for explanations does not apply to such worlds.

Let me clarify a point before I go further. While I am sympathetic to the
non-vacuist proposal that some counterpossible conditionals are true and
some are false, I disagree that, based on BCR’s account or any account along
their line, we are able to evaluate that some explanatory countermathemati-
cals are true and some are false. For example, I can agree with Berto et al.
(2017) that the counterpossible conditional ‘If Hobbes had (secretly) squared
the circle, all sick children in the mountains of South America at the time
would have cared’ is false; whereas ‘If Hobbes had (secretly) squared the
circle, all sick children in the mountains of South America at the time would
not have cared’ is true. However, the arguments in this section support my
doubt that we can make such judgments in the case of countermathematical
explanations, for which an explanatory relation between the mathematical
explanans and the explanandum must hold.

In the next section, I will observe another problem with the current
counterfactual accounts of mathematical explanation.

3.2 No robust space for ramifications

The fact that an explanans contributes to the generation of the explanandum
guarantees a relevance relation between the antecedent and the consequent
of a countermathematical explanation. BCR examine this relevance relation
in terms of ramifications of mathematical twiddles through a morphism
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fixed between the mathematical structure occurring in the explanans and
the physical or mathematical structure in the explanandum. In this section,
I argue that steps (iii′) or (iii′′) – determining the influence of the varied
explanans on the consequent of a countermathematical – are susceptible
to two issues: sometimes following the ramification procedure does not
deliver the truth value of a countermathematical one might intuitively ex-
pect, and sometimes the delivered truth value is trivial. I explain these two
points in the remainder of this section.

Recall step (iii′) for evaluating a countermathematical conditional (Baron
et al., 2017, p. 2): ‘... consider the downstream implications for the facts
that we are not holding fixed of letting the antecedent vary: we see how
the twiddle ‘ramifies’ through these facts’. In the case of cicadas, the fixed
mathematics is the mathematical structure of natural numbers, and the rel-
evant physical structure is time measured in years (Baron et al., 2017, pp.
10–11). BCR claim that, as a result of considering the downstream ramifi-
cations of twiddled mathematical facts, a conditional such as (V) should be
recovered false.

(V) If, in addition to 13 and 1, 13 had the factors 19 and 23, North
American periodical cicadas would not have 13-year life cycles.

(V) is false according to BCR for the following reason:

Hold fixed the morphism. Now make the counterfactual change
to the mathematics. The world keeps up its end of the bargain,
and so a 13-year lifespan is now divisible into 19- and 23-year
intervals. The cicadas don’t budge: 13 remains the optimal strat-
egy for avoiding predation by organisms that have life cycles up
to 18 years. Of course, if there are 19- or 23-year predators, then
13 is no longer optimal. However, there are ecological con-
straints on the cicada case that rule out these predators.

As BCR (2017) point out, if there are 19- or 23-year predators, then 13 is no
longer optimal. This means that twiddling the primeness of 13, irrespective
of empirical constraints, should make the countermathematical (V) true.
After all, they aim to deliver an evaluative procedure for finding the correct
truth value of countermathematical explanations through the dependency
between the countermathematical antecedent and its consequent. BCR
think that (V) comes out false as a result of the ecological constraint. Given
that the ecological constraint is itself an empirical explanans, and hence
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external to finding an explanatory dependence between the antecedent and
the consequent of (V), the truth value of the countermathematical – being
false – is not really determined by tracing the ramifications of the varied
antecedent on the consequent of the countermathematical. The falsity of
(V) is rather determined by supposing that an ecological constraint that
holds in the actual world also holds in the relevant countermathematical
world(s), where 13 is divisible by 19 and 23.

However, suppose there is a world where 13 is divisible by 19 and 23
and there are 13-year predators. Well then the ecological constraint could
be plausibly different: it could be that the constraint extends to 13 which
is at least as great as 23. After all, if cicadas can become 13 years old, then
in virtue of the fixed morphism between the mathematical and empirical
structure, they can also become at least 23 years old. So BCR have a choice to
make here. Either they do not allow that the varied antecedent ramifies via
the fixed morphism to the physical structure, and so determines the truth
value of the countermathematical. But then they owe us an answer why the
ramification I have just presented is invalid for establishing the truth value
of a countermathematical. Or else they need to admit that (V) comes out
true. But then varying 13’s primeness in this way mathematically explains
why cicadas have 13-year life cycles. And this is what BCR explicitly deny.

We have just seen a case in which the expected truth value of a coun-
termathematical is not obtained by merely evaluating the countermath-
ematical given the fixed morphism between mathematical structures in
its antecedent and physical or mathematical structures in its consequent.
Rather, it is obtained by what an empirical constraint dictates. This shows
that, sometimes, the last step of the evaluative procedure of countermathe-
maticals does not deliver the truth value one might intuitively expect.

Moreover, consider the following countermathematical:

(VI) If 13 had only the factor 1, North American periodical ci-
cadas would not have 13-year life cycles.

If 13 had only the factor 1, 13 would not be prime. This variation of 13’s
primeness does not change its optimality (if anything it makes it even more
optimal). After all, less factors of the number representing the cicada’s
life cycles result in more optimality. Hence, under this variation of 13’s
primeness, the cicadas would have 13-year life cycles, and so (VI) comes
out false. This shows that varying the primeness of 13 may not explain the
13-year life cycles.
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Now, let us turn to an example in which the delivered truth values
are trivial, simply because there is no robust space for exploring the ram-
ification of the counterfactual twiddle. In the case of intra-mathematical
explanations, the evaluation of countermathematicals may result in obtain-
ing trivial truth values. Recall countermathematical (III) If it were not the
case that for any three consecutive nonzero natural numbers, at least one of
those numbers is even (and therefore divisible by 2), then it would not be the
case that the product of any three non- zero, consecutive natural numbers
is divisible by 6. For the purpose of the argument, let us assume that 503,
504, and 505 are not even. How does this tweak ramify to the consequent?
BCR’s (2020) strategy is to rely on the following fact: the product of two
natural numbers is even, only if at least one of them is. Under the twiddle,
505 is not even. So, for (503×504)×505, we need to see whether (503×504)
is even. However, neither of 503 or 504 is even by the twiddle.

Therefore, the product of 503, 504, and 505 is not divisible by 6. The
problem here is that the antecedent and the consequent are not really math-
ematically distinct. The assumptions about the properties of numbers in the
antecedent appear right away in the consequent. This makes the step (iii′′)
of the evaluation recipe of countermathematicals, for determining the influ-
ence of varying the antecedent on the consequent, idle. There is no space left
to track down the ramifications running from the mathematical twiddle to
the consequent, because the main components of the consequent trivially
changes as soon as the assumptions about the evenness of the numbers
change in the antecedent. To see this, there is no intermediate ramification
step between the antecedent and the consequent. There is simply no space
for any ramification. The twiddle that all of 503, 504, and 505 are not even
immediately affects the consequent. But this effect is too immediate to count
as a ramification.10

3.3 No explanatory benefits

What are the explanatory benefits of varying mathematical facts? How
would the world look like if 2+ 2 were not equal to 4? Well, the honest
answer is that we just do not know. This question provides no insight.
Similarly, under BCR’s (2017, 2020) assumptions, the variation of mathe-
matical facts is uninformative. How the impossible ‘perturbation’ to the
antecedent of a countermathematical is supposed to influence its conse-
quent is fully left to the reader’s intuitions, and these intuitions can be
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deeply fallible. The countermathematical (II) If 13 were not a prime num-
ber, then North American periodical cicadas would not have 13-year life
cycles, for instance, does not provide any insight on its own. What we need
in the case of countermathematical explanations is some sort of explanatory
benefit. After all, the whole project of extending the counterfactual account
of causal explanations is the exploration of the idea that the explanatory
dependence between the mathematical explanans and the explanandum
of any mathematical explanation is analyzable in terms of counterfactual
dependence.

What makes us understand the explanation of the cicada example is
that a life cycle is optimal only when it minimizes the overlap with the
periodical predators; and this is given within the ecological constraints, by
necessity, only when the life cycle is prime-numbered. I will say more about
the significance of explanation by necessary constraints as an approach to
mathematical explanations in the next section (Lange, 2013, 2016).

To be more precise, recall the optimality model of Section 3: (a) 13 and
17 are prime, (b) prime numbers maximize their lowest common multiple
relative to all lower numbers; that is, they minimize the intersection of peri-
ods, and (c) the ecological constraints entail that prime-numbered life cycles
minimize the chance of co-occurrence with predators that have similar life-
cycle lengths. Given the ecological restriction of the life span of cicadas to
12–18 years, and the explanatory assumption of evolutionary biology that
successful organisms must have evolved in an optimal way, there is just
no other possibility left than 13-year and 17-year life cycles. In brief, if we
respect scientific practice, 13’s primeness explains the life-cycle length of
certain cicadas because, if cicadas have evolved in an optimal way, it cannot
be otherwise. The claim that the primeness of 13 and 17 is explanatory thus
derives from the fact that the optimal numbers must be prime (provided the
interval is restricted to between 12 and 18). The claim that primeness is
explanatory does not derive from a counterfactual, or better countermath-
ematical, variation of primeness and its propagated influence. As shown,
it is extremely difficult (if not practically impossible) to analyze it on such
grounds.

BCR assume that the primeness of 13 explains that North American peri-
odical cicadas have 13-year life cycles. Hence, the countermathematical (II)
must come out true on their account: If 13 were not prime, North American
periodical cicadas would not have 13-year life cycles. Here is how they ap-
ply their account to this countermathematical. To vary the antecedent, BCR
suggest using a new specifically designed operator, multiplication*, which
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takes 2 and 6 as input and outputs 13. This operator takes us to the closest
world(s) to the actual world in which 13 is not prime, thanks to multipli-
cation*. However, there are many other worlds in which 13 is not a prime
number, but the non-primeness of 13 is obtained differently. For example,
consider a world in which 13 is not prime because it only has the factor 1.
Isn’t this world closer to the actual world compared to a world in which 13
in addition to 1 and 13 has the factors 2 and 6? BCR (2017) do not provide
any answer in their account for extra-mathematical explanations, and it is
hard to see how a principled procedure would look like. If the criterion
for choosing the closest world(s), as BCR (2020) suggest, is the world with
the minimum changes to the intrinsic properties of the primeness of 13, the
answer would be positive. The number of the violations to the intrinsic
properties of the primeness of 13 is one if we go to a world in which 13 is
only divisible by 1 (rather than being divisible by 1 and 13). The number of
the violations to the intrinsic properties of 13 is two if we go to a world in
which 13, in addition to 13 and 1, is also divisible by 2 and 6 (13 obtains two
new factors). When we rely on a similarity order between worlds based on
intrinsic properties, it seems that the multiplication*-world is less similar
to the actual world than a world where 13 has only the factor 1. This poses
the question why we should choose the multiplication*-world if it is not for
‘finding’ a presumed countermathematical dependence?

Here is a rough characterization of BCR’s account in action. To be able
to assess the applicability of their countermathematical account, they need
to compare it to our intuitive background knowledge about what explains
what for some examples. This means that, for the given examples, first we
have an intuitive idea about the implication of varying the mathematical
explanans. We also intuitively know what the truth value for a counter-
mathematical will be, if an extension of a counterfactual theory of causal
explanations is to be successful. Now, given this knowledge, BCR first set
the desired result of the mathematical variation (for example, that 13 is not
prime); second, they work backwards and pick some world(s) in which
a specifically designed mathematical operator (such as multiplication*) is
introduced; third, they consider the ramification of this variation; however,
I suspect that this world is chosen such that it delivers the truth value for
the countermathematical such that the desired countermathematical expla-
nation becomes true. I suspect that if BCR wanted to obtain the opposite
truth value for the countermathematical conditional (II), they could have
designed another mathematical operation which takes us to another strange
world which would serve their purpose.
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To be clear, I am not claiming the BCR propose that every time we
evaluate a countermathematical we must first start with a desired truth
value for the countermathematical and then make twiddles until it has that
truth value. However, their choice of the relevant impossible world(s) for
the examples for which we intuitively know what the countermathematical
truth value should be seems rather ad hoc. I suspect that the closest world
with multiplication* is chosen such that it delivers a desired truth value
that we expect for this example. Why should we not consider, for instance,
the impossible world in which 13 has only the factor 1? In such a world the
countermathematical could easily turn out to be false.

This procedure stands in contrast to the epistemic or practical benefits
we acquire from counterfactual causal explanations. There, we have an
epistemic space for exploration of the consequences of Suzy not throwing
the rock. We are not bound to a similar non-explanatory procedure in
this explorative space such that the agent engaged in the counterfactual
analysis can play around with different situations in which the window
does not shatter, and thereby attains understanding.

Epistemic benefits such as exploring epistemic space for the purpose of
understanding are not the only explanatory benefit that we expect to acquire
from a counterfactual analysis of explanation. In the cases of counterfactual
causal explanations, variation of an empirical antecedent can provide some
instrumentalist insights that are frequently used to deliberate, to predict, or
to control outcomes of the variation. We can control and deliberate on some
nearly perfect duplicates of empirical facts, for instance, by running agent-
based simulations on similar scenarios, or more abstractly by some thought
experiments that are set in the context of causal explanations. To vary
mathematical facts does not allow us to do this. Entertaining a mathematical
impossibility such as the non-primeness of 13, viz. a varied ‘mathematical
fact’, does not provide us with such potential benefits.

This problem of no explanatory benefit, in particular, questions whether
the steps (iii′) and (iii′′) of the evaluation recipe for countermathematicals,
namely the determination of the influence of the variation of antecedent on
the consequent, are attainable.

So far, I have proposed three challenges to the current proposals for
understanding mathematical explanations based on counterfactuals. But
what should we make of mathematical explanations? I suggest an easy
answer for extra-mathematical explanations in the next section. An answer
for intra-mathematical explanations is more intricate and must be given
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elsewhere.

4 Towards an alternative approach

One promising account for analyzing extra-mathematical explanations is a
hybrid, integrated account of causal counterfactuals and constraint-based
explanations. Recall that extra-mathematical explanations include some
mathematical facts and some empirical facts in the collection of their ex-
planantia. The empirical facts can be twiddled according to causal coun-
terfactual accounts. On the other hand, as Lange (2013, 2016) defends this
in relation to various examples, the mathematical facts can be taken as nec-
essary constraints, having a modal force stronger than the laws of nature.
These facts dictate what can be and cannot be otherwise. For instance, 13’s
primeness explains the life-cycle length of certain cicadas because, if cicadas
have evolved in an optimal way (and given all empirical facts driven from
evolutionary biology), it cannot be otherwise.

On standard counterfactual accounts of causal explanation, we can vary
an empirical fact while keeping mathematical facts fixed. Consider the
counterfactual:

(III) If ecological constraints restricted the life-cycle length of cicadas to
14–16 years, the cicadas would not have 13-year life cycles.

Here, the empirical fact about the ecological constraints is varied. This
possibility gives us what BCR hope to achieve by varying 13’s primeness.
For instance, if the possible fact that the cicadas have 14-year life cycles were
true, they would overlap with predators having 1-, 2-, 7-, and 14-year life
cycles. In this case, the cicadas would not avoid predators optimally. The
antecedent of (III) suggests an empirical variation from the actual biological
constraint to a merely possible biological constraint that does the job in
counterfactual thinking. Variation of the empirical fact, viz. that ecological
constraints restrict the life-cycle length of cicadas to 14–16 years, can be
done while keeping the mathematical facts fixed: that 13 and 17 are prime
numbers. Hence, the empirical variation can be done by assuming that they
would have, for instance, 14-year, 15-year, or 16-year life cycles. But this is
very different from assuming that 13 were 12, or the like.

In light of the counterfactual explanation of (III), it appears question-
able whether the counterfactual account of causal explanations needs any
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extension to accommodate extra-mathematical explanations. BCR aim to
explain certain empirical facts by varying mathematical facts. However,
their enterprise to cover extra-mathematical explanations is redundant if
the empirical facts can be explained without varying mathematical facts.
On this picture, mathematical explanantia just play a constraining role. For
details about the modal characteristics of mathematical facts as compared
to empirical facts see Lange (2016).

Acquiring a general account for analyzing intra-mathematical explana-
tions, however, is more challenging, and remains an open question. In
the literature, some general accounts for accommodating (some) intra-
mathematical explanations are already offered. Two prominent accounts
are Steiner’s (1978) explanatory proofs, and Kitcher’s (1989) explanatory
unification. The scope and validity of these accounts remains a matter of
criticism. For instance, drawing on mathematical practice, (Lehet, 2019;
D’Alessandro, 2020) discuss examples of intra-mathematical explanations
that go beyond explanatory proofs; Mancosu and Hafner (2008) show that
Kitcher’s model makes predictions about explanatoriness that go against
specific cases in mathematical practice.

In my view, a more promising proposal is a ‘bottom up’ approach
(Mancosu, 2008) which requires investigating several case studies that are
deemed explanatory in mathematical practice. When enough case studies
across various areas of mathematics are done, we might be able to provide
a general account for intra-mathematical explanations. This remains a task
to be done elsewhere.

5 Conclusion

Recently, several philosophers such as Reutlinger (2016), Baron et al. (2017),
Woodward (2018), Baron et al. (2020), and Reutlinger et al. (2020) have
attempted to extend the counterfactual theory of causal explanations to
mathematical explanations. These attempts have had resounding impacts
on theorizing about scientific explanation, metaphysical explanation, meta-
physical causation, and logical explanations. According to these attempts,
roughly, we can apply a standard way of thinking about causal counterfac-
tuals to countermathematicals.

Among these, Baron et al. (2017, 2020) offer the most elaborate and
influential endeavor. Some defenders of countermathematical explana-
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tions simply presuppose the validity of BCR’s account. For example, Reut-
linger et al. (2020) argue for a necessary condition – called a dependency
condition – common to counterfactual theories of explanation. This con-
dition states that ‘The explanandum counterfactually depends on certain
possible changes in the conditions described by the explanans (i.e. if the
explanans conditions were different, then the explanandum would be dif-
ferent as well)’. How to evaluate such countermathematical conditionals?
Reutlinger et al. (2020) take the semantic procedure for the evaluation of
countermathematical explanations as proposed by Baron et al. (2020) as a
premise of their account. Others require arguments very much along the
lines of BCR to defend their account of countermathematical explanations.
For instance, a difference-making account of countermathematical explana-
tion such as one along the lines of Woodward (2018) requires answering to
what-if-things-had-been-different questions in the sense that if the condi-
tions in the explanans had been different, what the explanandum expresses
would have been different. If these conditions are purely mathematical (in
the case of intra-mathematical explanations), then we run into very similar
issues as the ones that trouble BCR.

By providing a detailed criticism of BCR’s account, I have argued against
those contemporary attempts which claim that the features of the counter-
factual account of causal explanation carry over to mathematical explana-
tions.

I have discussed three main problems which pertain to the current coun-
terfactual theories of mathematical explanations. In light of these problems,
I have shown that the steps of the common recipe for evaluating counter-
mathematical explanations are not satisfactory enough. As a result, we do
not have – as of yet – a plausible counterfactual theory for mathematical
explanations. I agree that some theoretical virtues might dictate search-
ing for a general theory of explanation. However, I have shown that the
current accounts fail in providing a satisfactory counterfactual account of
mathematical explanations. Only a significant modification of the current
accounts might rescue the search for a fully general counterfactual theory
of explanation. Hence, without resolving the issues raised in this paper, the
current proposals ought to be rejected. I have also claimed that a hybrid
account integrating the virtues of the causal counterfactual approach and
constraint-based approach to mathematical explanations can accommodate
extra-mathematical explanations. A general account for intra-mathematical
explanations, however, remains to be developed.

Finally, I would like to point to a potential approach which would resist
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(some of) the criticisms I raised in this paper. This approach requires to
identify propositions with sets of possibilities, and then interpret possibil-
ities not in a mathematical way, but in terms of what you consider to be
possible or impossible (Huber, forthcoming, Ch. 6). This interpretation
remains open to full investigation, and I do not tackle it in details here. If
so, any exploration of this account, however, requires to justify the ways in
which an individual’s belief about the truth or falsity of a countermathe-
matical statement gives rise to countermathematical explanations. It seems
(to me) that explanations require more than mere belief: they require truth.

Notes

1C might be one member of a collection of explanantia for E. A counterfactual theory of
explanation must be able to evaluate (2) for all the members of the collection of explanantia.

2To the best of my knowledge, Lewis (1973b, p.24) coined the term ‘countermathematical’.
3In this paper, I presuppose that there are genuine cases of mathematical explanations.
Without this presupposition any generalization of the counterfactual theory of causal ex-
planations to mathematical ones would, of course, be pointless. What I aim to establish is
that mathematical explanations – presupposed there are any – cannot be properly analyzed
by the current explanatory scheme of counterfactual theories.

4If we take mathematical facts to be empirical, the antecedent of any countermathematical
explanation will be treated similar to a causal explanation in terms of counterfactuals. The
main issue is that having a satisfactory empiricist story about mathematics is – to say the
least – very difficult. In this paper, in accordance with BCR, I take mathematical facts to be
non-empirical.

5BCR (2017) explore the prospects of a counterfactual theory of extra-mathematical explana-
tions. BCR (2020) examine how a counterfactual account of intra-mathematical explanations
work. The two accounts are very closely tied to each other.

6On the one hand, vacuists such as Williamson (2018) claim that all counterpossibles with im-
possible antecedents are true. On this view, all countermathematical explanations are true.
This gives too many countermathematical explanations. On the other hand, non-vacuists
such as Nolan (1997), Berto et al. (2017), and BCR (2017, 2020) argue that some counterpossi-
bles are false and some are true. On this view, a mathematical impossibility may or may not
explain another fact depending on whether the corresponding countermathematical comes
out true or false.

7(β) also explains (Γ). To establish this, another countermathematical must be evaluated:
(IV) If it were not the case that for any three consecutive nonzero natural numbers, exactly
one is divisible by 3, then it would not be the case that the product of any three non-zero,
consecutive natural numbers is divisible by 6. The recipe for the evaluation of (IV) is very
similar to that of (III). For simplicity, I only focus on the evaluation of (III).
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8In addition to Priestian paraconsistent logic, there are other variants of paraconsistent logic
as defended by, for example, Batens (1990), Da Costa (1997), and Meheus (2003). For a
survey exploring these variants, see Tanaka (2003).

9To make this point more concrete, I would briefly describe a case in which an exemplar of in-
consistent mathematics, the early infinitesimal calculus, has been used in physics. The early
calculus posited that infinitesimals are quantities with zero values in some cases, and non-
zero values in other cases within the very same proof (Berkeley, 1734). For instance, consider

f (x) = x2. Its derivative, according to early infinitesimal calculus is: f ′(x) =
(x+ δ)2

−δ

δ
.

On the one hand, the infinitesimal δmust be nonzero, because it appears in the denomina-
tor. On the other hand, by simplifying f ′(x), we obtain f ′(x) = 2x+ δ. By taking δ= 0, we
get f ′(x) = 2x. Here, we carry out the reasoning by relying on some global contradictory
information: δ , 0 and δ = 0. Using these pieces of inconsistent mathematics with care
within a particular reasoning scope has resulted in mathematicians doing reasoning with
inconsistent mathematics without running into mathematical absurdities such as 2 is not
divisible by 2. The set of information by which one could reason at a given time, however,
was consistent (McCullough-Benner, 2019). Hence, the fact that sometimes inconsistent
mathematics is used to explain or represent an empirical phenomenon, does not mean
that in general any kind of inconsistent mathematics can be used to explain any empirical
phenomenon, and more relatedly that the explanatory structure between the mathematical
explanans and the explanandum of a mathematical explanation can be cashed out by the
current theories of counterfactual analysis.

10The situation is entirely different in evaluating a non-explanatory countermathematical such
as ‘If Hobbes had (secretly) squared the circle, all sick children in the mountains of South
America at the time would have cared’. Here, there is no such shared structure at work
between the antecedent and the consequent.
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