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Abstract. We consider the efficacy of various forms of reinforcement learning

with punishment in evolving linguistic conventions in the context of Lewis-

Skyrms signaling games. We show that the learning strategy of reinforcement
with iterative punishment is highly effective at evolving optimal conventions in

even complex signaling games. It is also robust and can be easily extended to

a self-tuning variety of reinforcement learning. We briefly discuss some of the
virtues of reinforcement with iterative punishment and how it may be related

to learning in nature.
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1. introduction

We are concerned here with reinforcement learning with punishment in the con-
text of Lewis-Skyrms signaling games.1 In such games, punishment often con-
tributes to both the speed and accuracy of reinforcement learning.2

It has been shown that a signaling game with two states, two signals, and two
acts will converge to optimal signaling on simple reinforcement learning with no
punishment if nature is unbiased.3 But if one has more than two states, signals,
and acts or if nature is biased, then the players often get stuck in a suboptimal
pooling equilibrium. This problem becomes more pronounced in more complex
games with more states, signals, and acts.4

Supplementing reinforcement on success with punishment on failure often facil-
itates the evolution of optimal player dispositions, but there is a tuning problem.
If one punishes too much relative to the level of reinforcement on success, it makes
it difficult for the players to learn anything at all. And if one punishes too little,

1David Lewis (1969) first presented this sort of game in the context of classical game theory as

a way of studying how conventions might be established. Skyrms (2006, 2010) translated Lewis’

signaling games into the context of evolutionary game theory. See Herrnstein (1970), Roth and
Erev (1995), and Erev and Roth (1998) for a description of reinforcement learning and how it

maybe used to characterize human learning in a number of salient contexts.
2See Barrett and Zollman (2009) for a discussion of the role of punishment in reinforcement
learning.
3See Argiento, Pemantle, Skyrms, and Volkov (2009) for this proof. The proof is highly nontrivial

for even this simple case. It is because we have very few analytic results for more complex signaling

games, under even simple reinforcement, that they must be investigated primarily by simulation.
See Hu, Skyrms, and Tarrès and Huttegger, Skyrms, Tarrès, and Wagner (2014) for a description

of one general result.
4See Barrett (2006) for an early description of both of these problems and Hofbauer and Huttegger

(2008) for further discussions of the latter.
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one does not do much to solve the suboptimal pooling equilibrium problem. What
counts as too much and too little here depends on the complexity of the game. This
makes it difficult to specify a single dynamics that does well in a broad assortment
of games.5

We will begin by considering a 4×4×4 signaling game with basic reinforcement
learning, then consider simple reinforcement with punishment, reinforcement with
iterative punishment, and self-tuning reinforcement with iterative punishment. We
will show how the latter form of reinforcement with punishment provides robust
learning strategies that are effective in very different signaling games. How the
virtues of reinforcement with iterative punishment pave the way for a self-tuning
form of reinforcement learning will be particularly salient. We conclude by briefly
discussing how reinforcement with iterative punishment may be related to learning
in natural contexts.

2. simple reinforcement

A Lewis-Skyrms signaling game is a common interest evolutionary game with
one sender and one receiver. On a play of an n× n× n signaling game, the sender
sees which of n states of nature obtains. She then sends one of n possible signals.
The receiver cannot see the state of nature but can see the sender’s signal. When
she sees the signal on a play of the game, she performs one of n possible acts. Each
act is appropriate to precisely one state of nature. If the receiver’s act matches the
current state of nature, then the play counts as a success; otherwise, it counts as a
failure.

The two players update their conditional dispositions based on the outcome of
each play (the sender updates her dispositions to signal conditional on the state
and the receiver updates his dispositions to act conditional on the signal). Whether
the agents are readily able to evolve optimal dispositions where each state of na-
ture leads to a particular signal which leads to the act that matches the current
state depends on precisely how they update their conditional dispositions given the
outcome of each play. It sometimes often depends on luck as well.6

Let’s consider concretely how this goes for a 4×4×4 signaling game under basic
reinforcement learning (Figure 1). One might think of the players’ dispositions and
how they are updated in terms of urns with balls. On each play of the game, the
current state of nature is determined in a random and unbiased way. The sender
has one urn for each possible state of nature 0, 1, 2, 3. Each of these urns starts with
one ball of each possible signal a, b, c, d. To determine the signal, she observes the
current state of nature then draws a signal ball at random from the corresponding
urn. She sends that signal. The receiver has one urn for each possible signal a, b, c, d.
Each of these urns starts with one ball of each possible act 0, 1, 2, 3, where each
state of nature requires the corresponding act for success. The receiver sees the

5See Barrett (2006) for an investigation of various punishment strategies and Barrett and Zollman

(2009) for a discussion of the role of punishment and forgetting in learning. See Alexander,
Skyrms, and Zabell (2012), Barrett, Cochran, Huttegger, and Fujiwara (2017), and Cochran and
Barrett (2021a) and (2021b) for discussions of other learning strategies that seek to address the

problem of suboptimal pooling equilibria.
6On the games and learning dynamics we will consider, the players will typically evolve nearly

optimal dispositions on a successful run. Their dispositions will correspond to a bijective map
from states to acts, but even when they are successful, their behavior will be somewhat noisy and

hence not always respect the bijective map.
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Figure 1. 4 × 4 × 4 signaling game

signal then draws an act ball at random from the corresponding urn. She performs
the act. If the receiver’s act matches the current state, then each agent returns
their ball to the urn from which it was drawn and adds a ball of the same type to
the urn; otherwise, they simply replace return the ball that they drew.

The question as to how well a learning dynamics does on a particular type of
problem is an empirical one. On simulation, when the modeled sender and receiver
update their conditional dispositions under this dynamics, they start off randomly
signaling and randomly acting. The signals initially have no meanings and there
is no pattern to the receiver’s action. But, as they learn from experience, about
0.797 of the time the players dispositions evolve to exhibit a cumulative success
rate exceeding 0.8 with 106 plays per run (with 1000 runs). If they reach this level
of success, then the run did not get stuck in a suboptimal pooling equilibrium as
the most successful pooling equilibria for this game have cumulative success rates
of 0.75. More generally, if a game evolves to do better than its best suboptimal
pooling equilibria, then it tends to do monotonically better over time thereafter
approaching an optimal signaling system. For this reason, the level of success that
matters in each of the games we consider is the success rate of the most successful
suboptimal equilibria. As for the specific case at hand, the players usually evolve a
nearly optimal signaling system under simple reinforcement learning in the 4×4×4
game.

Basic reinforcement learning does not do as well on more complicated signaling
games. With 107 plays per run, the 8 × 8 × 8 game exhibits a cumulative success
rate over 0.875 just under half of the time 0.426. The higher cutoff here is because
the most successful suboptimal pooling equilibria are better here. This is part of
the reason the success rate is lower than for the 4 × 4 × 4 game. But the game is
also harder. Note that we are running the 8 × 8 × 8 games ten times as long and
still getting a significantly lower cumulative success rate.

While there is no entirely straightforward way of comparing the difficulty of
evolving optimal dispositions for more and less complex games or of comparing the
relative efficacy of different learning strategies, we will aim to give a sense of the
relative difficulties and efficacies by describing what happens on simulation under an
assortment of different game parameters. There are a few simplifying conventions
that will allow for more accurate comparisons across different games. The first of
these has to do with how we track success.

The most common way to measure evolutionary success in the signaling game
literature is to track cumulative success over a fixed number of plays. The statistics
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reported above are for that.7 An advantage of this measure is that one gets a rough
sense of both how reliable the system ultimately is and how quickly it got there.
In contrast, one might track the success rate over just the last few plays of the
game on a run. This measure provides a better sense of the properties of the final
evolved system. For the 8×8×8 game we just considered, 0.592 of the runs exhibit
a success rate over 0.875 when just the last 104 plays of each run are considered.
Given the focus of the present investigation, we will measure success in this way in
what follows.

When the agents do not evolve toward an optimal signaling system, they get
stuck in a suboptimal pooling equilibrium. As a concrete example of what this
looks like, the suboptimal equilibrium illustrated in Figure 2 sometimes arises under
simple reinforcement learning in the 3 × 3 × 3 game even with unbiased nature.
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Figure 2. 3 × 3 × 3 signaling game

An optimal signaling system requires that one have a bijection between states of
nature and signals and between signals and acts and hence, taken together, between
states and signals. But here the sender uses a to represent both states 0 and 1 and
the receiver randomly does act 0 and 1 with probabilities p and 1 − p when he
sees an a signal. And the sender randomly sends b and c with probabilities q and
1 − q and the receiver always does act 2 when he gets either of these two signals.
If nature is unbiased, the mean success rate will be 2/3. And since unilaterally
changing the value of either p or q does nothing to improve the agents’ fortunes,
their mixed strategies from an equilibrium under the dynamics.

Such suboptimal equilibria are increasingly common the more complex the game.
On 106 plays per run the 16×16×16 game has an end-of-run success rate on simple
reinforcement learning better than 0.9375 on 0.169 of the runs. The 32 × 32 × 32
game does better than its most successful pooling equilibria at 0.969 on 0.003 of
the runs. With ten times the number of plays per run 107, the 32 × 32 × 32 game
meets this cutoff a slightly more often on 0.036 of the runs. But on even 2 × 107

plays per run, 64× 64× 64 game was never found to meet the corresponding cutoff
at 0.985 on 1000 runs.

A natural question is whether one might do better on such complex games under
a different learning dynamics. In one sense of better this question is easy to answer.
There are some learning dynamics that will with probability one eventually evolve

7See Barrett (2006) for further examples of this measure for various signaling games on simple
reinforcement learning and reinforcement with punishment.
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a strictly optimal signaling system for any finite signaling game. Consider win-
stay/lose-randomize. Here the sender adopts an initial bijective map from states to
signals and the receiver adopts an initial bijective map from signals to acts. On each
play of the game, the sender and receiver stay with their present map unless the play
fails in which case, each adopts a new bijective map independently and at random.
Since there is a fixed positive probability on each play that they will happen to pick
a pair of maps that fit with each other to produce a bijection between states and
acts, this dynamics will eventually yield a optimal signaling system with probability
one. But given the number of possible strategies in a moderately complex signaling
game, it could take a cosmological long time to do so. In terms of speed this often
a terrible dynamics. We will consider an illustrative example of this in the next
section.

We turn now to consider how punishment might improve both the speed and
accuracy of reinforcement learning in the context of signaling games.8 This requires
some care. While one can sometimes get a very fast and accurate learning dynamics
by tuning the dynamics’ parameters to the particular problem at hand, one should
ultimately want a learning dynamics that does well in a broad range of contexts.
We will aim to make progress on characterizing such a robust learning dynamics.

3. simple reinforcement with punishment

A signaling game under simple reinforcement with punishment works very much
like a signaling game under reinforcement except that one may also punish by
removing balls from urns on failure. In the 4× 4× 4 signaling game under (+i,−j)
reinforcement with punishment, one adds i balls on success and may remove up to j
balls on failure. More precisely, if the receiver’s act matches the current state, then
each agent returns their ball to the urn from which it was drawn and adds i balls of
that type to the urn; otherwise, they return the ball to the urn from which it was
drawn and remove j balls of that type from that urn subject to the condition that
at least one ball of the type remains in the urn. Hence, if there are j or fewer balls
of the given type, all are removed but one. The aim is to keep the same number of
types in each urn by not allowing any type to go extinct.

Optimal signaling often evolves much faster and more reliably under reinforce-
ment with punishment than under reinforcement alone. On just reinforcement
learning without punishment, the 8 × 8 × 8 game exceeds the 0.875 final-success-
rate cutoff on 0.613 of runs with 106 plays per run. Most of the failed runs here
reflect suboptimal pooling equilibria. In contrast, (+1,−1) reinforcement with pun-
ishment exceeds the 0.875 success rate cutoff on a remarkable 0.945 of runs with
the same number of plays per run.

Punishment makes suboptimal pooling less likely by tending to weaken the play-
ers’ suboptimal dispositions when they use them and fail. But it is also easy to
punish too much. The 8 × 8 × 8 game with (+1,−2) learning was never found to
exceed the 0.875 cutoff on 1000 runs with 106 plays per run. That said, increasing
the level of reinforcement a bit preserves success for this particular game with 0.951
of runs meeting the cutoff for (+2 − 1) learning.

8See Erev and Roth (1998), Barrett and Zollman (2009), Alexander, Skyrms, and Zabell (2012),
Barrett, Cochran, Huttegger, and Fujiwara (2017), and Cochran and Barrett (2021a) and (2021b)

for other promising learning strategies.
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While (+1,−1) learning works well in the 8 × 8 × 8 game, it is less successful in
more complex games. The 16×16×16 game was never observed to exceed the 0.9375
cutoff on (+1,−1) learning with 106 plays per run and 1000 runs. The coordination
problem posed by the game is harder here. As a result, that level of punishment is
too high relative to the level of reinforcement to allow for the effective evolution of
optimal dispositions. Successful dispositions cannot get traction against the high
level of punishment here. But the 16 × 16 × 16 game does exceed the cutoff 0.952
of the time on (+2,−1) learning with 106 plays per run. Here the reinforcement
on success is enough for the players to get traction on optimal dispositions early in
the evolution. Indeed, the evolution of near optimal dispositions for these learning
parameters is very fast. The cutoff is exceeded on 0.903 of the runs with just 105

plays per run.
While (+2,−1) learning works well in these two games it does not work at all in

more complex games. The 32×32×32 game was never found to exceed a 0.969 cut
off with this dynamics on 1000 runs with 106 plays per run. But this game did very
well with (+3,−1) learning. Here it exceeded the cutoff on 0.879 of the runs. Again,
one needs sufficient reinforcement relative to punishment to get traction early in
the run. And success is highly sensitive to both parameter settings. Raising the
level of punishment even slightly can make a striking difference. In the present
game, (+3,−2) learning was never observed to succeed.

Similar phenomena are seen for yet more complex games. The 64×64×64 game
was never observed to exceed a 0.984375 cutoff on (+3,−1) learning on 1000 runs
with 2×106 plays per run. But it was observed to exceed this strict cutoff on 0.604
of the runs with (+4,−1) learning. Indeed, it appears that the only thing limiting
its success here was the relatively low number of plays per run given the complexity
of the game as (+4,−1) learning did better than the just slightly lower 0.969 cutoff
on 0.953 of the runs even with 2 × 106 plays per run.

Determining what is happening in such simulations requires care. The 128 ×
128 × 128 game was never observed to exceed a 0.995 cutoff on (+5,−1) learning
with 2× 106 plays per run. But again it appears that the issue here was just one of
run length given the high complexity of the game and high cutoff. This is strongly
suggested by the fact that 0.780 of the runs exceed the cutoff with 3 × 107 plays
per run and 0.830 do with 5 × 107 plays per run for the same reinforcement and
punishment parameters.

The recurring theme here is that if the level of punishment is too low given the
complexity of the game and the level of reinforcement, then one tends to get stuck
in suboptimal pooling equilibria; and if it is too high given the complexity of the
game and the level of reinforcement, then one cannot get the traction needed to
evolve optimal dispositions. But both of these points also require care.9

On reinforcement learning with punishment, it is always logically possible to
escape from a suboptimal pooling equilibrium. This might happen if one is lucky
enough to fail, and hence weaken the dispositions that led to that failure, whenever
one uses suboptimal dispositions. And if one is lucky enough, it is always logically
possible to get the traction necessary to evolve optimal dispositions with even a very

9A similar point can be made with respect to reinforcement values. While (+5,−1) learning in
the 128 × 128 × 128 game met its cutoff in 0.830 of runs (with 5 × 107 plays per run), (+2,−0.4)

never met the cutoff in the same game with the same number of plays per run. Just as when
punishment is too high one cannot get the traction needed to evolve optimal dispositions, when
reinforcement is too low one may not get the traction needed to evolve optimal dispositions.
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high level of punishment. A closer look at this second point will help to illustrate
the role of tuning in simple reinforcement with punishment.

Consider a learning dynamics with a high level of punishment relative to the
level of reinforcement. Regardless of how complex the game may be, given the
randomly determined states of nature, it is in principle possible that they get lucky
on the random dynamics that determines their actions and always succeed in the
early plays of the game. If so, the punishment level does not matter early in the
run since the players will evolve nearly optimal dispositions by chance; and it does
not matter later in the run either since the players will then have nearly optimal
dispositions and hence rarely fail and be punished.

But while it is always possible for optimal signaling to evolve with even very high
levels of punishment, one should expect simple reinforcement with punishment to
be extremely slow with high levels of punishment relative to reinforcement, and
particularly so for more complex games. In this, simple reinforcement with se-
vere punishment behaves much like the win-stay/lose-randomize strategy discussed
earlier.10

Given this, one might put the recurring theme in a somewhat more accurate
positive form: simple reinforcement with punishment allows for the effective evolu-
tion of nearly optimal dispositions in even complex signaling games if one uses just
right levels of reinforcement and punishment for the complexity of the game.11 It
is worth reflecting on how remarkable this success may be before worrying further
over tuning.

Setting aside the potentially unbounded number of mixed strategies available
to the two players in a 128 × 128 × 128 game, there are 128128 (more than 10269)
maps from states of nature to signals and the same number from signals to acts.
But the vast majority of these maps are suboptimal. An optimal signaling system
requires the sender to have a bijective map from states of nature to signals and
the receiver to have a matching bijective map from signals to acts. There are 128!
(more than 10215) bijective maps from states of nature to signals for the sender and
the same number of bijective maps from signals to acts for the receiver. For a given
sender bijective map, there is only one receiver map that will allow for optimal
signaling. As a consequence, evolving optimal dispositions for such a game would
be extraordinarily unlikely on something like win-stay/lose-randomize learning at
supercomputing speeds and cosmological time scales even if the players strategies
are restricted to just bijective maps.12 That (+5 − 1) learning usually succeeds in
finding a bijective map for the sender and a matching map for the receiver in just
5 × 107 plays is a nontrivial virtue of simple reinforcement with punishment.

But while simple reinforcement with punishment may be remarkably effective
with just-right learning parameters, one should want a single learning dynamics

10As we will see in the next section, reinforcement with iterative punishment allows for success

with much higher levels of punishment since the early evolution is protected from punishment.

Indeed, this will prove to be the key to the remarkable effectiveness of reinforcement with iterative
punishment.
11There is likely a best setting of reward and punishment parameters for a particular game run
at a specified length. Further, such best parameters are likely not whole numbers as we have

been using here. While we will seek to address the tuning problem in another way here, another

approach would be to try to say something about how to best determine these parameter settings
either when presented with a problem or, arguably more promising, dynamically while evolving a

solution.
12The universe is likely younger than 5 × 1017seconds.
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that does well on a broad assortment of games. To formulate something like this,
we will start by considering reinforcement with iterative punishment. We will then
reflect on how this dynamics might allow the players to tune how they learn as they
learn to meet the demands of the signaling game at hand.

4. reinforcement with iterative punishment

On reinforcement with iterative punishment, one alternates between periods
where the learning dynamics is mostly reinforcing and periods where it is mostly
punishing. To most clearly illustrate how the dynamics works, we will suppose here
that reinforcement phases involve pure reinforcement on success with no punish-
ment on failure and that punishment phases involve pure punishment on failure
with no reinforcement on success.

During a reinforcement phase, the players will form dispositions that together
map from states of nature to receiver acts. Some parts of the map may be nearly
optimal. On these a state of nature will produce the corresponding act with high
probability. Other parts may be suboptimal. On these the state may produce the
corresponding action, but it does not do so reliably. A subsequent punishment
phase will act to reset the dispositions associated with the suboptimal mixed parts
of the map, since their lower expected success rate is associated with more expected
punishment, without undoing the nearly optimal bijective parts. Then the players
will have another chance to get the suboptimal parts that were just erased right
when they return to reinforcement. Inasmuch as they need only build the remaining
parts of the bijective map on subsequent reinforcements, the players face an ever
easier task after each punishment phase and hence stand a yet better chance of
getting things right. When successful, they evolve nearly optimal dispositions by
assembling the full bijective map in parts.

Tuning still matters for reinforcement with iterated punishment. One needs a
sufficient level of reinforcement and needs to run it sufficiently long to get strong
enough dispositions for the bijective parts of the map that it is unlikely that they will
be erased by subsequent punishment. And one needs a sufficient level punishment
and needs to run it long enough that it is likely that the parts of the map that are
not bijective are erased. But one does not want the punishment to be so high or so
long as to erase the nearly optimal bijective parts of the map that were hard-won
on previous reinforcements.

Tuning in reinforcement with iterative punishment and in simple reinforcement
with punishment are, however, quite different. In short, reinforcement with iterative
punishment is much more robust. This is in part because it allows for a higher level
of punishment. And this has to do with the core idea behind the dynamics.

Reinforcement with iterative punishment builds strong dispositions during the
reinforcement phase, then uses punishment to erase the suboptimal parts of the
map. Since the dispositions associated with the optimal parts of the bijective map
are firmly established during reinforcement, even severe subsequent punishment will
tend to leave these successful dispositions intact. So the players learn freely and
without constraint during the reinforcement phase, and while they may evolve bad
habits along the way, these are easily eliminated by severe subsequent punishment.
In contrast, on simple reinforcement with punishment, punishment is always present
and hence occurs before successful dispositions have been firmly established. As a
result, weak dispositions that might ultimately form part of a successful bijective
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map if they were allowed to strengthen may be accidentally erased before they can
prove their worth if the learning parameters are not just right. A high level of
punishment makes it difficult for the players to build any dispositions at all. And
a low level of punishment does not address the suboptimal pooling problem.

We will consider a few concrete examples of how reinforcement with iterative
punishment works. While the reinforcement phases might in principle involve some
degree of punishment and the punishment phases might involve some degree of rein-
forcement, we will consider here only dynamics with periods of pure reinforcement
punctuated by periods of pure punishment. Using square brackets to represent re-
inforcement with iterative punishment, [+i,−j] learning alternates between periods
of pure reinforcement of magnitude i and periods of pure punishment of magnitude
j. The length of these periods will matter as well. We will note that in each case.

Consider the 32 × 32 × 32 game under [+2,−4] reinforcement with iterative
punishment. The first thing to note is that under (+2,−4) simple reinforcement
with punishment, this level of punishment is too high for the players to get traction
on a successful set of dispositions and they get nowhere. Indeed, as we saw earlier,
even (+2,−1) simple reinforcement with punishment involves too much punishment
for this complex a game. The players were never found to exceed the 0.969 success-
rate cutoff. But [+2,−4] reinforcement with iterative punishment may do very
well on this game depending on the length of the reinforcement and punishment
phases. With a fixed run length of 106 plays per run and two iterations (one
reinforces for a quarter of the run, then punishes for a quarter of the run, then
repeats the reinforcement and punishment), the players exceed this high success-
rate cutoff 0.252 of the time. With the same run length and four iterations, they
exceed the cutoff 0.409 of the time. With eight iterations 0.645. And with sixteen
iterations 0.918. The players are able to evolve nearly optimal dispositions very
quickly on sixteen reinforcement/punishment blocks because the high punishment
level erases any evolved suboptimal dispositions, and the high level of punishment
does not undermine their optimal dispositions because it only kicks in after those
dispositions are firmly established. This illustrates the radically different properties
of reinforcement with iterative punishment. It also shows how the players build the
full bijective map in parts on iterated punishment.

Importantly, the players do not continue to do better with more iterations with
the fixed total run length. Alternating quickly between pure +2 reinforcement
and pure −4 punishment closely approximates (+2,−4) simple reinforcement with
punishment where the players are not at all effective in establishing successful dis-
positions.

In the same setup, the 32×32×32 game evolves more slowly on [+1,−2] than on
[+2,−4] reinforcement with iterative punishment. With a fixed run length of 106

plays per run and two iterations, the players exceed the 0.969 success-rate cutoff
0.028 of the time. With the same run length and four iterations, they exceed the
cutoff 0.050 of the time. With eight iterations 0.103. And with sixteen iterations
0.203. Part of the problem here is that the level of punishment is too low to fully
erase the bad habits formed over a long period of reinforcement. Another is that
we are not allowing the dynamics enough chances to get things right.
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The 32×32×32 game on [+1,−2] reinforcement with iterative punishment pro-
vides a good example of the core idea behind reinforcement with iterative pun-
ishment and why it is robust. Consider this dynamics with a fixed reinforce-
ment/punishment block length of 1.25 × 105 plays. Eight such blocks exceeds the
high 0.969 success-rate cutoff 0.008 of the time. Sixteen blocks exceeds the cutoff
0.323 of the time. Twenty-four blocks exceeds it 0.906 of the time. And thirty-two
blocks 0.957 of the time. Here the players are observed to improve monotonically
with more reinforcement/punishment blocks. In each block sequence, the rein-
forcement phase builds potentially optimal dispositions and the punishment phase
tends to erase suboptimal dispositions. The block length here is long enough to
forge reasonably strong dispositions but short enough that the punishment phases
accomplish significant cleanup. And repeating the process allows for incremental
improvement.

Among the [+i,−j] parameters that were observed to do well on 106 plays per run
are [+2,−3] (run success rate 0.839 with sixteen blocks), [+2,−6] (run success rate
0.837 with eight blocks), and [+2,−10] (run success rate 0.837 with four blocks).
This illustrates the robustness of the dynamics under very different [+i,−j] param-
eters. It also illustrates how the dynamics with fixed [+i,−j] parameters may be
tuned to the complexity of the game at hand by varying block length alone. There
is further evidence of this latter sort of robustness.

Under reinforcement with iterative punishment, precisely the same [+i,−j] pa-
rameters, with a fixed block length, work well for games of very different complexity.
On [+4,−12] learning and a block length of 106, the 32 × 32 × 32 game meets its
cutoff on 0.623 of the runs after 3× 107 plays per run; the 64× 64× 64 game meets
its cutoff on 0.465 of the runs after 5 × 107 plays per run;13 the 128 × 128 × 128
game meets its cutoff on 0.903 of the runs after 5 × 107 plays per run.14 And in
all of the runs for each of these three games (1000 runs each) the final success
rate was observed to be better than 0.9. This last point indicates that the dynam-
ics avoids both the suboptimal-pooling and the traction-under-high-punishment
problems here. In doing so, it exhibits a radically different behavior from simple
reinforcement with punishment, where the (+i,−j) parameters must be carefully
tuned to the complexity of the signaling game.

So how might one choose block lengths that allow for monotonic improvement
toward an optimal signaling system on iteration? Given the structure of reinforce-
ment with iterated punishment, this can be done dynamically. What one wants
is to run the reinforcement phase until one sees diminishing returns, then run the
punishment phase until one sees diminishing returns, then repeat. Diminishing re-
turns in the case of reinforcement means that one’s local success rate is no longer
improving significantly on repeated play. When this happens one typically has some
firmly established optimal dispositions with some mixed suboptimal dispositions.
For punishment it means that one’s local success rate is beginning to decline sig-
nificantly. When this happens, one has erased the suboptimal dispositions and is

13[+4,−12] learning performs yet better with a block length that is tuned to the complexity of

the game. On [+4,−12] learning with 3 × 107 plays per run, the 64 × 64 × 64 game meets its
cutoff on 0.694 and 0.912 of the runs (1000 runs each) with block lengths of 5× 105 and 2.5× 105

respectively.
14As in most of the paper, cutoffs here are n − 1/n. Hence the cutoff for the 32 × 32 × 32 game

is 0.969, for the 64 × 64 × 64 game is 0.984, and for the 128 × 128 × 128 game is 0.992.
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beginning to erase optimal dispositions. Given the robustness of reinforcement with
iterative punishment, one has considerable leeway in making these determinations.

Inasmuch as such determinations may be made during play, we have the frame-
work for self-tuning reinforcement with iterative punishment. On this dynamics,
one chooses a reinforcement level and a relatively severe punishment level, then
one runs reinforcement until one sees diminishing returns, then runs punishment
until one sees diminishing returns, then repeats. While there remains a significant
tuning issue in the choice of reinforcement and punishment levels, the dynamical
determination of block length provides a significant degree of self-tuning.

There is more to say regarding how one might best detect diminishing returns
to facilitate the rabid evolution of optimal dispositions. One should also want to
consider how to choose reinforcement and punishment levels dynamically to this
end. These are topics for further research.

5. discussion

While basic reinforcement learning allows for the evolution of optimal disposi-
tions on simple signaling games, it often leads to suboptimal pooling equilibria,
particularly in more complex games. Simple reinforcement with punishment helps
to prevent suboptimal pooling, but it encounters a tuning problem. If the pun-
ishment level is too low, it does little to prevent suboptimal pooling; and if the
punishment level is too high, successful dispositions fail to evolve at all.

In contrast, reinforcement with iterated punishment is tolerant of high levels
of punishment. Here reinforcement establishes a mixed set of dispositions, and
subsequent punishment tends to erase those dispositions that contribute to the
suboptimal parts of the map from states to signals to acts. The aspect of signaling
games that makes this dynamics effective is that an optimal bijective map can be
built incrementally. The dynamics will move toward optimal dispositions if the
reinforcement phase is long enough to accumulate firmly established dispositions
and the punishment phase is long enough to erase the suboptimal dispositions but
short enough not to do significant damage to the bijective parts of the map.

Understanding how reinforcement with iterative punishment works suggests self-
tuning reinforcement with iterated punishment. Here one reinforces until progress
begins to stall, punishes until the overall success of the system begins to de-
cline, then repeats. While this still requires one to choose initial reinforcement
and punishment levels, the players themselves determine the length of reinforce-
ment/punishment blocks dynamically and hence have significant control of how
much reinforcement and punishment in fact takes place. As a result, this dynamics
is self-tuning over a broad class of signaling games.

Reinforcement with iterative punishment is more robust than simple reinforce-
ment with punishment in two closely related ways. First, very different [+i,−j]
parameters are found to evolve optimal dispositions in the same game. And sec-
ond, precisely the same [+i,−j] parameters are found to evolve optimal dispositions
in very different games. It is this that allows for the success of self-tuning reinforce-
ment with iterative punishment. This self-tuning form of reinforcement learning
clearly deserves further study.

Reinforcement with iterative punishment mirrors a learning structure that is
often observed in natural contexts. During reinforcement periods, players learn
quickly and establish a rich set of dispositions. Such low-risk free play is often



12 JEFFREY A. BARRETT AND NATHAN GABRIEL

punctuated by the higher-risk application of what the players have learned. On
this dynamics, while they may make progress toward an optimal set of dispositions
during free play, they may also pick up some bad habits along the way and end up
with suboptimal dispositions.

Perhaps as a result of their efficacy, such learning strategies have come to be im-
plemented in traditional pedagogy. Low-risk formative learning for most of a course
might act as reinforcement building new dispositions. Formative learning is then
punctuated with high-stakes summative assessments that compare the students’
dispositions against benchmark standards for the subject matter of the course.
Failure in the context of such assessments might act as punishment that weakens
those dispositions that do not accord with the standards.

In reinforcement with iterated punishment learning, if higher-risk application
tends to eliminate the suboptimal dispositions and if this happens in way that does
not undermine the positive fruits of free play, subsequent free play allows for new,
potentially optimal, dispositions to be forged in the place of the bad habits that
did not stand the test in application.15

15We would like to thank Brian Skyrms and Calvin Cochran for comments on an earlier draft of
this paper.
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