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We study the measurements which Alice and Bob can perform on a bipartite quantum system,
where Alice and Bob are spacelike separated. For a measurement to be possible, it must be causal
i.e. non-signalling. Within causal measurements, we define four notions of ‘localisability’. Each of
the four classes of measurement restricts the actions of Alice and Bob in different ways, and we study
their relative power. We end with a discussion of the difficulties posed by non-local measurements
for the idea of wavefunction collapse.

I. INTRODUCTION

In non-relativistic quantum mechanics and quantum
information theory, a fundamental assumption is that we
are able to perform any measurement instantaneously.
However, if a quantum system is distributed over space,
then the assumption that all measurements can be
achieved instantaneously is at odds with special relativ-
ity. Indeed, this discussion began with the EPR thought
experiment [1]. The first difficulty is that the notion of
instantaneity is frame-dependent: what is instantaneous
for Romeo will not be instantaneous for Juliet. The sec-
ond difficulty is the possibility that the projection postu-
late will allow superluminal signalling, in contradiction
with the relativistic principle of causality. We can see
an intuitive example of this second issue in the case of
a single free particle. Suppose the particle is initially
localised in some compact region of space, and the mo-
mentum of the particle is measured. The position of the
particle will then become instantaneously smeared over
all space, which will produce a positive probability of lo-
cating the particle in some far away region of space, at
an arbitrarily soon instant of time.

Of course, the fully consistent theory of quantum me-
chanics in Minkowski spacetime is quantum field theory.
However, we will investigate these issues in the context
of a certain toy model. We will consider Alice and Bob,
separated in space by a distance d, possessing point-like
quantum subsystems A and B respectively. The aim is
to investigate measurements on their joint bipartite sys-
tem AB; measurements which are instantaneous in some
fixed Lorentz frame. We will assume that Alice and Bob
have complete instantaneous control over their subsys-
tems and any apparatus systems local to them.

The reader may notice some hypocrisy in this model.
We began by criticising the assumption of complete in-
stantaneous control of a quantum system, only to bestow
Alice and Bob individually with such power over their
respective subsystems. However, this can be justified as
follows. In reality, A and B will occupy smeared regions
in space with some small width ε. We then allow mea-
surements to take a small time δt ' ε/c. We take ε large
enough to ignore quantum field theoretic effects on the
smallest scales, and we take d � ε. In this way, we can
assume that non-relativistic quantum mechanics applies
to A and B individually, and the relevant notion of in-

stantaneity is δt� d/c. This Alice and Bob toy model is
embodied by the slogan ‘put a bipartite non-relativistic
quantum system in Minkowski spacetime’. See Fig. 1.
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In quantum mechanics, measurement plays a dual role:
it extracts classical information about the quantum sys-
tem, and it also prepares the quantum system in an ap-
propriate post-selected state. In [2], non-selective (i.e.
trace-preserving) measurements are considered in a sim-
ilar context to ours. On the other hand, other authors
have focused on the observational part of measurement,
without regard to the post-measurement state of the sys-
tem [3]. In this essay, we focus explicitly on selective mea-
surements; in other words, we are studying how to make
sense of the projection postulate in Minkowski spacetime.

For our purposes, a general measurement on a single
quantum system takes the form: (a) introduce some ap-
paratus (or ancilla) quantum degrees of freedom, (b) ap-
ply a unitary to the combined system and apparatus, (c)
perform a complete measurement of the apparatus sys-
tem in an orthonormal basis. For a bipartite system AB,
the apparatus system will also be bipartite. Let Alice’s
apparatus subsystem be R, and Bob’s S. Throughout
this essay, A,B,R, S will all be finite-dimensional quan-
tum systems.

There are various restrictions we could make on the
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measurement procedure of Alice and Bob. In step (a),
we could allow Alice and Bob to have prepared R and
S at some past laboratory in an initial entangled state.
Alternatively, we could require the apparatus R and S to
initially be separable. In step (b), we require the unitary
to be localisable i.e. UAR ⊗ UBS . In step (c), we could
allow Alice and Bob to coherently transport R and S to a
future laboratory to perform a complete measurement in
a general orthonormal basis. Alternatively, in step (c),
we could require them to immediately measure R and
S in some tensor product basis and communicate their
results to the future laboratory classically.

These possible restrictions give rise to a variety of
classes of measurement on AB which we will be inter-
ested in.

• SLC – in (a) the apparatus is Separable; in (b)
the unitary is Localisable; in (c) Alice and Bob
measure R and S independently and communicate
their results Classically.

• SLQ – in (a) the apparatus is Separable; in (b)
the unitary is Localisable; in (c) Alice and Bob
have access to Quantum communication prior to
measuring the apparatus.

• ELC – in (a) the apparatus is possibly Entangled;
in (b) the unitary is Localisable; in (c) Alice and
Bob measure R and S independently and commu-
nicate their results Classically.

• ELQ – in (a) the apparatus is possibly Entangled;
in (b) the unitary is Localisable; in (c) Alice and
Bob have access to Quantum communication prior
to measuring the apparatus.

• CAUSAL – measurements which do not allow su-
perluminal signalling.

• ALL – no restrictions placed on the measurements.

SLC is the class of ‘local’ measurements; i.e. measure-
ments which are a tensor product of independent mea-
surements on A and B. We can immediately notice the
series of inclusions shown in Fig. 2. They are all tautolog-
ical, except for ELQ ⊆ CAUSAL, which is a consequence
of the no-signalling principle.

There have been several attempts to characterise
classes of measurements similar to these [2] [4] [5] [7] [8]
[9], although I do not believe there exist completely satis-
factory general characterisations. I believe such general
characterisations are an important direction for future
work; however it will not be addressed here. Indeed, this
essay will ask more questions than it answers.

Our main results can be summarised as follows. See
also Fig. 3.

SLC 6= ELC ≈ELQ

SLC 6= SLQ 6=ELQ (1)
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For CAUSAL 6= ALL, we have already glimpsed an
acausal measurement above in our discussion of momen-
tum measurement. This was made explicit by Sorkin
[10].

Our next guess would perhaps be that, in relativis-
tic quantum mechanics, local measurements are the only
ones that are able to occur instantaneously. We will see
that this is not true: we can design explicit localisable ex-
periments which perform non-local measurements. This
is possible using shared entangled apparatus and local
measurements [2] [4] [5] [7]; that is SLC 6= ELC. It is
also possible without prior entanglement, using quantum
post-processing [2]; that is SLC 6= SLQ.

We have ELC ≈ ELQ in the following sense: every
measurement in ELQ can be performed in ELC to arbi-
trarily high fidelity, as the size of the apparatus systems
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increase. This will follow from a technique introduced by
Vaidman [3]. This can be interpreted as the statement
that quantum post-processing offers no advantage if Alice
and Bob already have access to prior entanglement.

We then ask this question the other way around: does
prior shared entanglement offer any advantage in addi-
tion to quantum post-processing? The answer in this
case is yes, and SLQ 6= ELQ.

The final surprise is that ELQ 6= CAUSAL. This
means that a measurement being non-signalling is not
enough to guarantee that there is a way to implement
that measurement using only local actions of Alice and
Bob [2].

Although special relativity is the motivation for in-
troducing and studying these classes of measurement, it
should be noted that we can interpret these results from a
purely quantum information theoretic point of view. We
are studying the measurements achievable by two parties
whose communication is restricted in appropriate ways.

There are non-local measurements which can be per-
formed instantaneously. This has a disturbing implica-
tion for the conventional view of wavefunction collapse
in the setting of Minkowski spacetime [4] [5]. We argue
that, in relativistic quantum mechanics, we are forced
to abandon the traditional notion of an objective wave-
function collapse. One cannot assign quantum states to
spacetime points (t, x); rather, quantum states can be
defined only for entire spacelike hypersurfaces [6].

Section II will discuss measurement more formally. In
Section III we then use this formalism to define the above
classes of measurement for a bipartite system. In Section
IV, we state and prove two distinct versions of the no-
signalling principle. I believe the difference in content
between these two versions is important, and often over-
looked. Sections V, VI, VII, VIII, IX and X are devoted
to showing the main results given in Eq. 1, Fig. 3. The
systems of Alice and Bob in these sections will always be
finite-dimensional and consist of qubits. In Section XI,
we discuss the implications of non-local measurements
for the ontology of the wavefunction. Section XII con-
cludes.

II. OPERATIONS AND MEASUREMENT

We would like to define exactly what we mean by a
measurement of a quantum system. To motivate our def-
inition of measurement, it will be helpful to first study
the form of a general (trace-preserving) operation on a
quantum system.

A quantum system is described by a Hilbert space
H. Let B(H) denote the set of bounded linear opera-
tors on H. The state of the system is a density matrix
ρ ∈ B(H) which we require to be (i) positive semi-definite
(ii) Tr ρ = 1. Let Θ(H) denote the set of linear maps
B(H)→ B(H), known as superoperators. The most gen-
eral form of an operation on a quantum system is a super-
operator Λ ∈ Θ(H) which is CPTP ; that is, (i) completely

positive (see Appendix XIII A) (ii) trace preserving. We
will refer to CPTP superoperators as quantum operations
or operations.

The reader is reminded that we will take all Hilbert
spaces to be finite-dimensional.

Theorem 1. Kraus Representation Theorem
Let Λ ∈ Θ(H) be CPTP. Then there is a set
{Ak}k∈K ⊂ B(H) of linear operators (called Kraus ma-

trices) satisfying
∑
k A
†
kAk = I such that

Λ(ρ) =
∑
k

AkρA
†
k (2)

Conversely, if {Ak}k∈K ⊂ B(H) satisfy
∑
k A
†
kAk = I,

then Λ(ρ) =
∑
k AkρA

†
k is CPTP.

Proof. See Appendix XIII A.

Kraus representation gives us an elegant and conve-
nient characterisation of CPTP operations. We can make
contact with some familiar special cases. If {Ak}k∈K =
{Πk}k∈K are a complete set of orthogonal projectors

Π2
k = Πk = Π†k ∀k,

∑
k Πk = I, we recover vanilla non-

selective measurement. If {Ak}k∈K = {U} for a single
unitary U , we recover a unitary transformation.

We will now use the Kraus representation to prove an-
other characterisation of quantum operations. We will
go through the proof here, as the ideas will be important
for when we finally define measurement.

Theorem 2. Stinespring Dilation Theorem
Let Λ ∈ Θ(H) be CPTP. Then there exists a Hilbert

space H′, a pure state |ψ〉 ∈ H′, and a unitary transfor-
mation U on H⊗H′ such that

Λ(ρ) = TrH′(U(ρ⊗ (|ψ〉〈ψ|))U†) (3)

for all states ρ ∈ B(H), where TrH′ denotes partial trace
over H′.

Conversely, if U is a unitary transformation on H⊗H′,
and |ψ〉 ∈ H′ is a pure state, then Λ(ρ) = TrH′(U(ρ ⊗
(|ψ〉〈ψ|))U†) is CPTP on H.

Proof. We start with the forwards direction. Let Λ ∈
Θ(H) be CPTP, with Kraus decomposition Λ(ρ) =∑
k∈K AkρA

†
k. Attach to H an ancilla space H′ with ba-

sis {|0〉}∪{|k〉 : k ∈ K}. Define a unitary transformation
U on H⊗H′ by requiring first:

U |χ〉|0〉 =
∑
k

Ak|χ〉|k〉 ∀ |χ〉 ∈ H

Since
∑
k A
†
kAk = I, U preserves the inner product

between any (〈χ′|〈0|)(|χ〉|0〉). Thus we can extend it to
a full unitary U on H⊗H′.

Now we have

U(ρ⊗ (|0〉〈0|))U† =
∑
k,k′

Ak(ρ⊗ (|k〉〈k′|))A†k′

TrH′(U(ρ⊗ (|0〉〈0|))U†) =
∑
k

AkρA
†
k

= Λ(ρ)
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This completes the forwards direction of the proof.
For the converse, let Λ(ρ) = TrH′(U(ρ ⊗ (|ψ〉〈ψ|))U†)

for some ancilla space H′, pure state |ψ〉 ∈ H′, and uni-
tary transformation U on H⊗H′. Let {|k〉 : k ∈ K} be
a basis of H′. Then

Λ(ρ) = TrH′(U(ρ⊗ (|ψ〉〈ψ|))U†)

=
∑
k

〈k|U(ρ⊗ (|ψ〉〈ψ|))U†|k〉

=
∑
k

AkρA
†
k

where Ak = 〈k|U |ψ〉. We have
∑
k A
†
kAk =∑

k〈ψ|U†|k〉〈k|U |ψ〉 = 〈ψ|I|ψ〉 = I, so this is indeed a
valid Kraus representation.

Quantum system Quantum apparatus Classical world

Unitary interaction
Discard

Measure

L M

FIG. 4

Stinespring dilation has a pleasing philosophical in-
terpretation, illustrated by Fig. 4. It states that any
physical operation can be achieved by the following three
steps: (a) introduce some apparatus (or ancilla) quantum
system in a pure state (b) apply a unitary to the com-
bined system (c) discard the apparatus system. We will
refer to this process as the church protocol for an oper-
ation, following John Smolin who described the process
as ‘going to the church of the larger Hilbert space’.

The church characterisation of quantum operations
motivates the following definition of a quantum measure-
ment: instead of discarding the apparatus system in (c),
we measure it in a complete orthonormal basis. The italic
font of measurement reminds us that this is the (only)
place where we invoke the Born rule and the mysterious
wavefunction collapse. In this way, all of the philosophi-
cal controversy of quantum measurement is relegated to
step (c), at Line M in Fig. 4. The process of decoherence
in step (b) is well-defined and Born-rule-free. Moreover,
for an instantaneous measurement in relativity, we do not
require any individual to know instantly the measurement
outcome. Rather we only require that the decoherence
in step (b) is instantaneous. The apparatus systems can
be gathered together and measured at a leisurely pace
after the interaction is finished. For the remainder of the
present section, we will refer to this as the church protocol
for measurement: (a) introduce apparatus, (b) interact

apparatus with system to decohere, then (c) measure the
apparatus in a complete orthonormal basis. In subse-
quent sections, this is what we will understand the term
‘measurement’ to mean.

The Kraus formalism gives us an elegant description
of church measurement, and we adopt this formalism
for the remainder of the essay. A measurement is given
by a set of Kraus matrices {Ak}k∈K . The outcome of
the measurement in step (c) of the church protocol will
be an element k ∈ K. The Born rule takes the form
P(k) = TrAkρA

†
k. The state of the system after step

(b) of the church protocol is the result of applying the

usual operator Λ(ρ) =
∑
k AkρA

†
k. This is known as

non-selective measurement. The state of the system after

step (c), if we observe outcome k, is ρ′ = (AkρA
†
k)/P(k).

This is known as selective measurement. If we define
Ek = A†kAk, then the Born rule becomes P(k) = TrEkρ.
{Ek}k∈K is known as a positive operator valued measure
(POVM); each Ek is a positive semi-definite operator,
and they satisfy

∑
k Ek = I. Although the POVM speci-

fies the statistics of the measurement, it does not specify
the state of the system after non-selective or selective
measurement.

To justify this description of measurement, we would
like two things to be true. Firstly, given any set {Ak}k∈K
of Kraus matrices, we can perform the corresponding
measurement with a church protocol. Secondly, any mea-
surement given as a church protocol can be described by
a set {Ak}k∈K of Kraus matrices. To see why these two
statements are true, we can use the ideas from the proof
of Theorem 2. In fact, not only does the proof of Theorem
2 imply that these statements are true, but it gives an
explicit algorithm for moving between the church model
of measurement and the Kraus representation of mea-
surement.

For the first statement, consider the proof of the for-
wards direction in Theorem 2. Instead of tracing out
H′, we can perform a complete measurement in the ba-
sis {|k〉 : k ∈ K}. In the pure case ρ = |χ〉〈χ|, the
Born rule tells us we will observe k with probability

P(k) = 〈χ|A†kAk|χ〉 = Tr(AkρA
†
k). This extends to

mixed states ρ. Post-selecting the H′ to |k〉, we are in-

deed left with the unnormalized state ρ′ = AkρA
†
k.

For the second statement, consider the proof of
the converse in Theorem 2. Say we measure U(ρ ⊗
(|ψ〉〈ψ|))U† in the arbitrary basis {|k〉 : k ∈ K}. The
Born rule tells us we will observe k with probability

P(k) = Tr(AkρA
†
k). Post-selecting the H′ to |k〉, we are

indeed left with the unnormalized state ρ′ = AkρA
†
k.

It will be useful to point out a counterintuitive conse-
quence of our definition of measurement: in the degener-
ate case where the ancilla Hilbert space has dimension 1,
a measurement of the system is precisely the application
of an arbitrary unitary to the system.

There is also a word of warning to be mentioned. Al-
though every operation has a Kraus representation, this
representation is far from unique. As a consequence, a
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church protocol for an operation with Kraus decompo-
sition {Ak}k∈K will not necessarily extend to a church
protocol for the measurement with Kraus decomposition
{Ak}k∈K . That is, given an ancilla Hilbert space, pure
state and unitary which implements the operation with
Kraus matrices {Ak}k∈K , there may not exist an or-
thonormal basis of the ancilla space such that complete
measurement in this basis induces measurement in the
Kraus matrices {Ak}k∈K .

As a final note, one may wonder whether we could
achieve a greater generality by allowing the state we at-
tach in step (a) of the church protocol to be a mixed state
ϕ ∈ B(H′) rather than a pure state. The technique of pu-
rification shows us that no extra generality is achieved.
Let ϕ have diagonal form ϕ =

∑m
i=1 pi|ψi〉〈ψi|. If we

attach an extra ancilla space H′′ with basis {|i〉 : i =
1, . . .m}, then the pure state |Ψ〉 =

∑m
i=1

√
pi|ψi〉|i〉 ∈

H′ ⊗ H′′ has TrH′′(|Ψ〉〈Ψ|) = ϕ. Alternatively, attach-
ing ϕ can be interpreted as using classical randomness to
attach the pure state |ψi〉 with probability pi.

III. ALICE AND BOB

We are now in a position to formally define the classes
of measurement discussed in the introduction, in the case
of a bipartite system AB. A is Alice’s system, and B is
Bob’s. Alice’s ancilla system will be R, and Bob’s S.
Recall that a measurement is specified by a collection of
Kraus matrices {Ak}, so the measurement classes will
consist of collections of Kraus matrices.

Definition 1. SLC – Separable Localisable Classical
{Alm}(l,m)∈L×M ∈ SLC(A,B) if there exist ancilla

systems R, S, pure states |ψ〉 ∈ HR and |ϕ〉 ∈ HS, uni-
taries UAR ∈ B(HA ⊗ HR), UBS ∈ B(HB ⊗ HS), and
bases {|l〉}l∈L of HR and {|m〉}m∈M of HS such that

Alm = 〈l|〈m|UAR ⊗ UBS |ψ〉|ϕ〉 (4)

Definition 2. SLQ – Separable Localisable Quantum
{Ak}k∈K ∈ SLQ(A,B) if there exist ancilla systems

R, S, pure states |ψ〉 ∈ HR and |ϕ〉 ∈ HS, unitaries
UAR ∈ B(HA ⊗ HR), UBS ∈ B(HB ⊗ HS), and a basis
{|k〉}k∈K of HR ⊗HS such that

Ak = 〈k|UAR ⊗ UBS |ψ〉|ϕ〉 (5)

Definition 3. ELC – Entangled Localisable Classical
{Alm}(l,m)∈L×M ∈ ELC(A,B) if there exist ancilla

systems R, S, a pure state |Ψ〉 ∈ HR ⊗ HS, unitaries
UAR ∈ B(HA ⊗ HR), UBS ∈ B(HB ⊗ HS), and bases
{|l〉}l∈L of HR and {|m〉}m∈M of HS such that

Alm = 〈l|〈m|UAR ⊗ UBS |Ψ〉 (6)

Definition 4. ELQ – Entangled Localisable Quantum
{Ak}k∈K ∈ ELQ(A,B) if there exist ancilla systems

R, S, a pure state |Ψ〉 ∈ HR ⊗ HS, unitaries UAR ∈

B(HA⊗HR), UBS ∈ B(HB ⊗HS), and a basis {|k〉}k∈K
of HR ⊗HS such that

Ak = 〈k|UAR ⊗ UBS |Ψ〉 (7)
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These four situations have practical interpretations for
Alice and Bob, illustrated by Fig. 5 and Fig. 6. For ELC
and ELQ, we can imagine that Alice and Bob have been
planning this measurement for a long time. At some past
laboratory in the intersection of their past light cones,
they prepared an entangled bipartite apparatus system
RS. Alice then kept with her subsystem R to eventually
interact with A, and likewise Bob kept S to interact with
B. On the other hand, for SLC and SLQ, Alice and
Bob must independently produce their own apparatus
systems, without the ability to bring them together and
entangle them before the measurement.
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The protocols SLC and ELC are truly instantaneous
measurements. The measurements of the apparatus take
place on the t = 0 slice of Minkowski spacetime, and the
result of the measurement is instantaneously written ir-
reversibly into some classical information. Although nei-
ther Alice nor Bob knows the entire measurement out-
come, we can morally claim that the post-selection too is
instantaneous. The no-signalling principle tells us that
Alice’s density matrix will be independent of Bob’s out-
come, but we can take the view that this is due to Alice’s
ignorance of Bob’s measurement rather than quantum
uncertainty. On the other hand, for SLQ and ELQ, the
apparatus-system interaction is indeed instantaneous, yet
Alice and Bob do not immediately measure their appara-
tus. Rather, they must maintain the quantum coherence
of their apparatus systems for enough time to transport
them to a future laboratory for further quantum process-
ing, at some point in the intersection of their future light
cones. It is when they finally measure the apparatus in
this central laboratory that the post-selection takes place.

We can immediately characterise SLC as the class of lo-
cal measurements, encapsulated in the following lemma.

Lemma 1. {Ak}k∈K ∈ SLC(A,B) if and only if there
exist Kraus matrices {Bl}l∈L ⊂ B(HA) and {Cm}m∈M ⊂
B(HB) such that {Ak}k∈K = {Bl ⊗ Cm}(l,m)∈L×M .

Proof. Given Alm = 〈l|〈m|UAR⊗UBS |ψ〉|ϕ〉, define Bl =
〈l|UAR|ψ〉 and Cm = 〈m|UBS |ϕ〉. Then Alm = Bl ⊗ Cm.

Conversely, we can always write Bl = 〈l|UAR|ψ〉 and
Cm = 〈m|UBS |ϕ〉. Then Alm = Bl ⊗ Cm = 〈l|〈m|UAR ⊗
UBS |ψ〉|ϕ〉.

IV. NO-SIGNALLING PRINCIPLES

The no-signalling principle is the statement that it is
impossible to harness the nonlocality of quantum entan-
glement to send a signal containing information. We will
now state and prove two distinct no-signalling principles.

Theorem 3. No-Signalling Principle Version 1

Consider two independent quantum subsystems A and
B, initially in a possibly entangled state ρAB ∈ B(HA ⊗
HB). A local action on A will not affect the B reduced
density matrix ρB = TrHA

ρAB.

Proof. After performing the local action ΛA ∈ Θ(HA) on
HA, the new joint state is ρ′AB = ΛA⊗idB(ρAB), and the
new reduced density matrix on HB is ρ′B = TrHA

ρ′AB .
We must show that ρ′B = ρB .

We can write ρAB as a sum of separable states, ρAB =∑
i ϕi ⊗ σi with ϕi ∈ B(HA), σi ∈ B(HB) for each i.

ρ′B = TrHA
(ΛA ⊗ idB(

∑
i

ϕi ⊗ σi))

=
∑
i

TrHA
(ΛA(ϕi)⊗ σi)

=
∑
i

Tr(ϕi)σi

= TrHA
(
∑
i

ϕi ⊗ σi)

= ρB

where in going from line 2 to line 3, we have used that
ΛA is trace preserving.

Theorem 4. No-Signalling Principle Version 2
Consider a quantum system with Hilbert space H,

initially in state ρ ∈ B(H). Let Λ be the operation
with Kraus matrices {Ak}k∈K , and consider a POVM
{El}l∈L. Suppose El and Ak commute [El, Ak] = 0 for
all l ∈ L, k ∈ K. Then the outcome distribution of the
POVM for Λ(ρ) is the same as for ρ.

Proof. The POVM on ρ has outcome distribution

P(l) = Tr(Elρ)

The POVM on Λ(ρ) has outcome distribution

P(l) = Tr(El(
∑
k

AkρA
†
k))

=
∑
k

Tr(ElAkρA
†
k)

=
∑
k

Tr(AkElρA
†
k)

= Tr((
∑
k

A†kAk)Elρ)

= Tr(Elρ)

The two versions are subtly different in content. Ver-
sion 1 has stronger conditions; it assumes the Hilbert
space decomposes as a tensor product. Certainly if we
have an operation and a measurement on distinct factors
in a tensor product Hilbert space, they will commute as
required for Version 2. Correspondingly, Version 1 has
a stronger statement. Whilst Version 2 merely demon-
strates the invariance of the measurement statistics, Ver-
sion 1 demonstrates the invariance of the entire quantum
state, namely the reduced density matrix. Another cru-
cial difference between the two is that Version 2 relies on
the Born rule, whilst Version 1 is true independent of the
Born rule.

To see that ELQ ⊆ CAUSAL, Version 1 of the no-
signalling principle is the relevant statement. In the lan-
guage of Definition 4, we would like to consider AR as
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one subsystem in Theorem 3, and BS as the other. This
establishes the hierarchy shown in Eq. 1 and Fig. 3.

On the other hand, to see that superluminal signalling
is impossible in QFT, we must invoke Version 2 of the
no-signalling principle. This follows from the QFT pos-
tulate that two operators localised in spacelike separated
regions of spacetime always commute. (Two regions A
and B are spacelike separated if x and y are spacelike
separated for all x ∈ A, y ∈ B.)

V. WHAT’S THE ISSUE? CAUSAL 6= ALL

I claimed in the introduction that arbitrary measure-
ments of a quantum system distributed through space
would contradict relativistic causality. Our first job is to
justify this explicitly. However, recalling that a degener-
ate case of measurement is the application of a unitary,
this conclusion becomes entirely obvious. Thinking about
measuring the momentum of a particle is overcomplicat-
ing the point, and actually we do not need to be in the
quantum world to observe the contradiction.

Suppose Alice and Bob each have a bit, initially both 0.
At t = 0 the CNOT operation is instantaneously applied
to Bob’s bit with Alice’s bit as the control, so both bits
remain 0. If instead Alice had applied the X (NOT) gate
at t = −ε, Bob’s bit would read 1 at time t = +ε rather
than 0. Thus Alice can signal to Bob, and the CNOT
operation is acausal.

We can directly lift this example to the quantum case
to find an example of an acausal quantum unitary. Alice
and Bob each have a qubit, initially in state |00〉. The
CNOT and X operations become the respective unitaries
on the qubits. Thus the CNOT unitary is an acausal
degenerate quantum measurement.

Although we should have already hammered home the
point, we will mention an example of an acausal mea-
surement due to Sorkin; see Section 3 of [10]. Let Al-
ice and Bob each possess one qubit. Consider the in-
complete measurement given by the orthogonal projec-
tors (Kraus matrices) {Π, (I−Π)}, where Π = |φ+〉〈φ+|,
|φ+〉 = 1√

2
(|00〉+ |11〉). The corresponding operation for

the non-selective measurement is

Λ(ρ) = ΠρΠ + (I−Π)ρ(I−Π) (8)

Suppose Alice and Bob start with the state |00〉. At
t = 0, Λ is applied to the joint system. In the absence
of action from Alice, Bob’s reduced density matrix is I/2
i.e. completely mixed. If Alice applied the X gate at
t = −ε, Bob’s density matrix at t = +ε would instead be
|0〉〈0| pure. Thus Λ is acausal.

VI. CAN WE MEASURE ANYTHING
NON-LOCAL? PART I: SLC 6= ELC

Now we come to our first result about the quantum
world. It is possible to perform a non-local measurement

using only local actions. The example in this section will
rely crucially on shared entanglement between Alice and
Bob.

Let Alice and Bob each have a one-qubit system. The
Bell basis for the joint two-qubit Hilbert space is Bell =
{|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} where |φ±〉 = 1√

2
(|00〉 ± |11〉),

|ψ±〉 = 1√
2
(|01〉 ± |10〉). We will show that we are

able to perform complete measurement in the Bell ba-
sis, with Kraus matrices {|χ〉〈χ| : |χ〉 ∈ Bell}. The cor-
responding non-selective measurement is the operation
Λ(ρ) =

∑
|χ〉∈Bell |χ〉〈χ|ρ|χ〉〈χ|.

First notice that, since the Bell basis consists of (max-
imally) entangled states, measurement in the Bell ba-
sis is not a local measurement i.e. it is not in SLC. To
see this rigorously, suppose |φ+〉〈φ+| = P ⊗ Q for some
P ∈ B(HA), Q ∈ B(HB). Taking TrB of both sides gives
P = I/2, and similarly TrA gives Q = I/2, clearly a
contradiction.

Non-selective measurement in the Bell basis is causal,
so at this point we can be satisfied that we have found
an example showing SLC 6= CAUSAL. To see this, recall
that every member of the Bell basis is a maximally entan-
gled state. Thus if the state ρ ∈ B(HA⊗HB) is decohered
in the Bell basis to get the state ρ′ = Λ(ρ), we will have
TrA ρ

′ = TrB ρ
′ = I/2. In particular, the reduced density

matrices are independent of ρ. The maximal entangle-
ment ensures that all information in the pre-decoherence
state is lost if we trace out either HA or HB .

Measurement in the Bell basis is not only causal but
it is in ELC. The localisability of this measurement has
been noticed by several authors [2] [4] [5] [7] [8]; we will
follow the approach from Section II C of [2].

A

B

R

S

R'

S'

⟩|'!

⟩|'!
H

H

FIG. 7

Alice has apparatus qubits R and R′, and Bob S, S′.
HR ⊗ HS and HR′ ⊗ HS′ are each prepared in the en-
tangled Bell state |φ+〉. Let the unitary U be given by
the circuit in Fig. 7. U visibly consists only of local
actions: all gates are either applied to Alice’s system
HA ⊗ HR ⊗ HR′ or Bob’s system HB ⊗ HS ⊗ HS′ . Af-
ter performing U , the qubits R,S,R′, S′ are measured in
the standard basis. This is a local measurement, which
Alice and Bob can perform separately and immediately
after the interaction. We can follow the algorithm de-
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scribed in Section II to derive the Kraus matrices for
this measurement: they are {Ai1i2i3i4}(i1,i2,i3,i4)∈{0,1}4 ⊂
B(HA ⊗HB), where

Ai1i2i3i4 = 〈i1i2i3i4|RSR′S′U |φ+〉RS |φ+〉R′S′ (9)

By direct calculation, we get

A0000 = A0011 = A1100 = A1111 =
1

2
|φ+〉〈φ+|

A0001 = A0010 = A1101 = A1110 =
1

2
|φ−〉〈φ−|

A0100 = A0111 = A1000 = A1011 =
1

2
|ψ+〉〈ψ+|

A0101 = A0110 = A1001 = A1010 =
1

2
|ψ−〉〈ψ−|

This is a measurement in the Bell basis. The non-
selective measurement induces decoherence in the Bell
basis, and a measurement of the apparatus in the stan-
dard basis allows us to post-select a particular Bell state.
Thus we have succeeded in constructing a measurement
in ELC which is not in SLC.

VII. CAN WE MEASURE ANYTHING
NON-LOCAL? PART II: SLC 6= SLQ

Similarly we can achieve a non-local measurement
without prior entanglement, but rather by maintaining
the coherence of Alice and Bob’s apparatus after the in-
teraction, and measuring the joint apparatus in an arbi-
trary basis at some point in the intersection of the light
cones of Alice and Bob. This example is again lifted from
Section II C of [2].

A

B

R

S

R'

S'

| ⟩0

| ⟩0

| ⟩+

| ⟩+

Bell

Bell

FIG. 8

As in the previous section, Alice has one system qubit
A and two apparatus qubits R, R′; Bob has one sys-
tem qubit B and two apparatus qubits S, S′. R and S
are initially in the |0〉 state and R′, S′ initially in the
|+〉 = 1√

2
(|0〉+ |1〉) state. In particular, the apparatus is

initially in a separable state. Let U be the unitary given
by the circuit in Fig. 8, which again visibly consists of

actions localisable to Alice and Bob. Instead of measur-
ing R,R′, S, S′ in the standard basis, we now transport
them to a central laboratory where we measure them in
an entangled basis. Namely, we measure RS in the Bell
basis, and also R′S′ in the Bell basis. The Kraus matrices
for this measurement are given by

Aχχ′ = 〈χ|RS〈χ′|R′S′U |0〉R|0〉S |+〉R′ |+〉S′ , |χ〉, |χ′〉 ∈ Bell
(10)

Again if we explicitly calculate these matrices, we get

|φ+〉 |φ−〉 |ψ+〉 |ψ−〉 RS

|φ+〉 1
2 |φ

+〉〈φ+| 1
2 |φ
−〉〈φ−| 1

2 |ψ
+〉〈φ+| 1

2 |ψ
−〉〈φ−|

|φ−〉 1
2 |φ

+〉〈φ−| 1
2 |φ
−〉〈φ+| 1

2 |ψ
+〉〈φ−| 1

2 |ψ
−〉〈φ+|

|ψ+〉 1
2 |ψ

+〉〈ψ+| 1
2 |ψ
−〉〈ψ−| 1

2 |φ
+〉〈ψ+| 1

2 |φ
−〉〈ψ−|

|ψ−〉 1
2 |ψ

+〉〈ψ−| 1
2 |ψ
−〉〈ψ+| 1

2 |φ
+〉〈ψ−| 1

2 |φ
−〉〈ψ+|

R′S′

These Kraus matrices are not in SLC. We can see this
by using same argument from the previous section. Intu-
itively, the above Kraus matrices have the ability to act
on a separable state |α〉|β〉 ∈ HA ⊗ HB to produce an
entangled state. The ability to introduce entanglement
between the systems of Alice and Bob is a non-local feat.

VIII. DOES QUANTUM POST-PROCESSING
HELP? ELC ≈ ELQ

We saw in Section VI that Alice and Bob can achieve
non-local measurements by using prior shared entangle-
ment and immediate local measurements. In addition
to Alice and Bob having access to unlimited initial en-
tanglement, we could allow them to preserve the quan-
tum coherence of their apparatus systems and measure
them in an arbitrary non-product basis in some future
laboratory. The question is: does this increase the set
of (non-local) measurements Alice and Bob are able to
perform? In other words, does ELC equal ELQ? We
will see in this section that the answer is subtle: ELC is
‘dense in’ ELQ. Dense is in quotation marks, since we
do not technically have a topology on the set of pos-
sible measurements. Every measurement in ELQ can
be approximated by measurements in ELC in the fol-
lowing sense: if {Ak}k∈K ∈ ELQ, then for any ε > 0,
{
√

1− εAk}k∈K ∪ {Bl}l∈L ∈ ELC for some Kraus ma-

trices {Bl}l∈L with
∑
l∈LB

†
lBl = ε. That is, there is

an ELC measurement which implements {Ak}k∈K with
probability at least 1−ε. As ε gets smaller, the dimension
of the required apparatus systems will diverge to infinity.
The question of whether or not we have exact equality
ELC = ELQ we leave as an open problem.

We are given an ELQ measurement, and we are re-
quired to find an ELC protocol which reproduces the
same Kraus matrices with high probability. Suppose the
ELQ measurement introduces apparatus R and S for Al-
ice and Bob respectively, in the possibly entangled state
|Ψ〉 ∈ HR ⊗HS . Alice applies UAR and Bob UBS . They
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then transport R and S to the future laboratory and
measure RS in the (possibly non-product) basis {|k〉} of
HR ⊗HS .

To construct our ELC protocol, we are free to intro-
duce larger entangled ancilla systems for Alice and Bob.
In fact in our construction, we will introduce the same R
and S as in the ELQ protocol, and we will additionally
introduce extra apparatus systems R′ and S′ which con-
sist of a large supply of Bell states |φ+〉⊗M ∈ HR′ ⊗HS′

entangled between R′ and S′.
The alert reader will object: how can we possibly re-

produce the same Kraus matrices as the ELQ measure-
ment if the apparatus systems in the ELC protocol are
larger? Is the number of Kraus matrices not equal to
the dimension of the joint apparatus Hilbert space? The
answer is: multiple basis vectors of the apparatus mea-
surement and thus multiple measurement outcomes may
be associated to the same Kraus matrix. Indeed we saw
an example of this with the Bell measurement in Sec-
tion VI. If we are concerned only with the effect of the
measurement on the system, we can declare two mea-
surements to be the same if their Kraus matrices are the
same after appropriately summing over degeneracies.

R

A

S

B

UAR UBS

Alice Bob

| ⟩$

R

A

S

B

UAR UBS

Alice Bob

R' S'

| ⟩% | ⟩&

FIG. 9

As mentioned, for our ELC protocol we will intro-
duce the same R and S as in the ELQ protocol. In
addition, we will introduce further apparatus systems
R′ and S′ which consist of a large supply of Bell states
|φ+〉⊗M ∈ HR′ ⊗HS′ entangled between R′ and S′. For
the unitary interaction between apparatus and system,
we will exactly copy the ELQ measurement: Alice ap-
plies UAR and Bob UBS . We must then cook up a way to
measure RS approximately in the (possibly non-product)
basis {|k〉} by locally measuring RR′ and SS′, exploiting
the entanglement between R′ and S′. For this, we will
use a scheme proposed by Vaidman [3]. This is shown
in Fig. 9. Since Vaidman’s scheme relies heavily on the
technique of quantum teleportation, we will briefly re-
view teleportation here.

A. Review of quantum teleportation

Bob can teleport one qubit of quantum information to
Alice, consuming one Bell state of entanglement. Let us
recall how this is done: suppose Bob possesses qubits
1 and 2, and Alice qubit 3. Qubits 2 and 3 are in the

1

2

Bell

3

| ⟩*

⟩|'!

Alice Bob

FIG. 10

entangled state |φ+〉, and Bob wishes to teleport qubit
1 in state |α〉 to Alice. Bob does this by measuring his
qubits 1 and 2 in the Bell basis. This is shown in Fig.
10. Since |α〉|φ+〉 = 1

2 (|φ+〉|α〉+ |φ−〉Z|α〉+ |ψ+〉X|α〉+
|ψ−〉XZ|α〉), we have the following

Bob’s mmt Alice’s qubit 3

|φ+〉 |α〉
|φ−〉 Z|α〉
|ψ+〉 X|α〉
|ψ−〉 XZ|α〉

If Bob’s mmt happens to give |φ+〉, which happens
with probability 1/4, the teleportation works perfectly.
We will refer to this scenario as direct. The rest of the
time, |α〉 is teleported up to a unitary {Z,X,XZ}, which
we will refer to as the teleportation error. After the Bell
mmt, Bob can communicate the mmt result to Alice, al-
lowing her to correct the error and complete the telepor-
tation with certainty. However, this takes a time at least
that which light takes to get from Bob to Alice. We are
interested in instantaneous processes, and we will take
teleportation to refer to just the first stage consisting of
Bob’s Bell mmt.

There are two remarks to be made which will be im-
portant for the application of teleportation to Vaidman’s
scheme. Firstly, if Bob’s qubit 1 is initially entangled
with some other quantum system, then after teleporta-
tion Alice’s qubit 3 will be entangled to the same system
in exactly the same way. In other words, any entangle-
ment of qubit 1 gets teleported to qubit 3 along with the
state of the qubit (possibly up to some unitary error).
This essentially follows from the linearity of the telepor-
tation process. The second remark is that the unitary
errors {Z,X,XZ} all map the Z-basis to itself.

B. Vaidman’s scheme

We will now proceed to describe Vaidman’s scheme for
measuring RS approximately in any given basis {|k〉} by
locally measuring RR′ and SS′. Without loss of gener-
ality, the systems R and S consist of qubits. If not, then
Alice and Bob can apply suitable SWAP operations to
write the quantum information in R and S into systems
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of qubits. Again without loss of generality, let R and S
each consist of N qubits.

For conceptual clarity, we will describe Vaidman’s
scheme as an interactive procedure between Alice and
Bob. However, the only operations carried out by Alice
and Bob will be to measure locally each qubit at most
once. At some points in the description, Alice will apply
a unitary before measuring, but this can simply be ab-
sorbed into the mmt by appropriately transforming the
mmt basis. Thus the entire process can be collapsed into
single local mmts for Alice and Bob.

We will now describe Vaidman’s scheme:

1. Bob teleports the whole of S to Alice. Bob’s mmt
will have 4N possible outcomes, indexed by n̂ ∈
{1, . . . 4N}. Only n̂ = 1 gives a direct teleportation.

2. Alice applies a unitary U0 to RS which, under the
assumption of direct teleportation in (1), would ro-
tate the {|k〉} basis to the Z-basis.

3. Alice teleports RS to Bob. Note that, under the
assumption of direct teleportation in (1), the {|k〉}
basis of RS will correspond to the computational
basis of Bob’s received system, independent of tele-
portation error from Alice.

4. (a) If the teleportation in (1) was direct, which
occurs with probability 1/4N , then Bob mea-
sures RS in the Z-basis. This successfully
completes the mmt.

(b) If (1) was not direct, then Bob teleports RS
back to Alice to a cluster of Alice’s qubits la-
belled n = n̂. Bob’s mmt will have 42N pos-
sible outcomes, indexed by m̂1 ∈ {1, . . . 42N},
with m̂1 = 1 giving direct teleportation. This
can be interpreted as Bob ‘telling’ Alice that
the teleportation in (1) failed, and specifying
the error to her.

5. Alice performs unitaries U
(n)
1 on each of the clusters

labelled n ∈ {1, . . . 4N}. Under the assumption of

direct teleportation in (4b), the unitary U
(n)
1 must

correct Alice’s teleportation error from (3), undo
U0, correct the teleportation error corresponding
to n from (1), and re-apply U0.

6. Alice teleports all of her clusters n ∈ {1, . . . 4N} to
Bob.

7. (a) If (4b) was direct, which occurs with prob-
ability 1/42N , then Bob measures RS in the
Z-basis. This successfully completes the mmt.

(b) If not, then Bob teleports RS back to Alice to
a cluster of Alice’s qubits labelled (n,m1) =
(n̂, m̂1). Bob’s mmt will again have 42N out-
comes, indexed by m̂2.

8. Alice performs unitaries U
(n,m1)
2 on each of the clus-

ters labelled (n,m1) ∈ {1, . . . 4N} × {1, . . . 42N}.

Under the assumption of direct teleportation in
(7b), these unitaries are supposed to rotate the
original {|k〉} basis to the Z-basis, taking into ac-
count all previous errors.

9. Alice teleports all clusters (n,m1) ∈ {1, . . . 4N} ×
{1, . . . 42N} back to Bob.

10. (a) If (7b) was direct, which occurs with prob-
ability 1/42N , then Bob measures RS in the
Z-basis. This successfully completes the mmt.

(b) If not, then Bob teleports RS back to Al-
ice to a cluster of Alice’s qubits labelled
(n,m1,m2) = (n̂, m̂1, m̂2). Bob’s mmt will
yet again have 42N outcomes, indexed by m̂3.

11. Continue steps 8, 9, 10 recursively.

Each round has constant success probability 1/42N ,
and there is no limit to how many rounds of the pro-
cedure one can perform. Thus the measurement can be
performed with an arbitrarily small probability of fail-
ure. Since the entanglement of R and S with A and B
will be carried through the teleportations throughout the
procedure, this completes the construction that ELC can
replicate any ELQ measurement {Ak}k∈K with arbitrar-
ily high probability of success.

Formally, for any ε > 0, we can perform enough rounds
so that RS is measured in basis {|k〉} with probability at
least 1−ε. The Kraus matrices of the resulting ELC mea-
surement will then be {

√
1− εAk}k∈K ∪ {Bl}l∈L with∑

l∈LB
†
lBl = ε, and where the outcomes l ∈ L corre-

spond to the various ways in which Vaidman’s scheme
can fail.

C. Discussion

Vaidman’s scheme makes no attempt to be efficient
with the entanglement consumption ie. the dimension of
the apparatus systems. Indeed, for fixed error probabil-
ity ε, the number of Bell states M required scales doubly
exponentially in the number of qubits N . This entangle-
ment consumption was improved to a single exponential
by Beigi, Konig [11] using the technique of port-based
teleportation [12] [13]. (We exhibited Vaidman’s scheme
rather than the port-based teleportation scheme for sim-
plicity.) However, both schemes have in common that
the entanglement consumption is required to diverge to
infinity as the probability of error ε goes to zero.

This leads us to pose two open questions.

Open Question 1. Do we have exact equality ELC =
ELQ?

Open Question 2. Can we implement all POVMs on
a bipartite system AB perfectly using local measurements
with a strictly finite amount of prior shared entanglement
between Alice and Bob?
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Let us remark on Open Question 2. The vanilla quan-
tum mechanical projection postulate says that measure-
ment has a dual role: it both allows the observer to gain
information about the system, and prepares the system
in the observed eigenstate. Authors have argued that
these roles should be separated [3]. We can ask the ques-
tion: what is measurable by Alice and Bob if we relax
the preparation role, and are only concerned with gain-
ing information about the system?

It turns out that even the SLQ model is sufficient to
render absolutely every observable measurable in this re-
laxed sense. To see this, Alice and Bob can introduce
ancilla systems R and S of dimension equal to those of
A and B. They can then each perform a SWAP unitary,
which instantaneously swaps the states of the systems
with the apparatus: SWAPAR|ψ〉A|ϕ〉R = |ϕ〉A|ψ〉R,
SWAPBS |ψ〉B |ϕ〉S = |ϕ〉B |ψ〉S . Alice and Bob are then
free to ‘freeze’ their apparatus, transport the quantum
information coherently to a future laboratory, and per-
form whatever measurement they like. Vaidman’s scheme
(and the port-based teleportation improvement) give us
that every observable is approximately measurable in this
relaxed sense also in the ELC model. Indeed, destructive
measurements were the original purpose of Vaidman’s
scheme; we have somewhat repurposed it in this work
to have implications for selective measurement.

With this in mind, we can see that the two open ques-
tions above are in fact equivalent.

Theorem 5. Open Question 1 ⇐⇒ Open Question 2.

Proof. Note that the SWAP measurement described
above demonstrates that all POVMs can be implemented
in SLQ, and thus certainly in ELQ. If ELC = ELQ, it
follows that all POVMs can be implemented in ELC, im-
plying Open Question 2.

On the other hand, suppose all POVMs can be per-
fectly implemented using local measurements with a
strictly finite amount of prior shared entanglement.
Then, in the argument above that ELC ≈ ELQ, we can
replace Vaidman’s scheme by a scheme which measures
RS in the basis {|k〉} with zero probability of error, giv-
ing us exact equality ELC = ELQ.

IX. DOES PRIOR ENTANGLEMENT HELP?
SLQ 6= ELQ

In the previous section, we saw a surprising result: If
Alice and Bob share entanglement, then allowing them
to measure the apparatus in a non-local basis does not
increase the set of measurements they can perform. We
currently have

SLC 6= ELC ≈ ELQ

SLC 6= SLQ (11)

In this section, we will investigate SLQ ⊆ ELQ. This
can be viewed as a converse question to that of the previ-
ous section: If Alice and Bob have the ability to measure

their apparatus in a non-local basis, then does giving
them access to prior shared entanglement increase the
set of measurements they can perform? Contrary to the
previous section, the answer here is yes. In fact, the Bell
measurement from Section VI will suffice as an exam-
ple of a measurement in ELQ which is not in SLQ. To
see this, we will make use of an elegant characterisation
of SLQ measurements. To my knowledge, the following
lemma is a new result.

Lemma 2. {Ak}k∈K ∈ SLQ(A,B) if and only if there
exist Kraus matrices {Bl}l∈L ⊂ B(HA) and {Cm}m∈M ⊂
B(HB) with |L||M | = |K| = N , and a N × N unitary
matrix Wk,(l,m), such that

Ak =
∑
l,m

Wk,(l,m)Bl ⊗ Cm (12)

Proof. See Appendix XIII B.

Lemma 2 says that SLQ measurements are unitary
mixings of local SLC measurements. This is not the case
for the Bell measurement from Section VI. If we con-
sider the operator subspace span{|χ〉〈χ| : |χ〉 ∈ Bell} ≤
B(HA ⊗HB), this contains only two separable operators
of the form B⊗C; that is, IAB = IA⊗ IB and XA⊗XB .
Thus it is impossible for the Bell measurement Kraus
matrices to satisfy Lemma 2.

X. ARE ALL CAUSAL MEASUREMENTS
LOCALISABLE? ELQ 6= CAUSAL

Lastly we address the question: are all causal mea-
surements localisable? The answer is surprisingly no.
Here we will exhibit a counterexample, following the ar-
guments from Section V of [2]. Our first step is to state
a lemma which contains a necessary condition for a mea-
surement to be in ELQ. This gives us the machinery to
demonstrate that a given measurement is not in ELQ.

Lemma 3. Let {Ak}k∈K be a measurement on HA ⊗
HB, with corresponding non-selective operation Λ(ρ) =∑
k AkρA

†
k. We say a state |ψ〉 ∈ HA ⊗HB is an eigen-

state of Λ if Λ(|ψ〉〈ψ|) = |ψ〉〈ψ|. Suppose |ψ〉, P ⊗ I|ψ〉,
I⊗Q|ψ〉 are all eigenstates of Λ, where P is a unitary on
HA and Q a unitary on HB. If {Ak}k∈K ∈ ELQ(A,B),
then P ⊗Q|ψ〉 must also be an eigenstate of Λ.

Proof. See Appendix XIII C.

We are now ready to show the counterexample, which
was named the twisted partition in Section V A of [2].
Alice and Bob each have two qubits, which we will call
A1, A2, B1, B2. Recall the Bell basis for the two-qubit
Hilbert space is Bell = {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} where
|φ±〉 = 1√

2
(|00〉 ± |11〉), |ψ±〉 = 1√

2
(|01〉 ± |10〉). Let

S =

(
1 0

0 i

)
. We can apply to I ⊗ S to get a new basis

I⊗S(Bell) = {I⊗S|φ+〉, I⊗S|φ−〉, I⊗S|ψ+〉, I⊗S|ψ−〉}.
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B2 = |0〉 B2 = |1〉
A2 = |0〉 Bell Bell

A2 = |1〉 Bell I⊗ S(Bell)

Consider the basis of the 4-qubit Hilbert space HA1 ⊗
HA2 ⊗ HB1 ⊗ HB2 which consists of the Bell basis on
HA1⊗HB1 tensored with {|00〉, |01〉, |10〉} ⊂ HA2⊗HB2,
completed with the I⊗ S(Bell) basis on HA1 ⊗HB1 ten-
sored with |11〉 ∈ HA2⊗HB2. This is shown in the table.
We will look at complete measurement in this basis.

The complete measurement in this basis is not in
ELQ, as it does not satisfy the necessary condition of
Lemma 3. To see this, let XA2 and XB2 be the Pauli
X operators on qubits A2, B2. |φ+〉A1,B1|00〉A2,B2,
|φ+〉A1,B1|10〉A2,B2 = XA2 ⊗ I(|φ+〉A1,B1|00〉A2,B2) and
|φ+〉A1,B1|01〉A2,B2 = I ⊗ XB2(|φ+〉A1,B1|00〉A2,B2)
are all elements of the basis, and so are eigen-
states of the non-selective measurement Λ. However,
|φ+〉A1,B1|11〉A2,B2 = XA2 ⊗XB2(|φ+〉A1,B1|00〉A2,B2) is
not an element of the basis, and is not an eigenstate of
the non-selective measurement Λ. Thus the condition in
Lemma 3 is broken, and the measurement is not in ELQ.

We will now show that non-selective measurement in
the above basis is causal. First notice that all elements
of both the Bell basis and the I ⊗ S(Bell) basis are
maximally entangled. Suppose the initial state of the
4-qubit system is ρ ∈ B(HA1 ⊗ HA2 ⊗ HB1 ⊗ HB2).
The state after decoherence into the basis is ρ′ = Λ(ρ).
Imagine now tracing out Alice’s system to get ρ′B =
TrHA1⊗HA2

ρ′. The state of the B1 qubit will be com-
pletely mixed, so Bob’s density matrix will take the form
ρ′B = I/2 ⊗ (b0|0〉〈0| + b1|1〉〈1|). The coefficients bi are
unaffected if we replace ρ with ΛA ⊗ I(ρ) for some local
action ΛA on Alice’s system, as shown by the following
argument:

bi = TrHB1⊗HB2
(|i〉〈i|B2ρ

′
B)

= Tr(|i〉〈i|B2ρ
′)

= Tr(|i〉〈i|B2Λ(ρ))

= Tr(Λ(|i〉〈i|B2ρ))

= Tr(|i〉〈i|B2ρ)

We have used that |i〉〈i|B2 commutes with Λ, and
that Λ is trace-preserving. Now if we replaced ρ with
ΛA ⊗ I(ρ), crucially |i〉〈i|B2 commutes with ΛA ⊗ I, so bi
is unaffected, using that ΛA⊗ I is trace-preserving. Thus
Alice cannot signal to Bob by performing a local opera-
tion on her system. The same argument shows that Bob
cannot signal to Alice. Thus measurement in the above
basis is causal.

This section shows that there appears to be a ‘perplex-
ing gap’ [2] between what is possible with localised quan-
tum actions, and what is consistent with the principle of
causality. These conclusions echo that of the Tsirelson
inequality, which bounds non-local correlation between
observables in quantum mechanics. The Tsirelson in-
equality is similarly stricter than what is required by the
principle of causality alone. Indeed, in Section VI of [2],

the Tsirelson inequality was used to find a further ex-
ample of a causal measurement which is not localisable.
These results raise the question: do there exist further
physical principles, in addition to relativistic causality,
which restrict quantum non-locality and non-local mea-
surements to the true quantum bounds? Such principles
would confirm the belief that the structure of quantum
mechanics is natural, and would give insight as to why.
Various such principles have been suggested, including
no advantage for non-local computation [19] and infor-
mation causality [20].

XI. WAVEFUNCTION COLLAPSE

The vanilla non-relativistic quantum mechanical pro-
jection postulate says that measurement has a dual role:
it both allows the observer to gain information about the
system, and prepares the system in the observed eigen-
state. This gives us something that neither role alone
gives: if we are able to both verify the state of the sys-
tem and leave it undisturbed, this allows us to monitor
the system state.

There is another side to the coin. The postulates of
non-relativistic quantum mechanics give us an objective,
albeit possibly stochastic, history for the state of the
system. The system evolves mostly unitarily, and occa-
sionally stochastically collapses into an eigenstate when
an observable is measured. It is metaphysically satis-
factory that, although we cannot attribute to the sys-
tem well-defined values of (for example) position and
momentum, we can nevertheless attribute a well-defined
quantum state. Such an objective history has metaphys-
ical content, as it provides answers to the counterfactual
question: what would have happened if I had monitored
the state?

In Galilean spacetime, there is no issue with declaring
that the wavefunction collapse occurs on the t = 0 slice.
However, if we try to import this collapse postulate into
Minkowski spacetime, we are confronted with the ques-
tion: where does the collapse occur? Suppose we make a
pointlike measurement at the origin of Minkowski space-
time. The t = 0 slice in some given Lorentz frame is not
a Lorentz covariant location. In view of this, there are
two natural choices: the future light cone of the measure-
ment, and the past light cone.

Suppose for the moment that only local (pointlike)
variables are instantaneously measurable. Indeed, this
was roughly the conclusion of Landau and Peierls [14].
Under this assumption, the future and past light cone
prescriptions are both tenable. We have an intact objec-
tive wavefunction history, where now the wavefunction is
well-defined for each point in Minkowski space. Hellwig
and Kraus preferred the past light cone prescription for
purely aesthetic reasons [15].

The issue is: we have seen that it is possible to moni-
tor a non-local state with only local interactions. Specif-
ically, in Section VI we saw that it is possible to per-
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form measurement (in the two-role sense) in the non-local
Bell basis for two qubits. We will see that this destroys
all hope of defining an objective spacetime hypersurface
where we can take the collapse to occur. These argu-
ments were first presented by Aharonov and Albert [4]
[5].

As a thought experiment, consider Alice and Bob, each
possessing a qubit. In some fixed Lorentz frame, Alice
and Bob are stationary, with Alice at x = 0 and Bob at
x = d. Let the observer Romeo inhabit this fixed frame.
Initially (i.e. for t < −d/c), the qubits of Alice and Bob
are in the |φ+〉 state i.e. they constitute an EPR pair. At
(t, x) = (0, 0), Alice measures her qubit in the Z-basis.
The causes the joint state to collapse to |00〉 or |11〉, each
with probability 1/2.
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FIG. 12

Fig. 11 and Fig. 12 show us what goes wrong with
the future and past light cone prescriptions respectively
once we consider the measurements Romeo could have
made. In the figures throughout this section, the double
line denotes a qubit post-selected for the measurement
at the origin (t, x) = (0, 0).

Let 0 < ε < d/c. If the state collapses along the fu-
ture light cone, then what would Romeo’s Bell measure-
ment at t = +ε observe? If the state collapses along the
past light cone, then what would Romeo’s Bell measure-
ment at t = −ε observe? It is not that these questions
do not have answers; it is just that the future/past light
cone collapse prescriptions break down when we ask these
questions. Romeo’s measurement at t = −ε would ob-
serve |φ+〉 with certainty, and Romeo’s measurement at
t = +ε would observe |φ+〉 or |φ−〉 each with probability
1/2. Crucially, in the case of the past light cone, Romeo’s
counterfactual measurement is in particular a monitor-
ing. Thus it cannot be argued that, if Romeo’s measure-
ment had been performed, it would have disrupted the
evolution of the system.
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Romeo’s Bell measurement on the joint state of Alice
and Bob at t = +ε < d/c would observe |φ+〉 or |φ−〉 each
with probability 1/2. Thus, if an objective state history
exists and is consistent with Romeo’s counterfactual mea-
surement, it cannot assign to the point (t, x) = (+ε, d)
the state |φ+〉.

However, consider now another observer Juliet, whose
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frame has origin coinciding with Romeo’s, but is boosted
in the +x direction. Romeo and Juliet’s frames are de-
picted in Fig. 13 and Fig. 14 respectively. Romeo’s point
(t, x) = (+ε, d) becomes Juliet’s point (t′, x′) = (−ε′, d′)
for some 0 < ε′ < d′/c. If Juliet measured at t′ = −ε′, she
would observe |φ+〉 with certainty. Moreover, since this
measurement is a monitoring, she would be able to per-
form this measurement without disrupting the evolution
of the state. Thus an objective state history consistent
with Juliet’s counterfactual measurement would need to
assign (t′, x′) = (−ε′, d′) the state |φ+〉. We have reached
a paradox, and we are forced to conclude that the possi-
bility of monitoring non-local states in some fixed Lorentz
frame rules out the notion of an objective hypersurface
where the collapse occurs.
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The paradox lies with the notion of an objective col-
lapse location. How do we reconcile these conclusions to
escape a contradiction in the physical world? The key
observation is that, although Romeo and Juliet’s coun-
terfactual conclusions individually hold true in the ab-
sence of the other, if Romeo and Juliet both tried to per-
form their measurements in a way that would contradict
one another, then the measurements of Romeo and Juliet
would end up frustrating each other. See Fig. 15.

In fact we can argue that, as long as we stick to proce-
dures at least contained in ELQ, quantum mechanics will
never contradict itself in the prediction of experimental
statistics. This is because the way in which we measure
non-local variables is to use local interactions which cor-
relate the non-local variables with local variables of the
apparatus, before measuring the local variables of the ap-
paratus. Thus, taking a quantum mechanical description
of the system and apparatus together, all measurements
are ultimately local in this sense. This means that our
no-signalling principles apply, promising no violations of
causality and no predictive contradictions.

What can we conclude from these arguments? Suppose
there is a quantum system at (t, x), possibly entangled
with other systems at other locations. We have learnt
that we cannot consistently associate a quantum state to

the system at (t, x). Rather, as was realised by Aharonov
and Albert in [6], the state of the system depends on the
spacetime hypersurface to which we are considering the
point (t, x) to belong.

XII. CONCLUSION

We have studied in detail the measurements which can
be made by two distant parties on their joint system.
Although special relativity was the motivation behind
the definitions of SLC, ELC, SLQ, ELQ for Alice and
Bob, it is possible to interpret our results in a purely
information theoretic perspective. Independent of special
relativity, the result ELC ≈ ELQ says that any post-
selective measurement performed by Alice and Bob using
prior shared entanglement and quantum post-processing,
can be performed with use of prior shared entanglement
alone. By contrast, SLQ 6= ELQ says that some non-local
measurements performed by Alice and Bob do indeed rely
crucially on prior shared entanglement.

We could imagine several directions for extending this
work, in addition to the open questions from Section
VIII C. We could extend the discussion to infinite-
dimensional systems, and/or we could allow infinite-
dimensional apparatus systems. We could also relax the
notion of locality from a bipartite system with a tensor
product Hilbert space, to a single Hilbert space where Al-
ice’s and Bob’s operations are required to commute. This
is known as the commuting operator framework, as op-
posed to the tensor product framework. We could model
the system and/or the apparatus in this relaxed version
of locality.

Do the results we have derived in the Alice and Bob
toy model apply to the real world? For an account of
quantum measurement fully consistent with relativity, we
would need to use quantum field theory. Measurements
should take place in smeared regions of spacetime. We
would need to model both the system and the apparatus
with quantum fields, and model the interaction between
the system and apparatus with a Lorentz covariant in-
teraction Hamiltonian. Here, both the system and appa-
ratus would be infinite-dimensional, and locality will be
encoded in the commutation of local operators. Such a
framework has been developed recently by Fewster and
Verch [16] [17], using the language of algebraic quantum
field theory.

That said, the Alice and Bob model can be recovered
from quantum field theory in a particular limit, as de-
scribed in the introduction. Moreover, I would argue that
the conceptual conclusions we have made should hold
true in the general setting. Namely, there are measure-
ments which are impossible because they would allow
superluminal signalling; there are localisable protocols
which enable instantaneous measurement of non-local ob-
servables; and there are measurements which are causal
but nevertheless cannot be implemented by a combina-
tion of local actions.
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XIII. APPENDIX

A. Proof of Kraus representation

The objective of this section is to prove Theorem 1.
Our first port of call is to write down what we mean by

completely positive, a property of CPTP superoperators
Λ ∈ Θ(H).

Definition 5. A superoperator Λ : B(H)→ B(H) is pos-
itive if Λ(ρ) is positive semi-definite for every ρ positive
semi-definite.

A superoperator Λ : B(H) → B(H) is completely
positive if, for every ancilla Hilbert space H′, Λ ⊗ id :
B(H⊗H′)→ B(H⊗H′) is positive.

We are now in a position to prove the Kraus represen-
tation theorem.

Theorem 1. Kraus Representation Theorem
Let Λ ∈ Θ(H) be CPTP. Then there is a set
{Ak}k∈K ⊂ B(H) of linear operators (called Kraus ma-

trices) satisfying
∑
k A
†
kAk = I such that

Λ(ρ) =
∑
k

AkρA
†
k (13)

Conversely, if {Ak}k∈K ⊂ B(H) satisfy
∑
k A
†
kAk = I,

then Λ(ρ) =
∑
k AkρA

†
k is CPTP.

Proof. We start with the forwards direction. Let Λ ∈
Θ(H) be CPTP, and dimH = n with basis {|i〉 : i =
1, . . . n}. For the purposes of this proof, attach an ancilla
Hilbert space H′ with the same dimension dimH′ = n
and basis {|i′〉 : i = 1, . . . n}. Let |Ω〉 ∈ H ⊗ H′ be the
non-normalised maximally entangled state

|Ω〉 =

n∑
i=1

|i〉|i′〉

Define the Choi matrix of Λ to be

J(Λ) = Λ⊗ id(|Ω〉〈Ω|)

=

n∑
i,j=1

Λ(|i〉〈j|)⊗ |i′〉〈j′|

By complete positivity of Λ, the Choi matrix J(Λ) is
positive semi-definite. Thus we can diagonalise J(Λ) as

J(Λ) =
∑
k

|φk〉〈φk|

with {|φk〉} unnormalised.
For each |φk〉 ∈ H ⊗H′, we can associate an operator

Ak ∈ B(H) by

|φk〉 =
∑
i,j

αi,j |i〉|j′〉

−→ Ak =
∑
i,j

αi,j |i〉〈j|
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These satisfy

(Ak ⊗ I)|Ω〉 = |φk〉
〈i′|φk〉 = Ak|i〉

Now

Λ(|i〉〈j|) = 〈i′|J(Λ)|j′〉

=
∑
k

〈i′|φk〉〈φk|j′〉

=
∑
k

Ak|i〉〈j|A†k

Extending by linearity, we have for all ρ

Λ(ρ) =
∑
k

AkρA
†
k

Taking the trace of both sides, using that Λ is trace
preserving, we get ∑

k

A†kAk = I

This completes the forwards direction of the proof.
Note that we can always take the number of Kraus ma-
trices |{Ak}k∈K | to be at most n2.

For the converse, let Λ(ρ) =
∑
k AkρA

†
k for some set of

Kraus matrices {Ak}k∈K ⊂ B(H) satisfying
∑
k A
†
kAk =

I. Linearity of Λ is clear, so it is certainly a superop-
erator. We must check (i) complete positivity and (ii)
trace preservation. For any ancilla Hilbert space H′ and
X ∈ B(H⊗H′), we have

Λ⊗ id(X) =
∑
k

(Ak ⊗ I)X(Ak ⊗ I)†

When X is positive semi-definite, (Ak⊗I)X(Ak⊗I)† is
positive semi-definite for each k, thus the sum is positive
semi-definite. This shows complete positivity.

For trace preservation, just note that

Tr(Λ(ρ)) = Tr(
∑
k

AkρA
†
k)

= Tr((
∑
k

A†kAk)ρ)

= Tr(ρ)

B. Proof of Lemma 2

Here we prove Lemma 2, which gives a characterisation
of SLQ measurements.

Lemma 2. {Ak}k∈K ∈ SLQ(A,B) if and only if there
exist Kraus matrices {Bl}l∈L ⊂ B(HA) and {Cm}m∈M ⊂
B(HB) with |L||M | = |K| = N , and a N × N unitary
matrix Wk,(l,m), such that

Ak =
∑
l,m

Wk,(l,m)Bl ⊗ Cm (14)

Proof. First suppose we are given Ak = 〈k|UAR ⊗
UBS |ψ〉|ϕ〉. Choose bases {|l〉}l∈L of HR and {|m〉}m∈M
ofHS . Then |L||M | = |K| = N and there is a N×N uni-
tary matrix Wk,(l,m) taking the basis {|l〉|m〉} to {|k〉}.
That is,

|k〉 =
∑
l,m

Wk,(l,m)|l〉|m〉

Then if we define Bl = 〈l|UAR|ψ〉 and Cm =
〈m|UBS |ϕ〉, we have

Ak =
∑
l,m

Wk,(l,m)Bl ⊗ Cm

Conversely, say we are given Bl = 〈l|UAR|ψ〉 and Cm =
〈m|UBS |ϕ〉 with |L||M | = N , and N ⊗N unitary matrix
Wk,(l,m). Then define the basis {|k〉}k∈K as the image
of {|l〉|m〉} under Wk,(l,m). Consider measuring R⊗S in
the {|k〉} basis. The corresponding Kraus matrices are

Ak = 〈k|UAR ⊗ UBS |ψ〉|ϕ〉

=
∑
l,m

Wk,(l,m)Bl ⊗ Cm

C. Proof of Lemma 3

Here we prove Lemma 3, which gives a necessary con-
dition for a measurement to be in ELQ. We follow the
proof in Appendix B of [2].

Lemma 3. Let {Ak}k∈K be a measurement on HA ⊗
HB, with corresponding non-selective operation Λ(ρ) =∑
k AkρA

†
k. We say a state |ψ〉 ∈ HA ⊗HB is an eigen-

state of Λ if Λ(|ψ〉〈ψ|) = |ψ〉〈ψ|. Suppose |ψ〉, P ⊗ I|ψ〉,
I⊗Q|ψ〉 are all eigenstates of Λ, where P is a unitary on
HA and Q a unitary on HB. If {Ak}k∈K ∈ ELQ(A,B),
then P ⊗Q|ψ〉 must also be an eigenstate of Λ.

Proof. Suppose {Ak}k∈K ∈ ELQ(A,B). Then there are
ancilla spaces HR and HS , a pure state |ϕ〉 ∈ HR ⊗HS ,
and unitaries U on HA ⊗ HR and V on HB ⊗ HS such
that

Λ(ρ) = TrRS(U ⊗ V (ρ⊗ (|ϕ〉〈ϕ|))U† ⊗ V †)

The system HA and ancilla HR belong to Alice, who
applies the unitary U . HB and HS belong to Bob, who
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applies the unitary V . |ϕ〉 is the initial state of the joint
(possibly entangled) apparatus.

By hypothesis, |ψ〉, P ⊗ I|ψ〉, I⊗Q|ψ〉 are eigenstates
of Λ. Thus

U ⊗ V |ψ〉|ϕ〉 = |ψ〉|ϕ0〉
U ⊗ V (P ⊗ I)|ψ〉|ϕ〉 = |ψ〉|ϕP 〉
U ⊗ V (I⊗Q)|ψ〉|ϕ〉 = |ψ〉|ϕQ〉

for some states |ϕ0〉, |ϕP 〉, |ϕQ〉 ∈ HR ⊗HS .
Now consider ∆ = UPU−1P−1, which acts on Alice’s

system HA ⊗HR.

(∆⊗ I)(P ⊗ I)|ψ〉|ϕ0〉
= (∆⊗ I)(P ⊗ I)(U ⊗ V )|ψ〉|ϕ〉
= (U ⊗ V )(P ⊗ I)|ψ〉|ϕ〉
= (P ⊗ I)|ψ〉|ϕP 〉

Thus acting on (P ⊗ I)|ψ〉|ϕ0〉, we can replace ∆ ⊗ I
by R⊗ I, where R is a unitary acting on HR alone which
sends |ϕ0〉 to |ϕP 〉.

Then

(UP ⊗ V )|ψ〉|ϕ〉
= (∆⊗ I)(PU ⊗ V )|ψ〉|ϕ〉
= (∆⊗ I)(P ⊗ I)|ψ〉|ϕ0〉
= (R⊗ I)(P ⊗ I)|ψ〉|ϕ0〉
= (R⊗ I)(PU ⊗ V )|ψ〉|ϕ〉

Multiplying by I⊗ V −1,

(UP ⊗ I)|ψ〉|ϕ〉 = (R⊗ I)(PU ⊗ I)|ψ〉|ϕ〉

That is, acting on |ψ〉|ϕ〉, we can replace UP by RPU .
Similarly,

(I⊗ V Q)|ψ〉|ϕ〉 = (I⊗ S)(I⊗QV )|ψ〉|ϕ〉

where S is a unitary acting on HS alone.
We can view the two above equations as commutation

relations [U,P ] = R, [V,Q] = S when acting on |ψ〉|ϕ〉.
We can use these to examine how Λ will act on P ⊗
Q|ψ〉|ϕ〉.

(U ⊗ V )(P ⊗Q)|ψ〉|ϕ〉
= (I⊗ V Q)(UP ⊗ I)|ψ〉|ϕ〉
= (R⊗ I)(I⊗ V Q)(PU ⊗ I)|ψ〉|ϕ〉
= (R⊗ I)(PU ⊗ I)(I⊗ V Q)|ψ〉|ϕ〉
= (R⊗ S)(PU ⊗ I)(I⊗QV )|ψ〉|ϕ〉
= (R⊗ S)(P ⊗Q)(U ⊗ V )|ψ〉|ϕ〉
= (R⊗ S)(P ⊗Q)|ψ〉|ϕ0〉
= ((P ⊗Q)|ψ〉)((R⊗ S)|ϕ0〉)

That is, (P ⊗Q)|ψ〉 is an eigenstate of Λ.


