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Abstract

Requiring causality on measurements in quantum field theory seems to impose strong conditions on a self-
adjoint operator to be really measurable. This may seem limiting and artificial in the operator language of
algebraic quantum field theory (AQFT), but is essential for a truly relativistic theory. Recent publications
attempt to deal with this issue by including the apparatus into the formalism, connecting AQFT with mea-
surement theory, but other options have been suggested. In this essay, I discuss the causality conditions on
self-adjoint operators both in the language of AQFT and in the language of quantum information theory. I then
present measurement theory in AQFT, modelling the apparatus as a quantum field with coupling to the mea-
sured system restricted to a region of spacetime. I highlight how this approach leads to a causally well behaved
theory. Finally, I attempt to formulate the causality conditions on measurements in the Feynman path integral
approach, using the concept of decoherent histories. I claim that the path integral approach has problems with
causality similar to the operator based approaches and that even here causality is an a posteriori condition.
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1 Introduction

The fundamental differences between the language of
quantum theories and general relativity have caused
some serious issues when trying to come up with a fully
relativistic quantum field theory, not to mention quan-
tum gravity. The particular issue that I will be dealing
with in this essay is that causality is in no way present
in the standard quantum formalism, even in relativis-
tic quantum field theories. This has been pointed out
by Sorkin [1]. The issue lies in the way measurement
is implemented using the projection postulate: it seem-
ingly allows for superluminal signalling, even when non-
selective measurements are considered.

Recently, a measurement theory has been proposed
by Fewster and Verch (the FV formalism) in the alge-
braic quantum field theory (AQFT) language, modelling
the interaction between the measured system and the
probe [2]. In [3] it has been shown that this in fact leads
to a causally well behaved theory. Furthermore, it allows
us to deal with the non-local and relativistically ambigu-
ous character of the projection postulate. However, the
FV formalism doesn’t give us conditions on observables
in QFT that would ensure causality.

After introducing some notation and terminology in
section 2, and then describing the Sorkin scenario, which
is a particular setup of observers in spacetime which
highlights the issues with causality (in section 3), I dis-
cuss the relationship between causality and Hilbert space
quantum mechanics in section 4. Motivated by the re-
sults of this section, I move on to quantum field theory
in section 5. In section 5.1 I introduce AQFT and relate
its rather abstract language to the more familiar Hilbert
space picture, using *-algebra representation theory. I
then move on to discuss the FV framework in section
5.2 and I show how it deals with causality. In section 6,
I then discuss causality in the path integral formalism,
using the concept of decoherent histories. This approach
has been suggested in [1] and [4]. I briefly summarise
the conclusions in section 7.

2 Notation and terminology

2.1 Spacetime

In this text, I will be studying causality in quantum
systems in a globally hyperbolic Lorentzian manifold
M with time orientation and a metric g with signature
+ − ...−. Denote the collection of the manifold, metric
and time orientation M . The spacetime may be curved,
but has to be a static background. I will now establish
some notation and terminology I will be using through-
out.

The causal future/past of x ∈ M is the set of all
points that can be reached from x by causal future/past
oriented curves from x and is denoted J±(x). Note that

x ∈ J±(x). For a region S ⊂M we write

J±(S) :=
⋃
x∈S

J±(x) and J(S) := J+(S) ∪ J−(S). (1)

The causal hull of a region is J+(S) ∩ J−(S). If S =
J+(S) ∩ J−(S), S is called causally convex.

The causal complement of a region S is

S⊥ := M\J(S). (2)

Regions T and S are causally disjoint if T ⊂ S⊥ (or
equivalently S ⊂ T⊥). If J+(S) ∩ J−(T ) is empty, then
there is a Cauchy surface to the future of T and to the
past of S.

The future/past Cauchy development of a subset
S ⊂ M is the set of points p, such that all past/future-
inextendible causal curves through p meet S. It is de-
noted D±(S). Define D(S) := D+(S) ∪D−(S).

Define the “in” region M− and the “out” region M+

of a subset S ⊂M by M±(S) := M\J∓(S).

2.2 *-algebras and Hilbert spaces

Given a Hilbert space H, I will denote by B(H) the space
of bounded linear operators on H, which can be made a
Hilbert space under the inner product

〈A,B〉 = Tr (A∗B), (3)

where A∗ denotes the adjoint. I will denote by D(H)
the space of all density matrices, i.e. positive Hermitian
operators with unit trace.

One of the main mathematical objects in this text are
*-algebras. A *-algebra A is a complete normed algebraic
vector space with an involution ∗ : A → A, which pre-
serves the algebraic operations. A special class are the
C*-algebras, which satisfy the C* identity

‖A∗A‖ = ‖A‖2. (4)

For a detailed exposition, see e.g. [5].

3 The Sorkin scenario

Traditionally, measurement is the centre point of quan-
tum mechanics. Not only does it give us access to in-
formation about the abstract quantum state and hence
allows us to interact with nature, it also itself changes
the state of the system according to the projection pos-
tulate, so that sufficiently fast subsequent measurements
of the same quantity give the same answers. Therefore
the order of measurements is of fundamental importance.
When trying to formulate quantum mechanics relativis-
tically, this becomes an essential issue, since temporal
order becomes observer dependent. As noticed by Sorkin
in [1], this problem manifests itself through worrying vi-
olations of causality. To analyse this, Sorkin proposed a
setting, which I will refer to as the Sorkin scenario.
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Figure 1: The Sorkin scenario. OA, OB and OC are regions controlled by Alice, Bob and Charlie respectively.
The dashed lines are null curves. The blue region is J+(OA), the red region is J−(OC). Time is vertically upwards,
one spatial dimension is on the horizontal axis.

Suppose three observers, Alice OA, Bob OB and
Charlie OC , located in regions OA, OB and OC respec-
tively, such that OA and OC are spacelike separated, but

OB ∩ J+(OA) 6= Ø and OB ∩ J−(OC) 6= Ø. (5)

This setup is illustrated in figure 1. We can now let Alice
and Bob perform quantum operations EA and EB respec-
tively and let Charlie measure an observable A. We can
now study the conditions imposed on EA, EB and A by
requiring that Charlie’s measurement cannot depend on
Alice’s operation, i.e. that Alice cannot signal to Charlie.

To see the main problem Sorkin scenario highlights,
note that Bob’s measurement fixes the causal ordering of
the observers, even though Alice and Charlie are causally
disjoint. That means that even if we demand that projec-
tors associated with Alice’s and Charlie’s measurement
commute, after inserting Bob’s measurement in between,
this will not be helpful. It is therefore quite easy to sug-
gest a scheme in which Alice will be able to signal to
Charlie, e.g., as noted by Sorkin in [1], an incomplete
Bell measurement.

4 Causality in quantum mechan-
ics

In this section I will discuss the Sorkin scenario in the
context of Hilbert spaces and ordinary quantum mechan-
ics.

4.1 Dynamical variables vs. coordinates

As pointed out by Hilgevoord in [6], accounts of quan-
tum mechanics are notoriously sloppy in the distinction
between position and time as dynamical variables q, η
and as spacetime coordinates x, t. Dynamical variables
are coordinates in phase-space and are system-specific.
For example a point-like particle will have a phase-space
spanned by position q and momentum p, whereas an
ideal clock may be described by the dynamical time vari-

able η and its conjugate θ. In quantum mechanics, each
dynamical variable of a system is assigned a self-adjoint
operator. There is no causal structure in phase-space,
only trajectories parametrized by spacetime coordinates.
On the other hand spacetime coordinates are system
independent and don’t have an associated operator in
quantum mechanics. Crucially for our discussion, these
are coordinates of the manifold M , which has a time
orientation and a causal structure.

Consider a particle in ordinary quantum mechanics.
It is completely described by a wavefunction ψ(q, t).1

Here q is the dynamical variable, whereas t is the space-
time coordinate. This is because the particle’s state-
space is the usual Hilbert space with a position and mo-
mentum operators; dynamics in time t (which is a pa-
rameter and doesn’t have an operator associated with
it) is given by a Hamiltonian operator, according to the
Schrödinger equation. In this sense, quantum particle

1Note that here I use the notation q instead of the more usual x for the dynamical variable to avoid confusion with the coordinate,
following Hilgevoord.

3



dynamics is a quantum field theory (QFT) in 0+1 dimen-
sions. Since 0 + 1 dimensional Minkowski spacetime has
trivial causal structure, ordering measurements poses no
additional complication and we can unambiguously im-
pose the projection postulate. This suggests that trying
to make ordinary quantum mechanics relativistic in the
Hilbert space picture is a lost cause.

4.2 Causality from classical localization

Since spacetime structure doesn’t appear at all in Hilbert
space quantum mechanics, we could resort to treat-
ing particle positions completely classically and quantize
only their internal degrees of freedom. For example, we
can consider qubits at spacetime locations qi = xi =
(xi, ti) ∈ M with quantum states |ψi〉 ∈ Hi, where Hi

are the (for qubits 2-dimensional) Hilbert spaces of the
qubit’s internal state. We would now like to study the
operations we can perform on the total Hilbert space of
all qubits H =

⊗
iHi.

In this framework however, since the positions of the
qubits are treated classically, I have no other choice than
to use the classical notion of locality. Therefore all opera-
tions on a system have to happen at a spacetime point, in
this approximation. Trying to study operations e.g. on
Cauchy surfaces is going to lead to violations of causal-
ity almost by assumption, just as it does in the classi-
cal case: Consider a non-rotating light long rigid rod in
Minkowski spacetime with Alice and Bob located at each
of its ends. Alice and Bob each have a large mass they
can attach to the rod’s end. If Bob pulls the rigid rod,
by Newton’s laws he can immediately find out, whether
Alice attached her mass or not, so we get super-luminal
signalling. The non-local rigidness of the rod, which here
breaks causality, is the classical version of an operation
on a Cauchy surface. When we treat position classically,
it is locality that secures causality, no matter whether
we are performing quantum operations on the internal
degrees of freedom of qubits or completely classical op-
erations. Rigidity is a well defined concept in relativistic
physics, as pointed out by Max Born in [7]. The idea
is that given a congruence C of timelike curves, which
represents motion of the body, we get hypersurfaces or-
thogonal to the 4-velocities ua(x) of the worldlines in
C. In these hypersurfaces we can define a local space
3-metric hab. Rigidity is then defined by (Luh)ab = 0 at
each point of the body. This however requires a coordi-
nated acceleration of each of the points and cannot be
used to transmit information.

The question of which quantum operations are al-
lowed on H when the qubits are separated in spacetime
is therefore of practical importance: What spacetime se-
tups of observers can I choose, so as to perform an op-
eration A on H? What resources (e.g. shared entan-

glement) do they need? In no way does this question
address the projection postulate or the notion of mea-
surement in quantum mechanics. Locality and causality
are completely classical in this approximation. After all,
we could always imagine bringing the qubits together
and putting all of them at the same time into a device
performing the operation A. Since the worldlines of the
qubits intersect in the device, using A as the action of
Bob in the Sorkin scenario ensures that Alice and Charlie
will be timelike separated. Hence, A is allowed to permit
Alice to signal Charlie and the projection postulate can
be applied unambiguously.

Suppose now that n observers Oi at locations yi =
(yi, t

′),2 each have access to a system with density ma-
trix ρi ∈ D(HAi). The system density matrices can be
entangled, such that the total state in the Hilbert space
HA =

⊗
iHAi is ρ. Demand

ρi = TrAj 6=i (ρ). (6)

Here the subscript Aj 6=i on the trace denotes partial trace
over all the systems, except for Ai. We wish to perform
an operation E on HA. Following [8] and generalizing
slightly, I will now give conditions on the operation to
be performable by a set of localized observers. My notion
of performability connects the concepts of localizability
and semilocalizability in [8].

First of all, define subsets of observers called causal
chains.

Definition 4.1 (Causal chain). Suppose a collection of
observers O = {Oi} localized in a globally hyperbolic
time oriented spacetime. A subset C ⊆ O is called a
causal chain, if there exists a smooth timelike curve Γ
joining all observers in C.

Remark. Each causal chain admits a unique causal order,
following the curve Γ forwards in time.

Let us cover the set of all observers O = {Oi} by
causal chains Cj ⊆ O, such that every observer is in
at least one chain, but one observer can be in multiple
chains at once. This covering is not unique. I will pro-
vide observers in each causal chain with a joint ancilla
state σj ∈ D(HBj ), which can be entangled into a state
σ ∈ D(HB), where HB =

⊗
j HBj . Like for the system

states, we demand

σi = TrBj 6=i (σ). (7)

The observers in Ck can send quantum information to
each other in the causal order of Ck, which is why they
have a common ancilla. Now each observer has access to
their part of the system and to the ancillas of all causal
chains they belong to. An observer Ok ∈ Ck, however,
can perform an operation on the ancilla σk after it has

2By spacetime locations of an observer I mean the spacetime coordinates of the operation that they perform. I will use this slight
abuse of terminology throughout this section.
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been acted on by all the observers in Ck preceding Ok
in the causal order on Ck.

Now let us causally order observers in the causal
chains. Since if Om precedes On in some causal chain,
it will precede it in any other causal chain where they
both happen to be,3 we can use the causal orderings of
Cj to get a causal ordering on O by demanding that if
Or precedes Os in some causal chain, it also precedes it
in the ordering on O. The ordering in O is unique up
to exchanges of observers who don’t have access to any
common ancillas.

This setup allows us to define a performable opera-
tion.

Definition 4.2 (Performability). In the notation and
setup from above, a quantum operation E on HA is per-
formable by a set O of n observers, who are located in
spacetime M , if and only if there exists a covering of O
by causal chains Cj , such that in the causal ordering O
inherits from the causal orderings of Cj ’s as above, E can
be written as

E(ρ) = TrB (En ◦ ... ◦ E1)(ρ⊗ σ), (8)

where each Ei is an operation that acts trivially on all
the Hilbert spaces that cannot be accessed by Oi.

Remark. The non-uniqueness of ordering on O, given a
covering Cj , does not pose any problems. This is because
if the ordering of observers Om and On is not determined
by their order in some of the causal chains, they have ac-
cess to different resources and hence the operations Em
and En will commute.

Notice that this definition is highly dependent on the
set O and the positions of the observers. If for example
we have just a single observer with access to all the re-
sources, this definition does not restrict their actions at
all.

5 Causality in field theory

In order to get a fully quantum concept of causality, we
have to somehow introduce the spacetime coordinates
into the formalism. We need a QFT in more than 0 + 1
dimensions.

One of the ways forward is to get some motivation
from quantum mechanics in the Heisenberg picture. We
have a time independent state |ψ〉 in a Hilbert space
H and a continuous homomorphism on the linear oper-
ators on H parametrized by time, the only spacetime
coordinate we have in this theory. The homomorphism
is defined by

d

dt
A(t) = i[H,A(t)],

A(0) = A,
(9)

for all linear operators A, where H is the Hamiltonian.
If A is some physical observable at t = 0, eq. 9 gives us
the corresponding operator at different times, i.e. in dif-
ferent regions of our 0 + 1 dimensional spacetime. This
can be seen as a motivation behind algebraic quantum
field theory (AQFT).

The discussion from the previous section shows that
causality doesn’t come automatically in quantum theo-
ries, see e.g. [1] or [4]. In particular, the Sorkin sce-
nario highlights the central issue. We have to introduce
a proper notion of locality first. It is not at all obvious
how to do that in QFT. In the following, I will first de-
fine AQFT and then introduce the Fewster-Verch frame-
work, which provides such concept of locality in AQFT,
and show how this indeed yields a fully causal theory.

5.1 AQFT

Since we would like to be able to add and multiply
observables, they should form an algebraic structure.
An AQFT associates a *-algebra A(M) with a unit
1, with the globally hyperbolic Lorentzian spacetime
M with time orientation. A inherits the topology of
M in the following sense. Each causally convex open
subset N ⊂ M has an associated unital sub-*-algebra
A(M ;N) ⊆ A(M). The following conditions are im-
posed on the sub-*-algebras, in an attempt to ensure the
correct causal and local behaviour of the theory.

1. (Isotony) If N1 ⊂ N2, then A(M ;N1) ⊆
A(M ;N2).

2. (Compatibility) Providing N ⊂ M with the met-
ric and time-orientation inherited from M , we get
a spacetime N . The AQFT associates with N
a *-algebra A(N). Compatibility demands that
there is an injective unit-preserving algebraic *-
homomorphism αM ;N : A(N) → A(M), with the
subalgebra A(M ;N) as its image. Furthermore,
these maps have to obey αM1;M2 ◦ αM2;M3 =
αM1;M3 , for all M3 ⊂M2 ⊂M1.

3. (Time-slice property) Whenever N contains a
Cauchy surface, A(M ;N) = A(M).

4. (Einstein causality) If N1 and N2 are causally dis-
joint, then elements of A(M ;N1) commute with
elements of A(M ;N2).

5. (Haag property) Let K be a compact subset of
M . If an element A ∈ A(M) commutes with
all elements of A(M ;N) for all N ⊆ K⊥, then
A ∈ A(M ;L), where L is any connected open
causally convex subset containing K.

3This is a consequence of the assumption that the spacetime is globally hyperbolic.
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I will now give a brief motivation behind these condi-
tions; for a thorough discussion see [9] or [10]. The basic
idea is that self-adjoint elements of A(M ;N) represent
observables that are localized in N in the Heisenberg pic-
ture. With this in mind, condition 1) is natural. Condi-
tion 2) demands that submanifolds inherit their algebra
from the parent algebra in a natural way. Condition 3)
is imposed so that we recover the quantum mechanical
picture of “time” evolution between Cauchy surfaces, i.e.
we have to be able to measure all observables in a thin
slice around each Cauchy surface. Finally the last two
properties 4) and 5) are the attempt to ensure causality
and locality in the theory. This will be discussed further
in the following.

5.1.1 States

We can now define states in AQFT.

Definition 5.1 (States in AQFT). Given a *-algebra
A(M), states are linear functionals from A(M) to C,
such that ω(A∗A) ≥ 0 ∀A ∈ A(M). They are also nor-
malized with respect to the unit, such that ω(1) = 1.
A state ω is pure if and only if it cannot be written as
ω = λσ+ (1− λ)µ for some states σ 6= µ and 0 < λ < 1.

The outcome of the action of a state ω on a observ-
able A ∈ A is the expectation value of the measurement
of B on a quantum field in a state σ. All this is rather
abstract, so I will now give a brief discussion of ways to
connect it with more familiar QFT formalism in terms
of representations. A more thorough summary can be
found in [10].

Definition 5.2 (*-algebra representations). A represen-
tation of a unital *-algebra A is a triple (H,D, π), where
H is a Hilbert space, D a dense subspace of H and π a
map from A to linear operators on H, such that

1. D is the domain of π(A) ∀A ∈ A and the range of
each π(A) is contained in D,

2. π(1) = 1, the identity on H,

3. π(A+ λB +CD) = π(A) + λπ(B) + π(C)π(D), so
that the representation respects the algebra oper-
ations,

4. each π(A) has an adjoint π(A)∗, which has a do-
main containing D, and

5. π(A)∗ restricted to D is equal to π(A∗).

A representation is faithful if kerπ = Ø; and is ir-
reducible if there are no subspaces of H invariant under
π(A), which are neither trivial, nor dense.

Suppose π has image that is dense in the space of
linear operators on H. Now, given a representation
(H,D, π) of A, the closure of

ρ̃(ω)(π(A)) := ω(A) (10)

defines for each state ω on A a linear functional ρ̃(ω) on
the space of linear operators on H. To see that ρ̃(ω) is
indeed a linear functional, consider

ρ̃(ω)
(
π(A) + λπ(B)

)
= ρ̃(ω)

(
π(A+ λB)

)
= ω(A+ λB)

= ω(A) + λω(B)

= ρ̃(ω)(π(A)) + λρ̃(ω)(π(B))

(11)

using linearity of the states and the *-algebra representa-
tion properties. Since the image of π is assumed dense,
this proves the linearity of ρ̃(ω). This now allows us
to use the Riesz representation theorem on the Hilbert
space of bounded linear operators B(H) with inner prod-
uct

〈A,B〉 := Tr (A∗B), (12)

to get an operator ρ corresponding to each ρ̃. This oper-
ator is positive by the positivity of ω and the properties
of *-algebra representation. It is also Hermitian, since
∀A ∈ A with π(A) ∈ B(H)

Tr (ρπ(A)∗π(A)) = Tr (ρπ(A∗)π(A))

= ω(A∗A)

=
[
ω(A∗A)

]∗
=
[

Tr (ρπ(A)∗π(A))
]∗

= Tr (ρ∗π(A)∗π(A)),

(13)

which implies ρ = ρ∗. It also has unit trace, as we can
see form

Tr (ρ) = 〈ρ,1〉 = ρ̃(ω)(1) = ω(1) = 1. (14)

Hence ρ is a density operator, which connects the AQFT
formalism with the standard Hilbert space language.

It is however important to note that there is a lot of
freedom in choosing the representation, so it may still
be difficult to interpret the results in AQFT. One pos-
sible natural choice of representation is provided by the
Gelfand, Naimark, Segal (GNS) theorem.

Theorem 5.1 (GNS theorem). Let ω be a state on a *-
algebra A. Then there is a representation (Hω,Dω, πω)
of A and a cyclic unit vector Ωω ∈ Dω, such that

ω(A) = 〈Ωω|πω(A)Ωω〉 ∀A ∈ A. (15)

The quadruple (Hω,Dω, πω,Ωω) is unique up to unitary
equivalence.

If A is in fact a C*-algebra, then furthermore

1. each πω(A) extends to a bounded operator on Hω,

2. ω is pure if and only if the representation is irre-
ducible and

3. if the representation is faithful, then ‖πω(A)‖ =
‖A‖A .

6



Here cyclic means that Dω = πω(A)Ωω. For proof of
Theorem 5.1, see [10]. From property 2) for C*-algebras
in Theorem 5.1 we see that Ωω is a pure state on a larger
Hilbert space than the natural one for the field theory.

5.1.2 Operations

In this section I would like to show how operations on
quantum fields are performed in the AQFT language.
Following [2], I allow observers to interact with the quan-
tum field, which I will call the system, via another quan-
tum field, the probe, which will be coupled to the system
in some compact spacetime region K ⊂M .

To make this more concrete, we may consider the
system to be a quantum field with action

SS [Ψ] =

∫
d4xLS(Ψ) (16)

and the probe a quantum field with action

SP [Φ] =

∫
d4xLP (Φ). (17)

Both of these Lagrangians may include self-interactions
and overall are not restricted in any way. I am in prin-
ciple not even limited to fields with actions that can be
written in terms of a Lagrangian density; but I choose to
do so for concreteness. Now I introduce an interaction
between the fields of the form

Sint[Ψ,Φ] =

∫
d4xρΨΦ, (18)

where supp ρ ⊂ K. This is, once again, just a choice.
Now I would like to find the operation that is induced

by this interaction. First, I will follow the analysis by
Fewster and Verch [2] to get the scattering morphism.

Let A(M) ⊗ B(M) be the *-algebra of the uncou-
pled system-probe theory and C(M) be the *-algebra of
the coupled theory. Let the AQFT inclusion maps (as
in condition 2 in section 5.1) for region N in these the-
ories be αM ;N ⊗ βM ;N and γM ;N respectively. Since
the coupling is localized in K, the theory C(M) will re-
duce to A(M)⊗ B(M) outside the causal hull J+(K)∩
J−(K) of K. Hence, in any causally convex region
L ⊂M\J+(K) ∩ J−(K) there will be an isomorphism

χL : A(L)⊗ B(L)→ C(L). (19)

In particular, an important role will be played by this
morphism for L = M±(K), where as before, M±(K) =
M\J∓(K) are the “in” (-) and “out” (+) regions of
K. Define χ± := χM±(K) for convenience. Define fur-
ther in a similar fashion the inclusion maps for M± to
be α±, β±, γ± in the obvious way. Since K is com-
pact, regions M± contain a Cauchy surface4 and hence
α±, β±, γ±, χ± are isomorphisms by the AQFT axioms.

This allows me to define, following [2], isomorphisms

κ± := γ± ◦ χ± : A(M±)⊗ B(M±)→ C(M) (20)

and the retarded (+) and advanced (-) response maps

τ± = κ±◦(α±⊗β±)−1 : A(M)⊗B(M)→ C(M). (21)

The response maps relate the uncoupled theory to the
coupled one through the identification at early (-) or late
(+) times. This now gives the scattering morphism,

Θ := (τ−)−1τ+ (22)

which is an automorphism of A(M)⊗B(M) and relates
the uncoupled theory identified with the coupled one at
late times with the uncoupled theory identified with the
coupled one at early times. The action of this morphism
is similar to that of a scattering matrix in standard for-
mulation of QFT.

I will also define the adjoint action of this map on
the states through

ω(Θ(O)) =: Θ∗(ω)(O) ∀O ∈ A(M)⊗ B(M), (23)

where ω is any state on the uncoupled algebra. The map
Θ∗ relates states at early times to states at late times.
Now I will use the representation of states to relate this
map to a quantum operation on a density matrix in a
Hilbert space.

Let us pick a representation (H,D, π) for A(M) ⊗
B(M). In the way described in section 5.1.1, this defines
a density matrix for each state on A(M)⊗B(M). Hence,
given a density matrix ρ for an initial state ω on the de-
coupled system, the final state Θ∗(ω) gives a new density
matrix ρ′. This defines an operation E : D(H)→ D(H),
such that ρ 7→ ρ′. Hence, picking a representation, we
get the quantum operation corresponding to the interac-
tion of the system and probe quantum fields.

In the following lemma, I give three crucial prop-
erties of the scattering morphism, which are proven in
appendix A of [2].

Lemma 5.2 (Proposition 3.1 in [2]). A scattering mor-
phism Θ on the system-probe theory U(M) := A(M) ⊗
B(M), which arises due to the interaction of the sys-
tem with the probe in a compact region K ⊂M , has the
following properties:

1. If Θ̂ is the scattering morphism which is obtained if
we replace in the derivation the interaction region
K with a compact region K̂ ⊃ K, Θ̂ = Θ.

2. If L ⊂ K⊥, then Θ acts trivially on U(M ;L).

3. Suppose that L+ ⊂ M+(K) and L− ⊂ M−(K)
are open, causally convex subsets, such that L+ ⊂
D(L−). Then ΘU(M ;L+) ⊆ U(M ;L−).

4For a proof of this statement see e.g. [11, Lemma A.4]. Geometrically however, this claim is quite well motivated, since e.g. the
causal future and present of a compact region should contain a part of any timelike curve.

7



These properties follow from the AQFT axioms from
section 5.1. I will omit the proof here, but give some
insight into these properties.

The first property shows that there is an ambiguity
in the definition of the interaction region K. For exam-
ple, returning to the example of an interaction in eq.
18, we can choose K to be any region containing supp ρ,
without changing the dynamics.

Causality makes an appearance through the second
property. Causality demands, that the interaction local-
ized in K cannot influence the behaviour in K⊥. This
means that when we map the observables in K⊥ from
the uncoupled theory identified with the coupled one at
late times to the uncoupled theory identified with the
coupled one at early times, we should get the same ob-
servable.

The third property says that physics in L+ is com-
pletely determined by the physics in L−, as it should be,
since L+ is a part of the Cauchy development of L−.

5.2 The FV framework

In this section I will summarize the Fewster-Verch (FV)
framework, presented in [2]. This framework introduces
measurement theory into AQFT by proposing a scheme
that allows an observer with access to a probe quantum
field to measure an observable on the system quantum
field. The projection postulate is assumed on the probe
measurement, so this approach does not attempt to solve
the measurement problem. However, its importance lies
in how elegantly it deals with the causality and locality
problem in QFT.

5.2.1 The measurement scheme

In the notation from section 5.1, we have two quantum
fields: system and probe, which are coupled only in a
compact region K. We have the uncoupled *-algebra
A(M) ⊗ B(M) and the coupled *-algebra C(M). We
have the maps τ±, κ± and the scattering morphism Θ as
before. Suppose that our system and probe states are
uncorrelated at early times. That means that

(τ−)∗ω̃ = ω ⊗ σ, (24)

where ω̃ is a state on C(M), ω a state on A(M) and σ
a state on B(M). Suppose we measure the observable
B ∈ B(M) on the probe at late times. This corresponds
to the observable

B̃ = τ+(1⊗B) (25)

on C(M). The expectation value of such measurement
is hence

ω̃(B̃) =
[
(τ−)−1

]∗
(ω ⊗ σ)

(
τ+(1⊗B)

)
= (ω ⊗ σ)

(
(τ−)−1τ+(1⊗B)

)
= (ω ⊗ σ)

(
Θ(1⊗B)

)
.

(26)

Now I can define the concept of an induced observ-
able. This is the observable A ∈ A(M) that we would
like to get information about through the measurement
of B. Hence, we require that our measurement scheme
effectively just evaluates A on the system state. More
precisely, demand

ω̃(B̃) = ω(A). (27)

Fewster and Verch find a unique solution of eq. 27 by
defining two maps. First, define ησ : A(M) ⊗ B(M) →
A(M) by

ησ(A⊗B) = σ(B)A (28)

and extending by linearity.

Further, define the map εσ : B(M)→ A(M) by

εσ(B) = (ησ ◦Θ)(1⊗B). (29)

Now we can check

ω
(
εσ(B)

)
= ω

(
(ησ ◦Θ)(1⊗B)

)
= (ω ⊗ σ)

(
Θ(1⊗B)

)
= ω̃(B̃),

(30)

so εσ(B) ∈ A(M) is the induced system observable of
the probe observable B. This construction therefore pro-
vides us with a measurement scheme.

Notice that the induced observable depends not only
on the probe observable B, but also on the probe initial
state σ.

Localization of the induced observable. Fewster
and Verch in [2] show that the induced observable can
be localized in any connected open causally convex set
containing K.

Theorem 5.3 (Localization of induced observables,
Theorem 3.3 in [2]). For any probe observable B ∈
B(M), the induced observable εσ(B) can be localized in
any connected open causally convex set containing the
interaction region K.

Proof. Suppose a region L ⊆ K⊥, A ∈ A(M ;L) and
B ∈ B(M). Now

[εσ(B), A] = [ησ(Θ(1⊗B)), A]

= ησ[Θ(1⊗B), A⊗ 1]

= ησ(Θ[1⊗B,A⊗ 1])

= 0,

(31)

where I used point 2. in Lemma 5.2 to get the third
equality. Therefore by the Haag property 5 in section 5.1,
εσ(B) can be localized in any connected open causally
convex region containing K.
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Effect valued measure The concept of a positive op-
erator valued measure (POVM) is generalized to the *-
algebraic setting by the notion of an effect valued mea-
sure (EVM).

Definition 5.3 (Effect valued measure). Suppose A(M)
is a *-algebra and χ is a σ-algebra of subsets of a set
Ω. An effect valued measure (EVM) is a map E : χ →
A(M), which satisfies

1. E(X) ≥ 0 ∀X ∈ χ,

2. E(Ω) = 1 and

3. given a set {Xi}i, such that Xi ∈ χ ∀i and
Xi ∩Xj = Ø ∀i 6= j,

E(
⋃
i

Xi) =
∑
i

E(Xi). (32)

Call an EVM a projective effect valued measure (PEVM),
if furthermore

4. E(X)E(X) = E(X) ∀X ∈ χ and

5. E(X)E(Y ) = E(X ∩ Y ) ∀X,Y ∈ χ.

Physical reason for using EVMs is to allow for simul-
taneous measurement of some non-commuting observ-
ables (see [12] and [13]). For a thorough exposition see
[14]. The set Ω represents possible values of some ob-
servable A ∈ A(M); given X ∈ χ, the operator E(X)
represents the experimental result that the value of A
lies in the subset X ⊆ Ω, in the sense that for a system
in state ω, the value of A will be in X with probability
ω(E(X)). This is analogous to how POVMs are used in
quantum theory in general.

Note that given an EVM on the probe, the induced
observable on the system will also be an EVM, since ε is
linear and positivity preserving.

The projection postulate Suppose observables A ∈
A(M) and B ∈ B(M) with associated EVMs EA : χA →
A(M) and EB : χB → B(M) respectively. We would
like to know what is the probability that the value of A
will be measured to be in X ∈ χA, given that the value
of B has been measured to be in Y ∈ χB , if the system
and probe are initially in a state ω⊗σ. By the definition
of conditional probability,5

P (A ∈ X|B ∈ Y ) =
P (A ∈ X&B ∈ Y )

P (B ∈ Y )

=
(ω ⊗ σ)(Θ(EA(X)⊗ EB(Y )))

σ(EB(Y ))

=
Jσ(EB(Y ))(ω)(EA(X))

Jσ(EB(Y ))(ω)(1)
,

(33)

where Jσ(B)(ω) for B ∈ B(M), ω a state on A(M)
and σ a state on B(M) is defined by its action on any
A ∈ A(M)

Jσ(B)(ω)(A) := (ω ⊗ σ)(Θ(A⊗B)). (34)

We call the map Jσ(B) the pre-instrument.
We can interpret eq. 33 in the language of the projec-

tion postulate. The updated state after the measurement
of B ∈ Y becomes

ω̃ :=
Jσ(EB(Y ))(ω)

Jσ(EB(Y ))(ω)(1)
, (35)

such that in a subsequent measurement of A, the prob-
ability of obtaining a value in X ∈ χA is given by

P (A ∈ X) = ω̃(EA(X)). (36)

It is clear that Jσ(EB(Y ))(ω) is the unnormalized up-
dated system state.

5.2.2 Causality in the FV framework

The main point of the FV framework is that the system-
probe interaction is localized in K. Hence, recovering
a quantum operation from this interaction in the sense
of section 5.1.2 provides us with a notion of locality in
AQFT.

As was the case for quantum mechanics in section 4,
causality emerges from locality in quantum field theory
too, as has been shown in [3] and in [2]. In this section,
I summarize these results.

Causality and post-selection Consider an observer
O1, who measures a probe observable associated with
an EVM EB : χB → B(M), and an observer O2, who
measures a system observable associated with an EVM
EA : χA → A(M). If the observers are not allowed any
other communication, observer O2 cannot know the re-
sult of the measurement O1 performs. Hence O2 can be
considered to perform their measurement on the sum of
all the unnormalized updated states corresponding to a
mutually exclusive complete set of possible results that
O1 can obtain. This can be written, using linearity of
the pre-instruments, as

ω̃ =
∑
Yi∈κ

Jσ(EB(Yi))(ω) =

= Jσ(EB(ΩB))(ω) = Jσ(1)(ω), (37)

where ΩB is the set corresponding to χB and κ is a subset
of χB such that for all α 6= β ∈ κ we have that α∩β = Ø
and

⋃
α∈κ α = ΩB . This state is normalized, since

ω̃(1) = Jσ(1)(ω)(1)

= (ω ⊗ σ)(Θ(1⊗ 1))

= (ω ⊗ σ)(1⊗ 1)

= 1.

(38)

5Here I am abusing the notation A ∈ X to denote that the value of the observable A is in X.
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Consider what happens if in fact EA(X) ∈
A(M ;L) ∀X ∈ χA, where L ⊂ K⊥. Now

ω̃(EA(X)) = Jσ(1)(ω)(EA(X))

= (ω ⊗ σ)(Θ(EA(X)⊗ 1))

= (ω ⊗ σ)(EA(X)⊗ 1)

= ω(EA(X)),

(39)

so the probability distribution of the measurement O2

performs is unchanged by the fact that O1 performed
their measurement. This is in agreement with causality,
since now the observers are measuring observables that
can be localized in causally disjoint regions.

Sorkin scenario in the FV framework. First, it is
necessary to formulate how observers in different causal
relationships will be represented in the AQFT and FV
language. In particular, we are interested in the Sorkin
scenario.

Each observer Oi, i ∈ {A,B,C} has access to a probe
AQFT with an associated *-algebra Bi(M). Each probe
interacts with the system AQFT in a compact spacetime
region Ki ⊆ Oi. Similarly to section 5.1.2, this gives us a
coupled and an uncoupled theory. I will use a shorthand
notation D(M) = A(M)⊗ BA(M)⊗ BB(M)⊗ BC(M)
for the total decoupled *-algebra and call the coupled
*-algebra C(M).

Because of the spacetime relationships of the regions
Oi, we can place two non-intersecting spacelike Cauchy
surfaces Σ1,Σ2, such that

1. OA ⊂ J−(Σ1) and OA ⊂ J−(Σ2),

2. OB ⊂ J+(Σ1) and OB ⊂ J−(Σ2),

3. OC ⊂ J+(Σ1) and OC ⊂ J+(Σ2).

Dividing M into regions MA = J−(Σ1),MB = J+(Σ1)∩
J−(Σ2),MC = J+(Σ2), we obtain *-algebras D(M ;Mi).
By the time-slice property of AQFT

D(M ;Mi) = D(M) ∀i ∈ {A,B,C}. (40)

Therefore, we can use the procedure from section 5.1.2
in each region Mi to get scattering morphisms Θ̃i, which
are automorphisms on A(Mi) ⊗ Bi(Mi) that relate the
decoupled theory identified with the coupled one in the
region M+(Ki) ∩Mi to the decoupled theory identified
with the coupled one in the region M−(Ki) ∩Mi. Now
define Θi to be the automorphisms on D(Mi), which act
trivially on Bj 6=i(Mi) and as Θ̃i on A(Mi)⊗Bi(Mi). By
eq. 40, these are also automorphisms on D(M). This is
illustrated in Figure 2.

If Charlie measures an induced system observable C
using his probe, given an initial state of the system and
Alice’s and Bob’s probes ω ⊗ σA ⊗ σB , the expectation
value will be

〈C〉 = (ω ⊗ σA ⊗ σB)
(
(ΘA ◦ΘB)(C ⊗ 1⊗ 1)

)
. (41)

This relation is not immediately obvious and it has been
rigorously proven in [3]. The reasoning relies on the idea
to combine the probe theories into a single probe the-
ory with *-algebra B(M) = BA(M)⊗BB(M)⊗BC(M),
interaction region K = KA ∪KB ∪KC , scattering mor-
phism Θ and initial probe state σ = σA ⊗ σB ⊗ σC .
We are measuring B̃C = 1 ⊗ 1 ⊗ BC at late times.
Here BC is the observable on Charlie’s probe that in-
duces the observable C on the system, given the initial
probe state σC . From the discussion above, we can write
Θ = ΘA ◦ ΘB ◦ ΘC , because of the causal ordering im-
posed on the observers by Σ1,Σ2.

Now

〈C〉 =
(
ω ⊗ σ)(Θ(1⊗ B̃C)

)
= (ω ⊗ σA ⊗ σB ⊗ σC)(

(ΘA ◦ΘB ◦ΘC)(1⊗ 1⊗ 1⊗BC)
)

= (ω ⊗ σA ⊗ σB)
(
(ΘA ◦ΘB)(C ⊗ 1⊗ 1)),

(42)

where trivial action of Θi on the probe theories with in-
dex j 6= i is used, together with the fact the C is the
system observable induced by BC using Charlie’s probe
coupling and initial probe state σC .

Causality says, that results of measurements ob-
tained by Charlie should be independent of the opera-
tions preformed by Alice. Hence,

(ΘA ◦ΘB)(C ⊗ 1⊗ 1) = ΘB(C ⊗ 1⊗ 1)

∀C ∈ A(M ;OC). (43)

The main result of [3] is that this is always the case.
Here I give a sketch of the proof.

Consider the region T := J−(ŌC) ∩ Σ1, where ŌC is
the compact closure of OC . Since OC and OA are space-
like separated, we expect that T ∩ (J+(ŌA) ∩ Σ1) = Ø,
and hence that T ⊂ K⊥A . Furthermore, by definition,
ŌC ⊆ D(T ) ⊆ D(M−(OB) ∩ O⊥A). Since C ⊗ 1⊗ 1 can
be localized in OC , using property 3 of the scattering
morphism in Lemma 5.2, ΘB(C ⊗ 1 ⊗ 1) can be local-
ized in M−(OB) ∩ O⊥A . Now by property 2 in Lemma
5.2, ΘA has to act trivially on ΘB(C ⊗ 1 ⊗ 1), which
proves that eq. 43 is always satisfied in the Sorkin sce-
nario. The geometric arguments in this proof can be
formalized, which is the content of Lemmas 3 and 4 in
[3].

Comments on causality in the FV framework.
From the discussion above, we see that if we formal-
ize quantum operations as interactions between system
and probe quantum fields in the FV language, causality
is always respected in the Sorkin scenario. It is shown
in [3] that this result generalizes beyond three observers
by the process of causal factorization to any collection
of causally orderable observers. There are some other
important points about causality however.

Firstly, it is worth noting that if the probe observ-
able can be localized in K⊥, the induced observable is
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Figure 2: The Sorkin scenario in the FV framework. OA, OB and OC are regions containing the interaction
regions of the probes controlled by Alice, Bob and Charlie respectively. Σi are Cauchy surfaces. This figure
illustrates how the scattering morphisms Θi act on the uncoupled theory. The dashed lines are null curves. The
blue region is J+(OA), the red region is J−(OC). Time is vertically upwards, one spatial dimension is on the
horizontal axis.

a multiple of the identity (Theorem 3.3 in [2]). This
can be checked explicitly. Suppose B ∈ B(M ;L), where
L ∈ K⊥. Now

εσ(B) = ησ(Θ(1⊗B)) = ησ(1⊗B) = σ(B)1, (44)

where I used property 2 of the scattering morphism from
Lemma 5.2. This means that measuring probe observ-
ables in the causal complement of the interaction region
gives us no information about the system.

Secondly, one might be concerned about the situa-
tion when the probe observables B1 ∈ B(M ;N1) and
B2 ∈ B(M ;N2) are measured, such that N1 and N2

are causally disjoint. The induced observables can be
both localized in K. Einstein causality 4 in section 5.1
demands that [B1, B2] = 0. Does this mean we are re-
stricted to measuring only commuting observables on the
system in this setup? Luckily, εσ is not an isomorphism,
due to the definition of ησ, so the fact that [B1, B2] = 0
does not imply that the induced observables have to com-
mute too.

Finally, I would like to discuss the situation when
the observers cannot in fact be causally ordered, so that
causal factorization cannot be applied directly. Sup-
pose in particular that there are two observers, O1 and
O2, with probes associated with *-algebras B1(M) and
B2(M) respectively, coupled to the system AQFT with

*-algebra A(M) in compact regions K1 and K2 respec-
tively. Furthermore, suppose that there exists no space-
like Cauchy surface Σ, such that K1 ⊂ J−(Σ) and
K2 ⊂ J+(Σ) or vice versa, so the interactions cannot
be causally ordered.6 Suppose that O1 measures an
EVM E1 : χ1 → B1(M) ad that O2 measures an EVM
E2 : χ2 → B2(M).

To resolve this problem we can, as in the previous
section, combine the probes to get a single probe asso-
ciated with a *-algebra B = B1 ⊗ B2, coupled with the
system in a compact region K, such that Ki ⊆ K for
i ∈ {1, 2}. We can now consider measuring the joint
EVM E : χ1 × χ2 → B1 ⊗ B2, such that E(X × Y ) =
E1(X)⊗E2(Y ) ∀X ∈ χ1, Y ∈ χ2. We managed to com-
bine the observers to get a single observer, which can now
be causally factorized in a larger collection of observers.

In this way, given a collection of observers who can-
not be causally ordered, we can always combine some of
these observers to get a smaller collection that can be
causally ordered and we use causal factorization to show
that causality is obeyed. Note that if two observers can-
not be causally ordered, it means that there are timelike
curves between their corresponding regions in either di-
rection, so causality doesn’t constrain operations that
these observers can perform. Using this argument, it is
clear that causal factorization is enough to ensure proper
causal behaviour in the FV framework.

6Note that K1 and K2 can overlap.
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6 Sum over histories approach

In this section I will study causality in the language of
Feynman path integrals and sum over histories. First
I will introduce this idea in the case of a free particle
and then move to QFT. Path integral approach has been
suggested in [1] and [4] as the fundamental picture that
would iron out all difficulties with causality standard ex-
position of QFT contains. However, I am not aware of
any explicit attempts to do so and I will show in this
section why I don’t think this approach provides much
new insight into the problem.

In sections 6.1 to 6.3 I will develop ideas and nota-
tions from the literature. In section 6.4 I give my own
definitions and results, applying the preceding material
to AQFT and the study of causality.

6.1 Free particle

[In this section I am working in natural units ~ = c = 1.]

The path integral formulation of quantum mechanics
puts paths through configuration space in the spotlight.
See e.g. chapter 1 of [15] for a thorough introduction. For
a free particle in 1 spatial dimension q, given at t = 0
an initial wavefunction ψ(q, 0), the path integral yields
a wavefunction at time T > 0 as

ψ(q, T ) =

∫
dq′ψ(q′, 0)

∫
[q,q′]

Dq eiS[q], (45)

where S[q(t)] is the classical action. The path inte-
gral

∫
[q,q′]
Dq denotes an integral over all paths q(t)

through the 1-dim. configuration space of the particle
parametrized by time, such that q(0) = q′ and q(T ) = q.

This time evolution works in the free case, where
there is no measurement in the time interval (0, T ).
However, if the particle is measured to be in some re-
gions ∆1

α1
,∆2

α2
, ...,∆n

αn at times t1, t2, ..., tn, such that
0 < ti < T ∀i = 1, ..., n, the projection postulate
translates to the path integral approach by restrict-
ing the integration to paths in the set Cα, which sat-
isfy the boundary conditions as before, but furthermore
q(ti) ∈ ∆i

αi ∀i = 1, ..., n. Here, α = (α1, ..., αn). Write
this as

ψ(q, T ) = 〈q|ψ(T )〉 =

∫
dq′ψ(q′, 0)

∫
Cα

Dq eiS[q]. (46)

For a thorough analysis of this principle, see [16].
It is also possible to generalize this to measurements

of observables other than position, as explained in [17].
Suppose a measurement of a functional F [q(t)]. If the
measured value is within a real interval ∆α, the set of
paths over which we integrate becomes

Cα = {q(t) : F [q(t)] ∈ ∆α, q(0) = q′, q(T ) = q}. (47)

The position q is still the dynamical variable rather
than a spacetime coordinate (recall section 4.1), so the
theory remains non-relativistic. It is parametrized by a
single global time variable and the time order is the same
for all observers.

6.2 QFT

We can generalize the above approach by identifying the
configuration space of a scalar quantum field φ : M → R.
The process is described in detail in chapters 2 and 3 of
[15]. Some care should be taken when generalizing to
spinor fields or gauge fields, but in this discussion this is
an unnecessary complication. See e.g. [18] for a thorough
exposition. It will be beneficial to chose coordinates,
such that the first coordinate (call it time t) generates
timelike curves if we fix the other three and inherits the
time orientation from M . This is always possible in a
globally hyperbolic Lorentzian manifold. Now we can
write φ = φ(x, t), where x are the three spacelike coor-
dinates. I will call the space of all functions R3 → R
the configuration space of the field. The time coordi-
nate generates paths through this space, similarly to a
free particle in 1 dimension. The difference is that now I
have at each time infinitely many “positions”, each cor-
responding to the value of φ at some point in space.7

It is problematic to integrate over values of the field
at all space points. That is why sources are introduced
and only vacuum-to-vacuum transitions considered.

Consider a field with classical action S given by La-
grangian density L through

S0[φ] =

∫
d4x L(φ, ∂φ, ...). (48)

The source J(x) is introduced, such that the source de-
pendent action is given by

SJ [φ] =

∫
d4x

(
L(φ, ∂φ, ...) + J(x)φ(x)

)
. (49)

Let us pick a vacuum configuration φ0(x), corre-
sponding to a state |0〉 in the Fock space of the field
and write |0, t〉 for the time evolution of a field state
with |0,−∞〉 = |0〉. I would like to now get a path in-
tegral expression for the vacuum-to-vacuum transition
probability. Studying eq. 45 and generalizing it to
the field configuration space, given vacuum initial state
|0,−∞〉 = |0〉, I get

〈0|0,∞〉J =
1

Z0

∫
[φ0,φ0]

Dφ eiSJ [φ] =: Z[J ], (50)

where the normalization

Z0 =

∫
[φ0,φ0]

Dφ eiS0[φ] (51)

7I will sometimes use the word space in this section to address the spacelike hypersurface in M generated by fixing the time
coordinate. It should be clear, where something else is meant by it.
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is inserted since φ0 is assumed to have zero energy, and so
no time evolution and hence I require 〈0|0,∞〉J=0 = 1.
The path integral is over all paths through configura-
tion space φ(x, t), such that φ(x,±∞) = φ0(x). Taking
functional derivatives of Z[J ] with respect to the sources
and setting J = 0 gives time ordered expectation values
of field operators, i.e. we can use them to set different
initial and final conditions. For example

1

in
δnZ[J ]

δJ(x1)...δJ(xn)
= 〈0|T [φ(x1)...φ(xn)]〉 . (52)

For further details of this procedure, see e.g. [15].
The projection postulate from the free particle pic-

ture generalizes to quantum fields. If an observable
F [φ(x, t)] is measured to be in a real interval ∆α, the
path integral will run over only a subset of paths through
the configuration space Cα, where

Cα = {φ(x, t) : F [φ(x, t)] ∈ ∆α, φ(x,±∞) = φ0(x)}.
(53)

So we now write the vacuum-to-vacuum transition prob-
ability

Z[J ] =
1

Z0

∫
Cα

Dφ eiSJ [φ]. (54)

It is worth noting that I have chosen a preferred set
of coordinates for the description. This choice enters the
formalism only through the boundary conditions. La-
grangian density is a scalar that is integrated over all
spacetime and the path integral can be understood as
an integral over configurations of the scalar φ(x). How-
ever, since the boundary conditions are given at tempo-
ral infinities, they won’t have any effect on the general
story. There is also the issue of the Unruh effect, which
says that the vacuum is observer dependent, even in flat
Minkowski spacetime, see [19]. I will however skip these
subtleties, as they do not change the discussion; and so
I will assume that all observers can agree on a preferred
vacuum state and on the exact form of the boundary
conditions, e.g. the inertial observer vacuum at their
temporal infinities, in the case of the Unruh effect.

6.3 Decoherent histories

In the above picture, each path through configuration
space is assigned a complex amplitude, which are then
summed up to get the total probability of transition be-
tween the initial and final state. Therefore there is in-
terference between the paths and we cannot assign them
classical real additive probabilities. The concept of deco-
herent histories is a way of recovering the additive classi-
cal probabilities for larger bundles of paths, which don’t
interfere. For a thorough introduction see [20] and [17].

Consider again the case of a free particle for simplic-
ity. Let |ψ〉 be an initial state. I would like to describe
a history of the particle as: “The value of an observable
A1 at time t1 is in the interval ∆1

α1
, the value of an ob-

servable A2 at time t2 is in the interval ∆2
α2

etc.” Each

sequence α = (α1, ..., αn) now defines a distinct history.
Let P iαi for i = 1, ..., n be the Schrödinger picture pro-
jector of observable Ai corresponding to its value in the
interval ∆αi . Suppose that the alternatives are exhaus-
tive and mutually exclusive, so that∑

αi

P iαi = 1 and P iαiP
i
βi = δαiβiP

i
αi . (55)

We now say that, in each history α, the state is time
evolved in the Schrödinger picture by the operator ex-
pressing the definite values at the various times ti

Cα := e−iH(T−tn)Pnαne
−iH(tn−tn−1)...

...e−iH(t2−t1)P 1
α1
e−iHt1 , (56)

where H is the Hamiltonian. This can be rewritten using
the Heisenberg picture projectors as

Cα = e−iHTPnαn(tn)...P 1
α1

(t1), (57)

where P iαi(t) := eiHtP iαie
−iHt are the time evolved

Heisenberg picture projectors. The state |ψα〉 := Cα |ψ〉
is not normalized and its square norm is the probability
of the history

P (α) = 〈ψα|ψα〉 . (58)

Each vector |ψα〉 corresponds to a history. The his-
tories are said to be decoherent if

〈ψα′ |ψα〉 ≈ 0 ∀α′ 6= α. (59)

This means that each history is disjoint from all the oth-
ers and it makes sense to talk about them as being dif-
ferent alternatives for the dynamics of the system.

The important consequence of definition eq. 59 is
that it ensures additivity of probabilities. To see this,
consider the n = 2 case. Now∑
α1

P (α1, α2) =
∑
α1

〈ψ|P 1
α1

(t1)P 2
α2

(t2)P 2
α2

(t2)P 1
α1

(t1)|ψ〉

≈
∑
α1,α′1

〈ψ|P 1
α′1(t1)P 2

α2
(t2)P 2

α2
(t2)P 1

α1
(t1)|ψ〉

=
∑
α1

〈ψ|P 2
α2

(t2)P 2
α2

(t2)P 1
α1

(t1)|ψ〉

= 〈ψ|P 2
α2

(t2)P 2
α2

(t2)|ψ〉
= P (α2),

(60)

where the second equality is by eq. 59 and the third and
fourth equality by eq. 55.

It is important to emphasise that the histories do
not correspond to a sequence of measurements. These
would in fact always enforce decoherence. For exam-
ple, consider the standard double slit experiment. In the
path integral formulation, paths passing through each
slit interfere, giving rise to an interference pattern on
the screen, giving the probabilities for where the parti-
cle lands. This means that the histories like: “Particle
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passed through the first slit and then landed in the inter-
val ∆ on the screen,” do not decohere, i.e. don’t obey the
sum rule. However, if we measure which slit the particle
passed through, we enforce decoherence between these
histories, the sum rule between the histories as before is
obeyed, as indicated by the disappearance of the inter-
ference pattern.

6.4 Causality in decoherent histories ap-
proach in AQFT

In an AQFT A(M), I will use the concept of projective
effect valued measure (PEVM) to generalize projector
valued measures {P iαi} from the previous section to the
*-algebraic setting, as in section 5.2.1. Recall the defini-
tion of PEVMs def. 5.3.

Suppose that two observers O1 and O2 perform mea-
surements associated with PEVMs E1 : χ1 → A(M ;O1)
and E2 : χ2 → A(M ;O2) respectively, where χ1 and χ2

are associated with sets of all possible measurement val-
ues Ω1 and Ω2 respectively. The elements of χi, as in sec-
tion 5.2.1, correspond to the intervals in which the values
of observables measured by Oi can be found. Suppose
also that there exists a spacelike Cauchy surface, such
that O1 is in its causal past and O2 is in its causal fu-
ture. Now we can choose coordinates, such that there is
a coordinate t, which is constant on the Cauchy surface,
parametrizes timelike curves and in which O1 is before
O2, so that we can apply the coordinate dependent for-
malism from section 6.2. This generates a set of histories
associated with operators

Cα = E2(α2)E1(α1), (61)

labelled by α = (α1, α2). These operators can be local-
ized in any compact region containing O1 and O2, due
to the Haag property (condition 5 in section 5.1). We
can now generalize the notion of decoherent histories to

C∗α′Cα = 0, (62)

for all α, α′ such that α′i ∩ αi = Ø for some i. Given a
state ω, the probability of a history associated with the
sequence α is

P (α) = ω(C∗αCα). (63)

If we do not allow any other communication between
the observers, the observer O2 cannot know the result of
the measurementO1 performs. Hence ifO1 does perform
a measurement associated with the subset A1 ⊂ χ1, such
that α1 ∩ β1 = Ø for all α1, β1 ∈ A1 such that α1 6= β1
and

⋃
α1∈A1

α1 = Ω1, the probability distribution of re-
sults O2 observes will be

P (α2|A1) =
∑
α1∈A1

P (α1, α2) =
∑
α1∈A1

ω(C∗(α1,α2)
C(α1,α2)).

(64)

On the other hand if O1 doesn’t perform their measure-
ment, the probability distribution O2 observes will be

P (α2) = ω
(
(E2(α2)∗E2(α2)

)
= ω(E2(α2)), (65)

where the last equality comes from the definition of
PEVMs def. 5.3.

Hence O1 will be able to send a message (by either
performing the measurement or not) to O2 if

P (α2|A1) 6= P (α2), (66)

which can be written explicitly as

ω(E2(α2)) 6=
∑
α1∈A1

ω(C∗(α1,α2)
C(α1,α2)). (67)

Since we want a condition on the measurements them-
selves, we don’t want it to depend on the state ω. Hence
we need the condition eq. 66 to hold for all ω and the
condition on the measurements to be able to transfer
information from O1 to O2 becomes

E2(α2) 6=
∑
α1∈A1

C∗(α1,α2)
C(α1,α2)

or equivalently

E2(α2) 6=
∑
α1∈A1

E1(α1)E2(α2)E1(α1).

(68)

By comparing the condition in eq. 66 with eq. 60
we notice that the measurements won’t be able to signal
for any choice of A1 if the histories they generate deco-
here. In fact, studying the derivation of eq. 60, it will
be enough to demand that the histories decohere in the
first observable only. I mean by this that

C∗(α′1,α2)
C(α1,α2) = 0 ∀α2, α

′
1 ∩ α1 = Ø. (69)

Hence we define decoherent histories in AQFT as

Definition 6.1 (Decoherent histories in AQFT). Sup-
pose an AQFT A(M) and a set of n PEVMs {Ei}ni=1,
such that Ei : χi → A(M ;Oi). Suppose further that
there exists a set of n − 1 non-intersecting spacelike
Cauchy surfaces {Σi}n−1i=1 ∈ M , such that for each
1 ≤ i ≤ n − 1 all Oj with j ≤ i are in the causal past
of Σi and all Ok with k > i are in the causal future of
Σi. Now let us choose a coordinate system in M , such
that there is a coordinate t, which is constant on each
Σi, increases in the direction of the time orientation on
M and the regions Oi are ordered in t.

The histories Cα := En(αn)...E1(α1) for each α =
(α1, ..., αn) are said to be decoherent in the i-th observ-
able if

C∗(α1,...,α′i,...,αn)
C(α1,...,αi,...,αn) = 0 ∀αj 6=i, α′i ∩ αi = Ø.

(70)
Furthermore, the histories are called decoherent if

C∗α′Cα = 0 (71)

for all α′, α such that α′i ∩ αi = Ø for some i.
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Let us consider the case of two observers again. Sup-
pose O1 and O2 are in fact causally disjoint. Now causal-
ity demands that they can’t be able to signal each other.
This is ensured by Einstein causality in AQFT (condition
4 in section 5.1), which implies that

[E1(α1), E2(α2)] = 0. (72)

This is enough to ensure decoherence in the first observ-
able, since

(C(α′1,α2))
∗C(α1,α2) = E1(α′1)E2(α2)E2(α2)E1(α1)

= E1(α′1)E1(α1)E2(α2)

= E1(α′1 ∩ α1)E2(α2)

(73)

vanishes if α′1 ∩ α1 = Ø.
The Sorkin scenario, however, introduces a compli-

cation. Decoherence becomes non-trivial, since Bob’s
projectors don’t commute with either Alice’s, nor Char-
lie’s. If we give Alice, Bob and Charlie the PEVMs
Ei : χi ⊂ A(M ;Oi) with χi associated with sets Ωi and
i = A,B,C respectively, the condition on the PEVMs so
that Alice cannot signal Charlie becomes∑

αA∈AA

P (αA, αB , αC) = P (αB , αC), (74)

for all AA such that αA ∩ βA = Ø for all αA, βA ∈ AA
such that αA 6= βA and

⋃
αA∈AA αA = ΩA, or explicitly

EA(α′A)EB(αB)EC(αC)EC(αC)EB(αB)EA(α′A) = 0

∀αB , αC , α′A ∩ αA = Ø,

(75)

since in the Sorkin scenario we can order Alice, Bob and
Charlie uniquely in the sense of def. 6.1.

Even more worryingly, it seems we should be able to
introduce another observer, Beatrice, localized in a re-
gion OB′ , such that OB′∩J+(OA) 6= Ø, OB′∩J−(OC) 6=
Ø, OB′ ∩ OB = Ø and that there is a spacelike Cauchy
surface with OB in its causal past and OB′ in its causal
future, with PEVM EB′ : χB′ → A(M), where χB′ is
associated with ΩB′ . This will result in an even stricter
condition than eq. 75. The new condition will be

C∗(α′A,αB ,αB′ ,αC)C(αA,αB ,αB′ ,αC) = 0

∀αB , αB′ , αC , α′A ∩ αA = Ø.
(76)

We can keep adding observers measuring observables
localized in the region bounded (in “time”) by some non-
intersecting spacelike Cauchy surfaces, for which Alice is
in their causal past and Charlie in their causal future,
tightening the conditions on Alice not to be able to signal
Charlie even further. The only other condition I impose
on the newly introduced observables is that I have to be
able to order them by non-intersecting spacelike Cauchy

surfaces in the sense of def. 6.1. I will call this setup the
extended Sorkin scenario and the observables other than
EA and EC the intermediate observables.

Unfortunately, if histories in the extended Sorkin sce-
nario with n − 1 intermediate observers decohere in Al-
ice’s observable, it is not guaranteed that they will de-
cohere if an n-th intermediate observer is included. The
PEVMs don’t commute in general; and as is the case
even for (non-orthogonal) projectors P, P1, P2 on Rn,
given P1P2 = 0, it may well be the case that P1PP2 6= 0.

Therefore even in the language of decoherent histo-
ries, the conditions imposed by causality on observables
in AQFT are highly non-trivial. This language however
provides us with a simple check on “who can signal who”
in a particular spacetime setting of observers measuring
localized observables, provided they can be ordered in
the sense of def. 6.1. This is summarized in the follow-
ing claim.

Claim 6.1. Given a set of observers Oi, each measur-
ing a PEVM Ei : χi → A(M ;Oi), which are ordered
in the sense of def. 6.1, observer Oj will not be able
to signal the observer Ok with j < k if the histories
Cα = Ek(αk)...Ej(αj) for α = (αj , ..., αk) decohere in
the observable corresponding to Ej.

This claim is justified by noting that observers or-
dered before Oj and after Ok, don’t provide further con-
straints on causality between Oj and Ok.

To see that, consider an observer Om ordered after
Ok. The probability distribution of measurement of Ek
is determined just by histories ending at the measure-
ment of Ek and we can completely ignore Em, by defi-
nition of what we mean by a probability distribution for
measurement of Ek.

If instead we consider On ordered before Oj , his-
tories Cα = Ek(αk)...Ej(αj)En(αn) will decohere in
the observable corresponding to Ej , given that histories
Cα = Ek(αk)...Ej(αj) decohere in the observable corre-
sponding to Ej . This is an immediate consequence of
def. 6.1.

Note that the claim 6.1 implies that an observer will
not be able to signal the immediately following observer
if their corresponding observables commute (following
logic similar to eq. 73). This is consistent with the usual
notion of non-signalling in quantum mechanics.

The problem with getting a more refined condition
on causality in this formalism is apparent from the ne-
cessity of ordering the observables. It may well happen
that ordering of some localized observables in the sense of
def. 6.1 is impossible. Now we cannot generate histories
and all of the machinery above falls apart. The problem
is, that the product of non-commuting self-adjoint oper-
ators is not necessarily self-adjoint, since for E∗1 = E1

and E∗2 = E2

(E1E2)∗ = E∗2E
∗
1 = E2E1 6= E1E2. (77)
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Therefore products of PEVMs are not in general PEVMs
themselves. It is not clear how to proceed in this lan-
guage. However the discussion at the end of section 5.2
shows that if we introduce the apparatus, there is in fact
a joint PEVM localized in a region containing the re-
gions where E1 and E2 are localized, which has E1 and
E2 as its marginals. Hence the FV framework gives us a
way of combining measurements that cannot be causally
ordered. Hence claim 6.1 in fact does cover this eventu-
ality: we need measurement theory to transform a given
collection of observables into one which can be causally
ordered and to which claim 6.1 can be applied.

Back to path integrals. Now let us try to formulate
causality conditions in the path integral language. Con-
sider measurements of two functionals, F1[φ] and F2[φ],
which depend on φ(x), ∂φ(x), ... only for x ∈ O1 and
x ∈ O2 respectively, where O1, O2 ⊂ M . Observer O1

is measuring F1, observer O2 is measuring F2. Suppose
that O1 and O2 are spacelike separated, so causality dic-
tates that O1 and O2 should not be able to signal each
other.

A necessary condition for O1 not to be able to signal
O2 is∥∥∥∫

Cα2

Dφ eiS0[φ]
∥∥∥2 =

∑
α1∈A1

∥∥∥∫
C(α1,α2)

Dφ eiS0[φ]
∥∥∥2,

(78)
where

Cα2
= {φ(x) : F2[φ(x)] ∈ ∆α2

} (79)

and

C(α1,α2) = {φ(x) : F1[φ(x)] ∈ ∆α1
and F2[φ(x)] ∈ ∆α2

}.
(80)

The set A1 is a set of labels of non-intersecting intervals
∆α1

, which cover all possible values of F1[φ].
It is not at all obvious that eq. 78 will be satisfied

for arbitrary F1, F2. It is definitely not something guar-
anteed in the formalism. The path integral eq. 50 is
summing over all the configurations φ(x), so there is no
dynamics, from which causality could emerge, as in clas-
sical field theory, where it comes from the group veloc-
ity, limiting the speed at which disturbances can travel.
Causality therefore has to be imposed a posteriori (eq.
78), just as in e.g. AQFT (where this is done either by
including the apparatus as in the FV approach, section
5.2, or by considering the conditions on the histories,
section 6.4). At this stage, the path integral approach
seems to me a bit more clumsy than the others for find-
ing the right restriction on the observables that would
ensure causality, in view of the difficulties of working
with path integrals. Furthermore, there is not even a
simple criterion equivalent to Einstein causality (condi-
tion 4 in section 5.1), not to mention a condition that
would prevent signalling in the Sorkin scenario. How-
ever, I would not dare to anticipate future developments
of the solutions to this problem.

7 Conclusions

Causality is not intrinsically present in either usual quan-
tum mechanics, or quantum field theory. In the case
of ordinary quantum mechanics, we do not even have
all the spacetime coordinates included in the formalism,
which prevents us from even formulating what is meant
by relativistic causality in this theory (section 4.1). This
applies even if we use the sum over histories approach
(section 6). I have examined, what quantum operations
can we perform, if we use the classical notion of locality
and quantize only the internal degrees of freedom (sec-
tion 4.2). In this case, causality follows from imposing
locality on the operations.

Quantum field theory is therefore the right language,
in which to think about quantizing causality. However,
no matter whether a QFT is formulated in a Fock space,
in terms of path integrals (section 6.4) or as an AQFT
(section 5.1), causality has to be imposed a posteriori.
An important practical setup in which to consider causal-
ity and which amplifies the main problem is the Sorkin
scenario (section 3). Fewster and Verch proposed in [2]
a way to formalize measurement in AQFT as an inter-
action between the system and a probe (summarized in
section 5.2). Their construction, the FV framework, lo-
calizes measurement and leads to a causal theory (sec-
tion 5.2.2). This is a very satisfying result and one could
argue that this is all we need.

However, it is still an important practical problem to
provide conditions on observables in QFT, which guaran-
tee that their measurement won’t violate causality. The
task of finding such conditions is highly non-trivial and
I haven’t found a satisfying answer in the literature. I
used the notion of decoherent histories to find quite a
simple condition that checks for causality in a partic-
ular setting, where the observers can be ordered in a
particular sense using non-intersecting spacelike Cauchy
surfaces (section 6.4). The generalization to a condition
on the observables is however not simple.
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