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Abstract

While evenness is understood to be maximal if all types (species, geno-
types, alleles, etc.) are represented equally (via abundance, biomass, area,
etc.), its opposite, maximal unevenness, either remains conceptually in the
dark or is conceived as the type distribution that minimizes the applied even-
ness index. The latter approach, however, frequently leads to conceptual in-
consistency due to the fact that the minimizing distribution is not specifiable
or is monomorphic. The state of monomorphism, however, is indeterminate
in terms of its evenness/unevenness characteristics. Indeed, the semantic
indeterminacy also shows up in the observation that monomorphism repre-
sents a state of pronounced discontinuity for the established evenness indices.
This serious conceptual inconsistency is latent in the widely held idea that
evenness is an independent component of diversity. As a consequence, the
established evenness indices largely appear as indicators of relative polymor-
phism rather than as indicators of evenness.

In order to arrive at consistent measures of evenness/unevenness, it seems
indispensable to determine which states are of maximal unevenness and then
to assess the position of a given type distribution between states of maximal
evenness and maximal unevenness. Since semantically, unevenness implies
inequality among type representations, its maximum is reached if all type rep-
resentations are equally different. For given number of types, this situation is
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realized if type representations, when ranked in descending order, show equal
differences between adjacent types. We term such distributions “stepladders”
as opposed to “plateaus” for uniform distributions. Two approaches to new
evenness measures are proposed that reflect different perspectives on the po-
sitioning of type distributions between the closest stepladders and the closest
plateaus. Their two extremes indicate states of complete evenness and com-
plete unevenness, and the midpoint is postulated to represent the turning
point between prevailing evenness and prevailing unevenness. The measures
are graphically illustrated by evenness surfaces plotted above frequency sim-
plices for three types, and by transects through evenness surfaces for more
types.

The approach can be generalized to include variable differences between
types (as required in analyses of functional evenness) by simply replacing
types with pairs of different types. Pairs, as the new types, can be repre-
sented by their abundances, for example, and these can be modified in various
ways by the differences between the two types that form the pair. Pair rep-
resentations thus consist of both the difference between the paired types and
their frequency. Omission of pair frequencies leads to conceptual ambiguity.
Given this specification of pair representations, their evenness/unevenness
can be evaluated using the same indices developed for simple types. Pair
evenness then turns out to quantify dispersion evenness.

Keywords: concept of evenness; functional evenness; unevenness;
evenness index; type representation; diversity index; abundance;
representation distribution; variable difference; neighborhood evenness;
variational evenness; dispersion evenness

1 Introduction

There is general agreement on the concept of evenness as far as its one ex-
treme of complete evenness is concerned. The concept is built on the repre-
sentation of types in collections of objects, and it is oriented at the degree
to which the types are represented equally. Types could be alleles or geno-
types represented by their frequencies in populations, species represented by
their abundances in communities, crop varieties represented by the area they
cover or the biomass they yield in cultivation, etc. Hence, the focus is set on
the representation of types but not on their numbers. This contrasts with
common notions of diversity which comprise both numbers of types and their
representations.

The latter explains the widespread habit to conceive diversity as combin-
ing number of types with the evenness of their representations. Quoting Hurl-
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bert (1971, and further citations in this paper) “Species diversity is a function
of the number of species present (species richness or species abundance) and
the evenness with which the individuals are distributed among these species
(species evenness or species equitability)”. The conceptual demands of the
evenness notion on diversity measures was operationally specified as “trans-
fer of abundance” (or principle of transfers) by Patil & Taillie (1982) and
reformulated as the evenness criterion by Gregorius (2010): “diversity never
decreases as the difference in frequency between two types decreases while
the sum of their frequencies remains the same”). Strictly speaking, it is this
criterion (further generalizations can be found in Grabchak et al. (2016) that
justifies the central conception of evenness as a component of diversity and
allows transformation of each diversity measure into an “effective number”
of types.

Other approaches to measuring evenness abandon the diversity concept
altogether and turn directly to measures of distance of observed from ideal
type distributions, where the ideal is defined by a uniform distribution (all
type representations equal). These approaches are chiefly motivated by prob-
lems encountered with diversity-based evenness indices that are due to the
assessment of distributional characteristics and statistical inestimability of
indices (Pielou (1969, p.234); Peet (1975, p.497); Gregorius (1990); Bulla
(1994)). Bulla even reverses the relationship between diversity and evenness
by recommending the product of his evenness measure with the number of
types as a measure of diversity.

In all of the above-addressed work, the focus is set on complete evenness,
and deviations from this ideal structural state are quantified in terms of
normalized measures of diversity or distances of the observed type distribu-
tion from the ideal state. The smaller the values of the respective measures
become, the larger the incongruence with the ideal state is scored. The
structural characteristics of the type distributions which realize the minimal
evenness, if they exist, could then be viewed to provide in some sense an
idea of the absence of evenness. Yet, conceptual specifications of this idea
are rarely, if ever, pondered. This is unfortunate, since it deprives us of
any attempts to associate the absence of evenness with relevant ecological or
evolutionary processes.

As a first step, common methods of quantifying evenness will therefore
be checked for consistency of their lower bounds with notions of the absence
of evenness. Remaining inconsistencies will be treated by turning from the
absence of evenness to a concept of unevenness that is based on the specifica-
tion of desirable structural characteristics of type representations. The mea-
surement of evenness will then be designed to cover the continuum between
complete evenness and complete unevenness. Herewith, the leading thought
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is that less evenness is not the same as more unevenness unless maximal un-
evenness is as definitely defined as maximal evenness is. As a consequence,
the notion of maximum unevenness must be purely conceptually defined as
is true for the notion of maximum evenness.

To appreciate the wide scope of applications, it is useful to consider that
type representations are not just limited to the above-mentioned features
but may also reflect relations among community members such as smallest
or average difference of a type from other types in the community, as are
applied in work on functional diversity. Several measures will be introduced
in order to allow choices to be made according to intuitive access or data
structure and to encourage adaptation of one’s own models.

The recently increasing interest in functional traits and their variation
(commonly though improperly referred to as “functional diversity”) chiefly
focuses on characteristics of the distribution of trait differences (however mea-
sured) in collections of organisms (especially communities or populations).
In this context, the entities of consideration can be of different kind, such as
individuals, types (species, genetic types, etc), and also pairs of those. The
latter entities, pairs, are especially relevant in the assessment of functional
variation in that pair differences and occurrence frequencies of pair types
jointly determine functional relations among the members of communities.
They will receive special consideration in a separate section which offers a
conceptual solution for the measurement of functional evenness that avoids
the shortcomings of currently favored indices.

2 Established methods of measuring evenness

As was mentioned before, the established indices of evenness can be dis-
tinguished into diversity-based and distance-based methods, both of which
assume their respective maximal values (usually 1) only for uniform type rep-
resentations. In the following, a brief demonstration will be provided of the
distributional characteristics that can be associated with index values below
the maximum and particularly as the values approach their lower bounds.
The results will be discussed with respect to their compatibility with the ba-
sic conceptual requirements imposed on the indices as well as their statistical
implications.

Throughout this paper, the relative representations qi of s types are as-
sumed to be ranked in descending order such that q1 ≥ q2 ≥ . . . ≥ qs > 0 with∑s

i=1 qi = 1. Uniform distributions of s types, i.e., q1 = q2 = . . . = qs = 1/s,
will be referred to as “plateaus” of length s. Whenever s is specified, the
stipulation implies that qi = 0 for all i > s.
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Let us start with the probably most frequently applied diversity index,
Simpson’s index (Simpson, 1949). This index is used in different versions,
among which the probability of sampling with replacement two different
types, i.e., 1 −

∑s
i=1 q

2
i , is usually preferred for both intuitive and concep-

tual reasons. The effective number of types involved in this index equals

1/
∑s

i=1 q
2
i , and it appears as one of the family Na := (

∑s
i=1 q

a
i )

1
1−a of diver-

sity indices derived by Hill (1973) as effective numbers of Rényi’s family of
entropy measures (Rényi, 1961) (effective Simpson number = N2; the limit
for a → 1 exists and equals N1 = exp(−

∑s
i=1 qi · ln qi)). The characteristic

of Na as an effective number of types becomes apparent from Na = s for s
equally represented types, irrespective of the parameter a.

The by far most common transformation of the diversities Na into an
evenness measure is Na/s for s types (for various variants of this family of
measures, see e.g. Table 2 in Tuomisto (2012) or Table 1 in Kv̊alseth (2015).
The conceptual inconsistency of this measure shows up directly when con-
sidering a series of type distributions with constant number s of types, along
which all representations are positive and tend to zero with the exception of
the first. A non-trivial example is provided by models of resource apportion-
ing that follow a finite geometric progression with the distribution

qi =
xi · (1− x)

x · (1− xs)
= xi−1 · 1− x

1− xs
, i = 1, . . . , s (1)

where 0 < x < 1 for the parameter x. Applying L’Hôpital’s rule, one obtains
as the limit for x → 1, qi = 1/s for i = 1, . . . , s and thus a uniform distri-
bution for s types. Moreover, as x→ 0, one obtains at the limit q1 = 1 and
qi = 0 for i > 1. At the same time Na → 1, in accordance with the limiting
distribution consisting of a single type (monomorphism). The evenness or
unevenness state of monomorphism is, however, unresolved unless declared
otherwise (such as “uniformity” by extending the concept from multiple types
to a single type). Thus Na/s → 1/s for all s, even though the limiting dis-
tribution always is the same (consisting of a single type). Thus the same
distribution receives different index values.

This discrepancy can be avoided by transforming Na/s into (Na−1)/(s−
1), so that one obtains an index that varies between 0 and 1 for s > 1 (see e.g.
Jost (2010), equation (3)). This index would converge to 0 as Na tends to 1
and s (the number of types with positive representation!) remains greater
than one. Of course, at the limit the index is not defined, since s = 1 holds
there. Moreover, since the index is supposed to measure evenness, a value
of 0 should indicate the “absence” of evenness, and the associated limiting
state would be monomorphism. One would therefore be obliged to consider
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monomorphism as a state of the absence of evenness, even though otherwise
the evenness state of monomorphism is considered to be unresolved.

The discrepancy indeed has practical relevance, for example in population
genetics, where so-called “minor polymorphisms” (Lewontin, 1974) resemble
geometric progressions (equation (1)) for x close to zero in that they consist
of a single dominant allele and a number of rare alleles. More frequently,
however, minor polymorphisms are found to resemble the form

q1 = 1− (s− 1) · x/s, qi = x/s for i = 2, . . . , s and 0 ≤ x ≤ 1 (2)

(L-shaped distribution), to which the above deliberations apply identically for
small x. L-shaped distributions are a special case of mixtures of distributions
as are typical for models of migration in population genetics or community
ecology. Section 3.2 gives a geometric illustration of L-distributions along
abundance transects. For more examples of type distributions and their
underlying statistical models, see e.g. section 2.2 in Heip et al. (1998).

The pitfall of normalizing indices by numbers of types was pointed out
long ago. For example, Pielou (1969, p. 234) noted that evenness measures
that are normalized in this way cannot be estimated. Obviously, even for
large sample sizes, the existence of rare types in the sampled community may
cause only small changes in the estimate of Na when sampling is repeated,
but the number of types may change noticeably.

Hill (1973) was already aware of this drawback. He suggested an alter-
native by making use of the fact that Na ≤ Nb for a > b > 0 with equality
only for uniform distributions. His evenness index Na/Nb does not seem to
be used, however. One of the reasons is probably the arbitrariness in the
choice of levels a and b (see e.g. Ricotta (2003)). Another reason might
be that there is no definite greatest lower bound for Na/Nb which could be
associated with structural characteristics of type distributions that indicate
lowest evenness. In addition, the index also assumes its maximal value of 1
for monomorphism, which suggests that monomorphism is a state of com-
plete evenness, as opposed to its previous characterization as the “absence”
of evenness. Again one arrives at inconsistent conclusions.

The conceptual inconsistency of the index Na/s applies analogously to the
occasionally used index of evenness suggested by Bulla (1994). The index
is based on a measure of distance between a distribution of s types and the
corresponding uniform distribution of these s types. The distance measure is
d = 1

2
·
∑s

i=1 |qi − 1/s|, which relates to the well-known Manhattan distance
between the distribution q and the uniform distribution. It has a least upper
bound of d = 1− 1/s for given s that is reached if q represents a single type
(monomorphism). Bulla’s evenness index can then be stated in the form
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1− d/(1− 1/s). It is immediately realized that the conceptual inconsistency
demonstrated above for the diversity-based method Na/s (or (Na−1)/(s−1))
of quantifying evenness applies identically to Bulla’s index (also see Ricotta
et al. (2014). The same holds when d is replaced by any other appropriate
distance measure between distributions (Chao & Ricotta (2019)).

To avoid this problem, Gregorius (1990) suggested that the distance be
minimized between the observed type distribution and all possible uniform
type distributions. The minimization removes the explicit dependence of
evenness measurement on the number of types, which is the major cause of
the conceptual shortcoming of the common measures. In fact, assessment
of the evenness of a type distribution should by basic perception not be a
matter of number of types but rather only of their representations. While
the distance minimization approach apparently realizes this principle, it can
be shown that for given number of types the greatest lower bound (infimum)
of the minimal distances increases with the number of types (Gregorius,
1990). Yet, the characteristics of the type distributions that realize or become
arbitrarily close to the respective lower bound again remain unspecified.

In other cases, the lower bound of a measure can be determined together
with the distribution for which it is realized. This requires specification
of additional conditions under which this can be achieved. Among these
conditions is first of all that the representations of types remain properly
positive as the lower bound is approached and finally realized. The condition
is mandatory for retaining the number of types, since otherwise the number of
types to be considered would be successively reduced as more and more types
reach zero representation. Moreover, the condition implies that collections
are of finite size, since for infinite size, the relative type abundances can
approach values of zero arbitrarily closely without changing the number of
types. Consequently, in a finite collection, the lowest representation of a type
is reached if it occurs only once.

The situation where all but one of the types occur only once (of course the
number of types in a collection is not allowed to exceed the collection size)
is referred to as maximal unevenness by Bulla (1994) and Kv̊alseth (2015),
since their indices are minimized under these conditions. The distribution
of maximal unevenness therefore is L-shaped (equation (2)), and it is condi-
tional on two parameters, the number of types (s) and the lower threshold
abundance for type presence (x). Essentially, this idea of a state of maximal
unevenness underlies all of the common measures of evenness, though this is
rarely stated explicitly (see the compilation of Scheiner (2019)). In fact, Jost
(2010) and more recently Chao & Ricotta (2019) addressed monomorphism
as a conceptual criterion for maximal unevenness.

Conceptual reasoning why this situation specifies maximal unevenness,
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other than that it reaches the lower bound of specific evenness measures, is
not provided. Both authors (Bulla and Kv̊alseth) do admit that their spec-
ification of maximal unevenness is problematic when considering increasing
collection size. In fact, their reluctance can chiefly be ascribed to the above-
mentioned problem of conceptual inconsistency. It also recognizes the prob-
lem of “inestimability of evenness”, in that when samples are taken from base
collections of effectively infinite size, the true state of maximal unevenness
would be the presence of only a single type, but the assessment of evenness
in terms of complete unevenness is then questionable.

In the approach of Jost (2010), it is assumed that all components in-
volved in the evenness notion are specified in terms of numbers equivalents
(effective numbers), among which diversity (with emphasis on Hill numbers)
takes a central position. The number of types (richness) is conceived to result
from independent combination (in form of a product) of diversity and “some
other independent quantity X” (also named “inequality factor”), which is
concluded in the further analysis to be interpretable as a measure of uneven-
ness that is equal to the multiplicative inverse of the common index Na/s of
evenness, i.e. X = s/Na. In this approach, the notions of evenness and un-
evenness are thus divided into different measures rather than being reflected
in a single measure. Moreover, X has no upper bound, so that ideas of max-
imum unevenness are without substance. The above-mentioned problem of
conceptual inconsistency remains.

In essence, it appears that the common indices proposed for the quan-
tification of evenness (see e.g. Table 1 in Kv̊alseth (2015) and Table 1 in
Chao & Ricotta (2019)), and especially those normalized to range within the
unit interval, indicate complete evenness for values of 1 and indicate effective
monomorphism for values close to 0. This observation is reminiscent of ideas
of concentration of overall mass to a single type, for which a value of 0 indi-
cates complete concentration and a value of 1 indicates equal distribution of
mass over types, akin to the Gini index used in economics. Alternatively, in
ecology the term “dominance” is used to refer to the same situation based
on relative species abundances in which one or a few species dominate the
species spectrum by their abundance (for a more detailed study, see Fung
et al. (2015)). The common evenness indices might therefore just as well be
referred to as inverse indices of concentration or as inverse indices of domi-
nance. Indeed, both concentration and dominance decrease as types become
more evenly distributed.

An even more comprehensive description can be arrived at if one real-
izes both extremes of the common indices in terms of polymorphism. In
this context, the minimal and maximal values indicate monomorphism and
full polymorphism, respectively. Herewith “full polymorphism” is to be un-
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derstood in the light of the limit set by the number of types occurring in
the collection, so that the polymorphism is “full” in the sense that all types
are equally abundant. From this perspective, the common approaches to
measuring evenness are actually revealed to be characteristic of measures of
relative polymorphism.

This ambivalence calls for a novel kind of approach to the measurement of
evenness that involves a consistent concept of unevenness. Since the notion
of evenness itself is unaffected, the questions to be treated are the same as
before, with the difference that unevenness receives the significance which it
initially was arguably intended to have.

3 Concepts of un-evenness

It has become clear by now that most of the shortcomings of the common
measures of evenness go back to a disregard of (1) distribution characteristics
(especially rare types) that lead to discontinuous transitions from polymor-
phism (more than one type with positive representation) to monomorphism,
and (2) specification of the characteristics of type distributions that realize
or come close to the greatest lower bounds (infima) of the respective index.
The latter calls to attention the concept of unevenness that is thought to
appear as small index values and the associated idea of low evenness. Simply
conceiving of ever smaller values of the established measures of evenness as
increasing unevenness is conceptually not justified.

When the opposite of evenness is to be characterized, the challenge is
to define complete unevenness as the analogue and counterpart of complete
evenness. Apparently, the concept of the analogue is not as obvious as the
concept of complete evenness. Though various approaches are conceivable,
it seems compelling to conceive of unevenness as the negation of evenness
and thus the entailment of inequality of type representations in the first place.
Following this, the question is as to the existence and structure of a state of
maximal inequality in type representations. Herewith it must be taken into
consideration that this state has to be specified for type distributions and
thus for relative type representations that sum up to 1.

Maximization of inequality in representations is therefore difficult to en-
vision without suitable ordering of the representations, such as the presently
used ranking in descending order. Here it becomes immediately clear that
simply enlarging differences in representation between individual objects may
not increase the overall inequality, since it may rather increase equality be-
tween the representations of other types. In its extreme form, this occurs
as the concentration of mass to one or a few types increases, which, in turn,
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entails the above-argued conceptual inconsistency. Consequently, overall in-
equality in representation can only be enlarged by distributing the differences
between types as equably as possible. In other words, unevenness should in-
crease as all types become equally differently represented.

Because of the uni-dimensionality of representations and the linear or-
dering implied by their ranking, maximal unevenness can be realized only
if all steps in the ranked distribution have equal height. This distributional
form is characterized by a linear descent of the representations and can be
visualized as a stepladder. It will serve in the following as the reference for
complete unevenness among a given number of types.

Stepladders are thus distributions q of the form qi = ai with

ai =
s+ 1− i

1
2
s · (s+ 1)

for i = 1, . . . , s (3)

They can also be conceived of as a finite arithmetic progression with incre-
ments (step-heights) of ai − ai+1 = 1/[1

2
s · (s+ 1)]. The relative step-heights

are then given by (ai−ai+1)/a1 = 1/s for i = 1, . . . , s as required (recall that
as+1 = 0).

A distribution of maximal (or complete) unevenness can now be described
for any given number of types by a stepladder characteristic, just as maximal
(or complete) evenness is reached for a given number of types if all of them are
equally represented. These two distributional characteristics set the limits
between which the assessment of evenness or unevenness should operate.
Since statements of unevenness as well as of evenness require consideration
of at least two types, situations of monomorphism must remain indeterminate
in both cases. In fact, a monomorphic distribution could be considered as a
stepladder consisting of a single step and as a plateau consisting of a single
type.

Diversity-based methods of assessing evenness cannot provide informa-
tion on unevenness, since measures of diversity generally do not produce
characteristic values that are associated with states of complete unevenness.
Besides, the assessment of evenness basically relies on the proximity of a
given type distribution to an ideal reference distribution, such as uniformity,
and by this requires measures of distance between distributions in the first
place. Measures of diversity, however, are aimed at properties of individ-
ual distributions rather than differences between such distributions, which
makes them difficult to transform into meaningful distance measures. The
following deliberations on measuring evenness/unevenness therefore take a
different and largely diversity-independent route.
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3.1 Measures of evenness/unevenness

There are several ways to design measures that range between states of com-
plete evenness and unevenness. Two approaches will be introduced in the
following because they have intuitive appeal and demonstrate the possibility
of looking at evenness from different perspectives. One approach is based on
the distances of a type distribution from states of complete evenness and un-
evenness (the generic approach), and the other again uses the two distances
but applies them to the distribution of step-heights in the ranked distribu-
tion as an indication of the deviation from states of complete evenness and
unevenness (the step-height approach). We will start with an example from
the generic approach, since this approach builds on perceptions that are more
familiar from previous work on the topic. In a second step, a measure will
be introduced that is based on the step-height approach.

3.1.1 The generic approach

Let u(k) denote a uniform distribution of k types (plateau of length k), and
let a(l) be a stepladder of length l. Note that the stepladder consists of
components

ai(l) =
l + 1− i
1
2
l · (l + 1)

for i = 1, . . . , l and ai(l) = 0 for i > l (3a)

For the plateau, one has ui(k) = 1/k for i = 1, . . . , k and ui(k) = 0 for i > k.
The distances of a type distribution q from the two reference distributions

u(k) and a(l) can then be written as d(q, u(k)) and d(q, a(l)). Among the
many distance measures d between distributions, p-norm based distances
(or simply p-distances) are probably among those most frequently applied.
In the case of the distributions q and a, for example, they take the form

d(q, a(l)) = dp(q, a(l)) =
(∑

i |qi − ai(l)|p
)1/p

with p ≥ 1. In the above-
referenced paper of Bulla, the distance d = 1

2
d1 is used, and only distances

d(q, u(s)) are considered for which s equals the number of types realized in
the distribution q.

As the present concept is built on classifying and quantifying the closeness
of a given distribution either to a plateau or to a stepladder, the primary task
is to determine and compare the distances from the nearest plateau and the
nearest stepladder. One thus needs to know the values π := mink=1,2,... d(q, u(k))
and λ := minl=1,2,... d(q, a(l)) as the minimal distances of the distribution q
from a plateau u and a stepladder a, respectively. π was previously used by
Gregorius (1990) for the measurement of evenness. Equality of π and λ can
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then be considered to be a transition situation, a turning point, or a state of
indeterminacy between evenness and unevenness.

The minimization of distances once more emphasizes the fact that ever
larger distances from states of complete evenness should not a priori be con-
sidered as increasing closeness to states of complete unevenness, especially
if these states are not explicitly defined. The same reasoning applies in the
reverse direction, i.e., increasing distance from states of complete unevenness
does not necessarily imply higher evenness, even though states of maximal
evenness are properly defined. It is, in fact, conceivable that q may undergo
changes along which their distances from both plateaus and stepladders in-
crease, so that the two distances need not be negatively correlated. This,
however, has no bearing on the assessment of evenness, since it is deter-
mined by the relation between values of two distances rather than by their
absolute values. Therefore the quotient

e1 :=
λ

π + λ

would be a consistent measure of evenness in the sense that e1 becomes 1 for
complete evenness of q (when it equals one of the u(k)), and it becomes 0
for complete unevenness of q (when it equals one of the a(l)). The two
minimization processes also guarantee that e1 is independent of the number
of types and prevent discontinuous changes in e1. Such changes occur when
rare types are added to q, as may easily happen for increasing sample size.

For purposes of geometric illustration, it might be helpful to picture e1
as defining a surface above a frequency simplex, as is done in Figure 4 in
section 3.2.

To find limits for the plateau and stepladder length below which the
respective minimal distances π and λ must be realized, consider the minimal
frequency qs in q and recall that qs ≤ 1/s. For a plateau of length k with
1/k ≤ qs (and thus k ≤ s), one obtains 2(1 − x) as its d1-distance from q,
where x = s/k. The distance thus increases with increasing k, so that the
minimal distance π must be realized for a plateau of length k with k ≤ 1/qs ≤
s. Along the same line of thought, consider the maximal frequency of the
stepladder is 1/1

2
(l + 1) ≤ qs. Since qs ≤ 1/s, this implies l ≥ 2s − 1. The

d1-distance of this stepladder from q is 2(1 − x), now with x =
∑s

i=1 ai(l),
so that the distance increases with l. The minimal distance λ must therefore
be realized for a stepladder of length l with l ≤ 2s− 1.
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The significance of monomorphism:

The index e1 is not defined for λ = π = 0. Yet, for distributions of at least
two types (polymorphism), π = 0 cannot be realized simultaneously with
λ = 0, since this would imply that the distribution is a plateau as well as
a stepladder. Coincidence of both, however, could only be conceivable for
monomorphism, in which case the stepladder would consist of a single step.
Hence, λ+π > 0 always holds for polymorphic distributions. Monomorphism,
in contrast, can be argued to be excluded from evenness deliberations, since
any assessment of evenness or unevenness requires the comparison of different
objects. Yet, especially for L-shaped distributions with one highly dominant
and several rare types (minor polymorphism), the vicinity to monomorphic
states is inevitable. Therefore, distances from monomorphism gain signifi-
cance independently of its evenness/unevenness interpretation.

That consideration of monomorphism is actually essential, becomes evi-
dent when realizing that for a distribution approaching monomorphism (such
as the geometric distribution in equation (1) with its parameter x approach-
ing 0), the minimal distances π and λ are both obtained for the same limiting
distribution, namely monomorphism. Hence, π = λ and thus e1 = 0.5 ulti-
mately hold, which is in complete conceptual accordance with the fact that
no decision can be made in favor of evenness or unevenness at this limit.
Furthermore, e1 = 0.5 continues to hold until the distribution includes types
with sufficient representation to recognize tendencies towards either evenness
or unevenness. This holds for all appropriate distance measures (including
the dp’s). It is this property that confirms the conceptual consistency of the
method underlying the design of e1.

The situation of minor polymorphism will be returned to in more detail
in section 3.2 for suitable example distributions.

3.1.2 The step-height approach

Another perspective of looking at evenness is less conventional but still intu-
itively obvious. It focuses on step-heights in the ranked distribution and their
variability as an indicator of evenness. Step-heights are given by qi − qi+1

for the individual types, and since their sum equals q1, one obtains for the
distribution of step-heights the relative quantities hi := (qi − qi+1)/q1. With
a stepladder a(k) of length k, step-heights are all the same, i.e., hi = h′i(k) =
1/k for i = 1, . . . , k and h′i(k) := 0 for i > k. For a uniform distribution
(plateau), all step-heights are zero with the exception of the one that marks
the end (or length) of the plateau. The p-distance of the step-height distri-
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bution h from the step-height distribution h′(k) then reads

dp(h, h
′(k)) =

(∑
i

|hi − h′i(k)|p
)1/p

=
(∑

i>k

hpi +
k∑

i=1

|hi − (1/k)|p
)1/p

(recall that hi = 0 for i > s).
As mentioned above, the step-height distribution of plateaus, denoted by

h′′(k), is degenerate in the sense that for a plateau u(k) of length k, the k-th
component equals 1 while all other components are zero, i.e., h′′i (k) = 1 for
i = k and h′′i (k) = 0 for i 6= k. Hence, the dp-distance, for example, of the
step-height distribution h from the step-height distribution of a plateau of
length k becomes

dp(h, h
′′(k)) =

(
(1− hk)p +

∑
i:i 6=k

hpi
)1/p

For p = 1, this reduces to d1(h, h
′′(k)) = 2(1− hk). Also recall that d1 ≥ dp.

Following the same construction principle as before, i.e., determining the
position of type distributions between the closest stepladders and closest
plateaus, type distributions are now to be replaced by their correspond-
ing step-height distributions. The appropriate distances are then πh =
mink d(h, h′′(k)) and λh = mink d(h, h′(k)), so that the evenness index be-
comes

e2 =
λh

πh + λh

with e2 = 0 only if q is a stepladder (complete unevenness), and e2 = 1 only
if q is a plateau (complete evenness). It is again straightforward to show
that λh is realized for some h′(k) with k ≤ s. The same holds for πh since
πh = 1−maxk hk.

It is readily verified that the explanations on the significance of monomor-
phism given for the generic approach to e1 (section 3.1.1) apply identically to
the step-height approach to e2: for distributions strongly but not completely
concentrated on a single type (minor polymorphism), one has e2 = 0.5. Fur-
ther details are presented in section 3.2, including illustrations of e2 as an
evenness surface above the frequency simplex.
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3.2 Illustration of the evenness indices

General characteristics of the new evenness/unevenness measures can be
demonstrated with the help of graphical representations of evenness. These
include “evenness surfaces” that are drawn for the highest-dimensional case
that is geometrically representable, namely for s = 3 types, and “evenness
curves” that follow one-dimensional transects (or lines) through the frequency
simplex for any number of types. The following demonstrations are based on
p-distances of order p = 1 (i.e., d = d1), because these are familiar from and
allow comparison with the above-cited earlier approaches to the assessment
of evenness and because they operate on untransformed differences between
type representations.

All distributions that consist of at most s types form the frequency sim-
plex Ss−1, an (s− 1)-dimensional subset of s-dimensional real space (the one
dimension is lost because each frequency qi equals 1 minus the sum of the
others). The simplex Ss−1 has one plateau of length s in its center, and
plateaus of shorter length are located on its edges. For s of any size, the
simplex Ss−1 has s! = s · (s− 1)... · 2 internal stepladders with s types, and
stepladders with fewer types are located on its edges.

Evenness can be visualized for s = 3. The corresponding simplex S2 can
be drawn as a two-dimensional triangle on the plane (Figure 1). The one
plateau of length 3 is located in the center, surrounded by the six steplad-
ders of length 3. The three plateaus and six stepladders of length 2 lie on
the edges of the triangle, and the three monomorphisms are at the corners
(Figure 2). Evenness can be plotted vertically above each distribution in the
triangle. When viewed from a suitable angle, the resulting three-dimensional
evenness surface demonstrates the main characteristics of evenness (see Fig-
ures 3 and 4).

To demonstrate the differences between the new measures and the even-
ness indices of Bulla (1994) and Simpson (1949), these two indices are graphed
as surfaces over the simplex S2 for s = 3 in Figure 3. Both are seen to assume
their maximum of 1 only for the plateau (1

3
, 1
3
, 1
3
) of length 3 at the center of

the simplex. Both ignore the distributions on the three edges of the simplex,
where one of the types is of frequency 0, even though each edge contains a
plateau of length 2 for the other two types and thus a point of highest even-
ness for s = 2. This confirms their dependence on the inestimable number
of types s (Pielou, 1969). Moreover, Bulla’s index approaches its minimum
of 0 as distributions approach monomorphism at the corners of the simplex,
for example the L-shaped distributions mentioned above. Simpson’s index
assumes its minimum of 0 there. Their assessment of monomorphism as min-
imal evenness contradicts the conclusion drawn above that monomorphism
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Figure 1: The frequency simplex S2 as the set of all frequency distributions with
at most s = 3 types. Left panel: S2 embedded in 3-dimensional real space R3.
Right panel: Equivalent representation of S2 as viewed from the origin (0,0,0) of
R3. As an example, the distribution q = (0.2, 0.5, 0.3) lies at the black dot.

is actually of indeterminate evenness.
The measures e1 and e2 show similar behavior that is very different from

the indices of Bulla and Simpson, as is demonstrated for s = 3 by the even-
ness surfaces graphed over the simplex S2 in Figure 4. Red shading marks
distributions with a tendency toward evenness, in that they are closer to a
plateau of any length than to a stepladder of any length. Blue shading marks
distributions with a tendency toward unevenness, in that they are closer to
a stepladder than to a plateau of any length. Both measures have peaks
(maximal turning points) of evenness 1 not only for the plateau (1

3
, 1
3
, 1
3
) at

the center of the simplex but also for the plateau of length 2 that lies on each
of the three edges of the simplex. Both measures also have minimal turning
points of evenness 0 within the interior of the simplex, namely for the six
stepladders with three types, as well as on each edge for the two stepladders
with two types. The large ”shelf” of evenness 0.5 (white) surrounding each
of the three monomorphic corners of the simplex indicates that evenness is
indeterminate not only for complete monomorphsim but also as individuals
of the other two types begin to appear, as proven above for arbitrary number
of types.

The differences between e1 and e2 are easy to see in the right panels
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Plateaus

 0  0.2  0.4  0.6  0.8  1

Stepladders

 0  0.2  0.4  0.6  0.8  1

Monomorphisms

Figure 2: Special distributions of the simplex S2. Of the four plateaus (red), the
plateau (13 ,

1
3 ,

1
3) of length 3 lies at the center of the triangle and each of the three

plateaus (12 ,
1
2 , 0), (12 , 0,

1
2) and (0, 12 ,

1
2) of length 2 lies at the center of one of the

edges. Of the 12 stepladders (blue), the six stepladders of length 3 specified by
(36 ,

2
6 ,

1
6) and its five permutations surround the central plateau, and two of the

six stepladders of length 2 specified by (23 ,
1
3 , 0) and its five permutations flank the

plateau of length 2 on each edge. Each of the three vertices represents one of the
monomorphisms (1, 0, 0), (0, 1, 0) and (0, 0, 1). The frequencies of all distributions
within the wedge (dotted lines) are ranked in descending order, i.e., q1 ≥ q2 ≥ q3.

of Figure 4, in which only those distributions with frequencies ranked in
descending order are graphed in full color. Comparing the proportion of dis-
tributions with evenness greater than 0.5 (red shading around the peaks),
e1 assigns more distributions a tendency toward evenness than e2. In like
manner, comparing the proportion of distributions with evenness less than
0.5 (blue shading around the low points), e1 assigns more distributions a ten-
dency toward unevenness than e2. This is balanced by the higher proportion
of distributions of indeterminate evenness 0.5 (white shelves) for e2 than for
e1. Thus for s = 3, e1 is more definitive about evenness than e2. A reason
for this is proposed at the end of this section.

It is more difficult to see whether this difference between e1 and e2
is maintained when distributions have more than three types, since even-
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(a) Evenness index of Bulla for s = 3
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(b) Evenness index based on Simpson’s diversity for s = 3

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Surfaces of two widely used indices of evenness graphed over the fre-
quency simplex S2 for s = 3 types: (a) Surface of the evenness index of Bulla
(1994) seen from an upper viewpoint (left panel) and projected onto S2 (right
panel). (b) Surface of the evenness index based on Simpson’s diversity (Simpson,
1949) seen from the same upper viewpoint (left panel) and projected onto S2 (right
panel). Color scale: from black for index value 0 to white for 1.
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(a) Evenness index e1 for s = 3
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(b) Evenness index e2 for s = 3
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Figure 4: Evenness surfaces of the new measures e1 and e2 for s = 3 types graphed
above the simplex S2. (a) e1-surface seen from an upper viewpoint (left panel) and
projected onto S2 (right panel). (b) e2-surface seen from the same upper viewpoint
(left panel) and projected onto S2 (right panel). Color scale: blue for evenness 0
to white for 0.5 to red for 1. In both projections (right panels), only the sector
of the simplex is fully colored for which the frequencies of the distributions are
ranked in descending order q1 > q2 > q3; the rest of the simplex is shown in paler
colors.
The positions of the extreme values coincide for e1 and e2. In the left panels, the
four peaks for which e1 = e2 = 1 holds correspond to the four plateaus, and the
low points for which e1 = e2 = 0 holds correspond to the twelve stepladders (see
Figure 2). The indeterminacy of evenness/unevenness at the three monomorpic
vertices is reflected by their evenness values of e1 = e2 = 0.5; this indeterminacy
is maintained as the two other types begin to appear at low frequencies, visible as
the large white shelves at the corners. Between the extreme points, the contours of
the e1- and e2-surfaces differ. Most prominent in the right panels are the narrower
peaks, the wider low points and the larger shelves around monomorphism for e2
as compared to e1.
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ness can no longer be drawn in three dimensions as a surface over a two-
dimensional simplex. It is, however, possible to compare e1 and e2 as
”evenness curves” along one-dimensional transects (lines) through higher-
dimensional simplices. For example, for two distributions q and q′, the set of
linear combinations (1−x) ·q+x ·q′ forms a line of distributions through the
simplex from q to q′, where the parameter x runs from 0 to 1. An evenness
curve can then be plotted as a function of x.

Problems in picturing evenness arise in particular as the number of types
increases while the dominant type remains at properly positive representa-
tion. This can be demonstrated most efficiently with the help of L-shaped
distributions when considering them as a linear combination of a completely
uniform distribution (with proportion x) and a distribution consisting of a
single type (with proportion 1 − x). In formal terms, L-distributions then
become straight lines q = x · u(s) + (1− x) · u(1) connecting the vector u(1)
with u(s) in the frequency simplex. The linearity of p-distances d then im-
plies d(q, u(s)) = (1−x) · d(u(s), u(1)). When applied to Bulla’s index (with
d = d1), this yields x for the index and is thus independent of the number of
types (compare Figure 3). Hence, the index tends to 0 with x tending to 0,
which again confirms the inconsistency of the index. In contrast, Simpson’s
evenness index N2/s (as well as (N2 − 1)/(s − 1)) tends to 0 with increas-
ing s and for constant x, which reveals another kind of inconsistency of this
diversity-based type of evenness measure.

By viewing evenness curves along analogous transects through simplices
with different numbers of types, such as from the plateau of length s to a
stepladder of length s, it can be seen how evenness develops as the number of
types increases. Figure 5 shows evenness curves over three sets of transects,
each set with analogous starting and ending points for s = 3, 6 and 12 types:

Figure 5(a) shows the transect through the simplex Ss−1 from a monomor-
phic corner (x = 0) to the plateau of length s at the center of the simplex
(x = 1). All distributions on this transect are L-shaped distributions, as
specified in equation (2). The most striking impression is that e1 leaves the
”shelf” of indeterminacy (0.5, as in Figure 4) that starts at monomorphism
at approximately the same value of x for all three s. In contrast, e2 leaves
its shelf later than e1 and extends it farther, the larger s becomes. Thus the
ascent of e2 to its peak of 1 at the central plateau (x = 1) is steeper than
for e1 for all s, and it becomes even steeper as s increases. This confirms
the conclusion from the projections in the right panels of Figure 4 that for
s = 3, the area around the central plateau with tendency toward evenness
is larger for e1 than for e2. For intermediate values of x, both measures dip
down into unevenness, but this tendency becomes less pronounced for e1 and
it disappears for e2 as s increases. These characteristics contrast with the
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indices of Bulla and Simpson, which show the full range of evenness from 0
to 1 along the transect, While e1 and e2 range only between mild unevenness
and evenness of 1.

Figure 5(b) shows the transect from a monomorphic corner (x = 0) to
one of the stepladders with s types that is closest to this corner (x = 1).
e1 and e2 stay on their shelves for about the same stretch of x as they
did in Figure 5(a), with e2 remaining indeterminate much longer than e1.
After leaving their shelves, both measures tend toward unevenness. As s
increases, the descent of e2 to its low point of 0 at the stepladder (x = 1)
begins later and is therefore steeper than for e1. While e1 and e2 range from
indeterminate to complete unevenness along the entire transect, the indices
of Bulla and Simpson start at 0 and increase to high evenness.

Figure 5(c) shows the transect from a stepladder with s types (e1 = e2 = 0
for x = 0) to the plateau of length s (e1 = e2 = 1 for x = 1). The curves
become more similar as s increases, but they differ in that e2 is smooth
while e1 show bumps for small x. These bumps occur when the transect
comes closest to stepladders or plateaus of different lengths. While e1 and
e2 cover the full range from 0 to 1, the indices of Bulla and Simpson show
high evenness along the entire transect.

The evenness curves in Figure 5 confirm the impression given by the
evenness surfaces in Figure 4 that e1 is more sensitive in its assessment of
evenness than e2. e2 retains the state of indeterminacy (0.5) over a much
longer distance from monomorphism than e1, while e1 decides at a much
shorter distance to show a tendency toward evenness or unevenness. An
apparent reason can be seen in the fact that in the step-height approach,
stepladders appear as uniform distributions and plateaus appear as degen-
erate distributions with a single non-zero component. Both distributional
characteristics allow for fewer adjustments in the minimization of distances
than is the case for the original frequencies on which e1 is based. Thus e1
allows a finer adjustment of its tendencies than e2 or, in other words, e1 is
more decisive in its assessment of evenness.

3.3 Variable differences between objects

Especially when aspects of evenness are to be considered for the joint distri-
bution of multiple traits, one quickly arrives at the situation where all trait
combinations are unique and evenness considerations are without substance.
Indeed, in this case each type occurs exactly once, so that evenness would
always be maximal under the perspective of discrete types. Yet, the vari-
ous trait combinations may differ more or less for the states of the individual
traits, so that evenness aspects are to be supplemented by variable differences
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(a) Evenness on transect from monomorphism to plateau of length s
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(b) Evenness on transect from monomorphism to nearest stepladder of length s
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(c) Evenness on transect from stepladder to plateau, both of length s
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Figure 5: Evenness along transects through the frequency simplex Ss−1: Evenness
is graphed along transects specified by the linear combinations (1 − x) · q + x · q′
of two distributions q and q′, where the parameter x ranges from 0 to 1 and the
p-distance d1 is used. The new measures e1 and e2 and, for comparison, the
indices of Bulla (Bu) and Simpson (Si) are shown. (a) L-shaped distributions from
monomorphism (x = 0) to the plateau of length s (x = 1), where s = 3 (left), 6
(center), and 12 (right); (b) from monomorphism (x = 0) to one of the nearest
stepladders with s types (x = 1) for s = 3, 6, 12 (e.g. from (1, 0, 0) to

(
3
6 ,

2
6 ,

1
6

)
);

(c) from a stepladder with s types (x = 0) to the plateau of length s (x = 1)
for s = 3, 6, 12. For s = 3, the evenness along these transects corresponds to the
coloring in the right panels of Figure 4.
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among the entities of interest (for a typical data set, see Table 1). These com-
pound traits are determined for single objects, and they include phenotypic,
functional, taxonomic, genetic, environmental, or geographic characteristics,
all of which may differ to variable degrees among the objects. Genealogical or
phylogenetic traits are different in that they specify traits for pairs of objects
(e.g. degree of relationship) rather than individual objects.

Indeed, consideration of variable differences in analyses of variation, and
diversity in particular, has received much attention during the last years.
Essentially, this is due to the availability of techniques for the identification
and assessment of complex traits, particularly in molecular genetics. Applica-
tions especially in ecology frequently appear under the notion of functional
diversity. This will be taken up in the next subsection with emphasis on
functional evenness.

Even though the concept of evenness has been developed so far only for
discrete traits, it can be consistently extended to arbitrarily complex traits for
which differences between the trait states are defined. To this end, it must be
realized that the contribution of the types (complex trait states) of individual
objects to a collection’s evenness cannot be assessed independently of their
difference from the types of the other objects in the collection. Therefore,
at the outset, contributions to a collection’s evenness are determined by the
trait differences between the two objects in every pair of objects as well as by
the abundances of such pairs in the collection. Thus the entities of analysis
are now pairs.

The challenge is then to see whether and how pairs of objects or types,
their abundances and their differences can be packaged into a conceptually
consistent framework of evenness measurement. Apparently, a more compre-
hensive definition of the term “representation” is needed. Continuing and
generalizing the above demonstrations suggests that representation be gen-
erally conceived as a prescription for assignment of real values to entities,
where the values measure each entity’s share in the totality and by this spec-
ify a distribution for the entities. The representation of a subset of entities
consequently equals the sum of the representations of the included entities.
Evenness then describes the situation in which the representations of the
entities conform with a uniform distribution, and this applies in particular
when the entities are pairs of objects (or types).

There are several ways in which pairs can be characterized as entities
that yield a distribution. Ignoring differences for the time being, pairs may
be defined, for example, by mating events and characterized by mating types.
The frequencies of realization of these mating types then specify their repre-
sentations. Instead of mating events within species, encounters between two
individuals of the same or of different species affiliation could be recorded,
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so that pairs of species constitute the entities under consideration and the
frequencies of encounter specify their representations. The latter includes the
possibility of forming all potential species pairs with representations given
by the product of the involved species abundances. In these cases, the re-
spective frequency or abundance products reflect the share that each entity
has among the totality of entities. Evenness assessment is thus legitimate,
and the above indices of evenness/unevenness apply identically. Yet, the
explicit introduction of type differences require more consideration of pair
characteristics, as will be detailed in the following.

3.3.1 Evenness for variable differences (variational evenness)

Inclusion of differences in performance among entities into evenness deliber-
ations are frequently treated in terms of “functional evenness”. As will be
shown later on, current methods of quantifying functional evenness and its
relatives apparently pass over the distinction that can be made between the
following three levels of variation: (1) the distribution of differences, (2) the
variability of differences, and (3) the significance of differences as represen-
tations of pairs in a collection of pairs. As to level (3), it should be recalled
(see above) that identifying and quantifying differences involves two objects
in each case and therefore basically rests on the evaluation of pairs and their
properties. These properties do not per se reflect a share that the pairs have
in the totality of pairs. In fact, pair differences cannot be a subject of studies
of evenness unless they can be explicitly shown to be part of a representation
of single pairs among all pairs and thus establish a pair distribution.

• Level (1) clearly addresses evenness, as complete evenness of the dis-
tribution is indicated by equal representation of all differences. In essence,
differences adopt the role of types here, making the numerical values of the
differences irrelevant. The numerical values can still be used in the con-
struction of cumulative distribution functions as helpful characterizations of
difference distributions. High evenness can be expected, for example, in the
absence of any advantages of functional interactions among community mem-
bers for the trait under consideration. The trait could thus be assessed as
functionally neutral. In contrast, decreasing evenness could be caused, for ex-
ample, by functional superiority of interactions preferably among individuals
of similar trait expression.

• Level (2) is relevant when pairs are the entities of interest and where
these entities are characterized by pair differences. Hence, with this focus,
problems of dispersion and especially of variance of differences are to be
studied. Distributional aspects are not directly concerned, so that evenness
is not an immediate issue. Nonetheless, the absence of variability as insin-
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uated by the term evenness could lead to the idea that there is complete
evenness if there is no variation in differences. Apparently, if differences of
zero were included, this would imply the meaningless conclusion that varia-
tion in differences is absent (and evenness is maximal) if all differences are
zero. Differences of zero are to be excluded from the analysis anyway.

Under this restriction, variances of differences are used especially in phy-
logenetic analyses to quantify notions of regularity of phylogenetic structure
(for a compilation see Tucker et al. (2017, Appendix S1)). In this context,
the term “regularity” is preferred over “evenness”. Complete regularity is
then realized for zero variance and thus for equality of all non-zero differ-
ences. Abundances are thus not regarded here, so that complete regularity
is stated despite arbitrarily variable abundances. It should also be realized
that complete regularity in fact implies a change in category of trait, in that
only discrete traits can display complete regularity.

In many cases, the entities of dispersion analyses for variable differences
are specified by individuals or types rather than pairs of these. For example,
Euclidean representation of data points together with Euclidean distances
(Gower, 1971) is often applied, especially for complex multi-trait characters
(e.g. Villéger et al. (2008), Pavoine et al. (2009)). The pertaining analyses
of variation again belong to the class of dispersion studies which, however,
are subject to the restriction that equality of differences between all data
points cannot be realized if the number of such points exceeds the number
of traits (dimensions in the Euclidean space). The conceptual implications
of this restriction for evenness considerations can be circumvented only by
reducing analyses to selections of special pairs, as will be returned to later
in connection with minimal spanning trees (MSTs). In other words, without
explicit reference to pairs as conceptual entities, attempts to describe and
quantify evenness in dispersion may be problematic.

A general drawback of using variances in evenness or regularity analyses
is again to be seen in the problem of specifying maximal variance (if it exists
at all) in terms of minimal evenness (maximal unevenness) or in terms of
minimal regularity (maximal irregularity). As indicated earlier, without such
specifications, non-zero variances have no definite qualitative interpretations.

• Level (3) can be approached by recalling that any given representation
of entities can be transferred into a new representation of the same entities
by applying a non-negative transformation to the initial individual represen-
tations. After normalization, if desired, the resulting representation appears
as a modification of the initial distribution generated by the transformation.

This applies to pair entities as well and therefore relates to level (2). For
example, if the initial pair representations are denoted by qi,j for each pair
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(i, j) of objects i and j with associated difference di,j, then a modification of
the qi,j’s that considers the differences di,j is provided by the transformation
qi,j · di,j, or as relative representation, q∗i,j = qi,j · di,j/

∑
k,l qk,l · dk,l (see

Table 1). In most applications, the initial pair representations are of the form
qi,j = qi ·qj, with qi and qj as the object representations realized in the initial
marginal distribution (see e.g. Rao (1982) and the numerous applications
of his average difference

∑
k,l qk · ql · dk,l not just in the field of functional

diversity).
With this transformation, however, one arrives at pair representations for

which the identity pairs (i, i) prevent the attainment of a state of complete
evenness, since di,i = 0 implies that q∗i,i = 0, with the result that equality of
all q∗i,j cannot be realized. As pointed out earlier, it is therefore essential to
generally exclude identity pairs from analyses of variational evenness.

In the latter context, it is possible to assume complete evenness for the
initial representation (all qij identical for i 6= j) so as to uncover the effect
of differences on representation. For the above example, the pair representa-
tions modified by difference would then take the form di,j/

∑
k,l dk,l for i 6= j.

Even though this gives the impression that the differences themselves appear
as pair representations, it should be recalled that it owes this claim only to a
particular underlying initial pair representation (for a compilation of relevant
indices, see Scheiner (2019)). Conversely, the effect of the initial represen-
tation on the evenness of the modified representation can be considered by
setting all differences between different types equal.

Occasionally, for the pair representations qi · qj · di,j, the impression is
conveyed that complete evenness is reached only if all types have equal rep-
resentation and all differences between different types are equal. This claim
is not true, as can be demonstrated for three types by choosing arbitrary
values for d1,2 as well as for all three qi’s (q1 + q2 + q3 = 1) and setting the
remaining differences to d1,3 = d1,2 ·q2/q3 and d2,3 = d1,2 ·q1/q3. Moreover, the
initial claim is intrinsically meaningless, since equality of all differences is of
relevance for evenness only in connection with pair distributions. Equality of
differences therefore indicates complete evenness only if a priori all involved
pairs are equally represented.

In summary, the above demonstrations reveal that when evenness analy-
ses are to consider variable differences between types, only level (3) of vari-
ation with its modified pair representations is of relevance.
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Table 1: Evenness with variable type differences. qi,j = pair abun-
dances, di,j = pair differences, q∗i,j = modified representations considering
pair differences, e1 = generic and e2 = step-height approach to evenness,
Bulla = Bulla’s evenness index, Simpson = evenness index based on Simp-
son’s diversity

qi,j
Type 1 2 3 4

1 0.04 0.04 0.06 0.06
2 0.04 0.04 0.06 0.06
3 0.06 0.06 0.09 0.09
4 0.06 0.06 0.09 0.09

di,j
Type 1 2 3 4

1 0 0.10 0.20 0.25
2 0.10 0 0.30 0.35
3 0.20 0.30 0 0.50
4 0.30 0.35 0.50 0︸ ︷︷ ︸

↓
q∗i,j

Type 1 2 3 4
1 − 0.018 0.052 0.065
2 0.018 − 0.078 0.091
3 0.052 0.078 − 0.196
4 0.065 0.091 0.196 −

q∗i,j = qi,j · di,j/
∑

k,l qk,l · dk,l, excluding i = j

Evenness indices for unordered pairs:

e1 = 0.3234, e2 = 0.3997, Bulla = 0.7112, Simpson = 0.6329

Differences d are chosen to increase with abundances q, so that the uneven-
ness in the abundances is expected to be enhanced by the differences. Despite
many equal abundances, this leads to values of e1 and e2 below 0.5, thus in-
dicating tendencies towards unevenness. In contrast, the indices of Bulla and
Simpson suggest a distribution of comparatively large evenness.
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3.3.2 Special cases

In some applications, only certain kinds of pairs are considered in evenness
analysis. For example, trying to align species in a linear fashion, Villéger et
al. (2008) extracted minimum spanning trees (MSTs) from their difference
matrices and supplemented each MST-edge weight (difference) by the sum
of the abundances of the two species defining the edge vertices. Pairs are
thus specified by two species that flank an MST-edge whose pair representa-
tions are defined by the edge weight combined with the corresponding species
abundances. Though this might appear as a poorly argued and partially in-
determinate approach to the assessment of “functional diversity” components
(Kosman et al., 2021), its principle fits into the present pair representation
framework and can therefore be used in evenness analyses. Yet, as Kosman et
al. (2021) pointed out, because of the conceptual vagueness (multiple MSTs)
and ambiguity of the general approach of Villéger et al., application of their
method of measuring functional evenness is not to be recommended.

Pair differences also serve as the basis for characterizing individuals or
types by neighbor relations, such as the smallest difference or the average dif-
ference of one individual from individuals of another type (in the present ter-
minology minj:j 6=i di,j and

∑
j:j 6=i di,j ·qj/(1−qi), respectively). The entities to

be represented are then types and no longer pairs of types, and the character
assigned to each type now depends on the other members of the community.
The initial representation of the types is now provided by their abundances,
for example, and the modified type representations are qi · minj:j 6=i di,j and
qi ·
∑

j:j 6=i di,j · qj/(1− qi), respectively (for usage of the latter in measuring
functional evenness, see e.g. Ricotta et al. (2014) or Scheiner (2019)). Dis-
persion and evenness considerations are again distinguished by whether the
focus is on variability in neighbor relations of types or on modification of
type representations by neighbor relations, respectively.

Similar kinds of type representations can be applied to the assessment of
structural diversity, where abundance and distinctness of types are the essen-
tial determinants of community structure (Gregorius & Kosman, 2018). In
connection with an appropriate index, this allows specification of structural
evenness. High evenness in structure, however, is commonly considered as
a situation that opposes natural systems, since these are generally charac-
terized by higher degrees of complexity which, in turn, imply irregularity.
As a matter of fact, irregularity and thus unevenness plays a major role in
studies of community stability (see e.g. May (1974)). This underlines the
significance of the present indices e1 and e2 with their conceptual emphasis
on the specification of unevenness.

Neighborhood relations may, however, also be viewed as sets of pairs,
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where the two individuals forming a pair are required to meet certain cri-
teria, such as at least one being the nearest spatial neighbor of the other.
The spatial distances of such neighbors then define their difference, and all
pairs are given the same representation. Computation of evenness values
would then provide information on the regularity or irregularity of neighbor
relations. Stepladders as situations of complete unevenness then appear as
states of complete irregularity of neighbor distances. Indeed, this is intuitive
in the sense that all possible neighbor distances are realized and vary in equal
measure, so that no clumping or partitioning occurs.

Scheiner et al. (2017) took an approach which could be considered as
hybrid in that it combines two levels of entities, individual type and pair of
types. In a first step, pair diversity is defined by Hill numbers applied to pair
representations modified by differences. Next, the number of types effectively
contributing to pair diversity is determined. The ideal situation underlying
this effective number is characterized by pair frequencies obtained from the
products of all (marginal) type frequencies, by equal type frequencies, and
by equal (non-zero) differences. Their functional evenness index then results
in the common fashion from division of the effective number of types by
the total number. The effective number is a strictly increasing function of
the pair diversity, and it is less than or equal to the total number of types
with equality only if the pair representations are given by the above ideal
situation. Hence, to realize states of maximal evenness in the sense of the
index of Scheiner et al., equality of pair representations is not sufficient, since
this includes situations in which not all type combinations are represented
(this observation will be returned to in the next subsection). The minimal
value of the index is realized if only two types exist and these form the single
pair. The present criticism of conceptual inconsistency with respect to states
of complete unevenness applies accordingly.

3.3.3 The role of types in measuring variational evenness

For s types realized in a set of pairs with positive representation (recall that
identity pairs are excluded), the smallest number of such pairs is s/2 for
even s and (s+ 1)/2 for odd s, and the largest number is s(s− 1). For any
number of pairs within this range, equality of all pair representations and
zero representation of the other pairs is possible. This would imply maximal
evenness according to the present concept if pairs were considered as simple
entities, ignoring the types of which they are composed. The above MST
example belongs to this category, since there the edges and their weights but
not the involved vertices are relevant.

Obviously, this is undesirable if the two types that make up each pair are
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explicitly defined. Then the observed number of types (with positive repre-
sentations) is understood to determine ideas of variational evenness/unevenness
in the first place, and pair representations follow this pattern in some sense.
In particular, a pair distribution involving s types is considered to be a
plateau only if all of the s(s− 1) possible type combinations (and not fewer)
are equally represented. In this case, the associated type representations also
are all equal (= 1/s) and therefore form a plateau at the type level.

Stepladders, as states of complete variational unevenness, follow the same
principle as plateaus in that all possible type combinations are required to
be realized (with positive representations) and their representations show
stepladder structure. Hence, at the pair level, stepladder distributions as
well as plateaus are completely determined by the number of types involved.
They specify the states of complete variational unevenness and complete vari-
ational evenness. Consequently, the length of the plateaus and stepladders
involved in the minimization of distances from the observed distribution of
pair representations are determined by the involved number k, say, of types.

For the lengths of the plateaus and stepladders to be considered in the
minimization of distances, ordered pairs (with numbers k(k − 1)) have to
be distinguished from unordered pairs (with numbers k(k − 1)/2). Thus
in the former case, lengths proceed in steps of k(k − 1) and in the latter
case in steps of k(k − 1)/2 with k = 2, 3, 4, . . .. Note that unordered pairs
cannot be treated as symmetrically ordered, since the latter would exclude
the existence of stepladders (in Table 1, evenness indices are determined for
the unordered pairs resulting from the symmetrically ordered pairs). The
resulting minima π (or πh) as well as λ (or λh) enter the definition of the
evenness indices e1 (or e2), as before. The indices could then be referred
to as indicating variational evenness according to the generic and to the
step-height approach, respectively.

4 Concluding remarks

The presently suggested indices of evenness/unevenness cannot be used to
construct indices of diversity in the usual way by multiplying the former
index by the number of types (richness) and subsequent transformation. This
multiplicative decomposition of diversity indices relies on their interpretation
as “effective numbers” of types and is conceived to almost be a principle
of diversity measurement (see e.g. equation (1) in Tuomisto (2012)). Yet,
according to the present demonstrations, it is just this decomposition that
implies conceptual inconsistency by not distinguishing clearly between the
notions of evenness of type representations and concentration of mass to or
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dominance by a single type, for example.
The intrinsic reason could be seen in the fact that the evenness crite-

rion for diversity cannot be simply reversed to address aspects of uneven-
ness. In fact, the reversal would read “diversity decreases as the difference
in frequency between two types increases while the sum of their frequencies
remains the same”. As can be easily imagined, when applying this criterion
repeatedly to a sequence of decreasing type representations, one would again
arrive at a distribution that ultimately consists of a single type, which re-
inforces the above-argued inconsistency. The same line of reasoning applies
to Bulla’s approach, in which the evenness criterion is essentially replaced
by the distance from a uniform distribution. This justifies the conclusion
that indices of this kind should be addressed as indicators of the absence of
concentration of the overall mass to or dominance by a single type or, as
argued above, more appropriately as indicators of relative polymorphism.

The evenness criterion of diversity therefore is not suitable for describing
evenness in terms of equality and inequality in representation among types.
Consequently, the present indices abandon any diversity orientation and focus
solely on the complementary notions of equality (sameness) and inequality
(differentness) of type representations. The fact that situations of high even-
ness are much less frequently observed than variable representations (see e.g.
Mulder et al. (2004)) obviously calls for approaches which sharpen the focus
on unevenness. In particular, this includes specification of the state of com-
plete unevenness with the same precision and intuitive appeal as is familiar
from evenness. Since the evenness criterion is conceptually tied to notions
of diversity in terms of “effective numbers” of types, it is not surprising that
it leads to ambiguous interpretations when identically applied to generalized
aspects of evenness. The diversity-bound evenness criterion together with its
implied idea of diversity decomposition should therefore be abandoned as a
defining criterion of the general notion of evenness. The present deliberations
and demonstrations provide alternatives.

Application of the concept of measuring evenness to variable differences
raises the question of its relation to the measurement of dispersion. The
latter addresses first and foremost the spread of measurements and by this
again summarizes differences and abundances or other representations (for a
conceptual treatment see Gregorius & Kosman (2017)). It, however, provides
no information on the variability of type differences and type representations
in communities. This is well known for variances, for example, where the
same variance can be realized in communities with many individuals varying
strongly in difference and in communities with individuals largely differing
by the same amount.

In other words, dispersion indices report the amount of variation but
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not its distribution. The latter is covered by indices of evenness for variable
differences. Such indices, especially of the form discussed above, thus provide
essential complementary and independent information on dispersion, which
suggests that they be addressed as indicators of dispersion evenness. This
feature of dispersion seems to be largely ignored, however, with the possible
exception of a few indices listed in the paper of Scheiner et al. (2017).

Another evenness aspect that was already mentioned above with refer-
ence to phylogenetic characteristics is termed “regularity”. Tucker et al.
(2017, p. 710) stated that “regularity metrics reflect evenness in the distri-
bution of dissimilarity among species, ...” which is strongly reminiscent of
dispersion evenness. Yet for example, the regularity indices referring to tree
topology listed by Tucker et al. (2017, Appendix S1) are difficult to associate
with differences among species but rather seem to relate to ideas of network
symmetry and the like.
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ness. Océanis 24(4):61-87

Hill MO (1973) Diversity and evenness: a unifying notation and its conse-
quences. Ecology 54:427-432

Hurlbert SH (1971) The nonconcept of species diversity: a critique and al-
ternative parameters. Ecology 52(4):577-586

Jost L (2010) The relation between evenness and diversity. Diversity 2:207-
232

Kosman E, Scheiner S, Gregorius H-R (2021) Severe limitations of the FEve
metric of functional evenness and some alternative metrics. Ecology and
Evolution 11:123-132

Kv̊alseth TO (2015) Evenness indices once again: critical analysis of proper-
ties. SpringerPlus 4:232

Lewontin RC (1974) The Genetic Basis of Evolutionary Change. New York
and London: Columbia University Press

May RM (1974) Stability and Complexity in Model Ecosystems. Princeton
University Press

Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-
Lorenzen M, Schmid B (2004) Species evenness and productivity in exper-
imental plant communities. Oikos 107(1):50-63

Patil GP, Taillie C (1982) Diversity as a concept and its measurement. Jour-
nal of the American Statistical Association 77(379):548-561

Pavoine S, Vallet J, Dufour A-B, Gachet S, Daniel H (2009) On the chal-
lenge of treating various types of variables: application for improving the
measurement of functional diversity. Oikos 118(3):391-402

Peet RK (1975) Relative diversity indices. Ecology 56:496-498



Gregorius & Gillet The concept of evenness/unevenness 34

Pielou EC (1969) An Introduction to Mathematical Ecology. John Wiley &
Sons, New York, etc.

Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach.
Theoretical Population Biology 21:24-43
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