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Abstract

Consider a subjective expected utility preference relation. It is usually
held that the representations which this relation admits differ only in
one respect, namely, the possible scales for the measurement of utility.
In this paper, I discuss the fact that there are, metaphorically speak-
ing, two additional dimensions along which infinitely many more ad-
missible representations can be found. The first additional dimension
is that of state-dependence. The second—and, in this context, much
lesser-known—additional dimension is that of act-dependence. The
simplest implication of their usually neglected existence is that the
standard axiomatizations of subjective expected utility fail to provide
the measurement of subjective probability with satisfactory behavioral
foundations.
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Introduction

In this paper, I discuss Savage’s axiomatization of subjective expected util-

ity (Savage, 1954; 1972). I will assume without discussion that the main

function of this representation theorem is to provide behavioral foundations

for subjective probability measures—e.g., the statisticians’ priors appearing

in Bayesian statistics. Throughout, I refer to Savage merely because his re-

sult is the prime example of its kind in decision theory; mutatis mutandis,

all of the following applies to Ramsey, de Finetti, Anscombe and Aumann,

and anyone in the business of “explicat[ing] [beliefs] in the language of bets”

(Seidenfeld et al., 1990b, p. 523).

I will be concerned here exclusively with the uniqueness clause of Sav-

age’s theorem. Accordingly, unless stated otherwise, I will assume throughout

the paper that the existence conditions of Savage’s representation, i.e., the

Savage axioms, are satisfied. Sticking to Savage’s own terminology, this as-

sumption can be expressed as follows. Let < denote the binary preference

of a decision-maker over a set F of acts, with ∼ and � denoting indifference

and strict preference, respectively. The set F has the structure F ≡ XS

with S, the set of all possible states of nature and X, the set of all possible

consequences of the decision-maker’s acts. Although the Savage theorem fa-

mously requires S to be infinite, throughout this paper, I will discuss it as if

it allowed for a finite S, with S = {s1, . . . , sn}, and I will take the maximal

algebra of events 2S . This is to simplify exposition and, for discussing the

uniqueness of the representation, without loss of generality.1 Accordingly,

within this paper, I will say that < satisfies the Savage axioms if and only

if there exists a (non-constant) utility function u : X → R and a probability
1Besides, although the Savage theorem can be invoked only when S is infinite, reason-

ably close variants of this theorem can be invoked when S is finite (see, e.g., Köbberling
and Wakker, 2003 and the references therein). In these variants, unlike in the Savage the-
orem, instead of being imposed on S, richness requirements are typically imposed on X.
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measure p : 2S → R such that, for any f and g ∈ F , (1) holds:

f < g ⇔
n∑

i=1

p(si) · u
(
f(si)

)
≥

n∑
i=1

p(si) · u
(
g(si)

)
. (1)

The standard uniqueness clause of the Savage theorem is that in (1), p is

absolutely unique and u is unique up to an increasing affine transformation,

i.e., u can be replaced by v if and only if v = au+ b, for some a ∈ R>0, b ∈ R.

What is said in the standard uniqueness clause of the Savage theorem is,

of course, correct; but it is also significantly incomplete. As I will explain

and discuss, there are—metaphorically speaking—two additional dimensions

along which infinitely many other admissible representations of < can be

found and across which the uniqueness of p, in particular, will be lost. The

first additional dimension is that of state-dependence. The second additional

dimension is that of act-dependence and it is by far, in the present state of

the literature, the less familiar of the two dimensions. The most important

fact in what follows will be that preferences satisfying the Savage axioms

are compatible not only with the kind of representation given in (1), i.e., a

state-independent and act-independent representation, but also with an in-

finity of alternative state-dependent and/or act-dependent representations.

One major implication will be that the Savage theorem—once again: taken

as the prime example of its kind in decision theory—fails to provide sub-

jective probability measures with compelling behavioral foundations. I will

be concerned here almost exclusively with mathematically establishing the

above fact, because it is only incompletely understood in the current liter-

ature. Although this fact is of clear philosophical significance, I will not be

able to elaborate here on the conceptual or the methodological implications.

The paper is organized as follows. Section 1 examines state-dependence.

This dimension is now relatively well understood in the literature, thanks

in particular to classic work by Teddy Seidenfeld and co-authors (Seidenfeld

et al., 1990b; Schervish et al., 1990; 2013). I will only need to repeat their
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statement of the main problem, with two minor clarifications which I will

contribute. Section 2 examines act-dependence. This dimension is currently

not well known. To explore act-dependence and understand the symmetries

or asymmetries with state-dependence, I will build on recent work by David

Dillenberger and co-authors (Dillenberger et al., 2017). Their work will en-

able me to offer novel insights on act-dependence. A brief conclusion ensues.

1 State-Dependence

Consider a preference relation representable as in (1). For simplicity, assume,

to start with, that p in (1) has full support over S, i.e., p gives strictly positive

probability to all s ∈ S. Notice that, for any alternative full support q, with

the definition vi
(
x
)
= p(si)

q(si)
u
(
x
)
, for i = 1, . . . , n, equality (2) holds:

n∑
i=1

p(si) · u
(
f(si)

)
=

n∑
i=1

q(si) ·
p(si)

q(si)
u
(
f(si)

)
=

n∑
i=1

q(si) · vi
(
f(si)

)
. (2)

Therefore, with < the same preference relation as in (1), we have that, for

any f and g ∈ F , (3) holds:

f < g ⇔
n∑

i=1

q(si) · vi
(
f(si)

)
≥

n∑
i=1

q(si) · vi
(
g(si)

)
. (3)

The key point in (2) is that the vi correspond to state-dependent increas-

ing affine transformations of u from (1), and that such transformations,

too, prove compatible with the respect of the Savage axioms—including P3

and P4, i.e., the axioms supposed to enforce state-independence in the Savage

axiomatics.2 Indeed, if q is coupled with the collection of vi as constructed
2In general, seeing u as a function from X to R|S|, a state-dependent increasing affine

transformation is of the form αu+ β, with α ∈ R|S|>0 and β ∈ R|S|. For simplicity, we here
take β = 0 and a suitably restricted domain for α; but the problem applies more generally,
with an order-preserving renormalization. Notice the parallel with the case of cardinal non-
comparable utilities in social choice theory (e.g., d’Aspremont and Gevers, 2002, p. 485).

3



above, then, not only will their composition respect the Savage axioms; it

will also be behaviorally indistinguishable from the product of the functions p

and u initially given in (1). To this extent, Savage’s approach cannot dis-

tinguish between p and q or, indeed, any pair of full support priors. Notice

in particular that, following (2), one could associate any preference relation

representable as in (1) with the same prior—say, the uniform prior over S.

Accordingly, although, by assumption, their behavior differs, all the Savage

decision-makers can be shown to share the same prior. This vividly illustrates

the failure of the Savage theorem—once again: taken as the prime example

of its kind in decision theory—to provide subjective probability measures

with compelling behavioral foundations.

The argument just sketched is now standard in the literature, thanks

to its being stressed by many over the years, and particularly forcefully

by Teddy Seidenfeld and co-authors (see Seidenfeld et al., 1990b, p. 521;

Schervish et al., 1990, p. 840, 2013, p. 508; see also, most importantly and

in order of historical precedence, Drèze, 1961, Savage and Aumann, 1987,

Arrow, 1974, and Karni, 1996). However, I would like to add two minor

qualifications to the way Teddy Seidenfeld and co-authors typically present

the issue. This is not to criticize these authors, whom I take to be aware of

the necessary qualifications; this is merely to help their readers in directly

appreciating the full extent of the problem.

First, I want to dispel the impression according to which, in (1), there

is a substantial asymmetry between the states to which the Savage distribu-

tion p gives probability value zero and the states to which it gives a strictly

positive probability value. Following Savage’s terminology, I will call the

former null states and the latter, non-null states. Second, I want to dispel

the impression according to which, in the identification issues raised by (2),

there is a substantial symmetry between the implications on the measure-

ment of probability and the implications on the measurement of utility. For
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convenience, I will also informally refer to the former as the measurement of

beliefs and the latter, the measurement of desires.

I discuss null states first. Teddy Seidenfeld and co-authors comment

on (2) as follows: “for each coherent system of preferences ≺, the family

of possible (...) probability/utility pairs that agree with ≺ according to ex-

pected utility is constrained solely by probability-0 (null) states” (Seidenfeld

et al., 1990b, p. 521).3 As I now show, the constraint is even weaker than

what this statement suggests.

Assume now that, in (1), p(si∗) = 0 for some i∗ ∈ {1, . . . , n}. Then, (2)

applies all the same. The only difference is that by definition, for all x ∈ X,

vi∗
(
x
)
= 0. More generally, with ci∗ any constant from R, the representa-

tion of < could be preserved with, for all x ∈ X, vi∗
(
x
)
= ci∗ .4 The key

implication of this simple observation is that, even though p in (1) does not

have full support over S, one can, following (2), construct behaviorally indis-

tinguishable state-dependent representations featuring an alternative prob-

ability q that has full support over S. This is because, in a nutshell, zero

probability values and constant state-dependent utilities are not behaviorally

distinguishable from one another. The upshot is that even the support of

the subjective probability measure is not behaviorally identified.

Of course, given the properties of expected utility, the support of p in (1)

places constraints on the support of any alternative function q in (3). How-

ever, the only property that is common to all the priors q suitably compati-

ble with the preferences given in (1) is the following weak property. For any
3I will eventually return (on p. 20) to the ellipsis in the above quotation.
4First, apply (2), thus inducing (3) with vi∗

(
x
)

= 0 for all x ∈ X. All expected utility
levels being preserved, so is the representation. Next, add the constant q(si∗)ci∗ to both
sides of the inequality in (3). The inequality being preserved, so is the representation.
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s ∈ S, if s is non-null, then, q(s) > 0; if s is null, then, q(s) < 1.5 There-

fore, with p the prior featured in the state-independent representation (1),

the constraint characterizing the set of all priors q featured in some state-

dependent alternative representation (3) is as follows: supp(q) ⊇ supp(p).

One notable implication of this characterization is that—however interesting

it may be to conventionally restrict one’s attention to such sets—the set P

of all the priors suitably compatible with the preferences given in (1) is not

a set of mutually absolutely continuous probability measures.6 That is to

say, it is not such that for any pair q, q′ ∈ P and any event E in the event

algebra 2S , if q(E) = 0, then, q′(E) = 0.

Second, Teddy Seidenfeld and co-authors make this other comment on (2):

“it is difficult to justify treating probability values (...) as if they had mean-

ing independently of the utility (...) function. Similarly, the utility function

values do not have meaning independently of the probability of the events”

(Schervish et al., 2013, p. 509). What follows focuses on the second half of

the comment, more specifically, the parallel with the first. From one angle

at least, this parallel is mathematically unquestionable; but it could lead to

misappreciating one thought-provoking asymmetry, which I now highlight.

Consider (1), assuming again, to start with, that there is no null state.

The state-dependent increasing affine transformation in (2) shows that the

beliefs are essentially unidentified. But, in one important respect at least,

it proves inconsequential as far as the identification of desires is concerned.
5In the first case, if q(si) = 0, then for any state-dependent utility function vi it holds

that q(si)vi(x) = 0 for all x ∈ X, while to preserve the representation of the relation
given in (1) with p(si) > 0, it must be that q(si)vi(x) 6= q(si)vi(y) for some x, y ∈ X.
In the second case, if q(si) = 1, then for any state-dependent utility function vi it holds
that q(si)vi(x) 6= q(si)vi(y) for some x, y ∈ X, while to preserve the representation of the
relation given in (1) with p(si) = 0, it must be that q(si)vi(x) = q(si)vi(y) for all x, y ∈ X.
Clearly, the converse of the two implications thus established do not hold; to see this,
consider the case of a constant vi and that of p and q having the same support, respectively.

6This is contrary to what is suggested by some passages in Schervish et al., 1990; 2013,
such as the one quoted at the beginning of this development. The authors are nonetheless
clearly aware of the necessary qualifications (see, e.g., Seidenfeld et al., 1995, p. 2174:
“only when p(si) 6= 0 is it worth restricting Uj in a decomposition of a linear utility V ”).
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Indeed, whatever the collection of state-dependent increasing affine trans-

formations, the consequences and their utility differences (of first or higher

order) will be ranked the same way in all states. Likewise, whenever defined,

the so-called Arrow-Pratt index of risk aversion I(x) ≡ −u′′(x)/u′(x) (see

Arrow, 1963, Pratt, 1964, and, e.g., Eeckhoudt et al., 2005) will be the same

in all states. But, for most decision theorists, this is simply all there is,

in itself, to the measurement of utility. Let me clarify that, in saying so, I

do not mean to endorse a conceptual claim about desires, to the effect that

it would not make sense to even aim at measuring, e.g., utility ratios or,

beyond, absolutely unique utility values. I am merely making a practical ob-

servation about decision theory, according to which, absent any interest for

the joint measurement of subjective probability (or, in a different context,

interpersonal comparisons of utility values), the measurement of utility does

not need to go beyond what is already achieved in (1) and, in fact, preserved

by (2) in (3). Accordingly, in a nutshell, one can claim that, although the

choice data in (1) leaves the underlying beliefs essentially unidentified, it

essentially identifies the underlying desires. This is the promised thought-

provoking asymmetry.7

If there are null states, the claim made above must be qualified by adding

that the contrast which I am highlighting arises only insofar as non-null

states are concerned. This is because, when there are null states, one can

certainly construct state-dependent alternatives to (1) in which the null-

state-dependent transformations will be non-increasing and/or non-affine—

the previously mentioned case of conditionally constant utilities being the

simplest example of all. Accordingly, as far as null states are concerned, the

utility values are entirely unidentified, too. This last point is made clearly

by Teddy Seidenfeld and co-authors (see, e.g., Schervish et al., 1990, p. 840).
7On which see Nau, 2001. Nau draws many other interesting implications from the key

underlying fact here, viz. that up to a standard affine transformation of u, the compound
summands or state-values in (1) are uniquely identified, irrespective of how each of them
is to be further decomposed, state by state, in probability and utility values, respectively.
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Once again, the foregoing qualifications are mere clarifications. Further-

more, overall, the main lesson to draw from (2) is exactly the one which

Teddy Seidenfeld and co-authors forcefully emphasized.8 To wit, the Sav-

age axioms fail to provide subjective probability measures with satisfactory

behavioral foundations because they exclude only some, not all forms of

state-dependent utility. Demonstrably, this is not an accidental failure that

could be fixed by more restrictive variants of these axioms. What (2) really

illustrates is that the assumption of state-independent utility is, at the end of

the day, “ineffable in Savage’s language of preference over acts” (Seidenfeld

et al., 1995, p. 2168–2169). Inasmuch as choosing between Savagian acts is

akin to betting on the state of nature, the same point can also be put by

saying that “state-independent utility (...) cannot be explicated in the lan-

guage of bets” (Seidenfeld et al., 1990b, p. 523). Such general formulations

are also meant to suggest that the problem of state-dependent utility, i.e.,

the identification issues detailed in the present section, is relevant not only

when the existence conditions of representation (1) are satisfied, but more

generally than that. To some extent (which I cannot make precise here),9

the problem challenges any approach—be it a non-expected utility one—that

would seek to explicate beliefs in the language of bets.

2 Act-Dependence

I now turn to the lesser known dimension of act-dependence. I start by recall-

ing how this notion is most often understood. Next, I motivate a generalized

conception of act-dependence, which is the one I am interested in discussing.

Traditionally (see, e.g., Seidenfeld et al., 1990a, p. 143; Seidenfeld et

al., 1990b, p. 521), act-dependence is said to obtain when a representation

like (1) must be replaced by another representation in which, unlike in (1),
8A detailed discussion of this lesson (including concrete interpretations for the forms

of state-dependent utility associated with (2) and the like) is offered in Baccelli, 2017.
9See Baccelli, 2021b for a partial answer and a discussion.
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the probability values assigned to the states depend on the acts under which

the states are envisaged. That is to say, the act-independent probability

measure p : 2S → R of (1) is replaced by a family of act-dependent proba-

bility measures, pf : 2S → R, pg : 2S → R, and the like, so that, for any f

and g ∈ F , (4) holds:

f < g ⇔
n∑

i=1

pf (si) · u
(
f(si)

)
≥

n∑
i=1

pg(si) · u
(
g(si)

)
. (4)

As Jacques Drèze may have been the first to notice (Drèze, 1961) and Teddy

Seidenfeld and co-authors, among others, subsequently highlighted (see, e.g.,

Seidenfeld et al., 1990a, p. 143), (4) can be naturally interpreted with refer-

ence to the situations of “moral hazard” studied in information economics and

contract theory. For instance, the decision-maker is the agent in a principal–

agent situation, and the probability of the uncertain events of interest—say,

the various levels of profit for the company which she is paid to manage—

depends on the various courses of action which she can take (see, e.g., Hart

and Holmström, 1987; Laffont and Martimort, 2002). More generally, in de-

cision theory, “moral hazard” refers to a varieties of situations in which the

resolution of uncertainty is not exogenous to the agent’s decision-making (or

so she believes), so that the probability of any given state generally depends

on her chosen course of action—i.e., it is act-dependent.

Clearly, if act-dependence is understood as in (4), then, it must fall out of

the scope of this paper, i.e., the Savage axioms are violated. Indeed, although

neither its surface structure nor the above interpretation is the standard one,

(4) falls, observationally and literally speaking, within the class of the “multi-

prior” models, understood generically as the class of all models of individual

decision-making featuring not one, but multiple priors. It is well known that

the multi-prior models, starting with the seminal “maxmin expected utility”

model (Gilboa and Schmeidler, 1989) or, in an independent tradition, Isaac

9



Levi’s decision theory (Levi, 1974; 1980), violate the Savage axioms.10

However, conceptually as well as behaviorally speaking, there is in gen-

eral no good reason for limiting act-dependence to probability, i.e., for not

extending it to utility, too. Intuitively, there are even good reasons against

thus limiting the scope of act-dependence. In a principal–agent situation,

for instance, the agent can influence the probability value of various events,

but at a utility cost—say, the disutility of the various levels of effort which

she will put in her job, depending on the incentive scheme set up by the

principal—that will vary with the courses of action open to her. This is

why one finds at the core of such strategic situations a problem of “incentive

compatibility”, as economists put it. Pushing this line of thought one step

further, one can argue that a genuine act-dependent generalization of (1) will

feature not only a family of act-dependent probability measures, as in (4),

but also a family of act-dependent utility functions, uf : X → R, ug : X → R,

and the like, so that, for any f and g ∈ F , (5) holds:

f < g ⇔
n∑

i=1

pf (si) · uf
(
f(si)

)
≥

n∑
i=1

pg(si) · ug
(
g(si)

)
. (5)

Therefore, by analogy with (2) and (3), the following question arises.

Can (1) and (5) ever be equivalent, i.e., can some forms of act-dependence

be behaviorally indistinguishable from the traditional subjective expected
10The above analysis could be sharpened based on the following fact. Most non-expected

utility models can be construed as departing from expected utility exactly in that they op-
erate with act-dependent, rather than act-independent, probability values (see, e.g., Cham-
bers and Echenique, 2016, p. 126; and more fundamentally Cerreia-Vioglio et al., 2011,
Cor. 3). For example, maxmin expected utility is the particular case of (4) where

pf = arg min
p∈Π

( n∑
i=1

p(si) · u
(
f(si)

))
for some state-independent u over X, and Π a closed,

convex (act-independent) set of priors over 2S .
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utility model axiomatized by Savage?11 The answer is: yes.12 Intuitively,

this happens when, in (5), the act-dependence of probability and the act-

dependence of utility cancel out, in the following sense. Although these two

forms of act-dependence generally entail—be it when they are considered

separately from one another, or when they are considered together—that the

existence conditions of act-independent representation (1) are violated, they

can exceptionally entail, when considered together, that these conditions are

satisfied.

A first case may be found shocking, but should be almost immediate at

this stage. Assume that the existence conditions of representation (1) are

satisfied. Implicit in (2) is the choice of one same alternative full support

measure q for all acts f and g. However, one might as well take an act-

specific full support measure qf for each f . As (6) makes explicit, this will

simply induce an act-dependent state-dependent utility function, like vfs :

n∑
i=1

p(si) ·u
(
f(si)

)
=

n∑
i=1

qf (si) ·
p(si)

qf (si)
u
(
f(si)

)
=

n∑
i=1

qf (si) ·vfi
(
f(si)

)
. (6)

The equality in (6) directly establishes that the preferences satisfying the

Savage axioms are compatible not only with the state-independent, act-

independent representation in (1), but also with an infinity of alternative

act- and state-dependent representations. Specifically, the existence condi-

tions of (1) do imply that there must exist an act- and state-independent

representation; but the equality in (6) shows that alternative act- and state-
11I am aware of the fact that, considering decision-making from a first-person and a pre-

scriptive point of view, rather than from the third-person and the descriptive point of view
adopted here, act-dependence raises a different set of questions (see, e.g., Joyce, 1999).
There is no reason to consider these questions as exclusive from the one focused on here.

12To the best of my knowledge, the idea that (4), (5), or the like can be compatible
with (1) has appeared only once before—and rather indirectly—in the literature, namely,
in Drèze and Rustichini, 1999 (Section 5). Drèze and Rustichini’s motivations, assump-
tions, and conclusions, which I cannot present here, are sufficiently different from mine to
justify that I offer the discussion to follow.
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dependent representations exist, too.

Noteworthily, in the alternative representations induced by an equal-

ity like the one in (6), the concavity properties of the act-dependent utility

functions cannot vary across acts, and a form of state-dependent utility must

obtain. To highlight the properties specific to act-dependence, rather than

state-dependence, I now establish that the previously announced positive an-

swer remains correct even when the concavity properties of the act-dependent

utility functions can vary across acts, and no form of state-dependent utility

obtains. To show this, I will build on work recently done, under different

interpretations and with different motivations, by David Dillenberger and

co-authors (Dillenberger et al., 2017).13 Abusing notation as usual, let x

stand for the constant act associating consequence x to all states of na-

ture. Assume from now on that X is (for simplicity) a bounded non-empty

real interval.14 Assume further that, in (1), < is increasing in X (endowed

with the usual order) and such that, for any f ∈ F , there exists one and

only xf ∈ X, called the certainty equivalent of f , such that f ∼ xf . Notice

that this is true if and only if xf = u−1

(
n∑

i=1
p(si) · u

(
f(si)

))
. Thus defined,

the certainty equivalent function u−1 represents < in (1), i.e., for any f

and g ∈ F , (7) holds:

f < g ⇔ u−1

(
n∑

i=1

p(si) · u
(
f(si)

))
≥ u−1

(
n∑

i=1

p(si) · u
(
g(si)

))
. (7)

Therefore, to answer positively the question raised in the previous para-

graph, it suffices that, for at least one f ∈ F , some act-dependent pair
13David Dillenberger and co-authors do not discuss moral hazard, a particular form of

which is behaviorally indistinguishable from what they call “optimism”. Besides, because
their focus is different, they provide an analysis of act-dependence that is less detailed than
the one offered in the present paper. Finally, as the end of the present paper will make
clear, their suggested analysis of the links between act-dependence and state-dependence
(Dillenberger et al., 2017, fn. 14, p. 1171) is, in several important respects, incomplete.

14This is typically the case in the axiomatizations of subjective expected utility over a
finite state space (see fn. 1), so as to make the uniqueness of the representation tractable.
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(pf , uf ) 6= (p, u) be found such that the constraint given in (8) is respected:

uf
−1
(

n∑
i=1

pf (si) · uf
(
f(si)

))
= u−1

(
n∑

i=1

p(si) · u
(
f(si)

))
. (8)

Two preference relations characterized by the same certainty equivalent func-

tion being one and the same, it will then follow that, when it is thus con-

structed, (5) is equivalent to (1).

I start by merely stating how to find, for any f ∈ F , a pair (pf , uf ) satis-

fying (8). For non-triviality, I will focus throughout on non-constant acts.15

For concreteness, I will focus on finding a pair (pf , uf ) such that pf dis-

plays the following remarkable property: The lottery induced by pf over the

consequences of f puts more probability weight on the more preferred con-

sequences than the lottery similarly induced by p. That is to say, calling p̂f

and p̂ the former and the latter lottery, respectively, p̂f first-order stochasti-

cally dominates p̂. Such cases are of interest because, as first-order stochastic

dominance is sufficient, ceteris paribus, for a greater expected utility, they

most immediately fit (through the idea of a utility cost) the intuitions coming

from the moral hazard cases studied in economics. Now, pick any increasing

concave transformation hf , and define uf by uf ≡ hf ◦ u. Then, it can be

shown that, for any uf thus defined, there exists at least one pf satisfying (8)

and the above first-order stochastic dominance requirement. It is the prob-

ability measure pf that, under the constraint given in (8), minimizes the

Euclidean distance to p, i.e., the expression in (9):

d(p, pf ) =

√√√√ n∑
i=1

(
p(si)− pf (si)

)2
. (9)

To the best of my present understanding, minimizing the Euclidean distance

to p has no particularly straightforward decision-theoretic interpretation in
15Notice that, by the defining properties of certainty equivalent functions, if f is con-

stant, then, whatever the function uf , there is no constraint on pf in (8).
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our context, and it may be considered as playing a merely technical role

in my analysis. The concave transform uf of u, by contrast, can be rather

naturally interpreted as integrating the utility cost paid by the decision-

maker for her efforts resulting in the initial distribution p̂ being replaced by

the more advantageous distribution p̂f . In any case, the special twist of the

situation thus constructed is that the two changes offset one another, in the

sense that (8) holds.

When |S| = 2, the proof of the existence claim just made is almost

immediate. Specifically, when f(s1) 6= f(s2), for a given increasing trans-

formation hf , only one probability measure pf satisfies (8). The solution

being unique, it is also, trivially, the distance-minimizing solution. Besides,

the concavity of hf directly imposes that p̂f first-order stochastically domi-

nates p̂. Call this Proposition 1, a proof of which is provided in the Appendix.

When |S| ≥ 3, by contrast, the situation is of necessity more complex.

For a given hf , there is typically not just one distribution, but a convex set

of measures satisfying (8). By the continuity in probability of the expected

utility functional and the fact that any probability measure is in principle

eligible to be pf , this set is not empty. I will be content here with analyz-

ing the case where |S| = 3 and f is such that f(s1) 6= f(s2) 6= f(s3), with,

say, f(s1) > f(s2) > f(s3). This is an enlightening case to focus on because

the main intuitions, that apply beyond this setting, can then be conveyed

geometrically in the so-called Marschak-Machina triangle. Presented as per-

tains to the present analysis, this is the simplex representing all the lot-

teries over the outcome set {f(s1), f(s2), f(s3)}, wherein each lottery q is

located thanks to its identifying coordinates q
(
f
(
s1
))

and q
(
f
(
s3
))

, i.e.,

the probability weight it places on outcomes f(s1) and f(s3), respectively

(see Marschak, 1950, Machina, 1982, and, e.g., the survey in Sugden, 2004).

Assuming some familiarity with this probability triangle and the geomet-

ric properties of expected utility within it, I illustrate the situation next,

14



in Fig. 1.

0

q
(
f
(
s1
))

q
(
f
(
s3
))

p̂

p̂f

Figure 1: Act-dependence in the Marschak-Machina triangle

As illustrated in Fig. 1, p̂ corresponds to some point within the triangle

(or on one of its boundaries). Given our assumptions and the properties of

expected utility, the convex set of probability measures satisfying (8)—i.e.,

yielding with uf xf , the observed certainty equivalent of f—must appear

in the triangle as a line with some positive slope. By concavity, this line

cannot pass by p̂ or any point located southeast of p̂, i.e., any lottery that

is first-order stochastically dominated by p̂. Therefore, this line must pass

somewhere above p̂. Because this line has positive slope, its intercept with

the perpendicular passing by p̂ (or, if this intercept lies strictly out of the

triangle, the closest intercept of the line with one of the boundaries of the

triangle) must lie somewhere northwest of p̂, i.e., correspond to a lottery

that first-order stochastically dominates p̂. In other words, given a concave

transform uf of u, if pf satisfies (8) and minimizes the distance to p as defined

in (9), then, p̂f first-order stochastically dominates p̂. Call this Proposition 2,
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the algebraic proof of which is sketched in the Appendix.16

Here is an illustration of what the preceding analysis implies. Suppose for

concreteness that |S| = 3, X = [0, 100], and consider the two acts in Table 1.

s1 s2 s3

f 49 25 1

g 2 2 32

Table 1: Two Savagian acts

With reference to f and g in Table 1, consider a decision-maker whose prefer-

ences over f , g, and the like can be represented as in (1). Further assume that,

in (1), the elicited functions are u(x) = x and p =
(
p
(
s1
)
, p
(
s2
)
, p
(
s3
))

=

(1/5, 3/5, 1/5). Thus, we have that f � g and the certainty equivalents

of f and g are 25 and 8, respectively. However, notice that the same

certainty equivalents are observed with uf (x) =
√
x together with pf =(

pf
(
s1
)
, pf
(
s2
)
, pf
(
s3
))

= (12/35, 17/35, 6/35) and ug(x) = log2 x together

with pg =
(
pg
(
s1
)
, pg
(
s2
)
, pg
(
s3
))

= (0, 1/2, 1/2), respectively. The two

act-dependent probability measures have been computed following the con-

struction geometrically presented in Fig. 1. Together with the act-dependent

utility functions based on which the computations have been made, they pro-

vide a concrete illustration of the possible equivalence between (1) and (5).

Clearly, the compatibility between (1) and (5) generalizes to any number

of states and any number of acts. It also generalizes to convex transforma-

tions of u together with act-dependent probability measures inducing distri-

butions that are first-order stochastically dominated by p̂, to pairs (uf , pf )

such that uf is neither more concave nor more convex than u and p̂f is neither

first-order stochastically dominating nor first-order stochastically dominated
16David Dillenberger and co-authors sketch the geometric analysis of Fig. 1, but they

do not provide the complementary algebraic analysis presented for the case |S| = 3 in the
Appendix. (The general case |S| = n can be proved following a constrained optimization
analysis.)
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by p̂, and to still other cases. These other cases might less immediately fit

the intuitions coming from the moral hazard literature, than the case in

Fig. 1. However, importantly, they are equally compelling illustrations of

the fact that some forms of act-dependence are behaviorally indistinguishable

from the subjective expected utility model axiomatized by Savage. More-

over, their sheer variety, especially as regards the concavity properties of

the act-dependent utility functions across all acts, is informative. It makes

transparent that—whatever either of the following means at this level of

intricacy—neither the beliefs nor the desires of the decision-maker are inter-

estingly identified across all the admissible act-dependent representations of

a given subjective expected utility relation. Notice that the second half of

this conclusion contrasts with what has been previously explained to hold

across all the admissible state-dependent representations of that relation (see

p. 7).

Two general lessons can be drawn from the fact that (1) and (5) thus

prove compatible with one another. The first and, perhaps, main lesson can

be phrased so as to echo how Teddy Seidenfeld and co-authors phrase (in

the quotations given on p. 8) the main lesson to draw from the equivalence

between (1) and (3). Preferences satisfying the Savage axioms are compati-

ble not only with the traditional expected utility representation in (1), but

also with an infinity of “multi-prior expected multi-utility” representations

displaying the special structure in (5), and (in at least some cases) rather

naturally associated with the moral hazard interpretation introduced at the

beginning of this section.17 This is because the Savage axioms—starting

with P2, that is the main axiom supposed to enforce act-independence in

the Savage axiomatics—exclude only some, not all forms of act-dependence.
17Although its usage is typically more specialized, I freely borrow the phrase “multi-

prior expected multi-utility representation” from the literature on incomplete preferences
(see, e.g., Galaabaatar and Karni, 2013 and the references therein, including Seidenfeld et
al., 1995). Observationally and literally speaking, this is justified inasmuch as (5) features
multiple probability measures and multiple utility functions.
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And this, in turn, is because the requirement that representation (1) be act-

independent is partly “ineffable in Savage’s language of preference over acts”.

In other words, it cannot be fully “explicated in the language of bets”. Such

general language is also meant to suggest that the problem of act-dependence,

i.e., the identification issues explored in the present section, is relevant not

only when the existence conditions of representation (1) are satisfied, but

more generally than that.

Second, and perhaps most interestingly, the fact that (1) and (5) prove

compatible has implications on the problem of state-dependent utility, i.e.,

the identification issues presented in Section 1, and its relation to the prob-

lem of act-dependence. Remarkably, it has been suggested in the literature

that, for the problem of state-dependent utility to be solved, it suffices that

the decision-maker presumes that she has some influence on the realization

of the events, the likelihood of which she is betting upon (see, especially,

Drèze, 1987; Karni, 2011). However, the possible equivalence between (1)

and (5) makes it clear that, in general, this will not suffice.18 Indeed, this

equivalence means that there will be some cases of the following kind. The

decision-maker does presume that she has such capacity of influence, which

is one natural interpretation of (at least some instances of) (5); but the

observer of her betting behavior is brought back to square one, i.e., repre-

sentation (1), that is, based on equality (2), behaviorally indistinguishable

from representation (3).

Moreover, it is not just indirectly, i.e., through its equivalence with (1),

that (5) leads back to the identification issues raised by state-dependent

utility. Indeed (even without once again mentioning the cases immediately

covered by equality (6)), notice that whatever the act f , for any full sup-
18For an elaboration on this non-sufficiency, see Baccelli, 2021a, Sec. 3. Admittedly,

both Drèze and Karni are well aware of the fact that, with actions that are unequally
costly to the agent, moral hazard may not suffice to overcome the challenges posed by
state-dependent utility to the behavioral identification of beliefs. However, neither points
out let alone elaborates on the fact that this is even compatible with the respect of the
Savage axioms.
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port probability measure qf , with the definition vfi
(
x
)
= pf (si)

qf (si)
uf
(
x
)
, for

i = 1, . . . , n, equality (10) holds:

n∑
i=1

pf (si) · uf
(
f(si)

)
=

n∑
i=1

qf (si) ·
pf (si)

qf (si)
uf
(
f(si)

)
=

n∑
i=1

qf (si) · vfi
(
f(si)

)
.

(10)

Therefore, when (1) and (5) are equivalent (with potentially different concav-

ity properties, across all acts, for the various act-dependent utility functions),

we also have through (10) that, for any f and g ∈ F , (11) holds:

f < g ⇔
n∑

i=1

qf (si) · vfi
(
f(si)

)
≥

n∑
i=1

qg(si) · vgi
(
f(si)

)
. (11)

However obvious they should be at this stage of the analysis, equality

(10) and equivalence (11) are worth expliciting because they make the fol-

lowing fact clear. Even holding fixed the act-dependent concavity properties

of the utility side of an act-dependent representation, the probability side

is not behaviorally identified. More generally, what equality (10) shows is

that the possible equivalence between (1) and (3) generalizes to any act-

dependent variant of (1) and the induced variant of (3). Likewise, the pos-

sible equivalence between (1) and (5) generalizes to any state-dependent

variant of (1) and the induced variant of (5). Thus (and even more so

given the cases already immediately covered by (6)), the state-dependence

and act-dependence identification issues examined in this paper do not can-

cel out, but combine with one another. Consequently, the respect of the

Savage axioms proves compatible with an infinity of state-dependent and

act-dependent representations. Metaphorically speaking, state-dependence

and act-dependence form two dimensions along which one can find infinitely

many admissible representations of the same Savage preference relation.

Incidentally, the above analysis offers a full clarification for what Teddy
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Seidenfeld and co-authors likely refer to when they mention—now without

the ellipsis, unlike in the first occurrence of this quotation on p. 5—“the fam-

ily of possible (act-independent) probability/utility pairs that agree with ≺

according to expected utility” (Seidenfeld et al., 1990b, p. 521; my emphasis).

Conclusion

In this paper, I have discussed the uniqueness clause of the Savage theorem.

I have kept referring to Savage’s result simply because it is the prime exam-

ple of its kind in axiomatic decision theory; for my purposes, all the essential

conclusions reached by examining this theorem are equally relevant to Ram-

sey’s, de Finetti’s, or Anscombe and Aumann’s alternative approaches, to

mention but a few. Throughout the paper, I have assumed that the ex-

istence conditions of Savage’s theorem are satisfied. I have also, in effect,

held fixed one arbitrary set of choice data meeting this requirement. I have

shown that, contrary to what is usually held, there is not just one (the

possible scales for the measurement of utility), but three dimensions along

which the non-uniqueness of the representation of the data must be appre-

ciated. The two usually neglected dimensions are that of state-dependence

and act-dependence. The latter dimension is, by far, the most unexplored

of the two in the current literature; this justifies the greater detail in which

it has been presented, as well as the greater caution with which it has been

discussed. The existence of these two additional dimensions has especially

damaging consequences on the behavioral identification of subjective proba-

bility, which the Savage theorem is supposed to deliver.

I have particularly emphasized the symmetries, asymmetries, and con-

nections between state-dependence and act-dependence. But upon finishing,

I want to specifically highlight that, although state-dependence and act-

dependence are often—which to some extent includes, by its very construc-

tion, the present paper—put on a par, they are profoundly different from

20



one another. This would become even more apparent if one stopped assum-

ing that the existence conditions of the classical subjective expected utility

representation are satisfied and started investigating which of the Savage

axioms are violated by the forms of state-dependence and act-dependence

that are incompatible with that representation. The question is especially

interesting when both forms of dependence are allowed to obtain at the

same time. Given the limited work currently available on act-dependence in

axiomatic, behavioral, Savage-style decision theory, such investigation will

require further research.

Appendix

PROPOSITION 1: Assume that |S| = 2 and f(s1) 6= f(s2). For any concave

transform uf of u, there is one and only one pf that satisfies constraint (8),

and it is such that p̂f first-order stochastically dominates p̂.

Proof of Proposition 1

Given the definition uf ≡ hf ◦ u and the properties of function composi-

tion, (8) can be uniquely solved as detailed next. For brevity, in this proof,

(u1, u2) stands for
(
u
(
f(s1)

)
, u
(
f(s2)

))
, (uf1 , u

f
2) for

(
uf
(
f(s1)

)
, uf
(
f(s2)

))
,

and
(
hf
(
u1
)
, hf
(
u2
))

for
(
hf ◦ u

(
f(s1)

)
, hf ◦ u

(
f(s2)

))
.

uf
−1(

pf (s1)u
f
1 +

(
1− pf (s1)

)
uf2

)
= u−1

(
p(s1)u1 +

(
1− p(s1)

)
u2

)
⇔ pf (s1)u

f
1 +

(
1− pf (s1)

)
uf2 = hf

(
p(s1)u1 +

(
1− p(s1)

)
u2

)
⇔ pf (s1)h

f (u1) +
(
1− pf (s1)

)
hf (u2) = hf

(
p(s1)u1 +

(
1− p(s1)

)
u2

)
⇔ pf (s1) =

hf
(
p(s1)u1 +

(
1− p(s1)

)
u2

)
− hf (u2)

hf (u1)− hf (u2)
.

It is readily checked that pf (s1) ∈ [0, 1], so that the solution defines a prob-

ability measure. Next, assume without loss of generality that f(s1) > f(s2).

21



Jensen’s inequality and the solution given above for pf (s1) imply that p̂f first-

order stochastically dominates p̂, for hf is (strictly) concave if and only if:

hf
(
p(s1)u1 +

(
1− p(s1)

)
u2

)
> p(s1)h

f (u1) +
(
1− p(s1)

)
hf (u2)

⇔
hf
(
p(s1)u1 +

(
1− p(s1)

)
u2

)
hf (u1)− hf (u2)

>
p(s1)h

f (u1) +
(
1− p(s1)

)
hf (u2)

hf (u1)− hf (u2)

⇔ pf (s1) +
hf (u2)

hf (u1)− hf (u2)
> p(s1) +

hf (u2)

hf (u1)− hf (u2)
√

⇔ pf (s1) > p(s1).

�

PROPOSITION 2: Assume that |S| = 3 and f(s1) 6= f(s2) 6= f(s3). For any

concave transform uf of u, if pf minimizes (9) under constraint (8), then,

pf is such that p̂f first-order stochastically dominates p̂.

Proof of Proposition 2

Henceforth, for brevity, let (u1, u2, u3) stand for
(
u
(
f(s1)

)
, u
(
f(s2)

)
, u
(
f(s3)

))
,(

hf
(
u1
)
, hf
(
u2
)
, hf
(
u3
))

for
(
hf ◦ u

(
f(s1)

)
, hf ◦ u

(
f(s2)

)
, hf ◦ u

(
f(s3)

))
,

(p̂1, p̂2, p̂3) ≡ p̂ for
(
p̂
(
f(s1)

)
, p̂
(
f(s2)

)
, p̂
(
f(s3)

))
, and (p̂f1 , p̂

f
2 , p̂

f
3) ≡ p̂f for(

p̂f
(
f(s1)

)
, p̂f
(
f(s2)

)
, p̂f
(
f(s3)

))
.

I start with the following preliminary observation. Given a (strictly)

concave hf , p̂f cannot satisfy (8) and be first-order stochastically dominated

by p̂. Assume, by way of contradiction, that such is the case. Then, by the

properties of expected utility, we have p̂1hf
(
u1
)
+ p̂2h

f
(
u2
)
+ p̂3h

f
(
u3
)
>

p̂f1h
f
(
u1
)
+ p̂f2h

f
(
u2
)
+ p̂f3h

f
(
u3
)
. By the concavity of hf , we also have

hf (p̂1u1 + p̂2u2 + p̂3u3) > p̂1h
f
(
u1
)
+ p̂2h

f
(
u2
)
+ p̂3h

f
(
u3
)
. Therefore, we

have hf (p̂1u1+ p̂2u2+ p̂3u3) > p̂f1h
f
(
u1
)
+ p̂f2h

f
(
u2
)
+ p̂f3h

f
(
u3
)
, thus contra-

dicting (8). Similarly, in Fig. 1, the line on which p̂f is to be found cannot

pass by p̂ itself. This is because (8) would then require that p̂1hf
(
u1
)
+

p̂2h
f
(
u2
)
+ p̂3h

f
(
u3
)
= hf (p̂1u1+ p̂2u2+ p̂3u3), while concavity requires that
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hf (p̂1u1 + p̂2u2 + p̂3u3) > p̂1h
f
(
u1
)
+ p̂2h

f
(
u2
)
p̂3h

f
(
u3
)
—a contradiction.

Next, without loss of generality, assume that u1 > u2 > u3, as in Fig. 1.

Then, p̂f first-order stochastically dominates p̂ if and only if p̂f1 ≥ p̂1 and

p̂f1 + p̂f2 ≥ p̂1 + p̂2, with one of these inequalities being strict. Because, as

explained in the preliminary observation, it is excluded that p̂ first-order

stochastically dominates p̂f , it remains to be shown that if p̂f1 ≥ p̂1 (respec-

tively, p̂f1 + p̂f2 ≥ p̂1 + p̂2) and the minimal Euclidean distance condition is

satisfied, then, p̂f1 + p̂f2 ≥ p̂1 + p̂2 (respectively, p̂f1 ≥ p̂1). I now show, by

contraposition, that if p̂f1 ≥ p̂1 but p̂f1 + p̂f2 < p̂1 + p̂2, then, the minimal Eu-

clidean distance condition is not satisfied. (The other case is similar.) With

reference to Fig. 1, this amounts to showing that, if one picks a point r,

corresponding to p̂f , that is on the line and northeast of p̂, then, one can

always find another point r′ that is also on the line, but closer—as measured

by the Euclidean distance (adapted from measures over the algebra of events

to lotteries over the set of consequences in the obvious way)—to p̂.

I now show how to construct r′ from r. As is clear from Fig. 1 and as I

now detail algebraically, in general, this can be done by transferring to f(s2)

appropriately small probability weights ε1, ε3 from f(s1) and f(s3), respec-

tively. First, notice that since (i) p̂f1 ≥ p̂1 and p̂f1 + p̂f2 < p̂1 + p̂2 and (ii) as

explained in the preliminary observation, p̂ cannot first-order stochastically

dominate p̂f , it must be not only that p̂f1 ≥ p̂1, but more specifically that

p̂f1 > p̂1; hence, that p̂
f
1 > 0. Second, notice that if it also holds that p̂f3 > 0,

points r and r′ will both satisfy (8) if and only if p̂f1h
f
(
u1
)
+ p̂f2h

f
(
u2
)
+

p̂f3h
f
(
u3
)
= (p̂f1−ε1)hf

(
u1
)
+(p̂f2 + ε1+ε3)h

f
(
u2
)
+(p̂f3−ε3)hf

(
u3
)
, which is

true if and only if ε3 =
((
hf
(
u1
)
− hf

(
u2
))
/
(
hf
(
u2
)
− hf

(
u3
)))

ε1. Next,

assuming p̂f3 > 0 still, consider the Euclidean distance between p̂ and r

and r′, respectively, defining it like in (9). For commodity, examine more

specifically the squared Euclidean distances, denoting them by dr and dr′ ,

respectively. Notice that, by (9), we have that:
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dr′ − dr= ε21 + 2ε1(p̂1 − p̂f1) + (ε1 + ε3)
2 − 2(ε1 + ε3)(p̂2 − p̂f2) + ε23 + 2ε3

(
(p̂1 + p̂2)− (p̂f1 + p̂f2)

)
= ε1

(
ε1 + 2(p̂1 − p̂f1)

)
+ (ε1 + ε3)

(
(ε1 + ε3)− 2(p̂2 − p̂f2)

)
+ ε3

(
ε3 − 2

(
(p̂1 + p̂2)− (p̂f1 + p̂f2)

))
= ε1

(
ε1 + 2(p̂1 − p̂f1)

)
+

(
hf
(
u1
)
− hf

(
u3
)

hf
(
u2
)
− hf

(
u3
)) ε1((hf(u1)− hf(u3))

hf
(
u2
)
− hf

(
u3
) ) ε1 − 2(p̂2 − p̂f2)

)

+

(
hf
(
u1
)
− hf

(
u2
)

hf
(
u2
)
− hf

(
u3
)) ε1((hf(u1)− hf(u2)

hf
(
u2
)
− hf

(
u3
)) ε1 − 2

(
(p̂1 + p̂2)− (p̂f1 + p̂f2)

))
.

Therefore, to have dr′ − dr < 0, i.e., to find a point r′ on the line but at a

lesser Euclidean distance to p̂ than point r, it suffices to pick any ε1 such

that the following two conditions are satisfied:

1. ε1 < 2(p̂f1 − p̂1) ≡ α;

2. ε1 < 2

(
hf
(
u2
)
− hf

(
u3
)

hf
(
u1
)
− hf

(
u2
))((p̂1 + p̂2)− (p̂f1 + p̂f2)

)
≡ β.

It is the case that α, β > 0 since: (i) p̂f1 ≥ p̂1 and p̂f1 + p̂f2 < p̂1 + p̂2 hold by

assumption; (ii) for the reasons previously detailed, not only p̂f1 ≥ p̂1, but

more specifically p̂f1 > p̂1 must hold; (iii) hf
(
u1
)
> hf

(
u2
)
> hf

(
u3
)
holds

by assumption. Thus, if p̂f3 > 0, any ε1 ∈ (0,min{α;β}) will define a point r′

that, like r, satisfies (8), while generating, by (9), a lesser distance than r.

If p̂f3 = 0, there is no need to preliminarily express ε3 in terms of ε1, and

one may directly compare the relevant squared Euclidean distances simply

by setting ε3 = 0 in the preceding equalities; then, with α as defined above,

any ε1 ∈ (0, α) has the desired properties. This establishes in all cases that

under constraint (8), if p̂f1 ≥ p̂1 but p̂f1 + p̂f2 < p̂1 + p̂2, then, the minimal

Euclidean distance condition is not satisfied. By contraposition, under con-

straint (8), if p̂f1 ≥ p̂1 and the minimal Euclidean distance condition is satis-

fied, then, p̂f1 + p̂f2 ≥ p̂1 + p̂2, i.e., p̂f first-order stochastically dominates p̂.

�
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