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1 Introduction

For years, since the EPR ‘paradox’ (1935) and Schrödinger’s (1935, 1936) work

on entanglement in the 30’s, philosophers of science have struggled to under-

stand quantum correlations. By the end of the 60’s, Bell’s theorem (1964) be-

came widely recognized as establishing that these correlations cannot be explained

through the operation of local common causes. Yet it was also clear that, by them-

selves, quantum correlations cannot be exploited to transmit information between

the locations of entangled systems. Many metaphors were developed by philoso-

phers in the 70’s and 80’s to characterize these apparently nonlocal yet curiously

benign correlations. They were variously taken to involve ‘passion-at-a-distance’,

‘nonrobustness’, ‘relational holism’, and ‘randomness in harmony’ (see, respec-

tively, the contributions of Shimony, Redhead, Teller and Fine to Cushing and

McMullin (1989)). However, the impact of these philosophical discussions on the
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consciousness of the practicing physicist was virtually negligible. That quantum

nonlocality was a fact of nature worth reckoning with was treated at about the

same level of seriousness that scientists regard evidence for telepathy. In hisWill

to Believe, William James described the scientist’s attitude towards telepathy thus:

Why do so few ‘scientists’ even look at the evidence for telepathy, so

called? Because they think, as a leading biologist, now dead, once

said to me, that even if such a thing were true, scientists ought to

band together to keep it suppressed and concealed. It would undo

the uniformity of Nature and all sorts of other things without which

scientists cannot carry on their pursuits. But if this very man had been

shown something which as a scientist he mightdo with telepathy, he

might not only have examined the evidence, but even have found it

good enough.

Since the beginning of the 90’s, when the interest in quantum information the-

ory began to explode, physicists’ attitudes have changed dramatically, and James’

observations about telepathy now seem downright prophetic! Witness the follow-

ing passage from the introduction to Popescu and Rohrlich’s (1998) ‘The Joy of

Entanglement’:

. . . today, the EPR paradox is more paradoxical than ever and gener-

ations of physicists have broken their heads over it. Here we explain

what makes entanglement so baffling and surprising. But we do not

break our heads over it; we take a more positive approach to entan-

glement. After decades in which everyone talked about entanglement

but no one did anything about it, physicists have begun todo things

with entanglement.

What entanglement is now known todo (among other things) is increase the

capacity of classical communication channels—so-called ‘entanglement-assisted
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communication’. No longer is entanglement thedeus ex machinaphilosophers’

metaphors would lead us to believe. Indeed, physicists have now developed a rich

theory of entanglement storage and retrieval with deep analogies to the behaviour

of heat as a physical resource in classical thermodynamics.

My aim in this paper is a modest one. I do not have any particular thesis to

advance about the nature of entanglement, nor can I claim novelty for any of the

material I shall discuss (much of which is now readily accessible through excellent

texts: Preskill (1998), Loet al (1998), Bouwmeesteret al (2000), and Nielsen and

Chuang (2000)). My aim is simply to raise some questions about entanglement

that spring naturally from certain developments in quantum information theory

and are, I believe, worthy of serious consideration by philosophers of science.

In section 2, I shall discuss different senses in which a bipartite quantum state

can be said to be ‘nonlocal’. All the different senses collapse into a single con-

cept when the state is pure, but conceptually novel questions arise when the state

at issue is mixed. In section 3, I will limit my discussion to the two paradigm

cases of entanglement-assisted communication: dense coding and teleportation.

Finally, in section 4, I shall discuss different kinds/degrees of entanglement and

give a whirlwind tour of the basics of ‘entanglement thermodymanics’. Space

limitations force me to assume some prior acquaintence with elementary quantum

mechanics, though I have endeavored to keep my discussion as self-contained and

nontechnical as possible.

2 Different Manifestations of Nonlocality

Suppose we have two spatially separated observers, Alice and Bob, and a source

that creates identically prepared pairs of particles. One member of each pair goes

to Alice and the other to Bob. If Alice and Bob measure various observables on

their particles, there will, in general, be correlations between the measurement

results they obtain. The quantum state of each particle pair will be represented by
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a density operatorρ on a tensor productHA⊗HB of two Hilbert spaces, with the

predicted correlation between any given Alice observableA and Bob observable

B given by〈A ⊗ B〉ρ = Tr[ρ(A ⊗ B)]. Call a stateρ Bell correlatedif there are

spin-type observablesAi = A∗
i = A−1

i , Bi = B∗
i = B−1

i , i = 1, 2, such that

|〈A1 ⊗B1〉ρ + 〈A1 ⊗B2〉ρ + 〈A2 ⊗B1〉ρ − 〈A2 ⊗B2〉ρ| > 2. (1)

Then Bell’s theorem tells us that ifρ is Bell correlated, its correlations cannot

be simulated in any local hidden variables (LHV) model. Being Bell-correlated

is, therefore, one sense in which a state—understood simply as a catalogue of

correlations—can be said to be ‘nonlocal’.

I am well aware that some quantum physicists remain committed to the view

that the absence of an LHV model for correlations does not entail that they are

nonlocal, but simply ‘nonclassical’ (e.g., Fuchs and Peres 2000). Their escape

typically involves arguing that assuming the existence of hidden variables presup-

poses a form of realism inappropriate in quantum theory. On the other hand, other

physicists have recently taken to calculating the average number of classical bits

that would need to be ‘communicated between the particles’ to simulate their Bell

correlations (Steiner 1999, Brassardet al 1999, Massaret al 2000). This has ap-

parently been done in ignorance of similar earlier work by Maudlin (1994), and it

would be interesting to determine how all these results are related. But the philo-

sophical payoff seems clear: If we can show inpurely information-theoretic terms

that no local account of Bell correlations is possible, wouldn’t that show that real-

ism is a red-herring? Or is the use ofclassicalinformation theory as a benchmark

inappropriate in the quantum context? Since in ‘quantum information’ theory, it

is typically the medium and not the method of calculating the information content

of the message that is ‘quantum’, I shall proceed, tentatively, on the assumption

that the answer to the first question, but not the second, is ‘Yes’.

A stateρ is called aproduct statejust in case there are density operatorsρA

andρB on HA andHB, respectively, such thatρ = ρA ⊗ ρB. More generally, a
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stateρ is calledseparablejust in case it can be written as a convex combination

of product states

ρ =
∑

i

piρA
i ⊗ ρB

i , pi ∈ [0, 1],
∑

i

pi = 1. (2)

Clearly the correlations of separable states can be simulated locally, because we

may think of the separate quantum statesρA
i andρB

i asthemselvessupplying the

required local hidden variables, with the probabilitiespi representing our igno-

rance about which hidden variables obtain in a given measurement trial. Thus, a

state is separable if and only if its correlations admit aquantumLHV model.

So Bell correlated states are nonlocal while separable states are local. What

about nonseparable, orentangled, states: Are they always nonlocal? It certainly

does not automatically follow from the fact that a state admits no quantum LHV

model that it does not admit any LHV model whatsoever. However, if an entangled

state is pure, it can be shown that it must be Bell correlated (Popescu and Rohrlich

1992), and so the answer is ‘Yes’ for pure entangled states. Not so in the mixed

case. Consider the following ‘Werner state’ in2× 2 dimensions (Werner 1989):

ρW = (1− 1√
2
)
1
4
I ⊗ I +

1√
2
|Ψ−〉〈Ψ−|, (3)

where |Ψ−〉 is the infamous EPR-Bohm singlet state of two spin-1/2 particles.

Since spin operators are traceless, the maximum possible Bell correlation in state

ρW is determined by 1√
2

times the maximum Bell correlation achievable in the

singlet state, which is2
√

2. ThusρW is not Bell correlated. Nevertheless,ρW is

entangled—not because the particular convex combination used above to define

ρW involves the singlet state (which is, of course, not a product state), but because

there is no other way torewrite ρW as a convex combination of product states.

Nevertheless, whileρW does not admit a quantum LHV model, Werner (1989)

wasable to construct a LHV model for its correlations.

It would be natural to conclude that since an entangled state need not be Bell

correlated—and can even admit a LHV model—some entangled states are surely
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local. One might object to this by observing that every convex decomposition of

a mixed entangled state into pure states must involve at least one entangled pure

state (else the mixed state would be separable); and, therefore, since pure entan-

gled states are nonlocal, mixed entangled states should be thought of as nonlocal

too. But this reasoning runs afoul of well-known difficulties with the ignorance

interpretation of mixtures. A mixed density operator likeρW need not result from

physically mixing, in known proportions, pure states of two spin-1/2 particles. It

could result, instead, from reducing the density matrix of a larger system in a pure

entangled state with the spin-1/2 particles—a state in which there is no fact of

the matter about what pure state the particles occupy for anyone to be ignorant

about! Moreover, even if we knew that a mixed state has been produced by physi-

cally mixing pure states, there are many inequivalent ways to mix and produce the

same density matrix. For example, the ‘maximally mixed’ product state(I⊗ I)/4

of two spin-1/2 particles is surely local, and can be produced by an equal mix of

the four product pure states

| ↓z〉 ⊗ | ↓z〉, | ↓z〉 ⊗ | ↑z〉, | ↑z〉 ⊗ | ↓z〉, | ↑z〉 ⊗ | ↑z〉. (4)

Yet (I ⊗ I)/4 can also be produced by physically mixing, in equal proportions,

the following four entangled eigenstates of the ‘Bell operator’:

|Ψ±〉 =
1√
2
(| ↓z〉 ⊗ | ↑z〉 ± | ↑z〉 ⊗ | ↓z〉),

|Φ±〉 =
1√
2
(| ↓z〉 ⊗ | ↓z〉 ± | ↑z〉 ⊗ | ↑z〉).

In the absence of further knowledge of the mixing process, the possibility of pro-

ducing(I ⊗ I)/4 by mixing eigenstates of the Bell operator shows only that there

is a nonlocal quantum hidden variables model of the state(I⊗I)/4, not that there

can be no local one! So we see that it is in general fallacious to take the locality

properties of the pure components of a mixture to be indicative of the locality or

nonlocality of the mixture itself.
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There is, however, a more interesting objection to the claim that certain entan-

gled states, like the Werner state, are local. What if we require more of a LHV

model than that it simply reproduce the correlations between Alice’s and Bob’s

measurement outcomes? Suppose prior to making the measurements on their par-

ticles from which they calculate their correlations, we allow Alice and Bob to

‘preprocess’ the particles by performing arbitrary local operations on them and

communicating about the results they obtain. By this is meant the following.

A nonselective local operation on Alice’s particle is any ‘completely positive,

linear, and trace-preserving’ transformation of its density operator that leaves un-

changed the state of Bob’s particle. Such a transformation need not be unitary.

For example, it could be brought about by Alice first combining her particle with

an ancilla system which has no prior entanglement with either Alice’s or Bob’s

particle, then executing a unitary transformation on the combined particle+ancilla

system, and, finally, tracing out the ancilla to get a reduced state for Alice’s par-

ticle again. Alice could also perform local measurements on her particle (whose

outcome statistics will, in general, only be representable by positive operators

rather than projections), and communicate to Bob her results so that he can co-

ordinate the local operations he performs on his particle with the outcomes Alice

gets from hers. In particular, we can allow Alice and Bob to perform non-trace-

preservingselectivelocal operations, in which they drop from further considera-

tion certain members of their initial ensemble—on the basis of certain measure-

ments results they obtain—and communicate classically between them to ensure

agreement about which particle pairs are dropped.

The remarkable thing is that it is possible, after Alice and Bob avail themselves

of local operations and classical communication on an initially ‘local’ but entan-

gled particle pair, for the final state of the surviving ensemble of particle pairs

to be Bell correlated! (See Popescu (1995) and Mermin (1996).) As it happens,

this only works for higher-dimensional Werner states, not the simple2 × 2 state
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ρW we have considered. In order to ‘display’ρW ’s nonlocality, we need to allow

Alice, and similarly Bob, the additional freedom to performcollectiveoperations

on all of her particles at once (Peres 1996). These operations will still be local,

insofar as they do not affect the states of Bob’s particles (even if they might in-

troduce entanglement amongst Alice’s). Conventional wisdom then dictates that,

after all is said (between Alice and Bob) and done (by their collective local op-

erations), an initial entangled state that, as a result of ‘preprocessing’ changes to

a Bell correlated one, should be understood as nonlocal. For example, Gisin (p.

271) writes ‘A state that is explicitly nonlocal after some local operations does

not deserve the qualification of local. . . because reproducing all correlations [of

the initial state] is not enough’. Similarly, Popescu and Rohrlich (1998, 41) state:

‘Alice and Bob could never obtain nonlocal states from local states by using only

local interactions’.

What are we to make of this conventional wisdom? It is certainly true that if

we demand there exist anextendedLHV model, not just for the correlations of the

initial state, but for all of Alice and Bob’s preprocessing and the Bell correlations

of their final state, then the model cannot be local. Moreover, it appears we are

not putting a LHV model at a disadvantage by requiring it to model all of this;

for in confining Alice and Bob to the use oflocal operations on their particles and

normalcausalcommunication, we are not adding any ‘extra nonlocality’ between

the particles for the model to explain. Still, whatpreciselyis the argument for

taking the original unprocessed entangled state to intrinsically possess nonlocal

(as opposed to merely entangled) correlations?

The only way I can see to justify such a claim is if the following conjecture

could be proved: If an HV modelM of the correlations of an initial entangled state

has an extension to—or is the restriction of—a more encompassing HV model of

all the collective local operations and classical communication needed to produce

a Bell correlated state, then the modelM of the initial statemust already have
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No LHV Model

Entangled/Nonseparable
No QuantumLHV Model

Bell Correlated after CLOCC

Bell Correlated after LOCC

Bell Correlated
(generic for∞×∞ states)

Figure 1: Different Manifestations of Nonlocality (LHV = Local Hidden Vari-

ables, LO = Local Operations, CC = Classical Communication, LOCC = LO+

CC, CLOCC =CollectiveLOCC)

contained nonlocal elements. If true, this would entail that Werner’s LHV model

for ρW ’s correlations does not extend to any adequate model—local or not—of

the production of the final state after (collective) preprocessing. Similarly, the

truth of my conjecture would mean that Bohm’s theory, which is certainly capable

of reproducing all the predictions of quantum theory associated with Alice and

Bob’s preprocessing, yields a nonlocal dynamics between two particles in the

Werner state (understood as the reduced state of a larger three particle pure state,

if necessary), notwithstanding its lack of Bell correlation. However, even if my

conjecture is true, I am unaware of any general argument that every entangled
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state must yield to local operations and classical communication and eventually

produce a Bell correlated state. Morever, we shall see in Section 4 that certain

entangled states definitely resist preprocessing intosingletstates.

Figure 1 above summarizes the different senses of nonlocality I have dis-

cussed, and their logical relations. Note that for pure states, all distinctions in

the diagram collapse. It can also be shown that the Bell correlated states of

infinite-dimensional systems are generic (Cliftonet al 1999), and therefore, for

all practical purposes, the diagram collapses in that case as well.

3 Entanglement-Assisted Communication

I turn now to discuss two novel and conceptually puzzling practical uses of entan-

glement: dense coding (Bennett and Wiesner 1992) and teleportation (Bennettet

al 1993). Both involve forms of communication between Alice and Bob in which

it lookslike Bob is able to receive more information from Alice than she actually

sent him.

In dense coding (see Figure 2 below), the aim is for Alice to convey to Bob

two classical bits of information, or ‘cbits’ for short. They initially share a pair of

spin-1/2 particles, or ‘qubits’, in the singlet state|Ψ−〉. While Bob holds on to his

particle, Alice has the option of doing nothing to hers, or performing one of three

unitary operations given by the Pauli spin operatorsσx, σy, orσz. After exercising

her option, the final joint state of the particles will either be|Ψ−〉, (σx ⊗ I)|Ψ−〉,

(σy ⊗ I)|Ψ−〉, or (σz ⊗ I)|Ψ−〉. These four states are easily seen to be mutually

orthogonal (useσxσy = iσz + cyclic permutations, and〈Ψ−|(σx,y,z⊗I)|Ψ−〉 = 0)

and are, in fact, the four Bell operator eigenstates (up to phase). Thus, Alice can

now send her qubit to Bob, who can combine it with his own qubit and measure

the Bell operator on them jointly to perfectly distinguish which of the four options

Alice took.

What is ‘dense’ about this coding is that itapparentlyexceeds a well-known
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Figure 2: Dense Coding

limit—called the Holevo bound—on the capacity of qubits to carry classical in-

formation. For a consequence of this bound is that a state ofn qubits can be used

between a sender and receiver to transmit at mostn cbits (Nielson and Chuang

2000, Exercise 12.3). Yet Bob receives two cbits with onlyone qubit chang-

ing hands! On closer inspection, however, there is no contradiction. The setup

presupposed for Holevo’s bound says nothing about which qubits must ‘change

hands’ but, rather, assumes only that the sender encodes her information by per-

forming operations on a collection ofn qubits, and the receiver retrieves as much
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of that information as possible by making measurements on that same collection.

Nothing precludes the sender from operating locally only on some subset of then

‘information carrying qubits’ which, if that subset is entangled with the rest, can

still produce a nontrivial change in their total state. Thus, from the point of view

of Holevo’s bound, what Alice actually does in the dense coding is to code her

two cbits into the state oftwo qubits, and Bob chooses a Bell operator measure-

ment that allows him to retrieve as much information as he possibly can. Note,

also, that Alice’s trick wouldn’t work if her qubit weren’t entangled with Bob’s.

For example, replacing|Ψ−〉 by | ↑z〉 ⊗ | ↓z〉 would only leave Bob, at the end

of the protocol, with one of thetwo orthogonal states| ↑z〉 ⊗ | ↓z〉, | ↓z〉 ⊗ | ↓z〉

(up to phase), from which he can distinguish only 1 cbit about Alice’s choice—

consistent with the Holevo bound on the information transmittable using only a

single qubit.

Though there is no outright contradiction with the Holevo bound in the entan-

gled case, it is hard to escape the sense that the qubit in Bob’s possession could

not possibly carryanyof the information he finally receives. After all, Bob has his

qubit in his hands well in advance of Alice deciding what information she wants

to send by choosing between the four unitary operations. The Holevo bound is

cleverly silent about this, leaving us the option of filling in how then cbits the

sender encodes get ‘distributed amongst’ then encoding qubits. Moreover, while

the bound allows us to say that if Bob looks at either qubit in isolation he can get

up to1 cbit of information, it is easy to see that, in fact, absolutely no information

about Alice’s unitary operationcan be obtained in that way. Should we, then,

resist the temptation to fill in the story and marvel in the fact that quantum holism

gives merely theappearanceof nonlocal information transfer between the qubits

without actually instantiating it?

Consider the following classical analogue of dense-coding (suggested to me

by Arthur Cunningham). A source produces a pair of cards. One card, which is
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blank, goes to Alice; the other, on which is (randomly) written one of four ordered

pairs(x2, y2) = (0, 0), (0, 1), (10), or (1, 1), goes to Bob. Alice chooses one of

these same four ordered pairs, call it(x1, y1), to write on her card, and then sends

it to Bob. Finally, Bob combines the information from the two cards and computes

the binary sum(x1⊕x2, y1⊕y2) = (0, 0), (0, 1), (10), or (1, 1). In this way, Alice

can communicate to Bob one of the latter four pairs, i.e., 2 cbits, by writing on

her card the appropriate pair(x1, y1). Note that by looking at either card on its

own, Bob can infernothingabout the 2 cbits Alice is trying to send him—no (rel-

evant) information is carried by either card in isolation. Thus, even in the absence

of quantum holism, there is no reason to think that the information carried by a

communication channel must be parcelled out amongst the component physical

systems making up the channel. It seems that dense coding does notmandatea

holistic metaphysics after all.

Unfortunately, this classical communication protocol is disanalogous to dense

coding in one important respect. In order for Alice to choose the appropriate

pair (x1, y1) with which to convey her 2 cbits,she must know in advance what

is written on Bob’s card. What would be the mechanism by which she could get

this sort of knowledge in the quantum case? For example, Alice can learn nothing

from the prior EPR correlation between the qubits, because she does not perform

any measurements on her qubit! One is, therefore, tempted to conjecture that any

classical simulation of dense coding, if it does not involve holistic elements, must

still involve nonlocal effects of one sort or another.

In teleportation (see Figure 3 below), Alice and Bob again share a pair of spin-

1/2 particles in the singlet state|Ψ−〉, but now they swap their equipment: Alice

first measures the Bell operator, and then Bob applies one of the four unitary

transformationsI, σx, σy, or σz. The aim is for Alice to transmit to Bob the

state|φ〉 of another ‘ancilla’ qubit. She does so by exploiting the correlations in

their ‘channel state’|Ψ−〉 and sending Bob 2 cbits rather than a qubit. The initial
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ancilla+channel state is|φ〉⊗|Ψ−〉. One can verify that the unitary operator which

permutes the state of the ancilla with Bob’s qubit can be written as

P = 1/2(I ⊗ I ⊗ I + σx ⊗ I ⊗ σx + σy ⊗ I ⊗ σy + σz ⊗ I ⊗ σz). (5)

Therefore,

|φ〉 ⊗ |Ψ−〉 = −P (|Ψ−〉 ⊗ |φ〉) (using the anti-symmetry of|Ψ−〉)

= −1/2[|Ψ−〉 ⊗ |φ〉+ (σx ⊗ I)|Ψ−〉 ⊗ σx|φ〉

+(σy ⊗ I)|Ψ−〉 ⊗ σy|φ〉+ (σz ⊗ I)|Ψ−〉 ⊗ σz|φ〉].

The protocol can now be read directly off this last expression. Alice first measures

the Bell operator, collapsing the joint state of the ancilla qubit and hers into one of

the four Bell eigenstates, say(σy ⊗ I)|Ψ−〉. As a result, Bob’s qubit is left in the

correlated stateσy|φ〉. Alice then communicates to Bob which of the four mea-

surement outcomes she got, and Bob applies the corresponding unitary operation,

in this caseσy, to his qubit. After doing so, he obtainsσ2
y|φ〉 = |φ〉 and, thereby,

creates an exact replica of the ancilla qubit’s state at his location.

In a sense, teleportation is a form of ‘dense coding’, because, while a normal

classical communication channel would need to carry an infinite (or, at least, ar-

bitrarily large) amount of information to convey to Bob the expansion coefficients

of the state|φ〉, Alice manages to get by with sending him only 2 cbits. This again

raises the question of whether a convincing story can be told here about the ‘flow

of information’ (nonlocally?!, backwards in time?!) between Alice and Bob (see

Duwell 2000). But note that there is an important difference from dense coding:

if there is information transfer in teleportation at all, it occurs entirely at the quan-

tum level. A successful run of the protocol does not require that Alice know in

advance the state|φ〉 she is teleporting; nor can it end in Bob’s knowing the iden-

tity of this state, because (as is well-known) there is no way for Bob to determine

the quantum state of a single system! Perhaps some new concept of hiddenquan-

tum information transfer is called for here? (See Cerf and Adami 1997, Deutsch
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Figure 3: Teleportation

and Hayden 1999.)

We can also consider imperfect teleportation, where the state Bob ends up

creating at the end of the protocol is not exactly the ancilla’s state, but something

close. It turns out that imperfect teleportation with a ‘fidelity’ higher than any

classical analogue can achieve is always possible when the singlet channel state

Alice and Bob share is replaced by any Bell correlated entangled state (Horodecki

et al1996). However, high fidelity teleportation isalsopossible using the Werner

state, which is not Bell correlated (Popescu 1994). One can either take this to be a
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sign that the Werner state is, after all, nonlocal, or see it as showing that explaining

the success of teleportation does not require nonlocality.

This issue can also be attacked more directly by taking a closer look at the

correlations of the channel state that areactually involvedin the teleportation pro-

tocol (Żukowski 2000). LHV models will be committed to all ‘Bell teleportation

inequalities’ of the form

|〈f1⊗σ1〉|φ1〉〈φ1|⊗ρ+〈f1⊗σ2〉|φ1〉〈φ1|⊗ρ+〈f2⊗σ1〉|φ2〉〈φ2|⊗ρ+〈f2⊗σ2〉|φ2〉〈φ2|⊗ρ| ≤ 2,

wheref1,2 are bivalent functions of Alice’s Bell operator,|φ1,2〉 are alternatives

for the teleported state,ρ is the ‘quantum channel’ state, andσ1,2 are spin compo-

nents of Bob’s particle. It can be shown that if the teleportation fidelity exceeds

a certain threshold, at least one such inequality must be violated, but that no vi-

olations occur in the Werner state (Clifton and Pope 2000). While the verdict is

still out, this suggests that the ability of a quantum state to facilitate nonclassical

teleportation should not be taken as a litmus test for the nonlocality of the state.

4 Entanglement Thermodynamics

There is one further trick that can be performed with teleportation that would

appear particularly difficult to classically simulate: entanglement swapping. Sup-

pose the ancilla qubit whose state Alice teleports does not actually have a def-

inite state of its own, but is entangled via the singlet state|Ψ−〉 with yet an-

other qubit. Let’s label that qubit0, the ancilla qubit1, and Alice and Bob’s

channel qubits2 and3, respectively. Now follow through the exact same pro-

tocol as before, starting instead with the initial state|Ψ−(0, 1)〉 ⊗ |Ψ−(2, 3)〉 =

−P (|Ψ−(0, 3)〉 ⊗ |Ψ−(1, 2)〉). Clearly the result, in all cases, will be that qubits

1 + 2 will be left in a Bell operator eigenstate, and qubits0 + 3 will now be en-

tangled in the singlet state instead! It appears that there is enough ‘substance’ to

entanglement that it can be ‘moved’ from one pair of particles to another. Note,
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however, that this swapping process has not led to a net increase in the entangle-

ment between Alice and Bob; teleportationdestroysthe singlet state entanglement

they initially shared in their channel state, as it replaces it with singlet entangle-

ment between0 and3.

Since the entanglement of the channel state in teleportation will inevitably get

used up (and, similarly, Alice and Bob will use up their shared entanglement in

dense coding when she passes her qubit to Bob), it is natural to develop a theory of

entanglement as a physical resource for performing further ‘informational work’.

Entanglement thermodynamics is that theory, and yields constraints on our ability

to store, retrieve and manipulate entanglement that are analogous to what classical

thermodynamics tells us about heat.

The Fundamental Law of Entanglement Thermodynamics asserts:Entangle-

ment between systems in two regions cannot be created merely by collective local

operations on the systems and classical communication between the regions(i.e.,

CLOCC). More precisely, any reasonable measureE of entanglement must satisfy

ρ CLOCC7−→ {ρi, pi} =⇒ E(ρ) ≥
∑

i

piE(ρi),

where the antecedent of this conditional signifies that Alice and Bob have prepro-

cessed the particles and (possibly) sorted them into subensemblesρi with proba-

bilities pi, and the consequent says that the average entanglement left at the end of

the process cannot exceed the initial entanglement that went in. Note that there is

a clear analogy here with the Second Law of Classical Thermodynamics:There is

no process the sole effect of which is to extract heat from the colder of two reser-

voirs and deliver it to the hotter reservoir.(Plenio and Vedral 1998.) Just as we

cannot create refrigeration for free, i.e., without any energy or work input, we can-

not produce entanglement for free, i.e., without entangling interactions between

the particles.

Motivated by the problems of entanglement storage and retrieval, there are

two natural measures of entanglement obeying the fundamental law. Suppose
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Alice and Bob start by sharing a large collection of pairs of particles in a state

ρ⊗n = ρ⊗ . . .⊗ ρ (n times). Alice collectively operates on her members of each

pair, and Bob on his, with the aim of extractingk ≤ n singlet states between them.

Theentanglement of distillationof ρ is the maximum fraction of singlets they can

extract fromρ⊗n in the asymptotic limit asn →∞:

ρ⊗n CLOCC7−→ |Ψ−〉⊗k, D(ρ) = lim
n→∞

kmax

n
.

(In fact, the CLOCC transformation fromρ⊗n to |Ψ−〉⊗k is only required to be

perfect in the asymptotic limit.) Similarly, theentanglement of formationof ρ is

the minimum fraction of singlets Alice and Bob need to invest to createn copies

of ρ in the asymptotic limit:

|Ψ−〉⊗k′ CLOCC7−→ ρ⊗n, F (ρ) = lim
n→∞

k′min

n
.

By the fundamental law, it must be the case thatD(ρ) ≤ F (ρ).

Consider, now, the special case whereρ is a pure entangled state|Φ〉. There is

a scheme, due originally to Bennettet al. (1996), that shows how Alice and Bob

can asymptotically distill|Φ〉⊗n CLOCC7−→ |Ψ−〉⊗k with an efficiencyS(ρΦ), where

ρΦ is the reduced density operator for either particle in the state|Φ〉, and

S(ρΦ) = −Tr(ρΦ log2 ρΦ)

is the standard von Neumann entropy ofρΦ. (Note: S(ρΨ−) = 1, as we expect.)

This scheme isreversible, in the sense that there is a scheme that asymptotically

forms |Ψ−〉⊗k′ CLOCC7−→ |Φ〉⊗n with the same efficiency. (Details of these schemes

may be found in Nielsen and Chuang (2000), Section 12.5.2.) By the Fundamental

Law, no schemes can perform better. The argument for this works in complete

analogy with the classical argument for the ideal efficiency of the Carnot cycle

(Popescu and Rohrlich 1997). For example, if distillation could be more efficient

than the Bennettet alscheme (a similar argument works for formation), then Alice

and Bob would be able to start withn copies of|Φ〉 and CLOCC transform them
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into k > nS(ρΦ) singlets. They could then use the reverse of the Bennettet al

scheme to CLOCC transform theirk singlets back intok/S(ρΦ) > n copies of

|Φ〉, in violation of the Fundamental Law. It follows thatD(Φ) = F (Φ) = S(ρΦ).

Whenρ is a mixed entangled state, we can define itsbound entanglementby

B(ρ) ≡ F (ρ)−D(ρ) (≥ 0).

Comparing this with the classical Gibbs-Helmholtz equation,

TS = U − A,

whereU is the internal energy, andA the free energy, we are tempted to think

of F (ρ) as the ‘internal entanglement’ ofρ andD(ρ) as its ‘free entanglement’.

But what are the analogues of temperatureT and entropyS? If we took the

‘entanglement entropy’ ofρ to beS(ρ), then since the von Neumann entropy of a

pure state|Ψ〉 is zero, it would follow thatF (Ψ) = D(Ψ)—something we already

know to be true! This suggests that we further defineentanglement temperature,

for mixed states (whenS(ρ) > 0), by the formulaT (ρ) ≡ B(ρ)
S(ρ) . Unfortunately,

this definition turns out to have counterintuitive consequences (Horodeckiet al

1998a). So the question remains: Just how deep and convincing can this thermal

analogy be made?

As for the values of entanglement of distillation and formation for mixed

states, remarkably little is known in general, but whatis known is fascinating.

Though all2× 2 entangled statesρ are distillable, i.e.,D(ρ) > 0 (Horodeckiet al

1997), there are higher-dimensional states, so-calledbound entangledstates, for

which D(ρ) = 0 (Horodeckiet al 1998b). However, this does not of itself imply

thatB(ρ) > 0—and, therefore, that a genuinelyirreversibleentanglement manip-

ulation process exists—because there is no general argument that one cannot get

by with investing less and less entanglement in the asymptotic limit for the for-

mation of a mixed entangled state. The first genuinely irreversible entanglement

manipulation process was not found until February of this year (Vidal and Cirac
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2001), after an initially false start (Horodeckiet al 2000a). Still more curious is

recently found evidence for the possibility of a pair of mixed entangled statesρ1,2

such that thatB(ρ1,2) = F (ρ1,2) > 0 yet D(ρ1 ⊗ ρ2) > 0 (Shoret al 2000). If

correct, this would show that bound entangled states can ‘catalyze’ eachother to

produce free entanglement!

There is much here for philosophers of science to chew on. Clearly the ther-

mal analogy functions as a useful heuristic for understanding entanglement and

harnessing its use. But could there be more to the analogy than that? Since classi-

cal thermodynamics is a principle theory, is it appropriate to ask for a constructive

underpinning, i.e., micro-theory, for ‘entanglodynamics’? Could this motivate a

return to the well-trodden path of hidden-variable reconstructions of quantum the-

ory? Or does quantum theoryitself supply the micro-theory via the theory of local

operations? (But if it does, how should we regard the disanalogy that entangle-

ment is still treated as a primitive, unlike its analogue heat, which is reduced to

kinetic energy in statistical mechanics?) Finally, and perhaps the biggest philo-

sophical carrot of all, could the thermal analogy be turned into a full-fledged ‘in-

terpretation’ of quantum theory as a complete theory? As the Horodecki’s (2000b)

have put it:

It is characteristic that despite the dynamical development of the in-

terdisciplinary domain of quantum information theory, there is no, to

our knowledge, impact of the latter on interpretational problems. [. . . ]

Does quantum information phenomena provide objective [grounds]

for the existence of a “natural” ontology inherent in the quantum for-

malism?
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