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Abstract

The desirable gambles framework offers the most com-
prehensive foundations for the theory of lower pre-
visions, which in turn affords the most general ac-
count of imprecise probabilities. Nevertheless, for all
its generality, the theory of lower previsions rests on
the notion of linear utility. This commitment to lin-
earity is clearest in the coherence axioms for sets of
desirable gambles. This paper considers two routes
to relaxing this commitment. The first preserves the
additive structure of the desirable gambles framework
and the machinery for coherent inference but detaches
the interpretation of desirability from the multiplica-
tive scale invariance axiom. The second strays from
the additive combination axiom to accommodate re-
peated gambles that return rewards by a non-stationary
processes that is not necessarily additive. Unlike the
first approach, which is a conservative amendment to
the desirable gambles framework, the second is a rad-
ical departure. Yet, common to both is a method for
describing rewards called discounted utility.
Keywords: desirability, ergodicity, non-linear utility,
lower previsions, imprecise probability

1. Lower Previsions: A Potted History

In our opinion they are not fit for characterizing
a new, weaker kind of coherent behavior.

— De Finetti and Savage, 1962

A brief overview of the theory of lower previsions will help
motivate my proposals for discounting desirable gambles
and make the paper self-contained. But a short history is
worth recounting on its own, least one mistake de Finetti
and Savage’s response to [27] as the last word on lower
previsions rather than among the first.

Cedric Smith, with his proposal for inference with lower
and upper “pignic odds” [27], showed that every lower pre-
vision may be understood as the lower envelope of some set
of linear previsions, an idea that Walley later generalized
to characterize coherent lower previsions for bounded gam-
bles. A bounded gamble, to fix notation, is a bounded real
map f from a set of possibilities Q, f: Q — R, interpreted
as a gain or loss associated with each state @ € Q. When
the possibility space Q is fixed or clear from context, |
simply write f instead of ‘f(®), for all ® € Q’, and write
G instead of ‘G(Q)’ to refer to the set of all gambles on Q.

© 2021 G. Wheeler.

G.WHEELER @FS.DE

Binary arithmetic operations are point-wise operations over
states. So, for example, f — g is short for ‘f(®) — g(w), for
all w € Q’. Gambles are random variables, so the Smith-
Walley approach to defining lower previsions on gambles
may be viewed (in hindsight) as an extension of de Finetti’s
theory of linear previsions [8].

Returning to Walley’s characterization, a lower previ-
sion P defined on a class C C G of gambles avoids sure
loss if and only if there is a linear prevision P such that
P(f) > P(f), for all gambles in C; and P is a coherent lower
prevision if and only if there is a set of linear previsions
P such that P is the lower envelope of P, that is, such that
P(f) =inf{P(f) : P € P}, for all fin C [31, §3.3]. When
the range of gambles f in a class is restricted to {0, 1},
then each f is a characteristic function for a subset of Q,
denoting an event, and P(f) expresses a lower probability.

Walley’s results connect together two models of impre-
cise probabilities: one that defines the functional P as sim-
ply the lower expectation values of a given set of closed
convex probability mass functions PP, called a credal set,
and another which starts with coherence axioms for a func-
tional P that entail there is some credal set whose lower
expectation values for each bounded gamble f witness P(f).
Since de Finetti’s theory of linear previsions falls out as a
special case, Walley’s unified theory is better understood as
a more general characterization of coherent behavior rather
than an entirely new and weaker one.

Sure loss avoidance and coherence extend to conditional
lower previsions too [31], but with a catch, as inference
in the credal set framework is forbiddingly complicated
[5, 19, 28]. An alternative model for coherent lower pre-
visions, constructed in terms of sets of desirable gambles
[38], encompasses an even broader range of models for
coherent behavior, one that strictly includes the credal set
framework [32, 35] while greatly simplifying inference
[29]. So, whereas the original credal set approach is re-
stricted to bounded gambles, ties coherence criteria to sets
of probabilities, but is impractical for predictive inference,
the desirable gambles approach puts coherence and infer-
ence first, extends easily to include unbounded gambles,
but demotes sets of probabilities to a secondary role, to be
derived when possible or disposed of as necessary [36].

Nevertheless, for all its generality, the theory of lower
previsions appears to rest on the concept of linear utility, a
point made explicit by the coherence axioms for desirable
gambles (Section 2). Apart from mathematical convenience,
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which should not be mistaken for a normative principle,
the case for linear utility is thin. The principal arguments
in favor of linear utility either concede that the marginal
value of wealth decreases, by stipulating that linear utility
is only warranted when small (but not too small!) stakes
are at risk [8], or offer no argument but instead simply
restate the linearity condition by positing an exogenous
probability on which a “currency” of hypothetical lotteries
is constructed [31, §2.2]. Alternatively, some retain the
underlying mechanics of de Finetti’s coherence criteria but
abandon the normative commitment to linear utility. The
fundamental theorem of “no arbitrage” asset pricing takes
this tack, which is simply de Finetti’s fundamental theorem
of prevision but with discounting [3].

A weak case for linear utility and good reasons to favor
non-linear utility (Section 3) raise the question of whether
sets of desirable gambles can accommodate discounting.
This paper introduces two approaches to discounting gam-
bles, and from those two proposals follow two types of
answers. The first (Section 4) prioritizes preserving the
underlying coherence machinery of the desirable gambles
framework and therefore may be viewed as an analog to
the adoption of de Finetti’s ideas by mathematical finance
in the 1970s. The key idea is to preserve the additive struc-
ture of desirable gambles but separate the mathematical
role non-negative multiplicative scaling plays from the be-
havioral and normative properties of desirability. For this
new task, an adjustable utility scale is introduced to dis-
count gambles. The second approach (Section 6) uses the
same discounted utility but drops the additive structure of
gambles, which allows for the introduction of non-additive
dynamics in sequential gambles. This approach is a depar-
ture from the sets of desirable gambles framework, however.
For although the additive dynamics assumed by the sets
of desirable gambles approach appear as a special case, a
type of lower expectation appears in this setting involving
uncertainty over the type of dynamics rather than from
uncertainty over state-dependent outcomes. However, the
same adjustable discounted utility is used in both accounts,
which includes linear utility as a special case.

The notion that desire satisfaction is concave rather than
linear is as old as the concept of utility itself [1]. The aim
of this paper instead is to introduce discounted utility in a
form that is compatible with the theory of lower previsions,
thus extending its reach while preserving its practical ad-
vantages, but to also show how the notion of discounted
utility can be used to investigate imprecision that can arise
from uncertain dynamics.

2. Desirable Gambles and Linear Utility

I mentioned in the introduction that the credal set approach
formulates coherence axioms for a lower prevision func-
tional P on a domain of bounded gambles. The desirable

332

gambles framework, by contrast, consists of axioms for
constructing a coherent set D C G of bounded gambles
directly from an initial, possibly empty, collection of gam-
bles. For instance, a decision maker might be disposed to
accept a finite collection of gambles and the axioms then
may be used to determine whether that disposition is co-
herent, and therefore whether committing to those gambles
would avoid sure loss. Following [29], there are four core
coherence axioms for desirable gambles. For bounded gam-
bles f,g and positive real number A > 0, a set of bounded
gambles DD is coherent when the following four conditions
are satisfied:

Al. If f <O, then f D (Avoid partial loss)

A2. If f >0, then f €D (Accept partial gain)

A3. If feD, then Af €D (Positive Scale Invariance)

A4. If feDand ge D, then f+ge€D (Combination)

Axioms Al and A2 are rationality conditions: positive
payments are desirable (A2) while negative payments are
not (A1l). Axiom A3 says that the desirability of a gamble
is unchanged by the introduction of a positive scale and
axiom A4 says that desirability is additive.

Although rationality arguments are given for A3 and A4
[31], the axioms are principally closure operations. Axiom
A3 ensures that a set D is a cone, since for every f in D
and A >0, Af € D; and D is a convex cone if it is closed
under both non-negative multiplication (A3) and addition
(A4); that is, if, for any f] and f> in D and 41,24, > 0, then
A f1+ A2/ € D. A point of the form Ay fi + - - - + A, f, with
My...y, Ay > Qs a conic combination of f,..., f,, and a
convex cone of I contains all conic combinations of its
elements. The conic hull of D is the smallest convex cone,

cone(D) := {il,-ﬁ:fe]])7li>0} (1
i=1

which contains D. Thus, a coherent set of desirable gambles
over a space of |Q| = m possibilities is the convex hull in
R™ that includes the non-negative orthant in R”, by A2,
and excludes the negative orthant, by A1.2

Axioms A3 and A4 together encode the assumption that
the utility of coherent gambles is measured on a linear
scale. The reward x € R of a gamble f depends on which
state o obtains, so a gamble f over |Q| = m possible states
describes a vector Xy = (x1,...,X,,) of state-contingent out-
comes in R™. A wutility is a real-valued function on D that

1. One finds the terms ‘acceptable’ and ‘desirable’ used interchange-
ably by some, but not all, authors. The main issue criss-crossing the
literature is whether the status-quo 0-gamble is included in the set
of coherent gambles. The approach I favor is to let the axioms settle
such questions, and use the terms ‘acceptable’ and ‘desirable’ very
loosely when speaking, as I am here, of the general theory.

. When gambles are unbounded, coherence is defined with respect to a
particular cone [6] [29, §13.2].
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preserves the ordering of Xy = (x1,...,x,) up to a con-
stant c. From Equation 1, the inner product expression of
expected utility is recovered immediately by setting all
weights w; to one, with an m-vector 1 of unit weights, and
letting the constant ¢ be zero:

gin (X <Z w,x,> +c

=1x+0

=X

@)

With these preliminaries in place, I turn next to introduce a
discounted utility function that has one adjustable parame-
ter whose range includes linear utility, as a corner case, but
is otherwise a concave function of a reward x.

3. Discounted Utility

The original notion of utility, introduced by Daniel
Bernoulli, is a logarithmic index intended to capture the
psychological experience of satisfying a desire. Responding
to a problem posed by his cousin, Nicholas, concerning how
to price a sequential gamble with an unbounded expected
value, D. Bernoulli’s solution to the St Petersburg game
appeals to the commonplace notion that, as your wealth in-
creases, the pleasure you garner from an additional unit of
reward decreases, all things considered. As a consequence,
the disutility of a unit loss in wealth will be greater than the
corresponding utility of a unit gain [1]—a property central
to prospect theory [15] and variants [17, 24] introduced
two centuries later.

In its original form, the Bernoullian utility of a prospec-

tive reward x is
up(x) :ln( > X ¢

where ¢ is a constant, w an individual’s current wealth,
and x a positive or negative reward. The natural log of
the proportional change to one’s wealth by receiving x,
Bernoulli argued, should be inversely proportional to one’s
current wealth [1]. That said, few view non-linear utility as
suited to guiding rational decision making. Instead, many
continue to view deviations from the normative standard
of linear utility as a regrettable but necessary means to
describe stable patterns of human behavior [34].

Satisfying desires however is not a linear affair. Regard-
ing your tenth pint as desirable as your first is a sign of
addiction, not rationality. Yet, while one might agree that
desire satisfaction is not and ought not be linear, it is doubt-
ful the index is or should always be logarithmic. Descriptive
models have behavioral data to fit, and normative standards
can depend on context: the diminishing arcs of pleasure
from accruing dollars and pints are not the same, nor should
they be among sober adults.

w—+Xx

3

w
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Figure 1: Discounted utility contour plot of nine dis-
count curves for linear inputs x from the set
{1,2,3,4,5,7,10,15,25}, where the discounted curve
for each z is calculated by u(x,a) forall 0 < a < 1.

The challenge then is to construct a model for discount-
ing desirable gambles that affords navigating the terrain
of non-linear discounting with a model that is at once gen-
eral yet simple enough to afford an interpretation of the
degree of discounting that is applied. I propose a function
of rewards with one adjustable parameter that is equivalent
to linear utility (Equation 2), when no discounting is ap-
plied, and approaches natural log utility asymptotically as
discounting approaches 1.

Definition 1 (Discounted Utility) Let o € [0,1) and x >
0. Define discounted utility as

xlfot

u(x,a) := «

Discounted utility takes a positive scalar reward x and,
depending on the value of the discounting parameter o,
discounts the desirability of x to some degree. When no
discounting is applied, & = 0, then the utility of x is linear,
u(x, o) = x. Alternatively, discounted utility approximates
the natural logarithm of x as « approaches 1. For com-
pleteness, one may stipulate that u(x, 1) is In(x). Figure 1
illustrates the effects of the size of stake x and size of
discount rate o have on the discounted utility z, whereas
Figure 2 illustrates the effective range of discounting for
rewards x between 1 and 100.

Every bounded gamble denotes a reward vector of pos-
itive or negative real numbers, Xy = (xi,...,X,,), but dis-
counted utility is only defined for positive rewards. To
accommodate the positivity condition for discounted utility,
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Figure 2: Discounted utility for input x, from 1 to 100, under
six different discount values a¢. When o = 0, utility
of x is linear; as « approaches 1, utility approaches
the natural log of x.

assume that each gamble is adding positive or negative re-
wards to a current bank of positive wealth, w. Although one
may relax this positivity condition and introduce a notion
of debt, the basic model will instead treat O as an absorp-
tion point of insolvency and, for simplicity of exposition,
assume a stake w large enough to cover all possible losses
of a one-shot gamble. Thus, a “solvent” transformation of
any reward vector X7, (W= xy,...,w=x,), is everywhere
positive, with w rather than 0 denoting status quo ante. This
positivity condition can be relaxed too with a policy for
resolving insolvency.

It is so common now to ignore the issue of solvency that
one may overlook the reason why this detail was set aside
in the first place [8, §3.2.4]. Stake size does not matter for
linear utility, by definition; so, designating O as status quo
rather than an arbitrary w is justified. But size matters to
discounted utility. So, w rather than 0 should be status quo.

Discounted utility is designed to take a linear, positive
input x and return a discounted valuation z of x. Conversely,
one may have a discounted z and seek its undiscounted
rate on a linear scale. This may be achieved by reverse
discounting.

Proposition 2 (Reverse Discounting) Ler a € [0,1) and
z > 1. The inverse of discounted utility is
U'z0) = (= afe— 1)~/ 4)
Discounted utility and reverse discounting are monotonic
transformations of x and z, respectively, thus are order pre-
serving with respect to a given o € [0, 1).
The family of discounted utilities can be extended by
allowing o to be the value of a scalar function. For instance,
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Figure 3: Discounted utility for input x, from 1 to 100,000, with
Cramer’s 0¢. Square root utility and discounted utility

with & = 0.57 are included for comparison.

20000

Gabriel Cramer, a contemporary of Bernoulli’s, proposed
the square root transformation of rewards,

uc(x) :=v/x

instead of a logarithmic transformation. One may extend
discounted utility to accommodate an approximation of
Cramer utility, balancing simplicity against faithfulness.

®)

Definition 3 (Almost Cramer utility) For any  dis-

counted utility u, x > 1, define Cramer’s alpha by
In(4x)

~ In(x2)

Then, u(x, o) is called almost Cramer utility.

The advantage of almost Cramer utility over an exact
representation of square root utility is that Cramer’s alpha
is defined solely as a scalar function of x, dispensing with
the imaginary unit i, 7, and an integer constant an exact
square-root & would require. Thus, almost Cramer utility
is a simple but order preserving, dominating approximation
of Cramer’s square root utility (Figure 3).

4. Additive Discounting and Coherence

In the remainder I explore two strategies for discounting
desirable gambles. The first approach, called additive dis-
counting and described in this section, prioritizes the preser-
vation of the mathematical properties of coherent sets of
desirable gambles but dissociates the interpretation of desir-
ability from the non-negative multiplicative scaling axiom,
A3, from Section 2. Yet, because axiom A4 remains fixed,
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the additive structure of coherent sets of gambles is pre-
served. So, additive discounting maintains the mechanics of
coherent inference by assuming that gambles only combine
by a simple, additive dynamics.

The positive scale invariance axiom, A3, asserts that if
a gamble is desirable, then so too is a stake of that gam-
ble. Although the principal argument for viewing A3 and
A4 as rationality postulates for desirability depends on ex-
pressing gambles within a linear utility scale [31, §2.3.4],
positive scale invariance, on its own, is compatible with
alternative notions of utility, include discounted utility.?
Additive discounting instead uses discounted utility as a
basis function to perform an element-wise transformation
of the rays associated with each coherent gamble in ID.

A coherent set of gambles D is an object for inducing
a coherent lower prevision, preserving partial preference,
and performing coherent inference. Rather than regard an
outcome vector Xy of each gamble f in a coherent set D as
an index of the desirability of f, the desirability of gambles
is instead determined by a point-wise, additive transforma-
tion of elements of D by discounted utility. Alternatively,
a collection of elicited gambles that are judged acceptable
with respect to a discount rate ¢ may be transformed to a
linear scale by reverse discounting for the purposes of con-
structing a conic hull for coherent inference, if the elicited
gambles are consistent and, once transformed, afford a nat-
ural extension. An exact transformation from elicited gam-
bles to a convex cone requires an exact ¢, but imprecision
in o affords a form of sensitivity for the lower previsions
induced by the collection of conic hulls produced from the
admissible range of values for «.

Figure 4 displays additive discounting of two solvent
gambles, x and y, for two different discount rates, o¢ =0
(grey) and o = 0.5 (color). Specifically, the z axis rep-
resents the additive combination of a discounted x and
discounted y by u(x, o) + u(y, ). The grey hyperplane rep-
resents linear utility, for solvency adjusted values 1 to 10.
The curved hyperplane is the additive combination of x and
y with a discount rate of one-half.

Proposition 4 (Consistency) Let u(x, o) be a map from
D to D such that a discounted D* C . Then, a set of
additively discounted D* is consistent if D is coherent.

The importance of preserving conic cones for coherent
inference should be emphasized. A problem for Bernoullian
utility is that it effectively depends on a distinguished cur-
rency scale. Since exchanging one currency into another is a
linear transformation, but Bernoullian utility is logarithmic,
switching one currency to another will involve exponenti-
ating the currency exchange rate by a factor keyed to the
original currency. Discounted utility is similarly without
a base unit to underpin a conversion, which is why dis-
counted utility should not be viewed simply as a type of

3. I am grateful to an ISIPTA reviewer for pressing on this point.
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u(x, a) +uly, a)

Figure 4: A linear utility hyperplane (grey) and discounted util-
ity hypersurface (in color) for o = 0.5, constructed
from the additive combination of two reward vectors
x,y, each with values spanning the real interval [1,10].

currency conversion, and also why axioms Al to A4 are
supplemented by discounted utility transformation rather
than altered.

In short, the simple idea behind discounted utility is to
maximize the utility of a reward rather than maximize the
reward itself. Additive discounting extends the coherent
sets of gambles framework by using discounted utility as
a basis function to detach the operational meaning of de-
sirability from the scale invariance axiom, A3, necessary
for constructing conic hulls. By treating axioms A3 and A4
as closure conditions rather than rationality criteria per se,
additive discounting moderates the role that linear utility
plays in the theory of lower previsions.

5. Repeated Gambles

Gambles can be repeated, but repetition can mean different
things. You might consider the outcome from playing a
gamble T times in a row to be the sum of the expected
payoffs after each round of play, from 1 to T rounds. Alter-
natively, you might view the result from playing the same
gamble T times to be the product of the relative changes in
your wealth after each round of play. The first describes a
random additive process for changes to your wealth over
time and, as such, belongs to a class of stochastic processes
where the central limit theorem figures in describing its
long-term properties. The second describes a random mul-
tiplicative process, which is a stochastic process whose
long-term behavior cannot be characterized in the same
fashion because of the exponentially outsized effect of ex-
tremely rare events.

This section and the next address the dynamics under
which gambles are combined. Random additive processes
incorporate the additive structure that coherent sets of gam-
bles inherits from expected utility theory [4]. The study of
decision processes with imprecise transition probabilities
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[37, 13, 30] and their limit behavior [7] are contributions
to the study of additive dynamics. Random multiplicative
processes depart from the additive combination condition
(Axiom A4, Section 2), marking a more radical departure
from the sets of desirable gambles framework.

Additive dynamics and multiplicative dynamics high-
light a difference between the expectation value of a re-
peated gamble and the long-term time average of a single
sequence of repeated gambles, and the conditions under
which one average is equivalent to the other [18]. A se-
quence of gambles is ergodic if, given a sufficiently long
time ¢, the observed empirical average of a gamble f over
that period of time, written 1 (f(®),?), approaches a unique
expectation value of f, E[f(®)], independent of initial con-
ditions; that is, when

Jim [ (0,1)] = E[f(@)
=P(f)

where the reward of a gamble f at 7 is determined by the
state @ € Q realized at ¢ [2].

On the left-hand side of Equation 6, Birkhof’s Theorem,
the state (o,7) is time-dependent, while the expectation E
(linear prevision P) on the right-hand side relies on time-
independent values associated with each w € Q. When
equation 6 holds, the time average is the same as the ex-
pectation value, so you can avoid integrating over time and
instead integrate over the set of states, Q.

By emphasizing the gain or loss of a gamble relative
to your current wealth in Section 3, I anticipated viewing
the stakes of a gamble as a fixed proportion of current
wealth at time ¢ rather than a fixed amount. To illustrate,
consider a running example. Suppose you are offered a
gamble f on a coin toss that increases your current wealth
x(t) by 50% if the coin lands heads (wg), and decreases
your current wealth x(¢) by 40% if the coin lands tails (cr).
A time-dependent representation of this gamble is

{

For one round of play and an initial, status quo stake of €1
at fp for accepting the gamble, Equation 7 may be expressed
as the gamble that results in your wealth increasing in
absolute terms to €1.50 if heads or decreasing to €0.60 if
tails. If the coin used to determine the states @y and @y is
known to be fair and your current wealth at ¢ is x(¢) = 1,
then the expected value of f(,?) is €1.05 and the variance
is €0.20.

In a series of papers Ole Peters [21, 22], following an
earlier observation by Maslov and Zhang [18, p. 382], ar-
gues that sequential decision problems are underspecified
unless one explicitly addresses how the dynamics ought to
be modeled. Asset price dynamics [14] and wealth dynam-
ics more generally [11, 23] are non-stationary processes, as

(©)

flog,t) =x(t)+0.5x(z)
flor,t) =x(t) — 0.4x(¢)

flo,1) @)
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individual wealth tends to increase or decrease over time,
not fluctuate around a stable mean. Yet, the presumption
that Equation 6 holds is central to the Bayesian theory of
inference and decision making with linear previsions, and
this assumption largely carries over to the theory of lower
previsions as well. Presuming that Equation 6 is satisfied
without specifying how it is satisfied may be referred to as
the dogma of ergodicity.

The procedure to model a dynamic process is to (i) con-
vert a non-ergodic process into an “ergodic observable” of
stationary, independent increments per unit of time; then
(if) maximize the expected value of these ergodic observ-
ables as an estimate for a time-average. In short, an ergodic
observable is a growth rate, and the question becomes what
(if any) transformation of a gamble f is such that the ex-
pectation value of f, so transformed, is a suitable estimate
of the time average of repeating f according to that growth
rate.

Following Peters and Gell-Mann [23], we can describe
the process of converting non-ergodic additive and non-
ergodic multiplicative repetitions of a gamble into ergodic
observables for each dynamics. We assume throughout that
the gamble f is a stationary random variable.

Additive Repetition. Starting with an initial wealth of
x(fo) at time #y before the first round of play, your accu-
mulated wealth x(¢) + T) after playing gamble f for T
repetitions under a random additive process is calculated
by
T
x(to+T) =x(to) + Y f(,1)
=1
where f(®,t) is the outcome from playing f in the #’th
round of play, for T total rounds. The expectation value
of your wealth x(¢) is not constant in time nor does the
finite-time average converge to the expected value of f,
1.05. Thus, additive repetition is not ergodic.
Nevertheless, an ergodic observable exists in additive
changes to wealth, x(t + T') — x(¢), which does not depend
ont: |
lim — [x(:+ ) —x(1)] = E, [f(®)]

T—reo

®)

For simplicity, Equation 8 assumes the precise probability p
of heads and 1 — p of tails is each one-half, but my general
remarks about constructing an additive ergodic observable
apply to lower previsions, too.*According to Equation 8,
the expected outcome from playing f repeatedly is that
your wealth will grow exponentially in time by a factor of
1.05:

Eplx(t+ 1) =B, k(1) fl@,i+1)] ()

and the continuous growth rate is In(1.05) or approxi-
mately 4.9%. It follows from Equation 9 that the expected

4. If the bias of the coin is unknown at x(¢), and you’re considering the
desirability of f, a consequence of coherence is that you ought to not
accept f if its lower prevision is less than 1, P(x(r +1)) < 1.
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Figure 5: Plots of gamble f described by Equation 7 with pre-
cise p = 0.5 and an initial stake x(fy) = 1 repeated
under two dynamics: (i) The expectation value calcu-
lated by Equation 8 yielding E,, ~ 4.12 after t = 30
periods; (ii) The time average value calculated by
Equation 11 returning E; ~ 0.22 after r = 30 periods.

value of your wealth after playing this gamble 7 times is
x(t)-Ep [f(@,0)]". ¢

So far I have taken the average of a binomial sequence,
where E,, is the average of all possible outcomes computed
by (px1 + (1 — p)x2)T, with x;,x, > 0. The most proba-
ble p outcome of playing the gamble f for T rounds is
a sequence that contains T p factors of 1.5x and T(1 — p)
factors of 0.6x, or p = (x/x; ”)7. For additive processes,
the average value of all possible outcomes, [, is a good
approximation of the most probable sequence p, and con-
verges as T — oo. For multiplicative processes, however,
the ratio E,/ p diverges exponentially in T as T — oo [25].
Figures 5 and 6 illustrate this divergence.

Continuing along the lines of [23], we turn next to the
construction of a multiplicative ergodic observable.

Multiplicative Repetition. To describe a multiplicative
process, first define per-round growth as

x(to) + f(@,1)

r(m,t) = ()

where 7y is again the initial time before the first round
of play. Since f(w,) is stationary and independent, so is
r(w,t). Then, a gamble is repeated multiplicatively if

~

x(to+T) =x(to) - [ [ r(®,1),

t=1

which may be rewritten as

x(to+T) = x(t9) - exp [ilnr(m,t)} (10)
=
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Like additive repetition, neither is the expectation value of
your wealth x(¢) constant in time nor does the finite-time
average converge to the expected value of f when repeated
according to Equation 10. Unlike additive repetition, a
non-linear transformation of f is necessary to construct
an ergodic observable of multiplicative changes in wealth
over time. Specifically, under multiplicative dynamics, the
ergodic observable is the rate of change in the logarithm of
x(t+T)

wealth.
(D) —sms@)  ay

According to Equation 11, the expected outcome from
playing f repeatedly is that your wealth will decrease ex-
ponentially in time by a factor of approximately 0.95, as

P = (1.5.0.6)1/2 % 0.95 < 1. Unlike additive er-
godic observables, which are straightforward to construct
for lower previsions, multiplicative ergodic observables are
far less accommodating. Because their average is domi-
nated by extreme events, the destabilizing role of extreme
events is amplified if either the values of rewards x; and
xp or the corresponding probabilities are far apart. Thus,
the conservative behavior of lower and upper probabili-
ties that licenses treating them as reasonable bounds on
expectation values within additive structures and additive
processes does not carry over to multiplicative processes.
(See Figure 7 and Section 6.) &

Figure 5 illustrates the expected outcomes in wealth from
playing the gamble f thirty times with an initial stake of
€1 and probability p = % under additive (E,) and mul-
tiplicative (E,) dynamics. Assuming that wealth changes
additively, the growth rate is the expectation value of f,
E,[f(w)] = 1.05. Thus, E,[f(®,30)] is expected to net
a profit of approximately €3.22. Assuming that wealth
changes multiplicatively, the time average growth rate is
E,[f(®)] =0.95. Thus, E,[f(w,30)] is expected to yield a
loss of approximately €0.78.

The choice of whether to play the gamble f sequentially
T times is a choice between two different decision criteria:
one that maximizes the ergodic growth rate assuming an ad-
ditive dynamics; another that maximizes the ergodic growth
rate assuming a multiplicative dynamics, which is modeled
by changes in logarithmic utility (Equation 11). Peters and
Gell-Mann refer to this second criterion as Laplace’s Crite-
rion [23], which I simplify here by assuming the scale for
the rate of change is identical to the number of rounds of
play.

Definition 5 (Laplace’s Criterion) Ler v > 0 be a fee
paid in exchange for the gamble f and m = |Q|. Then,
to maximize the rate of change in logarithmic utility for a
finite time period T is to maximize

1
lim —In
T—oo T

m

1 5.t nte-+ 09 - ) -a(o)
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Figure 6: Simulations of portfolios of N gambles (Eq. 7) played
for T = 100 periods with p = 0.5 and resulting wealth
x(r) plotted on a log scale. The theoretical expectation
values from Figure 5 are plotted as dashed lines. As
the size N of the portfolio increases the average of the
portfolio approaches the expectation value E,.

Peters and Gell-Mann are critical of viewing multiplica-
tive dynamics in terms of logarithmic utility. A gamble’s
mode of repetition is a fact about the gamble, not a psycho-
logical attitude about risk, even if the construction of an er-
godic observable for multiplicative dynamics and Laplace’s
Criterion are formally equivalent. Whether you should ex-
pect to quadruple your stake or lose three-quarters of it
rests on correctly modeling the dynamics. Rhetorical to
[22] and fro [10] aside, the logarithm is capturing a critical
feature of the multiplicative process, namely that the av-
erage of the T-fold product of f is dominated by extreme
“tail” events. The point to stress is that time-average perfor-
mance is what you wish to approximate. Sometimes, such
as for multiplicative repetition according to Equation 10,
that approximation can be achieved by the expected value
of an ergodic observable.

6. Adjustable Multiplicative Discounting

This said, maximizing the expected value and maximiz-
ing the expected log value are the two extremal values
of discounted utility. However, to allay concerns that dis-
counted utility is solely to do with individual preference,
the discount rate & works similar to an informed prior in
a dynamic setting: while you are free mathematically to
choose any admissible o you like, the optimization objec-
tive to maximize your wealth compels you, rationally, to
make an informed choice for the value of ¢. And the in-
formation most relevant to you for rationally choosing o
are facts about the gamble’s dynamics, not your personal
appetite for risk.

Adjustable multiplicative discounting departs from the
additivity condition regulating how gambles combine over
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time, allowing for intermediate dynamics between pure ad-
ditive repetition and pure multiplicative repetition. Unlike
additive discounting, where the discount rate o was intro-
duced without an operational interpretation, ¢ does admit
to rational calibration from knowledge about a gamble’s
dynamics.

Figure 6 plots the expected time-average of a sequence
of gambles (IE,) and the expectation value (), and sim-
ulated returns of portfolios consisting of N gambles, all
played for 100 rounds. As the portfolio size N increases,
the time average of the N-member ensemble time-average
approaches the expectation value E,,. In fact, the cross-over
point where the ensemble size N is large enough to be ap-
proximated by the expectation value for a finite period T
is on the order of N ~ exp(nT), for some constant 1 [25].
In other words, the size N of the portfolio needs to be on
the order e’ to effectively sample the extreme tail events
over T periods for the time average and ensemble average
to align. But, even for just 7 = 100 rounds, constructing
portfolios with e’ many gambles is practically impossible.

In practice, real portfolios of multiplicative gambles will
rarely if ever include e/ gambles. Since the outcome of
a portfolio will depend on the size N of the portfolio and
the number T of iterations of play, the expected time av-
erage may be represented by discounted utility through
simulations to estimate . This empirical method for fixing
« through simulation is analogous to Bayesian predictive
prior simulation, where you are choosing an o based on
prior, perhaps partial, knowledge of the gamble dynamics
and without foreknowledge of outcomes. As such, this em-
pirical method for fixing o is normative, insofar as your
decision to maximize your wealth x(¢) is influenced by the
precision of your estimated payoff. These remarks suggest
a generalization of Laplace’s Criterion, which I call the
discounted utility criterion.

Definition 6 (Discounted Utility Criterion) Let u be a
discounted utility with o, € [0, 1) fit by simulating portfolios
of N gambles played T periods and y > 0 a fee payed to
play the gamble f each period. Then, to maximize the rate
of change in discounted utility for a finite time period T is
to maximize

1
T

(ngE

p{oi})(u(fx+ f(@) =7, @) —u(x, )

1

If there is uncertainty about the exact number N of gam-
bles in a portfolio, an upper and lower bound on & may
be used to represent upper and lower expected values of
a sequential gamble’s payoff—with caveats. As a higher
« corresponds to a smaller size N ensemble, the ensemble
time average is increasingly influenced by small fluctua-
tions that are otherwise mean preserving as N dwindles to
1. Nevertheless, one can put the haziness of lower-bound
estimates of ¢ into some context by comparing the order ef-
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Figure 7: Simulations of portfolios of N gambles (Eq. 7) played
for 100 periods with p = 0.3 (red), p = 0.5 (grey), and
p = 0.7 for the outcome 1.5x, and resulting wealth
x(1) plotted on a log scale. The theoretical expectation
values from Figure 5 are plotted as dashed lines.

fects of varying « to order effects of imprecise probability
values.

Figure 7 compares the divergence in expected outcomes
under additive and multiplicative dynamics from playing
the gamble f described in Equation 7 with probabilities p =
(0.5,0.5) (black) for the outcomes (g, ®r), which are
also displayed in Figure 6, to the same dynamics but with
probabilities p* = (0.7,0.3) (green) and p, = (0.3,0.7)
(red). Each of the three parameterized gambles includes
(unlabeled) simulations for portfolios that includes N = 1,
10, 100, 1000, and 10000 gambles for comparison.

If the probabilities p, and p* are viewed as witnessing
lower(upper) and upper(lower) probabilities for wy(wr),
observe that the divergence in expected outcomes due to
additive and multiplicative dynamics is swamped by the
divergence in expected outcomes from each pair of upper
and lower expectation values. Specifically, the difference
between the expectation value and time average value after
100 trials is on the order of 10*, when p = 0.5, slightly
less when p = 0.7 and slightly more when p = 0.3. How-
ever, the difference between the lower-bound time average
when P({wg }) = 0.3 to the upper bound expectation aver-
age when P({@wy}) = 0.7 is on the order of 10'!. On this
scale, discounted utility may provide a reasonable range
of estimated outcomes for an uncertain ensemble size N
of gambles, even if the lower and upper estimates do not
function as lower and upper bounds on expected outcomes.

7. Discussion

The desirable gambles framework is a proper extension
of the credal sets approach to imprecise probabilities, and
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both are part of a tradition that seeks a unified, general
account of coherent behavior. Even so, there are several
alternative approaches to imprecise probabilities that do not
fit neatly into the modern theory of lower previsions whose
differences often spring from rejecting the behavioral, sure-
loss avoidance and coherence foundations of the theory
of lower previsions [16, 26, 33, 12]. This paper may be
viewed as placing a foot in each of these traditions.

Additive discounting is a basis function approach to ac-
commodating non-linear utility that aims to preserve the
advantages of the theory of lower previsions while extend-
ing the theory’s reach. I highlighted two issues with this
approach. The first is that there is not a clear operational
definition of the discount rate o that a complete normative
theory might demand, although a non-trivial range of dis-
count values may be easier to justify. The second is that dis-
counted utility should not be viewed as a type of currency
conversion, unless a case is made for a privileged scale
for measuring desirability. Nevertheless, since discounted
utility is an interpolation between linear and logarithmic
utility, additive discounting enjoys an uncommonly high
degree of interpretability for a linear basis function model.

In contrast to additive discounting, multiplicative dis-
counting appears to upset the desirable gambles cart. The
difference between multiplicative decision processes and
additive decision processes involving imprecise transition
probabilities is a difference of kind rather than of degree.
Ensembles of multiplicative gambles on the order of e’ can
be reasonably estimated by expectation values. But, for T
of moderate length, the conditions for this equivalence are
practically impossible to meet, so the chaotic properties of
multiplicative random processes are unavoidable. Further,
the discount rate ¢ in discounted utility within adjustable
multiplicative dynamics may be understood as a proxy for
the size of an ensemble of gambles, and uncertainty bounds
over the size of such a portfolio can afford a tighter interval
estimation of outcomes than that offered by the theoreti-
cal expectation value and theoretical time average plotted
in Figures 5, 6, and 7. Lastly, the interval estimates from
moderate changes in probabilities, as one would find in a
sensitivity analysis involving upper and lower probabilities,
swamps the interval estimates induced by different dynam-
ics. Put differently, for multiplicative decision processes, a
lot rides on p = 0.5 meaning one-half rather than "I do not
know" >

In closing, this preliminary study only scratches the sur-
face of a number of interesting questions at the intersec-
tion of ergodicity breaking dynamical systems and impre-
cise probabilities. Although the proposal was advanced by
numerical methods and a simple gamble with monetary
wealth, applications to stochastic growth processes in biol-
ogy, epidemiology, and the social sciences are conceivable,
and analytical results within reach.

5. Compare to [20], which concerns the quality of one’s information.
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