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Abstract

A proposal by Baron, Colyvan, and Ripley to extend the counterfactual theory of
explanation to include counterfactual reasoning about mathematical explanations
of physical facts is discussed. Their suggestion is that the explanatory role of math-
ematics can best be captured counterfactually. This paper focuses on their example
with a number-theoretic antecedent. Incorporating discussions on the structure and
de re knowledge of numbers, it is argued that the approach leads to a change in the
structure of numbers. As a result, the counterfactual is not about the natural num-
bers anymore. Linking the antecedent and consequent of the counterfactual also
becomes problematic.

Keywords mathematical explanation · counterfactual theory of explanation · em-
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1 Introduction
In their (2017) article, Baron, Colyvan, and Ripley provide an account of counterfac-
tual reasoning about mathematical explanations of physical facts, also called ‘extra-
mathematical explanations’. They aim to extend the counterfactual theory of expla-
nation to include those. Extra-mathematical explanations are explanations in which
the mathematics contributes to the scientific explanations themselves, and purportedly
open the door for an argument for mathematical platonism. In their (2020) article they
expand on their account to include intra-mathematical explanations, that is, mathemat-
ical explanations of mathematical facts.

In the philosophy of explanation, counterfactual reasoning is rarely geared towards
extra-mathematical explanations, that is, to mathematical explanations of empirical
phenomena. Although recently, for instance, Knowles and Saatsi (2019) provided an
analysis of the role mathematics plays in relation to the explanatory generality of extra-
mathematical explanations. In this context, generality pertains to the ability of math-
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ematics to connect seemingly unrelated empirical phenomena under a single schema,
which is often considered to be one of the key virtues of the explanatory role of math-
ematics. This analysis was also carried out within the framework of a counterfactual
theory of explanation.

The basic idea of a counterfactual theory of explanation is that some pattern of
counterfactual dependence explains how an explanandum would have been different,
given a different explanans. Woodward calls this a ‘what-if-things-had-been-different
question’ (Woodward, 2003, p. 11). The explanation thus shows the effect a change of
some relevant aspects in the explanans has on the explanandum. More technically, both
the explanans and the explanandum contain variables X and Y that can take different
values (e.g. x and y), and which are related by some generalization G (Woodward,
2003, p. 203). What is required, is the possibility of at least one of the (values of the
variables in the) statements of the explanans being of a different value. This change
in value should then lead to a change in some variable in the explanandum, assuming
the change fits some generalization employed in the explanation (Reutlinger, 2016,
p. 738). As in well-known examples of counterfactual reasoning, such as ‘if Suzy had
not thrown the rock, the bottle would not have shattered’, some parts of the facts are
kept fixed. Subsequently, the antecedent is varied, and the implications of the varied
antecedent are then considered. In this example one might, as Lewis (1973) suggested,
keep the past up to the moment Suzy throws fixed, then vary the fact that Suzy threw
the rock (i.e. that she didn’t throw the rock in the counterfactual situation), and then
look at the implications of the varying of the antecedent (i.e. the bottle did not break in
the counterfactual situation).

Baron, Colyvan, and Ripley then apply this general idea to extra-mathematical ex-
planations in which the counterfactuals have a mathematical antecedent. Specifically,
they apply it in such a way that the ‘what-if-things-had-been-different question’ stip-
ulates a change in a mathematical property that occurs in the antecedent of the extra-
mathematical explanation. To bring out the explanatoriness of the mathematics, the
idea is to evaluate what the effect of this change in the actual mathematics is on the
explanandum. To put it in the terms they use, some (mathematical) facts are held fixed,
some others are twiddled, and then one looks at the ramifications of the twiddling
(Baron, Colyvan, and Ripley, 2017).

In casu, it is applied to the explanation of the prime life cycles of the North Ameri-
can Periodical Cicada and the explanation of the hexagonal shape of honeycomb cells
(Baron, Colyvan, and Ripley, 2017). It needs to be emphasized that they explicitly
assume there to be genuine cases of mathematical explanations of empirical phenom-
ena, such as the just mentioned explanations, and that their aim is not to discuss them
in themselves, but rather to develop a theoretical understanding of such cases (Baron,
Colyvan, and Ripley, 2017, p. 2).

The approach is of particular interest, because tweaking the mathematics in the
antecedent inevitably leads to impossibilities, given the necessary nature of mathemat-
ics. On the standard semantics for counterfactuals, as initially developed by (Stalnaker,
1968; Lewis, 1973), these so called ‘counterpossibles’ are trivially true. A counterfac-
tual A � B is said to be true at a world w if and only if it is the case that the closest
A-worlds are B-worlds (Berto and Jago, 2019, p. 20). And since there is no A-world in
the case of counterpossibles, it follows that there is no closest A-world. Therefore, the
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universally quantified statement of the form ‘for all closest A-worlds . . . ’ is trivially
true.

The debate on the status of counterpossibles is very much ongoing. Williamson
(2018), for example, defends the view that counterpossibles are trivially, or vacuously,
true. But Priest (2016) or Berto et al. (2018) defend the idea that counterpossibles can
be non-vacuously true. This paper will take no stance in this debate. It is only pointed
out that the outcome of this debate is relevant for the evaluation of the counterfactual
at hand. After all, in the context of extra-mathematical explanations, the counterfactual
has to be non-trivially true, because everything that is trivially true is not essential in
an explanation. Given that the tweaking of the mathematics in the antecedent leads
to inconsistencies, then, on the standard semantics, the consequent has no role in the
evaluation of the truth value of the counterpossible. In other words, whether the con-
sequent is (or contains) B or ¬B, in both cases the counterpossible evaluates to true.
If the mathematics, and specifically that part of the mathematics that is changed, is to
be brought out as carrying explanatory load, then it has to make a difference to the
explanation, as is expected of difference makers. But when trivialized, this role cannot
be brought out (Baron, 2016, p. 380).1

This paper investigates the counterfactual statements in which the antecedent has a
mathematical component, and in which the mathematics itself is changed. In particular,
the investigation will focus on number-theoretic antecedents, such as is the case in the
example of the explanation of the prime life cycles of Periodical Cicadas. Due to the
important role the context plays in determining the truth conditions of counterfactuals,
the question that is set out to be answered is how to understand what holding the context
fixed, whilst tweaking some of the mathematics, could mean in the example using
number theory.

Section 2 introduces the example of the counterpossible and points to some im-
mediate worries concerning contradictions that might arise. Section 3 discusses the
relevance of such contradictions and argues, by means of Peano Arithmetic, much
used in meta-mathematics, that these contradictions point to an underlying difficulty.
Section 4 then argues that, in effect, a shift in structure of the natural numbers occurs,
resulting from the twiddles in the number-theoretic antecedent. The argument draws
on discussions on the standard interpretation of arithmetic and de re knowledge of nat-
ural numbers. The importance of the idea of being isomorphic to the standard model
of arithmetic and of the idea of succession, exemplified in the successor function of the
Peano axioms, are discussed. Subsequently it is noticed that for a counterfactual to be
the counterfactual of something or other, it needs to be about this something or other.
The change of structure casts doubt on this.2 Additionally, and also resulting from the
changes in the antecedent, this paper will also question the possibility of the empirical
content of the consequent latching on to the antecedent.

1Interestingly, in the literature on the logic of so called ‘why-questions’, which are intimately related to
explanations, a similar observation is made. For something to be an answer to a why-question it needs to be
non-trivially deducible from the explanans (Hintikka and Halonen, 1999, p. 195).

2In the context of contradictions arising from changes to the mathematics, the problem of too great a shift
in subject is also observed by Baron, Colyvan, and Ripley (2020, pp. 9–10).
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2 A mathematical counterfactual
Before turning to the counterpossible we are concerned with, let us first briefly turn to
the empirical phenomenon to which it relates. The Periodical Cicada has a remarkable
life cycle of either 13 or 17 years. These life cycles are prime, and number theory
could explain that, given certain ecological constraints, prime life cycles minimize
intersection with other life cycles. In turn, this could be advantageous because they
are less likely to intersect with life cycles of, say, predators (Baker, 2005). Whatever
the biological status might be of the above explanation of the empirical phenomenon,
what Baron, Colyvan, and Ripley are concerned with is the embedding of these kind of
extra-mathematical explanations in the general framework of a counterfactual theory
of explanation.

They consider the following counterfactual statement (Baron, Colyvan, and Ripley,
2017, p. 6):

(1) If [ . . . ] 13 [ . . . ] were not prime, then these Cicadas would not have had 13-year
life-cycles lengths.

According to them, this would counterfactually capture the explanatory role played
by the mathematics. Since the explanation of the length of the life cycles turns on facts
about the number 13, namely that it is a prime number, and also on the number-theoretic
theorem about primes and common multiples, namely that prime cycles intersect less
compared to non-prime cycles, therefore considering 13 to be not prime would remove
the support of the explanation that a 13-year life cycle is an advantageous life cycle to
have because it intersects less with other periodical life cycles (given certain ecological
constraints).

It is instructive to notice that the above counterfactual is indeed different from a
counterfactual like:

(2) If the length of the life cycle were not prime, then these Cicadas would not have
developed a life cycle of that length.

In the above counterfactual, the twiddling is not done on the mathematics itself,
but on the length of the actual life cycles. The salient difference is that in (1) we are
dealing with an impossible antecedent, because mathematical truths are considered to
be necessary truths, and in (2) with a possible antecedent, because the length of the life
cycle is a contingent truth.

Baron, Colyvan, and Ripley (2017, p. 6) then observe that in order to consider 13 as
not being a prime number, it would mean that it is composite. And hence, that it would
not only factorize in 1 and 13, but also in some other numbers. It is imagined that,
since 13 is not supposed to be prime, it counterfactually also has 2 and 6 as factors. So,
the counterfactual could also be stated as follows:

(3) If, in addition to 13 and 1, 13 had the factors 2 and 6, North American Periodical
Cicadas would not have 13-year life cycles (Baron, Colyvan, and Ripley, 2017,
p. 6).3

3Note that, strictly speaking, this counterfactual is more precise than counterfactual (1). For the present
purposes however, this is of no real importance.
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In line with the general idea of a counterfactual theory of explanation, some facts
need to be kept fixed and some facts are then varied. In the case of (1) or (3), the idea
of Baron, Colyvan, and Ripley is to

hold all of number theory fixed except for the twiddles to 13 if one is
prepared to change the way that multiplication works (Baron, Colyvan,
and Ripley, 2017, p. 7).

But if the idea is to only change the factors of the number 13 and keep the rest
of number theory as it is, a contradiction would immediately follow. Because, for
instance, 2 · 6 = 12, but since 2 and 6 are now factors of 13 too, also 2 · 6 = 13 would
hold. But at the same time 12 , 13, and so a contradiction arises (Baron, Colyvan, and
Ripley, 2017, p. 7).

It looks like either there is no way to continue, or the principle of non-contradiction
has to be abandoned and one needs to resort to some paraconsistent logic. However,
Baron, Colyvan, and Ripley (2017, pp. 7-8) state that this is not necessarily so. The
suggestion is that, when at first 13 is varied (as also having, besides 1 and 13, factors 2
and 6), and a contradiction is obtained, one relaxes some of what was held fixed in the
mathematics and varies again. This then goes on until the maximum amount that can
be held fixed is found without having a contradiction. This can be done, they suggest,
by stipulating a new function other than multiplication, called ‘multiplication*’, which

will preserve the same theorems as multiplication, and imbue the natural
numbers with the same structure, except for whatever disruption is in-
volved in changing the factors of 13 (Baron, Colyvan, and Ripley, 2017,
p. 8).

Although not all of number theory is preserved this way, presumably enough is.
This echoes a similar point made by (Berto et al., 2018, p. 704):

whether a particular chain of reasoning succeeds or fails in supporting the
truth of a counterfactual depends on the context, and in particular what
truths about the case need to be held fixed to legitimate the reasoning.

Accordingly, Baron, Colyvan, and Ripley (2017, p. 9) state that not all contradic-
tions need to be addressed, but only the relevant ones. The metaphor used is that of
ironing out a lump in the carpet away from our area of interest. Similarly, they say,
in the case of Suzy there are also bound to be some contradictions. They mention the
following: “Suzy moved her arm in a throwing motion, yet the rock did not move? She
willed her arm to move, but it didn’t?” (Baron, Colyvan, and Ripley, 2017, p. 9)

But we have to be careful here, for it is not immediately clear whether in the just
mentioned cases there are bound to be contradictions in the same sense as there are
bound to be contradictions in the case of the change in factors of the number 13. Take
for instance the example of Suzy moving her arm in a throwing motion, but the rock
not moving. Surely the laws of physics are kept the same in this case, because this
is relevant to the assessment of the counterfactual ‘if Suzy had not thrown the rock,
the bottle would not have shattered’. Otherwise nothing could be said about the bottle
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shattering at all. Or in the case of her willing her arm to move, but the arm did not.
Is that a contradiction? And is it relevant for the assessment of the counterfactual at
hand? In fact, it could argued that neither of the examples are real contradictions. They
are not inconsistent with, for example, classical physics, as long as one is willing to
incorporate, say, extra forces. Although perhaps uninteresting from the viewpoint of
physical theory, logically speaking there is nothing to prevent one from doing so. To
put it in the style of Lewis: although in the case of Suzy a miracle might have occurred,
it was however no logical contradiction.

This leaves us with the aspect of the relevance of the contradictions arising from
tweaking the the properties of numbers, and whether they need to be addressed at all.
Baron, Colyvan, and Ripley (2017, p. 9) state this is follows:

In a way, our example of the contradiction generated by multiplication
(once we suppose that 13 is composite) is a little misleading. After all, it
is not clear that any of this is relevant to the counterpossible of interest,
so there’s no need to even consider the contradictions arising there. We
presented the details of how we might iron out such a contradiction by
way of example. But, in fact, there is no reason to think that such further
contradictions are relevant.

The next section will address the question of the relevance of the contradiction in
the case of the mathematical counterfactual at hand.

3 The relevance of the contradiction
Let us first begin with some short remarks on the earlier-mentioned contradiction aris-
ing from the twiddling of the number 13, namely that 2 · 6 = 12 and 2 · 6 = 13, but that
12 , 13. Depending how the function multiplication* is actually defined, but assuming
the rest of number theory is kept the same, we could probably continue from this. For
instance, given that multiplication* factors 13 in 1, 2, 6, and 13, this would mean that
2 · 6 = 13, but then it might also mean that 4 · 3 = 13 because (2 · 2) · (6÷ 2) = 13, if di-
vision needs to be changed as a result as well. And so on. A worry that one might have
is that a local twiddle reverberates through the whole of number theory (Baron, Coly-
van, and Ripley, 2017, pp. 7-8). Since it is not deemed necessary to immediately resort
to paraconsistent logic, which will be briefly addressed later, a method is proposed to
deal with the ironing out of the (relevant) contradictions. If a contradiction arises due
to the twiddling of 13, then some more of the mathematics needs to be varied. If an-
other contradiction arises, then some more of the mathematics is varied still, until one
reaches a point without a (relevant) contradiction (Baron, Colyvan, and Ripley, 2017,
pp. 7-8). This way, the contradictions should be contained. Apart from describing the
general method, the paper does not show how, and if, this would work. How to contain
the contradictions arising from the twiddling of 13 in number theory? Remember that
multiplication* needs to “imbue the natural numbers with the same structure, except
for whatever disruption is involved in changing the factors of 13” (Baron, Colyvan,
and Ripley, 2017, p. 8). This therefore raises the further question what the disruptions
might be when changing the factors of 13.
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Since we are concerned with number theory, a good starting point to evaluate the
possibility of the twiddles to multiplication, and the effects such a twiddle might have
on other parts of number theory, is Peano Arithmetic. Peano arithmetic is after all
meant to define the natural numbers non-circularly. Notions such as ‘number’ or ‘suc-
cessor’ are meant to be captured by the axioms. The language of arithmetic is described
as follows, LA = (0, S ,+, ·,=), with 0 a constant, S the function symbol for successor,
+ and · the function symbols for addition and multiplication respectively, and = the
symbol for the equality relation. Peano arithmetic consists of the Peano axioms, and
the functions for addition and multiplication (Van Dalen, 2004, p. 87):

Peano axioms

1. ∀x(0 , S (x))

2. ∀x∀y((S (x) = S (y))→ x = y)

3. ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S (x)))→ ∀xϕ(x)

Addition

4. ∀x(x + 0 = x)

5. ∀x∀y(x + S (y) = S (x + y))

Multiplication

6. ∀x(x · 0 = 0)

7. ∀x∀y(x · S (y) = x + (x · y))

Given the Peano axioms, with the Peano numerals as the names for the numbers,4

it is clear why 2 · 6 = 12 and 2 · 6 = 13 give rise to a contradiction in the first place,
i.e. that 12 cannot be equal to 13. Because, generalizing the point, it is the case that the
product of the two functions of multiplication and multiplication*, given some numbers
m and n, will agree in their outcome eventually. And this violates the requirement of
uniqueness, as per axiom 2. Let us be more precise and use · for multiplication, and
·∗ for multiplication*. Take as an example m = 6 and n = 2 (or vice versa). Then,
given the recursive definition of multiplication (axiom 7), it can be deduced that the
following holds for multiplication*:

13 = 6 ·∗ S (1) = 6 + (6 ·∗ 1) = 6 + (6 · 1) = 12

Considered this way, 13 = 12, unless it would be the case that 6 ·∗S (1) , 6+(6 ·∗1).
For the function of multiplication* to be able to deal with this initial contradiction,

a first approach could be to define it in an ‘exceptionalist’ way. For instance, by taking
multiplication for all m, n other than 2 and 6, and then define 2 and 6 separately, such

4To make the distinction between numbers and numerals explicit, from now on an overline will be added
for the numerals. For example, 0 is the name of the number 0.
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that 2 ·∗ 6 = 13 = 6 ·∗ 2. Accommodating this in the new function of multiplication*,
the recursive step in the axiom of multiplication would then have to be replaced by the
following:

∀x∀y(¬((x = 6∧ y = S (1))∨ (x = 2∧ y = S (5)))→ (x ·S (y) = (x + (x · y))))

However, this also means that 6 · S (1) = 6 + (6 · 1) is not provable anymore (just
as we have seen in the deduction for multiplication* above). And this in turn means
that all resulting models of arithmetic (or rather, arithmetic*) are not isomorphic to
the standard interpretation of arithmetic, i.e the arithmetic about the natural numbers,
anymore ((Boolos et al., 2007, p. 283)).The next section will address the implications.

Alternatively, to keep the otherwise intended interaction between multiplication,
addition, and succession the same, it can be observed that multiplication is defined in
terms of addition. So, when multiplying, one applies the function of addition as well.
If the derivation of the above mentioned contradiction is to be avoided, then changing
multiplication implies changing addition, otherwise 6 + (6 ·∗ 1) would equal 12, and
not 13. Thus, in this approach, the newly suggested function multiplication* requires a
different addition function, say addition* (or +*), to deal with the stipulated changes to
the number 13 in the mathematical antecedent of the counterfactual. Working through
the example, we get the desired equality: 6 ·∗ S (1) = 6 +∗ (6 ·∗ 1), and therefore
6 ·∗ 2 = 6 +∗ 6, and 13 = 13.

Of course, the changes to addition* also need to be accommodated in the recursive
definition for addition itself (axiom 5): 6 +∗ S (5) = S (6 +∗ 5). But this leads to
6 +∗ 6 = S (11), and as a result 13 = 12. To prevent the contradiction popping up again
here, a change in the successor function is then also needed (called ‘succession*’ or
S ∗). We get: 6 +∗ S ∗(5) = S ∗(6 +∗ 5), with which we get 6 +∗ 6 = S ∗(12), and in the
end we get the desired equality 13 = 13.

The recursive character of the functions of multiplication (in terms of addition and
succession) and addition (in terms of succession) thus results in ‘downward’ changes.
And, effectively, both functions supervene on the successor function. Taken together,
and again ignoring the base case as we did before, this means that the recursive step in
the function of multiplication will have to accommodate these changes:

∀x∀y(x ·∗ S *(y) = x +*(x ·∗ y))

This approach, in contrast to the first approach, requires some changes to be made
to some aspects of number theory other than multiplication. Depending on how to
decide which contradictions are relevant and which are not, the hope is that one should
be able to draw a line somewhere and allay the worry of the local twiddle reverberating
through the whole of number theory. Furthermore, and this is a key point, we have to
be sure that we speak about the very same thing in the counterfactual situation as in the
factual situation. Thus in the case of Suzy, we have to make sure that we are speaking
about the selfsame person in both the factual and counterfactual situation. And in the
case of the number 13 in multiplication* (with 13 being not prime), we have to make
sure we are speaking about the very same number as the number 13 in the function of
multiplication. For example, it has to be so that the number 13 in multiplication* still
has all the (relevant) other properties of the number 13 in multiplication, for instance
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of being between 11 and 13. Baron, Colyvan, and Ripley (2017, p. 5), speaking about
the number 17 here, state that:

in exploring what would happen if 17 were composite, there is no possi-
bility that we’re talking about something other than 17 itself, because it
is simply part of the specification of the case to be considered that we are
talking about 17.5

This might seem quite trivial, but number theory is somewhat particular in this re-
spect. Indeed, the intention is to specifically speak about the number 13 in the counter-
factual situation. But when ironing out the (relevant) contradictions, we have to make
sure that we do not do it in such a way that we end up talking about something else than
what we intended to talk about in the first place. Peano axiom 3, the induction axiom,
is used to show a shift in context. It is clear that it is this particular axiom that makes
some property P the case for all elements of the set. In the case of number theory the
essential property P of the set is the successor function S (x). In other words, to be a
natural number is to be the member of the set with the successor function. Changing
an apparent local thing in the multiplication function therefore implies that the natural
numbers are not closed under succession anymore. The role of the successor function
has special importance in determining the context in which the natural numbers are
understood. This will also be addressed in the next section.

4 The ramifications of the local twiddle
With the need to accommodate the changes of the new function multiplication*, either
by an ‘exceptionalist’ definition, or by having to change the the successor function
S (x) as a result of the downward changes, we enter murky waters. The worry is that
in either case the changes invoked result in a structure different from the structure of
the natural numbers, and that this change results in the fact that we end up speaking
about something else than the natural numbers. To get a better grasp on what is at stake
when we speak about the structure, or context, of the natural numbers, we will first
turn to the domain of computation in order to highlight an important observation about
the relation between numbers and numerals. Subsequently, we will turn to the topic of
de re knowledge of numbers. Having set the stage, we will then return to the present
discussion on the change in structure resulting from the twiddle in the antecedent of
the counterpossible at hand.

4.1 The structure of natural numbers
Computability6 pertains to functions. Functions themselves relate members of one set
uniquely to members of another set. A function is said to be computable if there exists,

5Baron, Colyvan, and Ripley (2017, p. 5) compare this to a remark by Kripke (1980, p. 44): “‘Possible
worlds’ are stipulated, not discovered by powerful telescopes. There is no reason why we cannot stipulate
that, in talking about what would have happened to Nixon in a certain counterfactual situation, we are talking
about what would have happened to him”. But it has to be noted here that Nixon could have existed with
very different properties, whereas it is not clear at all if this could also be the case for, say, the number 13.

6Note that the concept of ‘computability’ is mostly an intuitive notion, cf Boolos et al. (2007, p. 23)

9



in principle, a finite mechanical procedure which computes the output values of the
function given certain input values (Rescorla, 2015, p. 338). A well-known formal-
ization for computable functions is the Turing machine, which allows for the study of
number-theoretic functions. These machines carry out computations by following a set
of explicitly defined rules (a procedure). The exact workings of such a machine is not
relevant here, but what is important to notice is that these computations are only carried
out on the positive integers, which are in turn represented by some notation, i.e. sym-
bols (Boolos et al., 2007, p. 25). As such, numbers themselves are not encountered
in the computations. Rather, the computing of number-theoretic functions is done via,
or mediated by, the notation employed in the algorithms (Shapiro, 1982, p. 14). The
arguments in a computation are given by means of the numerals of some notational
system, e.g. unary, binary, decimal, etc. This brings into question what the relation is
between numbers and numerals.

At this point, it might be objected that the computation of number-theoretic func-
tions mediated by notation is still computation over number-theoretic functions. After
all “[m]ediated computation is still computation” (Rescorla (2007, p. 273). Besides, we
are probably mostly interested in number-theoretic calculations, and not so much the
notations of those calculations (cf. Rescorla (2007, p. 253) and Shapiro (2017, p. 269)).
This, however, rather restates the need for an account of the relation between the syn-
tactic and the numerical. After all, we want to know which number a certain notational
representation is about. It is therefore that Kripke (2011, p. 344) states that

the notion of computability is best seen as one of having a procedure for
knowing which number is the value of the function [my emphasis].

This implies that at some point, after doing some calculation, the sense of a term
should be immediately revelatory. Whatever is begotten at that point is something
which stops the buck, as Kripke (2011, p. 261) calls it. This is the case at the point
where no further calculation is required to get to the referent of the term. The question
is then which numerical terms are buckstoppers? Kripke gives the following example
(p. 261). Given some computable function f (n), say ‘the square of n’, then ‘the square
of 3’ is not immediately revelatory, for some calculation can still be carried out to get
to the referent of that description. Or, to put it differently, it still makes sense to ask
‘what number is ‘the square of 3’? But 9, on the other hand, is a buckstopper (for
people used to the decimal system in any case). No further calculations are needed
for anyone familiar with (the decimal) numbers. To emphasize the importance of the
use of numerals in computations, one notices that in this example the numerals for the
numbers are used (i.e. 3 and 9). Compare the similar remark by Boolos et al. (2007,
p. 24):

if the value of the function we are trying to compute is a number, what our
computations in fact end with is a numeral for that number.

Given that the numerals denote the numbers, the context in which the question
‘what number is this?’ is asked matters. Some notational system might be revela-
tory to some, but not to others. This brings us to the more general problem of de re
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propositional attitudes, specifically as to what names for numbers are eligible for exis-
tential quantification in intensional contexts, and which notational system is (or which
notational systems are) acceptable.

With regard to this, Ackerman (1978) aims at determining the conditions under
which it can be established which arithmetical terms are eligible for existential quan-
tification in intensional contexts, specifically the integers.7 This matches well with the
present investigation, since we are primarily interested in the structure and status of the
natural numbers.

She draws on discussions of Quine (1956) and Kaplan (1968) on existential gen-
eralization of de re and de dicto beliefs, in which it was argued that the relation of a
name to a person is such that it represents the individual uniquely. Ackerman (1978)
now asks whether the same would be the case for arithmetical terms. Thus, the question
is whether all arithmetical terms are eligible for existential quantification in doxastic
contexts. Similar to the classic sentences used by Quine and Kaplan,8 she formulates
the following two sentences:

(3) ∃x (Ralph believes x is a perfect number)

(4) Ralph believes that ∃x (x is a perfect number)

She applies the same procedure as Kaplan (1968), and substitutes ‘the smallest
perfect number’ for x in ‘x is a perfect number’. The first situation supposes that Ralph
has heard of perfect numbers, and that he believes that the smallest perfect number is
a perfect number. Ackerman concludes that (3) cannot be inferred from this supposed
belief: it is possible that Ralph does not know of any specific number that it is perfect.
Contrast the just mentioned belief with a second situation in which Ralph believes that
6 is the smallest perfect number (with 6 substituted for x in ‘x is a perfect number’). In
this case, she argues, the inference to (3) is justified because it is a de re belief about a
number (Ackerman, 1978, p. 147). The point is that in the first situation, the argument
would have carried over content from the de dicto sentence to the de re sentence, were
the inference accepted. According to the counterexample, however, this should not be
the case. The situation is different in the second case.

This leads her to the observation that there is something special about what is ex-
pressed by numerals as opposed to other names (for numbers). The suggestion is that
a numeral

directly specifies the position of its referent in the progression of numbers
(Ackerman, 1978, p. 151).

The difference with a term such as ‘the smallest perfect number’, which in some
sense also specifies the position of its referent in the progression of numbers, is that
knowing to which position the numeral refers to is simply a matter of understanding
the numeral. In the case of a term such as ‘the smallest perfect number’ some more

7Ackerman specifically targets the integers, because she does not have firm intuitions about other kinds
of numbers (Ackerman, 1978, p. 145).

8For the examples used, see for instance (Quine, 1956, p. 178) and (Kaplan, 1968, p. 192).
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mathematical knowledge is needed than what is needed in order to understand the nu-
meral. For one, it has to be understood what a perfect number is. Concerning the
specification of the position of the referent of a numeral in the progression of numbers,
we remember the observation made at the end of the previous section regarding the
fundamental role the successor function appears to play. What is of importance here,
as was observed by Ackerman, is the relation between succession and position, in casu
the next position. A progression can typically be thought of as an order with an initial
element, such as can be seen in the natural numbers: 0, 1, 2, . . ..

Given these observations, the question is thus whether it makes sense to speak about
changing something to a number in isolation, such as the twiddles to the number 13, if
that would mean a change to the successor function. So far, the suggestion is that this
is problematic, and that numbers are indeed to be understood holistically. This is why
Ackerman observes the following, when she says that the referent of a numeral can be
known directly by understanding the numeral as such:

[numbers] can be understood only in the context of a system of num-
bers, and knowing and understanding a system of numerals seems to be
a matter of knowing how to generate in order the progression of numerals
and knowing how to count transitively9 . . . in accord with the progression
(Ackerman, 1978, p. 151).

When discussing de re propositional attitudes about natural numbers, Shapiro (2017)
stresses, like Ackerman (1978), the importance of the successor function in our under-
standing of natural numbers, and highlights the importance of the successor function
on numbers (Shapiro, 2017, p. 279). Take unary notation, where, for instance, the nu-
merals are the sequences of strokes as used in a simple tallying procedure. The number
n would then be denoted by n strokes (e.g. the number seven would be |||||||). This is
a structured order: one stroke after the other, say, from left to right. This means that,
relative to this notational system, the successor function is computable. This is indeed
an important aspect of the natural numbers when used for, for example, determining
the cardinality of some set in answer to the question ‘how many?’. In general, the
cardinality is begotten by reciting the numerals of some notational system (Rescorla,
2007, p. 269).

In fact, Shapiro (2017, p. 279) highlights two features of unary notation, such as
putting down strokes, of which he thinks that it makes unary notation privileged over
other notations. The first is that each numeral for some number n is a collection (of
strokes) with cardinality n. The intimate relation between the numeral and its corre-
sponding cardinality can be seen directly. The second feature of unary notation is that
it displays the order of the collection (as mentioned above: one stroke after the other,
say, from left to right). Thus, unary notation is privileged because it “displays both the
cardinality and the corresponding ordinal” (Shapiro, 2017, p. 279).

This does of course not mean that all numerals in unary notation are buckstoppers,
at least not for ordinary humans. The unary numeral for a very large number would

9With transitive counting is meant counting the cardinality of a collection, in such a way that the numerals
for the natural numbers are generated in order and each numeral is associated with a unique object (Shapiro,
2017, p. 272).
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most likely prompt the question ‘what number is this?’. But this is not only a problem
of unary notation. At some point, no matter what notational system is used, there will
be some numerals that are not buckstoppers. The numerals simply get too big (Steiner,
2011, p. 165). However, when computability theory is concerned, one idealizes away
from the limitations of ordinary human beings (capacity, time, etc.). From the com-
putational point of view, the computor is an idealized human being (Shapiro, 2017,
p. 277). Given the lack of restrictions of this kind for such idealized agents, very large
numerals are still buckstoppers.

Returning to the issue of the importance of the successor function, and an initial
element on which this function operates, it is clear that the Peano numerals display
both elements directly. In a sense this should come as no surprise, because the Peano
axioms were meant to define (or describe) the natural numbers. They capture the idea
of succession in a fundamental sense, and it uses numerals, i.e. the Peano numerals.
In fact, the successor function is hard coded, so to speak, in the numerals. This can
be easily seen, because the Peano numerals for the sequence of natural numbers are
0, S (0), S (S (0)), . . .. For every n > 0, the number of S ’s in the Peano numeral n has
cardinality n. In light of Shapiro’s discussion of unary notation, it is seems that putting
strokes on paper in an orderly fashion, as seen above, already gives us something sim-
ilar to the first two Peano axioms. The first stroke represents the number one, two
strokes represent the number two, and so on. The number zero is represented by the
empty string (Shapiro, 1982, p. 14).

This makes the Peano axioms particularly relevant in the current context, with spe-
cific emphasis on the standard induction scheme, axiom (3), which contains the symbol
for the successor function S , and the symbol for 0. There is evidence that this scheme
plays a key role in the status of the Peano numerals (Heylen, 2014, pp. 20–21): given
the standard induction scheme (with added knowledge operator) it can be deduced that
the Peano numerals allow for existential quantification in epistemic contexts. In other
words, the Peano numerals are canonical. Or, in Kripke’s words, they are ‘buckstop-
pers’. And importantly, without the standard induction scheme one cannot deduce the
canonicity of the Peano numerals. Take for instance the earlier mentioned difference
between ‘the square of 3’ and 9. Analogous to the epistemic puzzles mentioned earlier,
if someone knows that ‘the square of 3’ equals ‘the square of 3’, this does not entail
that they know that ‘the square of 3’ equals 9.10

The canonicity of the Peano numerals suggests that they are intimately related to de
re knowledge about natural numbers. The point is that once the induction principle is
accepted, the canonicity of the terms follows. Similarly, if instead of the Peano numer-
als the induction was formulated by, say, +1, then the canonicity of the following terms
would follow: 0, (0) + 1, ((0) + 1) + 1 (Heylen, 2014, p. 12). If we recall Ackerman’s
remark that understanding numbers (and a system of numerals) is very closely tied to
knowing how to generate a progression, then it appears to be the case that some form
of induction is already implicit in our very understanding of numbers: you know the
numbers if you are able to get to the next number, starting from zero. This so called ‘in-

10Similarly, the importance of a canonical form is also discussed by Lawrence (2021) in relation to alge-
braic investigations, i.e. determining the value of a variable in equations. The idea here is that an answer
needs to be a complete answer, so that, in the context of giving solutions to algebraic equations, the question
as to what value a variable has would not be appropriate given that context.
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transitive counting’ requires an understanding of a recursive procedure for generating
the progression (Benacerraf, 1965, p. 50). Understanding a number is to understand its
place in a progression. And if this is so, then a number cannot be separated from the
system of numbers which it is part of.

Relating these observations to the counterpossible introduced in section 2, the im-
portance becomes clear. Given the counterpossible, the intention is to speak about the
natural numbers themselves, thus de re. It is not the intention to speak about their de-
scriptions. And because different terms for numbers do not necessarily all lead to de re
knowledge of numbers, the primary interest is in the canonical terms for the numbers.
If one were intent on separating the individual numbers from the system of numbers,
then it is not clear how this can be done without losing a basic tenet of our understand-
ing of the natural numbers. After the local twiddle, the sequence would amount to
0, S ∗(0), S ∗(S ∗(0)), . . .. In reference to Priest (2016, p. 2660), when we imagine that
13 is not prime (and it is), we intend to imagine something about that very number.
Change the number system, and you get different numbers, different canonical proper-
ties, etc. And if this is correct, then stating something like 2 ·∗ 6 = 13 results in the fact
that the set of elements does not equal N anymore.

Coming from a different angle, Halbach and Horsten (2005, p. 181) also endorse
the view that numbers are given collectively. They approach it from the perspective of
the standard interpretation of arithmetic, and specifically the functions of addition and
multiplication. To be more precise, the question they are concerned with is not solely
about how and why a numeral for some number n indeed refers to the number n, but
rather how a single structure for doing arithmetical operations on the natural numbers
can be singled out (Horsten, 2012, p. 276). The standard model of arithmetic is the
model of arithmetic intended to be about the natural numbers.11 The objects in the
intended models are (the referents of the names for) the natural numbers (Boolos et al.,
2007, p. 104). And, according to structuralists, if it is the case that there are two or more
models of this theory, then there is an isomorphism between these models instantiating
the same structure.12 The point is that the objects in the standard model constitute a
specific structure, namely the structure for doing arithmetical operations on the natural
numbers. But none of the models of the newly suggested function multiplication*, with
m, n other than 2 and 6 the same as multiplication, and 2 and 6 defined separately, are
models of Peano arithmetic, because 6 ·∗ S (1) = 6 + (6 ·∗ 1) is not provable anymore
(cf. section 3). This means that, therefore, none of the resulting models is isomorphic to
the standard interpretation, i.e. the structure differs. From this it follows that, since the
standard models are the intended models about the natural numbers, the new structure
is not that of the natural numbers.

The counterpossible about the number 13 not being prime is not the only example of
a counterpossible regarding the natural numbers given by Baron, Colyvan, and Ripley
(2020). In another, but similar, example of a twiddle to the natural numbers, the same

11Some might prefer to refer to it as ‘standard models’, for instance a structuralist, since there can be
various models of arithmetic instantiating the same structure. The philosophical question in this respect is
then whether isomorphism implies identity.

12First-order Peano Arithmetic, however, has non-standard models, i.e. models not isomorphic to the
standard model, and in some of which the Peano axioms are satisfied nonetheless. These models are not
intended and need to be ruled out.
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problem occurs. This time, it is about numbers counterpossibly being even or uneven.
Here too, it is very clear that the structure of the numbers is actually changed. Consider
the following counterpossible:

. . . twiddle the natural numbers by making it so that none of 503, 504, or
505 is even. The twiddle ramifies as follows: the product of two natural
numbers is even (if and) only if one of the numbers is (Baron, Colyvan,
and Ripley, 2020, p. 29).

What is mentioned here is supposed to be about the natural numbers, just as it was
with the counterpossible about 13 not being prime. But given the earlier observations,
if 504 is considered not to be even, this means that the standard arithmetical operation
of dividing it by 2 cannot be performed on it. One of the ramifications is that the
underlying structure does not satisfy the Peano axioms anymore. In other words, the
model that results is not isomorphic to the standard model of arithmetic. And since the
standard model of arithmetic was supposed to be, or intended to be, about the natural
numbers, what results is a structure different from that of the natural numbers. More so,
given the standard induction scheme, axiom (3), and the functions for multiplication
and addition, it follows that of three consecutive numbers, at least one needs to be even
(or uneven). Thus we see that in this case too, the structure is changed and subsequently
differs from the structure of the natural numbers.

These observations suggest that changing an apparently local thing, such as 13
factorizing in 2 and 6 as well as in 1 and 13, or making none of 503, 504, 505 even, has
the consequence that one ends up talking about two different structures. And this would
then mean that the supposed counterfactual is actually not a counterfactual containing a
natural number, in our main example the prime number 13 such as used in the original
function of multiplication. This is so, because the numeral 13 now means something
different than the numeral in the function multiplication*, resulting from the changes
to the structure.13

4.2 Connecting the antecedent with the empirical consequent
The focus so far has been on the antecedent of the counterfactual, but the consequent is
also of importance. If the meaning of the antecedent changes, how is it then supposed
to latch on to the empirical content of the consequent? In a sense, with multiplica-
tion*, we lost the tallying procedure for the measuring of the actual life cycles. How
to decide on the cardinality of the set of the life cycles? To remind ourselves, a tally-
ing procedure, even as simple as putting strokes on a piece of paper, already gives us
something isomorphic to the Peano numerals. And it does so, because it gives you an
initial element and a procedure of succession.

13A similar idea can already be found in section 6 of (Quine, 1986), titled ‘Change of logic, change of
subject’. Now, someone like Williamson (2007) might argue that the focus on succession as a requirement
for the subject matter of mathematical counterfactuals is misplaced, at least in an epistemic context, and that
one could still meaningfully speak about the natural number 13 in the counterfactual situation, analogously
to his discussion on modus ponens. Although an inferentialist might argue that modus ponens is constitutive
of the meaning of the conditional. Disagreement between experts about such issues can of course occur, but
it leaves open the question whether this can occur in the same sense in the case of number theory, because of
the close connection between the structure of a number system, the idea of succession, and numbers.
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The worry about the latching on of the antecedent and consequent, due to a dif-
ference in context between both sides of the counterfactual, is a similar kind of worry
to the one raised by Heylen and Tump (2021, p. 3038) in relation to the Enhanced In-
dispensability Argument (EIA), from which the case of the mathematical explanation
of the prime life cycles of the Periodical Cicadas is taken. The EIA is in essence an
inference to the best explanation, and to get an inference to the best explanation off

the ground one needs to assume the truth of the explanans as well as the explanandum.
Therefore the reference to numbers in the explanandum, due to the notion of prime in
it, has to be paraphrased away in first-order logic with identity to prevent circularity
(Bangu, 2008; Baker, 2009). It is then observed that the context between the explanans
and the explanandum differs after this modification. The explanans treats of an entity,
i.e. the number 13 (or 17) of which primeness is predicated, whereas the explanandum
treats of a plurality, i.e. the collection of objects of the sentence in first-order logic with
identity. Therefore, a bridge principle is needed to logically connect the two contexts.
Without such a link between the antecedent and consequent, there is no (mathematical)
explanation of the empirical datum. It is then suggested that Hume’s Principle14, given
some strict but non-trivial requirement, could link the entities to the pluralities (Heylen
and Tump, 2021, pp. 3038–3040).

Pertaining to the counterpossible at hand, two issues need to be addressed. The
first issue relates to the difference in context between the antecedent and consequent
after the change to the antecedent. The second issue relates to the fact that for a coun-
terpossible to be able to be used in an explanation it should be, as mentioned in the
introduction, non-trivially true. The antecedent of the suggested counterpossible is,
however, in contradiction with the Peano axioms. As a result, since the antecedent
harbours a contradiction, the counterpossible comes out as trivially true. As would
any other counterpossible. To avoid the triviality, these inconsistent worlds need to
be accommodated. In order to do so, it could be suggested that Lewis’s account of
closeness be extended to encompass, besides possible worlds, also impossible worlds
(Baron, Colyvan, and Ripley, 2020, p. 4). And if the changes to the number 13 lead to
contradictions given the standard axioms, and these contradictions cannot be contained
as hoped, than it might be accepted that a contradiction tolerant logic is needed (Baron,
Colyvan, and Ripley, 2020, p. 5). This would allow for some relevant aspect in the
relation between the antecedent and the consequent to be maintained in case of incon-
sistent worlds, without making the counterpossibles trivially true, because it is not the
case that everything is true at such a world, including the negation of everything.

A couple of observations about resorting to a paraconsistent logic with regard to
the present context need to be made here. First, it is certainly true that a paraconsistent
logic would solve the issue of the contradictions. That is, the fact that a local change to
a number, given the Peano axioms (containing the symbol for zero, 0, and the successor
function, S ), result in a number being identical to a successor of a number, and thereby
violating the Peano Axioms, will not result in an explosion. The logical contradictions
are taken care of. However, not all of the contradictions that arise are in a sense purely
logical contradictions. It remains the case that it is possible to, for example, derive

14Hume’s principle states that “for any concepts F, G, the number of F is identical to the number of G if
and only if F and G are equinumerous” (Shapiro, 2000, p. 110). Or formally, ∀F∀G(#F = #G ↔ F � G)
(Boolos, 1998, p. 139).
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that 0 = 1.15 This in itself could be considered to be a problem of sufficient severity
in itself, for it removes the basis of the whole system of natural numbers, i.e. the idea
of succession, as discussed in the previous sections. Second, even if a paraconsistent
logic could constrain the contradictions, this would not be sufficient to put the concerns
about the difference in context aside. The point rather is whether we can speak about
the same structure as the natural numbers after having counterfactually changed the
context. Ironing out the logical contradictions appears to be only one side of the coin.

Of course, the point about resorting to a paraconsistent logic can be seen as a ‘lim-
iting case’. Jago (2014), for example, does not resort to a paraconsistent logic, and also
offers an account in terms of similarity of possible and impossible worlds. A world
with an alternative arithmetic in which one small deviation occurs could be said to be
closer to the actual world than a world with an alternative arithmetic in which two (or
more than one, in any case) deviations occur. However, such an account does indeed
require the acceptance of at least a minimal overlap between antecedent and conse-
quent (cf. the point to be made with regard to the first issue below). But the dispute is
just as much about the acceptance of such an account. It is only if one were to accept
such an account that the question of closeness becomes relevant. But then it needs to
be, non-circularly, shown that contradiction harbouring worlds can be sufficiently close
to non-contradiction harbouring worlds to be relevant.

Moving on to the first issue pertaining to the difference in context between the
antecedent and consequent, and the need for a criterion to connect the two, another
difficulty arises. Due to the change in structure of the antecedent, that is, a structure
different than that of the natural numbers, the property P of the consequent, pertaining
to the actual 13-year life-cycles lengths, does not find a counterpart in the antecedent.
The antecedent now contains 13∗, whereas the consequent still contains 13. Given
the requirement that the counterpossible should not be trivially true, there needs to
be overlap between the antecedent and consequent. Therefore, the consequent should
also contain 13∗, or at least 13∗ in a sense that a relevant connection exists given some
property P.

But if this is the case, then the number 13 does not occur in the explanandum
anymore. However, the explanandum was based on the empirical data, and because
an explanation is post hoc, the explanandum is already a given, so 13 has to occur in
it (if not paraphrased in first-order logic). Therefore, to say that the physical structure
must twist in line with the changes that were made (Baron, Colyvan, and Ripley, 2017,
p. 11) raises the problem of the lost number line and the loss of the tallying procedure
for the measurement of the actual life cycles. This was a result from the need to change
the function of multiplication to multiplication*. In some sense it could be said that the
13 year life cycle factorizes in 6 and 2 (Baron, Colyvan, and Ripley, 2017, p. 11), but
how is this ‘13’ begotten? In this case, it is definitely not a tallying of the successive
years, since that would already have given us the Peano numerals. This, then, is the
problem this account faces. If the intention is to keep number theory the same as
usual in the consequent, then, contrary to the invocation of Hume’s Principle in the
analogy from the EIA, it is not at all easy to see what needs to be invoked in case of the

15Interestingly, in intuitionistic logic, 0 = 1 is used as a known contradiction. Negation can, for example,
be defined as ¬A→ 0 = 1 (Van Dalen, 2001, p. 225).
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counterpossible to ensure a link between the antecedent and the consequent.

5 Conclusion
The main question this paper set out to answer is what the effects of changing a mathe-
matical antecedent of a counterfactual are. More specifically whether, given a number-
theoretic counterpossible, we can be certain that we are still speaking about the same
numbers in both the factual and the counterfactual case. This is important, because a
counterfactual of something or other needs to be about this something or other. Draw-
ing on insights external to this debate, namely about the structure of numbers, de re
knowledge of numbers, and the standard interpretation of arithmetic, it appears that
this is not as straightforward as it might seem. The ramifications of the intended local
change to a number, such as supposing 13 to not be a prime number, result in a change
of structure of the numbers.

Given the discussions on the intended models of arithmetic, i.e. the arithmetical
models about the natural numbers, it was argued that a local change to a number leads
to a change in structure of the natural numbers. However, this new structure is not iso-
morphic to that of the standard interpretation anymore. And since the standard models
are the intended models about the natural numbers, the new structure in not that of the
natural numbers. Also, the special status of Peano axiom 3 was highlighted. With it,
the canonicity of the Peano numerals can be deduced, and without it this is not possible.
This is so, because the induction axiom contains the symbol for zero, 0, and the succes-
sor function, S (x). This suggests an intimate connection between Peano numerals and
de re knowledge of numbers. The counterpossible is of course concerned with numbers
de re. To put it bluntly, to be a natural number is to be the member of the set with the
successor function. After the local change, and the resulting change in structure, this
connection is broken, and the antecedent of the counterfactual is not about the natural
numbers anymore, but about some other numbers with a different structure.

Additionally, resulting from the change in structure of the antecedent of the coun-
terpossible, it was argued that, given that the consequent now differs in structure from
it, the latter does not connect to the former.

Some might argue that, in the end, none of the ramifications of the local twiddle
are of real importance. For example, because the conversational context would exclude
those ramifications, just as certain irrelevant ramifications in ordinary counterfactuals
are excluded by the context. However, given the central importance of the idea of
succession in our understanding of the natural numbers, i.e. in relation to the holistic
aspect of our understanding of numbers, the analogy between the two situations cannot
be taken for granted. As such, an account of counterfactuals with number-theoretic
antecedents should take into account results from discussions on de re knowledge of
natural numbers and the standard interpretation of arithmetic. The suggestion is that the
way the context stops the corrosive explosion of ramifications in the case of ordinary
counterfactuals, such as in the case of Suzy, might not be available in the case of
number-theoretic counterfactuals, such as in the Cicada case. To use the metaphor of
the carpet, instead of ironing out a lump from our area of interest, it appears there is no
carpet left to be ironed out.
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